
6.S965
Digital Systems Laboratory II

Lecture 12

10/16/25 6.S965 Fall 2025 1

Administrative Stuff

• Last week of stuff (week 6) content was released
Friday
• Try to do by the end of the week.
• Meant to have project survey out by last

weekend but I fell behind. Plan:
• If you have a team of 2/3 you want to work with, email

me the team.
• If you want to get partnered, email me with some

ideas of what you want.

10/16/25 6.S965 Fall 2025 2

Coverage
What is it? What does it mean?

10/16/25 6.S965 Fall 2025 3

Coverage

• Is concerned
with how
much have
you tested a
DUT

10/16/25 6.S965 Fall 2025 4

Some n-dimensional blob of possible module existence

tests=

The issue…

• Consider a device that adds two 32 bit numbers.

• There are 1.84×10!" input possibilities, each
with a correct output.
• If you verified 1 billion input/output

combinations per second it would take ~600
years to fully verify the design
• And this is just a simple adder…

10/16/25 6.S965 Fall 2025 5

32

32

33

+
a

b
c

And this gets astronomically worse as
modules get more complicated
• …especially as they get more stateful
• …and with more inputs
• …and with multiple sets of ports and things

10/16/25 6.S965 Fall 2025 6

Can anything ever be fully
covered?
• Some modules should be able to be almost fully

covered
• Others maybe not, so you have to structure what

you’re looking for and zero in on important edge
cases like:
• Max/min values, edge cases, overflow cases,

10/16/25 6.S965 Fall 2025 7

What do you ”cover”?
• If a module has clearly defined states, you

should check to see those
• Maybe check to see how those states transition?
• Maybe check to see different sequences of input

and/or output signals
• Check certain output signals against input

signals
• Check sequences of inputs
• Check combinations of things listed above.

10/16/25 6.S965 Fall 2025 8

Coverage is not necessarily about
the verification of correct results
• I mean it is an adjacent topic...

• But really the notion of coverage is meant to say
how much was tested…with the assumption that
it tested correctly.

• It is also about exploring what/where your design
can get to and can’t get to.

10/16/25 6.S965 Fall 2025 9

So let’s look at an example…

• We’ll revisit the issue of TREADY propagation and
build a module to handle that properly.

• The skid buffer fixes this...most of you are
working on this right now.

10/16/25 6.S965 Fall 2025 10

Example: Skid
Buffer

10/16/25 6.S965 Fall 2025 11

EMPTY BUSY FULL

unload

load

flush

fill

flow

Skid Buffer
ready
valid
data*

ready
valid
data*

In/S Out/M

Skid Buffer

10/16/25 6.S965 Fall 2025 12

• BUSY is normal operation where data is coming
in and out.
• If there’s a hiccup on the output side, go to FULL

and stall pipeline (s00_tready à 0)
• If there’s a hiccup on the input side, go to EMPTY

and stall pipeline (m00_tvalid à 0)

Skid Buffer
ready
valid
data*

ready
valid
data*

In/S Out/M

Skid Buffer

This simple FSM description…glossed over
the potential complexity of the
implementation: 3 states, each connected to
2 signals (valid/ready) per interface, for a
total of 16 possible transitions out of each
state, or 48 possible state transitions total.

10/16/25 6.S965 Fall 2025 13

Cocotb Coverage (version 1.2)

10/16/25 6.S965 Fall 2025 14

Install only
version 1.2
They updated to
support cocotb v
2.0

Another library with ok docs and
source code

10/16/25 6.S965 Fall 2025 15

My Skid Buffer

• Most is hidden from you, but
one thing to point out is there
is an internal state variable.

10/16/25 6.S965 Fall 2025 16

censored

censored

Cocotb_coverage

• Let’s first focus on how we could measure the
states that our system exists in?
• This thing has a very clearly defined state

machine design and only certain states will
connect to certain states

10/16/25 6.S965 Fall 2025 17

First step is to define some
coverage that we care about
• Let’s look at current state of our FSM and

next/upcoming state of our FSM

10/16/25 6.S965 Fall 2025 18

CoverPoint

10/16/25 6.S965 Fall 2025 19

• Object thar represents coverage. Concerned with a
signal or combination of signals or state of being.
• Has a name (which you organize in a hierarchical

fashion)
• Is used with a function you define
• Qualifies the inputs as one of the values specified in

its bins argument

CoverCross

10/16/25 6.S965 Fall 2025 20

• CoverCross generates the Cartesian Product of
multiple CoverPoints

• The CoverCross shown here will have how many
possible bins?

• 9

Coverage_section
• Is another object that

represents a collection
of coverpoints (and any
related crosses)

• The idea is to
hierarchically organize
the things you care
about

10/16/25 6.S965 Fall 2025 21

Must Sample/interface with the
actual DUT

• Write a sampling
function (just a
passthrough here)
• That is then called

repeatedly in a
monitor that is
studying the
state/next state on
the rising clock edge

10/16/25 6.S965 Fall 2025 22

Decorator links to coverage_section by
name…this is the function that is used by the
cover points for analysis

Then run…
• Launch state monitor here:

• At end of test…report it out using
coverage_db.report_coverage

10/16/25 6.S965 Fall 2025 23

The result

10/16/25 6.S965 Fall 2025 24

Or if you prefer to read xml
• I guess

10/16/25 6.S965 Fall 2025 25

Results
• The FSM was in all of

its states pretty
regularly during the
test

10/16/25 6.S965 Fall 2025 26

Potential issue?

Results

• The FSM was in all of
its states pretty
regularly during the
test

10/16/25 6.S965 Fall 2025 27

Makes sense

Makes sense

Doesn’t exist

Doesn’t exist

If you know things shouldn’t happen

10/16/25 6.S965 Fall 2025 28

ignore_bins

This does not mean you should
ignore things that don’t make
sense...just things you’ve
convinced yourself should not
happen

Can now target 100% coverage
• If you can prove through some

mechanism or another which bins
should be reachable and which are false
or unachievable, then you can view your
coverage more as a milestone

10/16/25 6.S965 Fall 2025 29

Different tests but still you can see we got 100% coverage

nice

Further Pushing on this System

This simple FSM description…glossed over
the potential complexity of the
implementation: 3 states, each connected to
2 signals (valid/ready) per interface, for a
total of 16 possible transitions out of each
state, or 48 possible state transitions total.

10/16/25 6.S965 Fall 2025 30

Skid Buffer
ready
valid
data*

ready
valid
data*

In/S Out/M

So let’s do state and input
• Come up with STS

covergroup (State and
Signals)
• I want to look at the

different states of my
module as well as its
exposure to different
signal combinations
on both S00 and M00
side

10/16/25 6.S965 Fall 2025 31

How many bins will this have?

Write a quick monitor for it...

• Instead of just feeding in
state and old state now
feed in state and all four
valid/ready signals

10/16/25 6.S965 Fall 2025 32

Can run along side other
coverage monitors

And Run It...
• Coverage is:
• 26/48 total

10/16/25 6.S965 Fall 2025 33

At the naïve level…

• Yes there are 48 possible state transition and
input combinations, but the state controls some
of these signals, so that seems maybe a little
excessive.

10/16/25 6.S965 Fall 2025 34

Skid Buffer
ready
valid
data*

ready
valid
data*

In/S Out/M

Change the Crosses

• There’s likely no reason
(at least at this point) to
have the signals on both
sides mixed together in
one large coverage cross

10/16/25 6.S965 Fall 2025 35

Only cross the state and
values at each interface

Result

10/16/25 6.S965 Fall 2025 36

(STATE, VALID, READY)

(STATE, VALID, READY)Master Cross:

Slave Cross:

Look at our design

• Some of these cross values should
not be achieved :
• s00_axis_tready never be 0 in EMPTY
• m00_axis_tvalid never be 0 in FULL

10/16/25 6.S965 Fall 2025 37

Slave Cross:
Result

10/16/25 6.S965 Fall 2025 38

(STATE, VALID, READY)

(STATE, VALID, READY)

Legit/Might Occur:✅

Should Not Occur:🚫

‼

‼

‼
‼

✅

s00_axis_tready never 0 in EMPTY
m00_axis_tvalid never 0 in FULL

🚫
✅

✅
🚫

✅

✅

✅

✅

✅
✅

✅

Master Cross:
✅

🚫

✅

✅

🚫

✅

✅

✅

✅

✅
✅

✅

If I was previously EMPTY
there’s no way READY would
be 0 now

If I was previously FULL there’s
no way VALID would be 0 now

Look at our design

• Some of these cross values should not be achieved :
• s00_axis_tready never 0 when was EMPTY
• m00_axis_tvalid never 0 when was FULL

10/16/25 6.S965 Fall 2025 39

Point of Clarity...

• Monitor uses previous
state in combination
with all four valid/ready
signals

10/16/25 6.S965 Fall 2025 40

Should these be
achievable?

10/16/25 6.S965 Fall 2025 41

Master Cross:

Slave Cross: (OLD_STATE, VALID, READY)

(OLD_STATE, VALID, READY)

Legit/Might Occur:✅
Should Not Occur:🚫

✅
🚫
✅
🚫
✅
✅
✅
✅
✅
✅
✅
✅

✅

🚫

✅

🚫

✅
✅
✅
✅
✅
✅
✅
✅

If I was previously EMPTY
there’s no way READY would
be 0 now

If I was previously FULL there’s
no way VALID would be 0 now

Ignore those…
• Run again:

10/16/25 6.S965 Fall 2025 42

Tests are doing
100% of coverage
now

Another Big Issue

• AXI is about more than just the value at any point
in time.
• As pointed out in class on Monday, AXI as a

protocol has rules and those are rules are
inherently stateful.
• Just throwing random values at the busses with

no regard for history/meaning could be wrong:
• Giving it illegal values
• Wasting cycles testing stuff that shouldn’t be tested

10/16/25 6.S965 Fall 2025 43

Generalized Transaction
• All Channel Interactions follow same high-level

structure
• Data is handed ob IF AND ONLY IF VALID and

READY are high on the rising edge of the clock
• If that happens, both parties must realize that

data transfer has happened

10/16/25 6.S965 Fall 2025 44

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

VALID then READY
• Valid can be high first
• Then ready can show up later
• Only when both are high is data exchanged

10/16/25 6.S965 Fall 2025 45

Data transferred on this edge

READY then VALID
• Ready can be high first
• Then Valid can show up later
• Only when both are high is data exchanged

10/16/25 6.S965 Fall 2025 46

Data transferred on this edge

READY WITH VALID
• Ready and Valid come high at the same time
• Totally allowed
• Data is exchanged on that clock edge

10/16/25 6.S965 Fall 2025 47

Data transferred on this edge

IMPORTANT
• the VALID signal of the AXI interface sending

information must not be dependent on the
READY signal of the AXI interface receiving that
information
• an AXI interface that is receiving information may wait

until it detects a VALID signal before it asserts its
corresponding READY signal.
• In other words READY can depend on VALID, but not

the other way around.
• Once VALID is asserted, it cannot be deasserted

until READY has also been asserted for at least
one cycle

10/16/25 6.S965 Fall 2025 48

Make a New “higher level” Cover
section
• This one will track

cycle-to-cycle
transitions of the
valid and ready
signals on both ports
• No reason to

combine the two
ports really…there’s
nothing about the
spec anyways

10/16/25 6.S965 Fall 2025 49

Make support
functions
• Track and Label

transitions of all
four signals over
time.

10/16/25 6.S965 Fall 2025 50

RUN

10/16/25 6.S965 Fall 2025 51

Run it and you get...

10/16/25 6.S965 Fall 2025 52

Let’s Consider Slave Side

10/16/25 6.S965 Fall 2025 53

Legit/Might Occur:✅

Should Not Occur:🚫
✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅

Both these are
situations where
the Valid is de-
asserting before a
handshake
occurred

So what should we be concerned
about?

10/16/25 6.S965 Fall 2025 54

Legit/Might Occur:✅

Should Not Occur:🚫
‼

‼
‼

✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅

Similarly on Master Side:

10/16/25 6.S965 Fall 2025 55

Legit/Might Occur:✅

Should Not Occur:🚫
‼

‼

This is actually pretty
reassuring since our DUT
would be the device that
would actually be causing
these violations

✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅

Conclusions?

10/16/25 6.S965 Fall 2025 56

‼

‼

‼
‼

✅
✅

✅

✅

✅
✅

✅

✅

🚫

🚫
✅
✅

✅
✅

✅
✅

‼
‼

✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅

So probably more read
toggling in our testbench
would be good to be honest.

‼

The TLAST Issue
• I think in week 5, a decent number of you made

data_framers that failed at the end
• I modified the S driver to deassert ready if last

shows up

10/16/25 6.S965 Fall 2025 57

10/16/25 6.S965 Fall 2025 58

10/16/25 6.S965 Fall 2025 59

10/16/25 6.S965 Fall 2025 60

10/16/25 6.S965 Fall 2025 61

????

