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Administrative

* Please don’t hesitate to post on piazza if you see
a thing that might be a typo. | am an imperfect

being.
* Week 4 is out/due this upcoming Friday.

* Week 5’s assignments will be a transition
week...we’ll still have a Pyng board thing to build
(based on your weeklittle 3 build so hopefully
super easy), but will mostly be simulation.

e Weeks 6-8 will be on RFSoC
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Status

* Week 4’s assignment is deploying a DMA engine
on the Pynqg board.

e Forces us into an AXI-state of mind

* You’ll use your FIR filter as an accelerator, but
there are many other accelerators.

9/29/25 6.5965 Fall 2025



This Week

e Study the CORDIC and implement it.

* Use it to get magnitudes and angles of vectors.
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There are tons of cool algorithms

out there

* Particularly for FPGAs or digital environments in

general

* People actively

making
improvements
and things!

9/29/25

Low-cost, High-speed Parallel FIR Filters for
RFSoC Front-Ends Enabled by ChaSH

Craig Ramsay
University of Strathclyde
Glasgow, Scotland
craig.ramsay.100@strath.ac.uk

Abstract—We present a new low-cost, high-speed parallel FIR
filter generator targeting the Xilinx Radio Frequency System
on Chip (RFSoC) and direct RF sampling applications. We
compose two existing approaches in a novel hierarchy: effi-
cient parallelism with Fast FIR Algorithm (FFA) structures,
and efficient multiplierless FIR implementations with Hc,,. The
resource usage advantages (in both area and type) are compared
with similar output from the traditional architecture, exemplified
by vendor tools, as well as the Hcp-based filters without the
FFA optimisation. Although these techniq are well died
individually in the literature, they have not enjoyed mainstream
use as their structural complexity proves awkward to capture
with traditional Hardware Description Languages (HDLs). This
work continues a discussion of the use of functional programming
techniques in hardware description, highlighting the benefits of
having easily composable circuit generators.

I. INTRODUCTION
We present a new family of low-cost, high-speed, parallel

Finite Impulse Response (FIR) filters targeting direct Radio

Eroouency (RE) camnling annlicationce suith the Yiliny Zuna
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Block RAMs UltraRAMs ~ DSP48E2s  Logic Fabric

1/O Pins 8 channel

12 bit at 4 GSPS

8 channel

To CPUs < 14 bit at 6.5 GSPS

To RAM =

Fig. 1. Overview of RFSoC’s FPGA and RF Data Converters

o Custom Digital Up/Down Conversion (DUC/DDC) as a
front-end of any radio application. Especially useful when
the characteristics of the available hardened DUC/DDCs
[5] do not meet the application’s requirements.

The demand for sample parallelism and the multi-channel

nature of the RFSoC device amplifies the effects of filter



One algorithm we should studly...
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CORDIC

» Coordinate Rotation Digital Computer

* Super versatile class of iterative algorithms that
are used widely in hardware because they are
relatively simple to implement (mostly just shifts
and adds and compares)...maybe a multiply

* Might not be the fastest, but are a good gateway
algorithm for lots of options out there.
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CORDIC

* What can you compute with CORDIC?

Directly computable functions |edit | edit source ]

sin 2 cos z
tan! z sinh 2z
cosh z tanh ! 2
y/z zz
tan~!(y/z) A2+
z? — o2 e = sinh z + cosh z

Indirectly computable functions |edit| edit source ]

In addition to the above functions, a number of other functions can be produced by combining the results of previous computations:

in 71 — w2
sin 2 4 1 1 w

tanz = s cos ~w = tan ”
. o L W
What can’t you Inw = 2tanh ! Z—: log, w = 111111_1:
compute with wt = et cosh™! = In(w+ /u? 1)
CORDIC? tan~ (y/z) sinh ! = ln(w +vVw? + 1)
2? — o VB =/ (w+1/4)? = (w - 1/4)?

9/29/25 6.5965 Fall 2025 8



Ivado..

e Just tell the little
elves inside to
calculate this for

you...

Oryou do it

Sinhand Cosh

ArcTan

o yourself to learn.

~ |square Root

9/29/25 6.5965 Fall 2025



) (¢, ¥r)-

CORDIC

* Built around the d .
iIdea of rotations (X, ¥i)

X cos () —sin(0) | rx;
* Rotation Matrix: bl = ) .

sin(f)  cos (6

e Also break down xp = cos(6) x; — sin(6) y;

Into two equations:
yr = sin(0) x; + cos(8) y;

https://zipcpu.com/dsp/2017/08/30/cordic.html https://en.wikibooks.org/wiki/Digital_Circuits/CORDIC
9/29/25 6.5965 Fall 2025 10



Why is the ability to rotate useful?
Motivation to do this...

* |If we could carry out that rotation we could start
to answer questions like...

A (cos®, sinf) A (1,y)

e Startat (1, 0) e Startat (1, y)
» Rotate by 6 e Rotate until y=0
» We get (cos6, sinb) « The rotation is tan~* y

9/29/25 6.5965 Fall 2025 11



OK so what do we need to do...

* WWe need to be able to do this...

xf] _ cos (f) —sin (6) xi]
f sin(f#) cos(6) | Wi

* But this is a little chicken-and-egg...because in
order to do this, we need to be able to do sin(8)
or cos(6) which are things we don’t have as
ready-made functions

9/29/25 6.5965 Fall 2025 12



Trig ldentities

> Reflections, shifts, and Los v | R
periodicity Trigonometric functions and their reciprocals on the unit =
> Angle sum and difference circle. All of the right-angled triangles are similar, i.e. the ratios
identities between their corresponding sides are the same. For sin, cos
and tan the unit-length radius forms the hypoten f th
> Multiple-angle and half- ) d | he l:j If. ke h dl.:.j: orms fhe |y§ enuse ot fhe
angle formulae triangle that defines them. The reciprocal identities arise as
) ratios of sides in the triangles where this unit line is no longer
Power-reduction formulae the hypotenuse. The triangle shaded blue illustrates the identity
> Product-to-sum and sum- 1 + cot? 6 = csc? 6, and the red triangle shows that
to-product identities tan2 6 + 1 = sec 6.
> Linear combinations
Lagrange's trigonometric Each trigonometric function in terms of each of the other five.[!!
identities
in terms of sin 6 csc cos 6 sec tan 6 cot 0
Certain linear fractional
transformations 1 \/27 tan @ 1
. . sec? 0 — 1
Relation to the complex sinf = sin§ csc £v/1 — cos” == 9 + /1 + tan2 @ * /1 + cot2 0
exponential function SEC
) ) 1 sec 2
Series expansion 1 2/1+ tan® 6
P csc = . cscd e > E= > i " ++/1+cot? 9
Infinite product formulae sin 0 v/1—cos? 6 \/S€C 6—-1 tan @
Inverse trigonometric 29— 1 1 cot 6
h \/csc 1
functions ) | COSO = | £./1— sin? + X" " ° cos @ — + ==
csc O sec 1+ tan? @ 1+ cot? 6
> Identities without
variables 1 csc O 1 2
— | £ SE \/72 \/1 + cot® 6
Composition of sec = secd +v/1+tan*0 |+ —

2
trigonometric functions \/1 — sin” 6 \/cscz -1 cos cot 6
Further "conditional" sin § 1 7/1 —cos? @ 1
identities for the case a + tanf = =+ + 4+ | £ sec’ —1 tan @
B+y=180° V/1—sin® @ Vesc2 6 —1 cos @ cot 6
Historical shorthands ot = 1_sin2@ cos " 1 1

[ el
Miscellaneous + sin 6 +y/cec 6= 1 V31— cos2 0 Vi sec2f —1 tané

See also

cot 6

v

9/29/25 6.5965 Fall 2025 13



Trig ldentities

. . vuUd vV SCL U
> Reflections, shifts, and I
periodicity Trigonometric functions and their reciprocals on the unit =
> Angle sum and difference circle. All of the right-angled triangles are similar, i.e. the ratios
identities between their corresponding sides are the same. For sin, cos

and tan the unit-length radius forms the hypotenuse of the
triangle that defines them. The reciprocal identities arise as
ratios of sides in the triangles where this unit line is no longer

> Multiple-angle and half-
angle formulae

Power-reduction formulae the hypotenuse. The triangle shaded blue illustrates the identity
> Product-to-sum and sum- 1 + cot? 6 = csc? 6, and the red triangle shows that

to-product identities tan2 6 + 1 = sec 6.
> Linear combinations

Lagrange's trigonometric Each trigonometric function in terms of each of the other five.[!!

identities

in terms of sin 6 csc cos 6 sec 6 tan 6 cot 0
Certain linear fractional 0 1
transformations 1 \/T tan
o : 3 sec6— 14
Relation to the complex sinf = sinf cscf £V1—cos”d iv V1 +tan?6 V1 +cot? 8
exponential function | |
. . 1 1 sec 14 tan2 6

Series expansion cscf — : cscd =t - + > i V1t +4/1+ cot? 0

Infinite product formulae sin 0 v/1—cos? 6 \/S€C 6—-1 tan @

Inverse trigonometric /CSC2 0—1 1 1 cot 6

functions cosf@= | +£4/1—sin?0 | ¥ ~ ~ cos @ + = + 5

" ) csc @ sec 6 4/1+ tan® 6 v 1+ cot® @

> Identities without

variables 1 csc O 1 m

_ |+ + ) + cot
Composition of sec = secd ++4/1+tan“0 | +—

o3 20 _
trigonometric functions \/1 — sin” 6 \/csc -1 cos cot 6
Further "conditional" sin ¢ + 1 7/1—cos28 1
identities for the case a + tand = + 4+ | £ secf—1 tan 6
Iﬁinvl = leor V1 —sin® 0 Vesc2 6 —1 cos @ cot 6
Historical shorthands ot — 1_sin2@ cos 6 1 1

[eacl ) _ SE +
Miscellaneous + sin 6 +y/cec 6= 1 V31— cos2 0 Vi sec2f —1 tané

See also

cot 6

v
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1 tan(0)

I d e ntlty cos(6) = \/1 + tan2(6) sin(8) = \/1 + tan?(0)

* That means these: x; = cos(8) x; — sin(6) y;

yr = sin(0) x; + cos(8) y;

e Can turn into these:

xr = (x; —tan(0) y;

)\/1 + tan2(6)

yr = (y; +tan(6) x;)

9/29/25 6.5965 Fall 2025 15
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So now our task:

* Now we have this:

* |Ignoring that factor on the
outside does break stuff.

* We’re no longer really doing
a pure rotation

* ...we havetocallit
something else...

9/29/25 6.5965 Fall 2025

The ' means value isn’t
same as before

X'y = (x; — tan(8) y;)

y'r = (y; +tan(0) x;)

We also still don’t know how
to calculate tan(0)...that’ll
come. Patience, friend.

16



. Has length of
PseudoRotations
1 -\/1_+ tan?(a)
y _-
* |n a pseudorotation, y’f.‘ | E'“‘/
you still rotate by the v fp—————————— ', Rotation

s, +_-Pseudo-rotation
S,

same angle, but you
depart the unit circle:

What we’ve got | 7] 4SS S S — 3 E.
x'p = (x; — tan(a) y;)

y'r = (y; + tan(a) x;)

Xpo Xf '
What we wanted
1 1
xr = (x; — tan(a) y;) yr = (y; + tan(a) x;)
! l l \/1 + tan?(a) 4 l l \/1 + tan?(a)

9/29/25 6.5965 Fall 2025 17



What we’ve got

OK still though... ¥y = G = tan@) )

V' = (y; +tan(a) x;)

* We still don’t know tan(8)

* Now we’re using a thing we don’t know, to do a
thing we don’t want....seems dumb if you ask
me.

9/29/25 6.5965 Fall 2025 18



Iterations

* We don’t have to do this move all at one time. We
could do it in steps.

* Just like you can apply a matrix...then apply a
matrix...you can do the same thing here.

* Do a bunch of smaller pseudo rotations forwards
and even backwards (like a binary search)

* Since we know the angle we want, we could keep
track and adjust as we go.

9/29/25 6.5965 Fall 2025 19
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-------
..
.

At
.
Jesesit
.....
.
K

.
‘e

00 = 0 + ao
stepd . 5
S X = (xg — tan(—a4) yo

v,
g
-----

91=0+a0—0(1

Xn = (xp—1 — tan(ay) Yn-1)
Yn = (Yn-1 + tan(ay) x5,—1)
0,=0+a,—a; +a, +-a,

Or alternatively: stepn...
Xn = (X1 — tan(ay) yn_1)

Vn = (Yn—1 + tan(ay) xp—1)
Op = Op—1 + ay

step2
............... Xy = (x1 — tan(az) yl) 4
------------- »
AR N y, = (y; + tan(a,) x;)
, 92 =0 + do — 1 + a
e p
o o
P
9/29/25 6.S965 Fall 2025
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OK interesting...

* |f we could conceivably arrive at an arbitrary
angle using a number of other steps...

* Could we pick a collection of steps that could be
used to arrive at most arbitrary angles (within

reason?)

* And could we pre-compute those angles?

9/29/25 6.5965 Fall 2025 21



I[f we have these precomputed
angle jJumps...

* Then we could potentially iterate towards our
target 6 with a number of pre-calculated a jumps

* We could keep track if our running tallyis > or <6
and add or subtract our @ as needed.

9/29/25 6.5965 Fall 2025 22



What do attributes do we O e e Yy 1)
want for our precomputed a?| = 0u + tan(a) x-)

Qn = Hn—l + an

* What we really care about are good, clean,
wholesome, easy-to-multiply values of tan(a)

* And remember we’re not in human land, we’re in
digital land...so what are nice and easy to apply
are in base 2!

* So are there any nice base-2 friendly tan(a)
values?

* And it sure would be nice to have angles that
could go forwards or backwards

9/29/25 6.5965 Fall 2025 23



Appreciate tan(x ks

c 25 desmos.com/calculator

= Untitled Graph | Save desmos

9/29/25 6.5965 Fall 2025 —1T / 24
2



tan(x) has some
symmetry

e That’s nice...that means

we could just store
precomputed values of
tan(a) for a¢ > 0 and
just flip sighs when
needed.

9/29/25 6.5965 Fall 2025
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Are there any “nice” Or altermatvel: st
tan (a) ??? Yn = (Yn—l + tan(a,) x,-1)

Qn = 071—1 + an

tan(a) = 1 @a = 45°

1
tan(a) = ) @a = 26.57°
- * @a = 14.04°
tan(a) = 2 @a = 14. o y

1 /
tan(a) = g @a = 7.13° ,

many more ... 7
Get smaller and smaller 05

9/29/25 6.5965 Fall 2025 26



Do this for a bunch of power-of-2
values

_ a; = tan™1 (27
« Can generate a whole " | Degrees | Radians
table...basically as many as 0 | 4500 | 0.7854
you want 1 | 2657 | 0.4636
* The only nasty thing you | 1454 | 0248
need to store would be S AL Bckas
4 3.58 0.0624
these precomputed angles
5 1.79 0.0312
* But worth it since now all 6 | 090 | 0.0160
those multiplications by 7 | 045 | 0.0080
tangents are are easy. 8 | 022 | 0.0040
9 0.11 0.0020

9/29/25 6.5965 Fall 2025



stepO
xo = (x; — tan(ao) y;)
Yo = (y; + tan(ao) x;)
0o =0+

step1
x; = (xo — tan(—ay) yo)

y1 = (¥o + tan(—ay) xo)
01 =0+ g — 4

step2
X, = (%1 —tan(az) y1)

y2 = (y1 + tan(a) x;)

92=0+0(0—a1+a2

Or alternatively: stepn...
Xn = (X1 — tan(ay) yn—1)

VYn = (V-1 + tan(ay,) x,—1)
97?, = 071—1 + an

9/29/25 6.5965 Fall 2025




stepO
xo = (x; —1-y)
Yo=@i+1-x)
0, =0+ 45

step1 X, = (Xo _ 1/2 3’0)

yi=(yo + 1/2 Xo)
6, = 45 — 26.57

step2
X2 = (x1 - 1/43’1)
v2=(y1 + 1/4x1)

6, = 18.43 + 14.04

stepn...
Xn = (xn—l - 1/271 yn—l)
Yo = (Yno1 + 1/2n Xn-1)
6, = 3247 + - a,,

9/29/25 6.5965 Fall 2025



More and More

* The more iterations you do, the closer and closer
you’ll be able to get your final angle to your
desired angle.

* |t works out to about 1 bit of precision per
iteration.

* But we’re still not there yet.

9/29/25 6.5965 Fall 2025 30



We wanted to do this...

* Rotate things.

A (cos®, sin0) A (1,y)

e Start at (1, 0) o Startat (1, y)
* Rotate by 6 * Rotate until y=0
« We get (cos#, sinb) e The rotation is tan~y

* But we’re not...We’re pseudo-rotating :/

9/29/25 6.5965 Fall 2025
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Has length of

PseudoRotations 141+ tan?(a)

%4 Eil+1/

* |n a pseudorotation, Y's
you still rotate by the  y }————————- ' rostion
same angle, but you
depart the unit circle:

“\ _-Pseudo-rotation

What we’ve got vbee e L 3 E.
x's = (x; — tan(a) y;)

y'r = (y; + tan(a) x;)

Xpo Xf '
What we wanted
1 1
xr = (x; — tan(a) y;) yr = (y; + tan(a) x;)
! l l J1+ tan2(a) 4 l l J1+ tan2(a)

9/29/25 6.5965 Fall 2025 32



1
\/1 + tan2(6) tan(0)

Remember... ) =

cos(0) x; =

* That means these: x; = cos(8) x; — sin(6) y;

yr = sin(0) x; + cos(8) y;

e Can turn into these:

xr = (x; —tan(0) y;

)\/1 + tan2(0)

yr = (y; +tan(6) x;)

9/29/25 6.5965 Fall 2025 33
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We can zero in on our angle...

* But the x,y final locations are still
messed up

e On each iteration silnce we’re not
multiplying b
plying y\/1+tan2(ai)

e That means we’re actually
multiplying by /1 + tan?(a;)

* You’ll hear this called “gain” of a
pseudorotation...

9/29/25 6.5965 Fall 2025 34



So after n iterations of pseudo-rotation...

* One would expect the vector to be this large...

n—1
K:H\/1+tan2a7;
=0

* What will K be?

* ltis going to depend on what/how we rotated
right? And thatis nasty...

9/29/25 6.5965 Fall 2025 35



BUTTTT Not really!!!!

* We know ahead of time all a; = tan™! (271)
those a values and because of Degrees  Radians
their behavior around O and the o | 4500 | 0.7854
squaring, it doesn’t matter if we 1
+ or —with them

26.57 0.4636

2 14.04 0.2450

* For a given implementation of n 3 | 713 | 0.1244
steps... 4 | 358 | 0.0624
n—1 5 1.79 0.0312

K = H \/1 + tan® 6 090 | 0.0160

=0 7 0.45 | 0.0080

* This will stay the same s | 022 | 0.0040
9 0.11 0.0020

9/29/25 6.5965 Fall 2025



And not only that... x=11 Y1+ tan’ o

a; = tan~1 (27)
AL CORDIC implementatiOnS | Degrees Radians
pick the same a values and 0 | 4500 | 0.7854
these get smaller and smaller 1 | 2657 | 0.4636

2 14.04 0.2450
3 7.13 0.1244
* That means this productactually =, 35 | o062
converges to a fixed value, 5 | 179 | 00312
6 0.90 0.0160
] 7 0.45 | 0.0080
* which works out to be: s | o022 | 00080
1.646760258121 5 | 011 | 00020

Smaller n smaller

9/29/25 6.5965 Fall 2025 37



S0 once you’re done...

* You can take your x¢ and yr and multiplying by
0.60725293634

* Which is the same as multiplying by 39796 and then
right shifting by 16

* OR...which is the same as multiplying by
2608131502 and right shifting by 32.

* You can also pre-multiply by this in your starting x;
and y; (thenjustright shift at end!)

9/29/25 6.5965 Fall 2025 38



A (cos®, sinB) A (1,y)

Generalizing
o Start at (1, 0) e Startat (1, )
» Rotate by 6 e Rotate until y=0
» We get (cosé, sin6) « The rotation is tan~'y

* The pre-compute and step-by-step iterations are
universal

* Their meaning and the target can be altered:
* We previously targeted our accumulatorto be 6

* We could also target to gety to be O...

* The amount the accumulator ends up with is based on
inverse tan of starting xandy

* The amount x ends up with is based on the sqrt(x**2+y**2)

9/29/25 6.5965 Fall 2025 39



Generalized CORDIC

* The three equations we’re iterating on can be

generalized to this format |
U is settable

Z is our angle constant
accumulator
. d; is our
—_— —1
X ; = X; — d .\/- 2 control/feedback
1+1 l 'u lyl function for

d Z—l locking into a

. — . -I— X target ...this was

Yi+1 Vi LV sgn(8) in our
walkthrough

Zi_|_1 — Zi dl-C(l- example so far

27" are the
tan(a;) from our

original example

9/29/25 6.5965 Fall 2025 40



Different Modes

Mode

Circular
p=1
a; =tan~1271
Linear
u=0

Q= 2_i

Hyperbolic

p=-1
a; = tanh~12-

Rotation

d; =sgn(z), z—0

x— O —»K(xcosz—ysinz)
AW @ — K(ycosz+xsinz)

Z — 8 — ()

X i 9 — x

y—™" a — y+Xx2

Z —> 8 — ()

x— O |—»=K'(xcoshz—ysinhz)
y—™ @ — K'(ycoshz+xsinhz)
Z —> 8 — ()

e K'=0.8281593609602...

1/K'=1.207497067763...

Vectoring

d; = —sgn (y;), y—0

|~k /2 Ty?

_.0

— 2+ tan~!(y/x)

— x
— ()

— 2 +V/X

x— O
yv—] &
18
x— O
yv—| &
18
b 8
yv—] &
Z —— =

O

|~k /—y7

— ()

— z+tanh~(y/x)

In hyperbolic mode, iterations 4, 13, 40, 121, ..., j, 3j+1,... must be repeated. The constant K'given below accounts for this.
K=1.646760258121...
1/K = 0.6072529350009...

9/29/25

6.5965 Fall 2025
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CORDIC

* You can use these outputs to generate all these
weird things

Directly computable functions |[edit! edit source ]

sin z cos z
tan~! z sinh z
cosh z tanh ! z
y/x zz
tan~! (y/z) Vet + P
z? — 9P e® = sinh z + cosh z

Indirectly computable functions |edit | edit source ]

In addition to the above functions, a number of other functions can be produced by combining the results of previous computations:

tanz = —— cos ' w = tan ”

sinh z : _ -1 w
tanh 2 = cosh z smw=ten V1 —w?

w—1 Inw
Inw = 2tanh™? Y log, w = S
wh = ethv cosh™! = ln<w +4/w? — 1)
tan~! (y/z) sinh! = ln(w + Vw? + 1)
2~y VB =/ (w+1/4)* = (w—1/4)?

9/29/25 6.5965 Fall 2025 42



There’s very few multiplications in
this...one at the beginning or end

* And really no divisions.

[=]
— o - i N
N N ) |
| - +I -~ + NS +I
. & . & ) g
: : g
7] 7] ED
wn
° + +i N +I
) =
+ + +i +I
[~ [~ [~ =™
[=}
> — > P > -— > p:
o x = L
e >

https://en.wikibooks.org/wiki/Digital_Circuits/CORDIC

sgn(zy) |

A\

[>>1]

3
[>>2]

3
[>>n-1]

v

[>>0]
[>>1]
[>>2]

[>>n-1]

9/29/25 6.5965 Fall 2025
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People still making
Improvements/updates

9/29/25

2156 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2019

Generalized Hyperbolic CORDIC and Its
Logarithmic and Exponential Computation
With Arbitrary Fixed Base

Yuanyong Luo™’, Yuxuan Wang, Yajun Ha, Senior Member, IEEE, Zhongfeng Wang ', Fellow, IEEE,

Siyuan Chen, and Hongbing Pan

Abstract—This paper proposes a generalized hyperbolic
COordinate Rotation Digital Computer (GH CORDIC) to
directly compute logarithms and exponentials with an arbitrary
fixed base. In a hardware implementation, it is more efficient than
the state of the art which requires both a hyperbolic CORDIC
and a constant multiplier. More specifically, we develop the theory
of GH CORDIC by adding a new parameter called base to
the conventional hyperbolic CORDIC. This new parameter can
be used to specify the base with respect to the computation of
logarithms and exponentials. As a result, the constant multiplier
is no longer needed to convert base ¢ (Euler’s number) to other
values because the base of GH CORDIC is adjustable. The
proposed methodology is first validated using MATLAB with
extensive vector matching. Then, example circuits with 16-bit
fixed-point data are implemented under the TSMC 40-nm CMOS
technology. Hardware experiment shows that at the highest
frequency of the state of the art, the proposed methodology saves
27.98% area, 50.69% power consumption, and 6.67% latency
when calculating logarithms; it saves 13.09% area, 40.05% power
consumption, and 6.67% latency when computing exponentials.
Both calculations do not compromise accuracy. Moreover, it can
increase 13% maximum frequency and reduce up to 17.65%
latency accordingly compared to the state of the art.

Index Terms— Architecture, exponential, generalized hyper-
bolic COordinate Rotation Digital Computer (GH CORDIC),

evaluate logarithms and exponentials: approximation method
and iterative method. Although loads of well-related research
achievements have been proposed on these methods, there is
still plenty of room for improvement. First, current approaches
do not support easy porting to other fixed bases while they are
needed. Second, current approaches still have room to further
reduce the hardware overheads. In this paper, we will propose
a promising solution to abovementioned concerns.

The following literature addresses the evaluation of log-
arithms and exponentials using the approximation method.
[1]-[4] evaluate binary logarithms and exponentials via simple
piecewise linear approximation. When the output approaches
zero, this method encounters notably large relative error.
In order to overcome this shortage, Nam et al. [5] perform
finer subdivisions around the output of zero since the error
increases as the output value gets closer to zero. Subsequently,
they have designed a processor of the logarithmic number
system for 3-D graphics. The main shortcoming of a simple
linear approximation method is the high relative error with
limited lookup tables. Paul ez al. [6] use a second-order poly-

nomial approximation method to reduce the relative error. The
= o) RS £ £l 2 M 42 +L h VS M 42




For Upcoming Week 5 Assighments

* We'll have to calculate angles and magnitudes
of 2D vectors (for future weeks with RFSoC).

* We need to write one and also make it AXIS-

SAY, MAN, YOU GOT A corozc?

compliant

.
IT'D BEALOT,COOLER IF YOU DID.



a; = tan™1 (27

CORDIC Convergence o0 | oress

0
1 26.57 0.4636
* If you sum up all the possible z 174'1034 Ziii
angle they converge to about 99.88 . 3:58 0:0624
degrees 5 1.79 | 0.0312
* Dictates the range over which 6 = 090 | 0.0160
cordic functions can “converge” 7 | 045 | 0.0080
through multiple iterations 8 | 022 | 00040
9 0.11 0.0020

* Also when doing atan, you’ll likely
need to do some quadrant
determination to rotate prior to
running.
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Returning to Generalized CORDIC

* The three equations we’re iterating on can be

generalized to this format |
U is settable

Z is our angle constant
accumulator
. d; is our
—_— —1
X ; = X; — d .\/- 2 control/feedback
1+1 l 'u lyl function for

locking into a

Vigr =Y +dix 27 targe!
sgn(0) in our
Zi_|_1 — Zi dl-C(l- walkthrough

example

27 are the
tan(a;) from our

original example
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Different Modes

Mode

Circular
p=1
a; =tan~1271
Linear
u=0

Q= 2_i

Hyperbolic

p=-1
a; = tanh~12-

Rotation

d; =sgn(z), z—0

x— O —»K(xcosz—ysinz)
AW @ — K(ycosz+xsinz)

Z — 8 — ()

X i 9 — x

y—™" a — y+Xx2

Z —> 8 — ()

x— O |—»=K'(xcoshz—ysinhz)
y—™ @ — K'(ycoshz+xsinhz)
Z —> 8 — ()

e K'=0.8281593609602...

1/K'=1.207497067763...

Vectoring

d; = —sgn (y;), y—0

|~k /2 Ty?

_.0

— 2+ tan~!(y/x)

— x
— ()

— 2 +V/X

x— O
yv—] &
18
x— O
yv—| &
18
b 8
yv—] &
Z —— =

O

|~k /—y7

— ()

— z+tanh~(y/x)

In hyperbolic mode, iterations 4, 13, 40, 121, ..., j, 3j+1,... must be repeated. The constant K'given below accounts for this.
K=1.646760258121...
1/K = 0.6072529350009...

9/29/25
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CORDIC

* You can use these outputs to generate all these
weird things

Directly computable functions |[edit! edit source ]

sin z cos z
tan~! z sinh z
cosh z tanh ! z
y/x zz
tan~! (y/z) Vet + P
z? — 9P e® = sinh z + cosh z

Indirectly computable functions |edit | edit source ]

In addition to the above functions, a number of other functions can be produced by combining the results of previous computations:

tanz = —— cos ' w = tan ”

sinh z : _ -1 w
tanh 2 = cosh z smw=ten V1 —w?

w—1 Inw
Inw = 2tanh™? Y log, w = S
wh = ethv cosh™! = ln<w +4/w? — 1)
tan~! (y/z) sinh! = ln(w + Vw? + 1)
2~y VB =/ (w+1/4)* = (w—1/4)?
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How to Actually Get v/a?

Rotation Vectoring
Mode
d; =sgn(z), z—0 d; = —sgn (y;), y—0
Circular
Xx— O |—»K(xcosz—ysinz) x—s O |—=K /xZ+y2
P ) W— @ — K(ycosz+xsinz) y—n @ — ()
LS z— 8 |—0 z— 8 |—z+tan(yx)
Linear
X —> 9 X b 8 —
St , ) @ —y) X2 y—>» a — ()
a=2 z—> 8 =0 zZ—> 8 — 2+ /X
Hyperbolic .
Xx—= O |— K'(xcoshz—ysinhz) x—s O |—K /x2—y2
A , V= @ — K'(ycoshz+xsinhz) y—> @ ()
chi L :— 8 [—0 z—f 8 |—=z+tanh '(yx)

K=1.646760258121...

1/K = 0.607252935009...
e K'=0.8281593609602...
1/K'=1.207497067763...

In hyperbolic mode, iterations 4, 13, 40, 121, ..., j, 3j+1,... must be repeated. The constant K'given below accounts for this.

9/29/25 6.5965 Fall 2024
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"/
Observe tan(x)

c 25 desmos .com,

Untitled Graph | Save desmos
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Observe tanh(x)

* Just a different function...still get our values for
lookup from it...but kinda weird...

= Untitled Graph | Save

a |
9/29/25 6.S965Fall’202 527




Hyperbolic Functions

* Whereas regular trig functions are following
around the unit circle... x* + y* =

x? +y2:=1

sinh(a)

a2 )

* Hyperbolic trig functions are following the unit
hyperbola: x? — y% =1
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Mode

Circular
p=1
a = tan~1271
Linear
u=0
a = o
Hyperbolic

H=-1
a; = tanh=127

Rotation

d; =sgn (z), z—0

x—= O —=K(xcosz—ysinz)

y—= 2 —= K(ycosz+xsinz)
(o]

z— O [—=0

X = E — X

y—> a —y+x2z
o]

zZ— O — 0

x—= O |—=K'(xcoshz—ysinhz)

y—> @ — K'(ycoshz+xsinhz)
(o]

zZ— O — 0

Vectoring

d; = —sgn(y;), y—0

x— O —=K /x2+y2
y— 2 |—o0

z—f 8 —= 2+ tan~'(y/x)
X —— E — X

y—{ & o

z—> 8 — 2+Y/x
x—s O |—=K /x2—y?
yv—{ & [—o

z—> 8 — z+tanh~!(y/x)

« In hyperbolic mode, iterations 4, 13, 40, 121, ..., j, 3j+1,... must be repeated. The constant K'given below accounts for this.
* K=1.646760258121...

* 1/K=0.607252935009...
* K'=0.8281593609602...
* 1/K'=1.207497067763...

Xip1 = x; — ud;y; 27"

Vit1 =Y +dix; 27"

Ziv1 = zi + d;a;

Figure 1—Angle A and Radius R of the vector P=(z, y)

J.S. Walther, "A Unified Algorithm for Elementary Functions," Conference Proceedings, Spring Joint Computer Conference, May 1971, pp. 379-385
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How to Actually Get+/a?

9 =K /x2=y?
* You then need to do: 18 o
e x =a+ 0.25
e y=a—0.25

* Sothat...\/(a + 0.25)%2 — (a — 0.25)2 = ya

* AMD/Xilinx has a pretty decent writeup of how to
do itin a low-level digital form.
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From the Xilinx/AMD Docs...

That s, given input x, it computes the output sqrt (x). The CORDIC processor is
implemented using building blocks from the Xilinx blockset.

* The square root is calculated indirectly by the CORDIC algorithm b}/ applying
the identity listed as follows. sqrt (w) = sqrt { (w + 0.25)2 - (w - 0.25)?}

* The CORDIC square root algorithm is implemented in the following 4 steps:
1. Co-ordinate Rotation: The CORDIC algorithm converges only for positive values of x. If

9/29/25

X < zero, the input data is converted to a non-negative number. If x =0, a zero detect
flag is passed to the co-ordinate correction stage. The square root circuit has been
designed to converge for all values of x, except for the most negative value.

. Normalization: The CORDIC algorithm converges only for x between 0.25 (inclusive)

and 1. During normalization, the input x is shifted to the left tillit has a 1 in the most
significant non-signed bit. If the left shift results in an odd number of shift values, a
right shift is performed resulting in an even number of left shifts. The shift value is
divided by 2 and passed on to the co-ordinate correction staée. The squarerootis
derived using the identity sqrt (w) = sgrt {(w + 0.25)2 - (w - 0.25)2}. Based on this identity
the input x gets mapped to, X=x+0.25and Y =x-0.25.

. Hyperbolic Rotations: For sqrt (X? - Y2) calculation, the resulting vector is rotated

through progressively smaller angles, such that Ygoes to zero.

. Co-ordinate Correction: If the input was negative and a left shift was applied to x, this

step assigns the appropriate sign to the output and multiplies it with 2-shift, |f the input
was zero, the zero detect flag is used to set the output to 0.
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a; = tan™1 (27

CORDIC Square Root ' Degrees | Radians

0 45.00 0.7854

C O nve rge n C e 1 26.57 0.4636

e If you sum up all the possible 2 | 1404 | 02450

angle they converge to about99.88  ° "° %1%

degrees 4 | 358 | 0.0624

» Dictates the range over which > | 1P | o012

I 1 1 7] 6 0.90 0.0160
cordic functions can “converge

through multiple iterations 7 | 045 | 0.0080

. . . 8 0.22 0.0040

* Same thing with hyperbolic...but T om1 | o000

their possible angle total
approaches: 64.74 degrees
(significantly lower since can’t do
for i=0)
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Another Interesting Thing...

Rotation Vectoring
Mode
d; =sgn(z;), z—0 d; = —sgn (i), y—0
Circular
X = K(xcosz—ysinz) X O K/x2+y?
u=1 ' 9 K(ycosz+xsinz) a 0
6 =tan"'2" Z 3 0 z S z+tan~1(y/x)
Linear N S . . 5 .
A=y . 2 y+xz a 0
a=2" z 8 0 z 8 Z+y/x
Hyperbolic
yp X O K'(xcoshz—ysinhz) X O K/ a—y2
H= 2 K'(ycoshz+xsinhz) y = 0
a; = tanh™12- z 8 0 2 8 z+tanh~!(y/x)

I « In hyperbolic mode, iterations 4, 13, 40, 121, ..., j, 3/+1,... must be repeated. The constant K'given below accounts for this. I
. =nlE 241

¢ 1/K=0.607252935009...
* K'=0.8281593609602...
e 1/K'=1.207497067763...
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Source...

* This 1971 paper is what

everyone points to as
justification for the

repeated sequence for

convergence

The magnitude of each element of the sequence may be
predetermined, but the direction of rotation must be
determined at each step such that

| Ay | =] Ai | =] (22)

The sum of the remaining rotations must at each
step be sufficient to bring the angle to at least within
a,—1 of zero, even in the extreme case where A;=0,
J Al'+1 |=a;. ThUS,

n—1

a;— Z ;< an-1 (23)
J=1i+1
The domain of convergence is limited by the sum of
the rotations. -

n—1

| Ao [— Z a;<an-1 (24)

7=0

TABLE II—Shift Sequences for a binary code

coordinate domain of radius
. radix  system shift sequence convergence factor
P m Fri; 120 max | A, | K
2 1 0,1,23,4,3,... ~1.74 ~1.65
2 0 1,2,3,4,5 i+1,... 1.0 1.0
2 -1 1,2,3,4,4,5,....% ~1.13 ~0.80

-

* for m = —1 the following integers are repeated:
{4, 13, 40, 121, .. ., k, 3k+1, .. .}

J.S. Walther, "A Unified Algorithm for Elementary Functions," Conference Proceedings, Spring Joint Computer Conference, May 1971, pp. 379-385

9/29/25

Table II shows some F sequences, convergence
domains, and radius factors for a binary code.

The hyperbolic mode (m= —1) is somewhat compli-
cated by the fact that for a;=tanh=1(2—%) the con-
vergence criterion (23) is not satisfied. However, it can
be shown that

n—1
ai_< 2 aj) —osit1 <oty (33)

becomes true.

(25)

to within a,—; of zero

e following theorem.

F=i+1
n—1
and that therefore if the integers {4, 13, 40, 121, ...; k, . 2
3k+1, ...} in the F; sequence are repeated then (23) + f_vf:‘ % (26)
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e Some
students
confirmed
this last
year...

9/29/25

Proof that repetition works in CORDIC algorithm

Updated 12 months ago by Andi Qu

| told one of my 6.2050 friends about the problem and we managed to solve it | think (thanks Steven)!

First, note that tanh ! is convex. By Jensen’s inequality, we have:

) k
“1(g—i)y — 13 —1(o—i
E tanh™(27%) klgglo E tanh™(27%)

i=n+1 i=n+1
> lim (k — n) tanh ! (
k—00
= lim (k —n) tanh—l(
k—o0
= lim (k — n) tanh ! (
k—o0
Then by L'Hopital’s rule:

klggo ktanh~!(z/k) = lim M

o0 (1/k)
g e )
k—00 —1/k?
—lim — %
ko0 1 — (:1;/]‘;)2
=z

So now our inequality becomes:

2" + tanh (27 6")) > tanh1(27")

k

L)

i=n+1

)

2—")
k—n

which is true by the Taylor expansion of tanh 1. (Note that 3n + 1 is the largest integer that satisfies this inequality.)
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Square root convergence in Practice

* Normalization: The CORDIC algorithm converges only for x
between 0.25 (inclusive) and 1. During normalization, the input x is
shifted to the left tillit has a 1 in the most significant non-signed bit.
If the left shift results in an odd number of shift values, a right shiftis
performed resulting in an even number of left shifts. The shift value
Is divided by 2 and passed on to the co-ordinate correction stage.
The square root is derived using the identity sqgrt (w) = sqrt {(w +
0.25)? - (w - 0.25)?}. Based on this identity the input x gets mapped
to, X=x+0.25and Y =x-0.25.

Overcoming Algorithm Input Range Limitations

Many square root algorithms normalize the input value, v, to within the range of [0.5, 2). This pre-processing
as well as large input value ranges.

https://www.mathworks.com/help/fixedpoint/ug/compute-square-root-using-cordic.html
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So these are coming from the
assertion

» Keeping in mind: \/(a + 0.25)% — (a — 0.25)%
which is forcing the starting value of the xand y
values...

9/29/25 6.5965 Fall 2024

62



Wrote some code to test It

9/29/25

import sys
a = float(sys.argv[1])
X = a+.25
y = a—-.25
for i in range(1,20):
if y >0:
Xn = X — 1/(2%xi)xy
yn =y — 1/(2%xi)*x
else:
Xn = X + 1/(2%%1i)xy
yn =y + 1/(2%xi)*x
prlnt(f"x {xn}, y:{yn}")
X = XN
y =yn

print(x/0.828)

6.5965 Fall 2024
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Solranit...

N><><><><><><><><><><><><><><><><><><><'O

1
1
1
1
1
1
1
1
1
1 1.
1
1
1
1
1
1
1
1
1

375, y:1.625

.96875, y:1.03125
.83984375, y:0.78515625

.790771484375, y:0.670166015625
.7698287963867188, y:0.6142044067382812
.760231852531433, y:0.5865508317947388
.7556494241580367, y:0.572799020446837
.7534119279844163, y:0.5659410148837196
.7523065744397215, y:0.562516382211875
.7517572420352177, y:0.5608051453227738

ython3 cordic_test.py 4
2.

751483411397853, y:0.5599497951069363

9/29/25

<<<<<<<

®®®®®®®

.751346704904907, vy: 0 5595221868522006
.7512784038567@73
. 7512442663811572,
. 7512272009053924,
.7512186689829967,
. 7512144032256685,
.7512122703979716,
.7512112039968648,
.1149893768078076

.559308399412637

.5592015098616203
.559148066127905

.5591213445214459
.5591079837833097
.5591013034305142
.5590979632581845
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Solranit...

10

®><><><><><><><><><><><><><><><><><><><'O

0
0
0
0
0
0
0
0
0
:0.
0
0
0
0
0
0
0
0
9

. 7468060285024694,
. 7468040729947699,
. 7468036263291622,
7468034935580341,
. 7468034709176684,
. 7468034599813728,
. 7468034598854011,
. 7468034585423571,
. 7468034582185925,
. 7468034581436496,
. 7468034581279129,
:0.7468034581254783,
.9019365436298048

9/29/25

KKKk kK

ython3 cordic_test.py 0.81

.78, y:0.030000000000000027

.7725 y:—0.16499999999999998

.751875, y:—0.06843749999999998

. 74759765625, y:-0.021445312499999987
.746927490234375, y:0.001917114257812512

. 7468975353240966, y:-0.009753627777099597
.746821335107088, y:-0.003918490782380092
:-0.0010012199421180297
:0.0004573855823008558
:—0.0002719152702330992
:9.273493793543702e-05
:—8.95901337340049e-05
:1.5723993369995485e-06
:-4.400886653100416e-05
:-2.121823359993113e-05
:-9.822917154887839e-06
:—4.125258934836321e-06
:-1.2764298250964468e-06
:1.47984729743475e-07

6.5965 Fall 2024

65



Conclusions

* Seems to converge for input values of 0 to 2

* Beyond that it doesn’t converge, and this is
because for hyperbolics, u = —1 so:

—1

Xit+1 = X T d;Y;2
Vie1 = Vi T dixi 27

* Whereas in original: —i
Xit1 = X; — ;Y2

Vig1 = ¥i +dix; 27
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Anyways

* CORDICs

* Wednesday we’ll either start talking about 1/Q

signaling or do some other stuff on
AXIS...probably I/Q
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