
6.S965
Digital Systems Laboratory II

Lecture 8:
CORDIC and Iterative Algorithms

9/29/25 6.S965 Fall 2025 1

Administrative
• Please don’t hesitate to post on piazza if you see

a thing that might be a typo. I am an imperfect
being.
• Week 4 is out/due this upcoming Friday.
• Week 5’s assignments will be a transition

week...we’ll still have a Pynq board thing to build
(based on your weeklittle 3 build so hopefully
super easy), but will mostly be simulation.
• Weeks 6-8 will be on RFSoC

9/29/25 6.S965 Fall 2025 2

Status

• Week 4’s assignment is deploying a DMA engine
on the Pynq board.

• Forces us into an AXI-state of mind

• You’ll use your FIR filter as an accelerator, but
there are many other accelerators.

9/29/25 6.S965 Fall 2025 3

This Week

• Study the CORDIC and implement it.

• Use it to get magnitudes and angles of vectors.

9/29/25 6.S965 Fall 2025 4

There are tons of cool algorithms
out there
• Particularly for FPGAs or digital environments in

general

9/29/25 6.S965 Fall 2025 5

• People actively
making
improvements
and things!

One algorithm we should study…

9/29/25 6.S965 Fall 2025 6

CORDIC

• Coordinate Rotation Digital Computer

• Super versatile class of iterative algorithms that
are used widely in hardware because they are
relatively simple to implement (mostly just shifts
and adds and compares)...maybe a multiply

• Might not be the fastest, but are a good gateway
algorithm for lots of options out there.

9/29/25 6.S965 Fall 2025 7

CORDIC
• What can you compute with CORDIC?

9/29/25 6.S965 Fall 2025 8

What can’t you
compute with
CORDIC?

Vivado..

• Just tell the little
elves inside to
calculate this for
you…

• Or you do it
yourself to learn.

9/29/25 6.S965 Fall 2025 9

CORDIC

• Built around the
idea of rotations

• Rotation Matrix:

• Also break down
into two equations:

9/29/25 6.S965 Fall 2025 10

https://zipcpu.com/dsp/2017/08/30/cordic.html https://en.wikibooks.org/wiki/Digital_Circuits/CORDIC

(𝑥! , 𝑦!)

(𝑥", 𝑦").

𝑥"
𝑦" 	

𝑥!
𝑦! 	

𝑥" = cos 𝜃 𝑥! − sin 𝜃 𝑦!

𝑦" = sin 𝜃 𝑥! + cos 𝜃 𝑦!

Why is the ability to rotate useful?
Motivation to do this…
• If we could carry out that rotation we could start

to answer questions like…

9/29/25 6.S965 Fall 2025 11

OK so what do we need to do…
• We need to be able to do this…

• But this is a little chicken-and-egg…because in
order to do this, we need to be able to do sin 𝜃
or cos 𝜃 which are things we don’t have as
ready-made functions

9/29/25 6.S965 Fall 2025 12

𝑥"
𝑦" 	

𝑥!
𝑦! 	

Trig Identities

9/29/25 6.S965 Fall 2025 13

Trig Identities

9/29/25 6.S965 Fall 2025 14

Identity

• That means these:

9/29/25 6.S965 Fall 2025 15

𝑥" = cos 𝜃 𝑥! − sin 𝜃 𝑦!

𝑦" = sin 𝜃 𝑥! + cos 𝜃 𝑦!

cos 𝜃 =
1

1 + tan# 𝜃

• Can turn into these: 𝑥" = 𝑥! − tan 𝜃 𝑦!
1

1 + tan# 𝜃

𝑦" = 𝑦! + tan 𝜃 𝑥!
1

1 + tan# 𝜃

Let’s ignore these

sin 𝜃 =
tan 𝜃

1 + tan# 𝜃

So now our task:
• Now we have this:

• Ignoring that factor on the
outside does break stuff.

• We’re no longer really doing
a pure rotation

• …we have to call it
something else…

9/29/25 6.S965 Fall 2025 16

𝑥′" = 𝑥! − tan 𝜃 𝑦!

𝑦′" = 𝑦! + tan 𝜃 𝑥!

We also still don’t know how
to calculate tan 𝜃 …that’ll
come. Patience, friend.

The ′ means value isn’t
same as before

PseudoRotations

• In a pseudorotation,
you still rotate by the
same angle, but you
depart the unit circle:

9/29/25 6.S965 Fall 2025 17

𝑥" 𝑥′"

𝑦"

𝑦′"

𝑅′"1 5 1 + tan# 𝛼

𝜃"

𝑥′" = 𝑥! − tan 𝛼 𝑦!

𝑦′" = 𝑦! + tan 𝛼 𝑥!

𝑥" = 𝑥! − tan 𝛼 𝑦!
1

1 + tan# 𝛼
𝑦" = 𝑦! + tan 𝛼 𝑥!

1
1 + tan# 𝛼

𝛼

Has length of

What we’ve got

What we wanted

OK still though…

• We still don’t know tan 𝜃

• Now we’re using a thing we don’t know, to do a
thing we don’t want….seems dumb if you ask
me.

9/29/25 6.S965 Fall 2025 18

𝑥′" = 𝑥! − tan 𝛼 𝑦!

𝑦′" = 𝑦! + tan 𝛼 𝑥!

What we’ve got

Iterations
• We don’t have to do this move all at one time. We

could do it in steps.

• Just like you can apply a matrix...then apply a
matrix…you can do the same thing here.

• Do a bunch of smaller pseudo rotations forwards
and even backwards (like a binary search)

• Since we know the angle we want, we could keep
track and adjust as we go.

9/29/25 6.S965 Fall 2025 19

9/29/25 6.S965 Fall 2025 20

𝑥$ = 𝑥! − tan 𝛼$ 𝑦!
𝑦$ = 𝑦! + tan 𝛼$ 𝑥!

𝜃$ = 0 + 𝛼$

step0

𝑥% = 𝑥$ − tan −𝛼% 𝑦$
𝑦% = 𝑦$ + tan −𝛼% 𝑥$
𝜃% = 0 + 𝛼$ − 𝛼%

step1

𝑥# = 𝑥% − tan 𝛼# 𝑦%
𝑦# = 𝑦% + tan 𝛼# 𝑥%
𝜃# = 0 + 𝛼$ − 𝛼% + 𝛼#

step2

𝑥& = 𝑥&'% − tan 𝛼& 𝑦&'%
𝑦& = 𝑦&'% + tan 𝛼& 𝑥&'%

𝜃& = 0 + 𝛼$ − 𝛼% + 𝛼# +⋯𝛼&

stepn...

... 𝑥& = 𝑥&'% − tan 𝛼& 𝑦&'%
𝑦& = 𝑦&'% + tan 𝛼& 𝑥&'%

𝜃& = 𝜃&'% + 𝛼&

Or alternatively: stepn...

OK interesting…

• If we could conceivably arrive at an arbitrary
angle using a number of other steps…

• Could we pick a collection of steps that could be
used to arrive at most arbitrary angles (within
reason?)

• And could we pre-compute those angles?

9/29/25 6.S965 Fall 2025 21

If we have these precomputed
angle jumps…
• Then we could potentially iterate towards our

target 𝜃 with a number of pre-calculated 𝛼 jumps

• We could keep track if our running tally is > or < 𝜃
and add or subtract our 𝛼 as needed.

9/29/25 6.S965 Fall 2025 22

What do attributes do we
want for our precomputed 𝛼?

• What we really care about are good, clean,
wholesome, easy-to-multiply values of tan 𝛼
• And remember we’re not in human land, we’re in

digital land…so what are nice and easy to apply
are in base 2!
• So are there any nice base-2 friendly tan 𝛼

values?
• And it sure would be nice to have angles that

could go forwards or backwards

9/29/25 6.S965 Fall 2025 23

𝑥& = 𝑥&'% − tan 𝛼& 𝑦&'%
𝑦& = 𝑦&'% + tan 𝛼& 𝑥&'%

𝜃& = 𝜃&'% + 𝛼&

Or alternatively: stepn...

Appreciate tan 𝑥

9/29/25 6.S965 Fall 2025 24

9𝜋 2

9−𝜋
2

tan 𝑥 has some
symmetry
• That’s nice…that means

we could just store
precomputed values of
tan 𝛼 for 𝛼 > 0 and
just flip signs when
needed.

9/29/25 6.S965 Fall 2025 25

Are there any “nice”
tan 𝛼 ???

9/29/25 6.S965 Fall 2025 26

o
tan 𝛼 = 1	@𝛼 = 45(

o

tan 𝛼 =
1
2 	@𝛼 = 26.57(

o

tan 𝛼 =
1
4 	@𝛼 = 14.04(

o

tan 𝛼 =
1
8 	@𝛼 = 7.13(

o𝑚𝑎𝑛𝑦	𝑚𝑜𝑟𝑒…
Get smaller and smaller

𝑥& = 𝑥&'% − tan 𝛼& 𝑦&'%
𝑦& = 𝑦&'% + tan 𝛼& 𝑥&'%

𝜃& = 𝜃&'% + 𝛼&

Or alternatively: stepn...

Do this for a bunch of power-of-2
values

• Can generate a whole
table…basically as many as
you want
• The only nasty thing you

need to store would be
these precomputed angles
• But worth it since now all

those multiplications by
tangents are are easy.

9/29/25 6.S965 Fall 2025 27

9/29/25 6.S965 Fall 2025 28

𝑥$ = 𝑥! − tan 𝛼$ 𝑦!
𝑦$ = 𝑦! + tan 𝛼$ 𝑥!

𝜃$ = 0 + 𝛼$

step0

𝑥% = 𝑥$ − tan −𝛼% 𝑦$
𝑦% = 𝑦$ + tan −𝛼% 𝑥$
𝜃% = 0 + 𝛼$ − 𝛼%

step1

𝑥# = 𝑥% − tan 𝛼# 𝑦%
𝑦# = 𝑦% + tan 𝛼# 𝑥%
𝜃# = 0 + 𝛼$ − 𝛼% + 𝛼#

step2

𝑥& = 𝑥&'% − tan 𝛼& 𝑦&'%
𝑦& = 𝑦&'% + tan 𝛼& 𝑥&'%

𝜃& = 𝜃&'% + 𝛼&

Or alternatively: stepn...

9/29/25 6.S965 Fall 2025 29

𝑥$ = 𝑥! − 1 5 𝑦!
𝑦$ = 𝑦! + 1 5 𝑥!
𝜃$ = 0 + 45

step0

𝑥% = 𝑥$ − 91 2𝑦$
𝑦% = 𝑦$ + 91 2𝑥$
𝜃% = 45 − 26.57

step1

𝑥# = 𝑥% − 91 4𝑦%
𝑦# = 𝑦% + 91 4𝑥%
𝜃# = 18.43 + 14.04

step2

𝑥& = 𝑥&'% − 91 2& 𝑦&'%
𝑦& = 𝑦&'% + 91 2& 𝑥&'%
𝜃& = 32.47 +⋯𝛼&

stepn...

More and More

• The more iterations you do, the closer and closer
you’ll be able to get your final angle to your
desired angle.

• It works out to about 1 bit of precision per
iteration.

• But we’re still not there yet.

9/29/25 6.S965 Fall 2025 30

We wanted to do this…

• Rotate things.

• But we’re not…We’re pseudo-rotating :/

9/29/25 6.S965 Fall 2025 31

PseudoRotations
• In a pseudorotation,

you still rotate by the
same angle, but you
depart the unit circle:

9/29/25 6.S965 Fall 2025 32

𝑥" 𝑥′"

𝑦"

𝑦′"

𝑅′"1 5 1 + tan# 𝛼

𝜃"

𝑥′" = 𝑥! − tan 𝛼 𝑦!

𝑦′" = 𝑦! + tan 𝛼 𝑥!

𝑥" = 𝑥! − tan 𝛼 𝑦!
1

1 + tan# 𝛼
𝑦" = 𝑦! + tan 𝛼 𝑥!

1
1 + tan# 𝛼

𝛼

Has length of

What we’ve got

What we wanted

Remember…

• That means these:

9/29/25 6.S965 Fall 2025 33

𝑥" = cos 𝜃 𝑥! − sin 𝜃 𝑦!

𝑦" = sin 𝜃 𝑥! + cos 𝜃 𝑦!

cos 𝜃 𝑥! =
1

1 + tan# 𝜃

• Can turn into these: 𝑥" = 𝑥! − tan 𝜃 𝑦!
1

1 + tan# 𝜃

𝑦" = 𝑦! + tan 𝜃 𝑥!
1

1 + tan# 𝜃

Let’s ignore these

sin 𝜃 =
tan 𝜃

1 + tan# 𝜃

We can zero in on our angle…
• But the x,y final locations are still

messed up
• On each iteration since we’re not

multiplying by !
!"#$%! &"

…

• That means we’re actually
multiplying by 1 + tan' 𝛼(

• You’ll hear this called “gain” of a
pseudorotation…

9/29/25 6.S965 Fall 2025 34

So after n iterations of pseudo-rotation…

• One would expect the vector to be this large…

• What will K be?

• It is going to depend on what/how we rotated
right? And that is nasty…

9/29/25 6.S965 Fall 2025 35

BUTTTT Not really!!!!

• We know ahead of time all
those 𝛼 values and because of
their behavior around 0 and the
squaring, it doesn’t matter if we
+ or – with them
• For a given implementation of n

steps...

• This will stay the same

9/29/25 6.S965 Fall 2025 36

And not only that...

• All CORDIC implementations
pick the same 𝛼 values and
these get smaller and smaller

• That means this product actually
converges to a fixed value,

• which works out to be:
1.646760258121

9/29/25 6.S965 Fall 2025 37

Smaller n smaller

So once you’re done…

• You can take your 𝑥! and 𝑦! and multiplying by
0.60725293634
• Which is the same as multiplying by 39796 and then

right shifting by 16
• OR...which is the same as multiplying by

2608131502 and right shifting by 32.

• You can also pre-multiply by this in your starting 𝑥"
and 𝑦" (then just right shift at end!)

9/29/25 6.S965 Fall 2025 38

Generalizing
CORDIC

• The pre-compute and step-by-step iterations are
universal
• Their meaning and the target can be altered:
• We previously targeted our accumulator to be 𝜃
• We could also target to get y to be 0…

• The amount the accumulator ends up with is based on
inverse tan of starting x and y

• The amount x ends up with is based on the sqrt(x**2+y**2)

9/29/25 6.S965 Fall 2025 39

Generalized CORDIC
• The three equations we’re iterating on can be

generalized to this format

9/29/25 6.S965 Fall 2025 40

𝑥'() = 𝑥' − 𝜇𝑑'𝑦'2*'

𝑦'() = 𝑦' + 𝑑'𝑥'2*'

𝑧'() = 𝑧' + 𝑑'𝛼'

𝜇 is settable
constant

𝑑! is our
control/feedback
function for
locking into a
target ...this was
sgn(𝜃) in our
walkthrough
example so far

𝑧 is our angle
accumulator

2'! are the
tan 𝛼! 	from our
original example

Different Modes

9/29/25 6.S965 Fall 2025 41

CORDIC
• You can use these outputs to generate all these

weird things

9/29/25 6.S965 Fall 2025 42

There’s very few multiplications in
this...one at the beginning or end
• And really no divisions.

9/29/25 6.S965 Fall 2025 43

https://en.wikibooks.org/wiki/Digital_Circuits/CORDIC

People still making
improvements/updates

9/29/25 6.S965 Fall 2025 44

For Upcoming Week 5 Assignments
• We’ll have to calculate angles and magnitudes

of 2D vectors (for future weeks with RFSoC).

• We need to write one and also make it AXIS-
compliant

9/29/25 6.S965 Fall 2025 45

CORDIC?

CORDIC Convergence

• If you sum up all the possible
angle they converge to about 99.88
degrees
• Dictates the range over which

cordic functions can “converge”
through multiple iterations
• Also when doing atan, you’ll likely

need to do some quadrant
determination to rotate prior to
running.

9/29/25 6.S965 Fall 2024 46

Returning to Generalized CORDIC
• The three equations we’re iterating on can be

generalized to this format

9/29/25 6.S965 Fall 2024 47

𝑥'() = 𝑥' − 𝜇𝑑'𝑦'2*'

𝑦'() = 𝑦' + 𝑑'𝑥'2*'

𝑧'() = 𝑧' + 𝑑'𝛼'

𝜇 is settable
constant

𝑑! is our
control/feedback
function for
locking into a
target

sgn(𝜃) in our
walkthrough
example

𝑧 is our angle
accumulator

2'! are the
tan 𝛼! 	from our
original example

Different Modes

9/29/25 6.S965 Fall 2024 48

CORDIC
• You can use these outputs to generate all these

weird things

9/29/25 6.S965 Fall 2025 49

How to Actually Get 𝑎?

9/29/25 6.S965 Fall 2024 50

Observe tan 𝑥

9/29/25 6.S965 Fall 2024 51

9𝜋 2

9−𝜋
2

Observe tanh 𝑥
• Just a different function…still get our values for

lookup from it…but kinda weird…

9/29/25 6.S965 Fall 2024 52

Hyperbolic Functions

• Whereas regular trig functions are following
around the unit circle… 𝑥# + 𝑦# = 1

• Hyperbolic trig functions are following the unit
hyperbola: 𝑥# − 𝑦# = 1

9/29/25 6.S965 Fall 2024 53

9/29/25 6.S965 Fall 2024 54

J.S. Walther, "A Unified Algorithm for Elementary Functions," Conference Proceedings, Spring Joint Computer Conference, May 1971, pp. 379-385

𝜇 = 1

𝑥'() = 𝑥' − 𝜇𝑑'𝑦'2*'

𝑦'() = 𝑦' + 𝑑'𝑥'2*'

𝑧'() = 𝑧' + 𝑑'𝛼'

𝜇 = 0 𝜇 = −1

How to Actually Get 𝑎?

• You then need to do:
• 𝑥 = 𝑎 + 0.25
• 𝑦 = 𝑎 − 0.25
• So that… 𝑎 + 0.25 ! − 𝑎 − 0.25 ! = 𝑎

• AMD/Xilinx has a pretty decent writeup of how to
do it in a low-level digital form.

9/29/25 6.S965 Fall 2024 55

From the Xilinx/AMD Docs…
That is, given input x, it computes the output sqrt (x). The CORDIC processor is
implemented using building blocks from the Xilinx blockset.
• The square root is calculated indirectly by the CORDIC algorithm by applying

the identity listed as follows. sqrt (w) = sqrt { (w + 0.25)2 - (w - 0.25)2 }
• The CORDIC square root algorithm is implemented in the following 4 steps:

1. Co-ordinate Rotation: The CORDIC algorithm converges only for positive values of x. If
x < zero, the input data is converted to a non-negative number. If x = 0, a zero detect
flag is passed to the co-ordinate correction stage. The square root circuit has been
designed to converge for all values of x, except for the most negative value.

2. Normalization: The CORDIC algorithm converges only for x between 0.25 (inclusive)
and 1. During normalization, the input x is shifted to the left till it has a 1 in the most
significant non-signed bit. If the left shift results in an odd number of shift values, a
right shift is performed resulting in an even number of left shifts. The shift value is
divided by 2 and passed on to the co-ordinate correction stage. The square root is
derived using the identity sqrt (w) = sqrt {(w + 0.25)2 - (w - 0.25)2}. Based on this identity
the input x gets mapped to, X = x + 0.25 and Y = x - 0.25.

3. Hyperbolic Rotations: For sqrt (X2 - Y2) calculation, the resulting vector is rotated
through progressively smaller angles, such that Ygoes to zero.

4. Co-ordinate Correction: If the input was negative and a left shift was applied to x, this
step assigns the appropriate sign to the output and multiplies it with 2-shift. If the input
was zero, the zero detect flag is used to set the output to 0.

9/29/25 6.S965 Fall 2024 56

CORDIC Square Root
Convergence
• If you sum up all the possible

angle they converge to about 99.88
degrees
• Dictates the range over which

cordic functions can “converge”
through multiple iterations
• Same thing with hyperbolic…but

their possible angle total
approaches: 64.74 degrees
(significantly lower since can’t do
for i=0)

9/29/25 6.S965 Fall 2024 57

Another Interesting Thing…

9/29/25 6.S965 Fall 2024 58

Source…
• This 1971 paper is what

everyone points to as
justification for the
repeated sequence for
convergence

9/29/25 6.S965 Fall 2024 59

J.S. Walther, "A Unified Algorithm for Elementary Functions," Conference Proceedings, Spring Joint Computer Conference, May 1971, pp. 379-385

• Some
students
confirmed
this last
year...

9/29/25 6.S965 Fall 2025 60

Square root convergence in Practice
• Normalization: The CORDIC algorithm converges only for x

between 0.25 (inclusive) and 1. During normalization, the input x is
shifted to the left till it has a 1 in the most significant non-signed bit.
If the left shift results in an odd number of shift values, a right shift is
performed resulting in an even number of left shifts. The shift value
is divided by 2 and passed on to the co-ordinate correction stage.
The square root is derived using the identity sqrt (w) = sqrt {(w +
0.25)2 - (w - 0.25)2}. Based on this identity the input x gets mapped
to, X = x + 0.25 and Y = x - 0.25.

9/29/25 6.S965 Fall 2024 61

https://www.mathworks.com/help/fixedpoint/ug/compute-square-root-using-cordic.html

So these are coming from the
assertion
• Keeping in mind: 𝑎 + 0.25 # − 𝑎 − 0.25 #

which is forcing the starting value of the x and y
values…

9/29/25 6.S965 Fall 2024 62

9/29/25 6.S965 Fall 2024 63

import sys

a = float(sys.argv[1])

x = a+.25
y = a-.25

for i in range(1,20):
 if y >0:
 xn = x - 1/(2**i)*y
 yn = y - 1/(2**i)*x
 else:
 xn = x + 1/(2**i)*y
 yn = y + 1/(2**i)*x
 print(f"x:{xn}, y:{yn}")
 x = xn
 y = yn
print(x/0.828)

Wrote some code to test it

So I ran it…

9/29/25 6.S965 Fall 2024 64

python3 cordic_test.py 4
x:2.375, y:1.625
x:1.96875, y:1.03125
x:1.83984375, y:0.78515625
x:1.790771484375, y:0.670166015625
x:1.7698287963867188, y:0.6142044067382812
x:1.760231852531433, y:0.5865508317947388
x:1.7556494241580367, y:0.572799020446837
x:1.7534119279844163, y:0.5659410148837196
x:1.7523065744397215, y:0.562516382211875
x:1.7517572420352177, y:0.5608051453227738
x:1.751483411397853, y:0.5599497951069363
x:1.751346704904907, y:0.5595221868522006
x:1.7512784038567073, y:0.559308399412637
x:1.7512442663811572, y:0.5592015098616203
x:1.7512272009053924, y:0.559148066127905
x:1.7512186689829967, y:0.5591213445214459
x:1.7512144032256685, y:0.5591079837833097
x:1.7512122703979716, y:0.5591013034305142
x:1.7512112039968648, y:0.5590979632581845
2.1149893768078076

9/29/25 6.S965 Fall 2024 65

python3 cordic_test.py 0.81
x:0.78, y:0.030000000000000027
x:0.7725, y:-0.16499999999999998
x:0.751875, y:-0.06843749999999998
x:0.74759765625, y:-0.021445312499999987
x:0.746927490234375, y:0.001917114257812512
x:0.7468975353240966, y:-0.009753627777099597
x:0.746821335107088, y:-0.003918490782380092
x:0.7468060285024694, y:-0.0010012199421180297
x:0.7468040729947699, y:0.0004573855823008558
x:0.7468036263291622, y:-0.0002719152702330992
x:0.7468034935580341, y:9.273493793543702e-05
x:0.7468034709176684, y:-8.95901337340049e-05
x:0.7468034599813728, y:1.5723993369995485e-06
x:0.7468034598854011, y:-4.400886653100416e-05
x:0.7468034585423571, y:-2.121823359993113e-05
x:0.7468034582185925, y:-9.822917154887839e-06
x:0.7468034581436496, y:-4.125258934836321e-06
x:0.7468034581279129, y:-1.2764298250964468e-06
x:0.7468034581254783, y:1.47984729743475e-07
0.9019365436298048

So I ran it…

Conclusions

• Seems to converge for input values of 0 to 2
• Beyond that it doesn’t converge, and this is

because for hyperbolics, 𝜇 = −1 so:

• Whereas in original:

9/29/25 6.S965 Fall 2024 66

𝑥'() = 𝑥' + 𝑑'𝑦'2*'

𝑦'() = 𝑦' + 𝑑'𝑥'2*'

𝑥'() = 𝑥' − 𝑑'𝑦'2*'
𝑦'() = 𝑦' + 𝑑'𝑥'2*'

Anyways

• CORDICs

• Wednesday we’ll either start talking about I/Q
signaling or do some other stuff on
AXIS...probably I/Q

9/29/25 6.S965 Fall 2025 67

