
6.S965
Digital Systems Laboratory II

Lecture 7:
DRAM,

Models and Drivers and Other Things

24 September 2025 6.S965 Fall 2025 1

6.205 FPGA

• Spartan 7 (xc7s50csga324-ish):
• 2.7 Mb of BRAM
• 120 DSP slices
• 52K logic cells*

• Dev Board also has 128 MB of
DRAM

24 September 2025 6.S965 Fall 2025 2

https://docs.amd.com/v/u/en-US/ds180_7Series_Overview

*”logic cell” is a vague term used to compare Xilinx/AMD FPGAs to other vendors. There actually is no such thing as
a “logic” cell in Xilinx architecture

6.S965 Zynq 7000

• Series 7000 XC7Z020:
• 5.04 Mb of BRAM
• 220 DSP slices
• 85K logic cells
• Two 650 MHz A9 ARM processors
• High-speed interconnects between

two resources

• Board has 512 MB of DDR3

24 September 2025 6.S965 Fall 2025 3

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html

6.S965 RFSoC
• UltraScale+ ZU48DR:
• 38 Mb of BRAM
• +22Mb of UltraRAM
• 4272 DSP slices
• 930,000 Logic Cells
• Four 5-Gsps 14 bit ADCs
• Two 10-Gsps 14 bit DACs
• Four 1.3 GHz ARM 53

processors
• Two Real-time 533 MHz ARM

processors

24 September 2025 6.S965 Fall 2025 4

• Board has 4GB of DDR4 for FPGA portion (”PL”) and 4 GB
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab

BRAM
• Block RAMs are hard primitives

that exist in the FPGA
• Each one is two 18kbit or one 36

kbit dual-port memory with two
clocks
• Form the basis of FIFOs, regular

memory, lots of things
• Can be stacked together to

make larger memory structures,
albeit with performance hit

24 September 2025 6.S965 Fall 2025 5

What is UltraRAM?
• Like a larger BRAM.
• Actually less flexible than

BRAM, but its primitive size
is ~8 times larger than
BRAM
• So for mid-scale memory

requirements, it can
surpass linked together
BRAMs in performance

24 September 2025 6.S965 Fall 2025 6

Reflective of Situation in all
devices (not just FPGAs/SOCs)
• Quick-to-access

memory is desirable
• BRAM
• URAM

• As far as memories go
they take up a lot of
space
• To have more memory

you have to go off-chip

https://computerscience.chemeketa.edu/cs160Reader/ComputerArchitecture/MemoryHeirarchy.html24 September 2025 6.S965 Fall 2025 7

Off-Chip Memory Resources
• On-chip memory is always hard and expensive to

make (it has gotten better, but still nowhere near
what is needed)

Zynq7020 DDR3• DRAM has proven
to be the way to get
lots of memory into
a small spot
• But to make those

massive, small-in-
size designs, uses
different fab tech
• Have to put off-chip

as a result
24 September 2025 6.S965 Fall 2025 8

DRAM

• Extremely dense array of transistor/capacitor
”cells”
• So dense and tiny that read is destructive since

you’ve stolen all charge from cap in the
process….have to write back to it.
• Also So dense and tiny that the cells lose their

information after about 100 ms due to parasitics
naturally
• so need to be constantly read-out/rewritten,

even when not using else you’ll lose your info
(called a refresh)

24 September 2025 6.S965 Fall 2025 9

DRAM is pretty wild (aside)

• MOSTEK developed the modern form of DRAM
• The MK4564 was the first widely successful

DRAM chip
• 64 Kbits of RAM organized into 256 rows and 256

columns of one bit.
• They got destroyed by Japanese competition in

the 1980s and closed up shop
• I found about 1100 of these chips (and variants)

in the EECS stockroom.

~1980
8 KB

24 September 2025 6.S965 Fall 2025 10

DRAM is pretty wild (aside)

• Today you can buy 2GB DRAM variants for about
¼ the cost of what the 1980 version cost and you
get:
• 250,000 times the storage the 1980 version
• About 10,000 the throughput the 1980 version

~2024
2GB

24 September 2025 6.S965 Fall 2025 11

DRAM
• The constant need for refreshing means getting

info into and out of the DRAM is not an easy
task…
• Even more complicated in modern devices

because they’ll have different
banks/channels/buffers
• Requires something to handle all the needs for

refreshes and balancing them with requests for
reads/writes, etc…
• This is the job of a Memory Interface/Controller

24 September 2025 6.S965 Fall 2025 12

Xilinx Series 7 FPGAs
• The FPGAs used in 6.205 (series 7…Spartan or

Artix) had no “hard” memory controller.
• Instead you’d use a Memory Interface Generator

(“MIG”) to synthesize all the control logic

• Downside of this is
it takes up a ton of
your FPGA
resources
• Also generally uses

an AXI flow

24 September 2025 6.S965 Fall 2025 13

Open Memory Controllers
• You can write your own controller, but it is

a lot

• Even a simple controller for ~1980 DRAM
is nothing to sneeze at.

• Modern DRAM needs to be periodically
recalibrated in addition to all the
refreshing, and many other things.

24 September 2025 6.S965 Fall 2025 14

UberDDR3

• Really well-written
pure SV/Verilog
memory controller
that I’ve gotten
working well on a
number of series 7
boards:

24 September 2025 6.S965 Fall 2025 15

https://github.com/AngeloJacobo/UberDDR3

*uses fewer resources and is more performant (in my own testing) than Xilinx’s own MIG

Zynq 7000

• On the Zynq-
7000 chips,
the DRAM is
connected to
“PS” pins
• But not

directly to the
ARM cores
themselves

DDR3

24 September 2025 6.S965 Fall 2025 16

Direct-Memory-Access

• The Memory
controller does have
interfaces to both
the ARM cores and
the PL
• For the PL, this gives

it “Direct Memory
Access” or “DMA”
• As opposed to MA

only through the
processor

DDR3

24 September 2025 6.S965 Fall 2025 17

Interfacing to the Dynamic
Memory Controller

• Open up an HP AXI port from the PL into the PS
and directly talk to it via memory map
reads/writes

24 September 2025 6.S965 Fall 2025 18

• Can do it
yourself.
• It is a solid

amount of
work, though.

A few pieces of IP can facilitate
the connection
• There are some pre-packaged pieces of IP that

take care of a lot of the boilerplate needed to talk
to the memory controller.

• Two big options:
• AXI Central Direct Memory Access
• AXI Direct Memory Access

24 September 2025 6.S965 Fall 2025 19

AXI Central Direct Memory
Access
• Exposes the majority of the DDR3 memory space

as an memory mapped object

24 September 2025 6.S965 Fall 2025 20

Provides AXI-Lite-level memory
interface

24 September 2025 6.S965 Fall 2025 21

S_AXI_LITE:
Low* Speed

Control registers
from PS to DMA

M_AXI:
Full AXI interface to Memory

Controller

Downside with it when interfacing
with PS-side programming?
• You have to know all your memory addresses in

order to effectively move data between the two
sides.
• Python doesn’t really make that an easy thing to

do.
• Even C when you’re running on an OS isn’t super

thrilled with you using hardened constant
memory locations
• Have to share data about where in memory we’re

looking

24 September 2025 6.S965 Fall 2025 22

AXI Direct Memory Access

• We’ll use this in week 4 and in future weeks

24 September 2025 6.S965 Fall 2025 23

AXI Direct Memory Access

• Provides streaming input and output interfaces
to the memory

24 September 2025 6.S965 Fall 2025 24

Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links. Provides

highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection (no
bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant for high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing
• Meant to stream data from one device to another quickly

on its own direct connection

24 September 2025 6.S965 Fall 2025 25From the Zynq Book

Streaming means: no Addressing!

• Data flows unidirectionally
• Data’s “place” is where it is in the chain. It

doesn’t have a address it is supposed to live at
• For values that are independent of one another

this is pretty much all that’s needed

24 September 2025 6.S965 Fall 2025 26

All the AXIs Showing up in axi_dma

24 September 2025 6.S965 Fall 2025 27

S_AXI_LITE:
Low* Speed

Control registers
from PS to DMA

M_AXIS_MM2S:
Read data from
memory into PL

S_AXIS_S2MM:
Write data into

memory from PL

M_AXI_MM2S/S2MM:
High-Speed Full AXI interface

to Memory Controller

S2MM = “Stream to Memory Map”
MM2S = “Memory Map to Stream”

Block Diagram of Usage

24 September 2025 6.S965 Fall 2025 28

https://pynq.readthedocs.io/en/v2.7.0/pynq_libraries/dma.html

On the Python (processor) side…
• Use allocate to dynamically shift memory
from pynq import PL
PL.reset()
from pynq import Overlay #import the overlay module
ol = Overlay('./design_1_wrapper.bit') #locateto the bit file
dma = ol.dma # GRAB THE DMA
from pynq import allocate
import numpy as np
Allocate buffers for the input and output signals
n = 1000000
in_buffer = allocate(shape=(n,), dtype=np.int32)
out_buffer = allocate(shape=(n,), dtype=np.int32)
Copy the samples to the in_buffer
np.copyto(in_buffer,samples) #samples come from somewhere
Trigger the DMA transfer and wait for the result
dma.sendchannel.transfer(in_buffer) #send data out into memory
dma.recvchannel.transfer(out_buffer) #wait for data to appear
dma.sendchannel.wait()
dma.recvchannel.wait()

24 September 2025 6.S965 Fall 2025 29

Pynq Allocate

• Basically is
like a malloc
compatible
with the PL
side.

24 September 2025 6.S965 Fall 2025 30

https://pynq.readthedocs.io/en/latest/pynq_libraries/allocate.html#allocate

Address Space

24 September 2025 6.S965 Fall 2025 31

Result/Speed:
• In lab this week, you’ll send down 2 million 32 bit

integers into the PL fabric and then run some
filters on them and put the results back up into
the DRAM for processor consumption
• Timing it this takes about 0.021 seconds.
• That ends up being ~ 380 MBps processing

speed in a semi-sustained manner which is
nothing to sneeze at.

24 September 2025 6.S965 Fall 2025 32

Speed
• Peak throughput of the DDR3 on the Pynq Z2 board:
• 16 bits * 525 MHz * 2 = 2.1 GBps peak bandwidth

• The 380 MBps actually involves moving data into and
out of the memory so really we’re getting 760MBps
data movement (~1/3 of peak bandwidth sustained)
• Also that is largely based on the fact that the AXIS

streaming system you’ll build is clocked at 100 MHz
and moving data on a 32 bit bus (about 400 MBps
throughput)
• Clocking faster and doing some other things should

be able to increase this if needed.

24 September 2025 6.S965 Fall 2025 33

Week 4: Part 1
• Use allocate to dynamically shift memory
from pynq import PL
PL.reset()
from pynq import Overlay #import the overlay module
ol = Overlay('./design_1_wrapper.bit') #locateto the bit file
dma = ol.dma # GRAB THE DMA
from pynq import allocate
import numpy as np
Allocate buffers for the input and output signals
n = 1000000
in_buffer = allocate(shape=(n,), dtype=np.int32)
out_buffer = allocate(shape=(n,), dtype=np.int32)
Copy the samples to the in_buffer
np.copyto(in_buffer,samples) #samples come from somewhere
Trigger the DMA transfer and wait for the result
dma.sendchannel.transfer(in_buffer) #send data out into memory
dma.recvchannel.transfer(out_buffer) #wait for data to appear
dma.sendchannel.wait()
dma.recvchannel.wait()

24 September 2025 6.S965 Fall 2025 34

Week 4: Part 1

• AXI-fy your FIR filter

• Compare its speed to scipy on the Pynq board
directly by sending data down to PL and then
back up using DMA

24 September 2025 6.S965 Fall 2025 35

Week 4: Part 2
• Allocate a spot in memory and then write lines of

video to it from the PL

n = 65536
out_buffer = allocate(shape=(n,), dtype=np.int32)
Copy the samples to the in_buffer
Trigger the DMA transfer and wait for the result
dma.recvchannel.transfer(out_buffer) #wait for data to appear
dma.recvchannel.wait()

24 September 2025 6.S965 Fall 2025 36

Week 4: Part 2

24 September 2025 6.S965 Fall 2025 37

Individual lines of video data
plotted in python:

More Cocotb
I’m coocoo for Cocotb

24 September 2025 6.S965 Fall 2025 38

Adding Layers to Cocotb

• So we’ve been kinda building up some loose testing
modules in Python using Cocotb.

• What we’d like to do is start to add some structure
and reusability to this.

• To help with this, we’ll start using the cocotb_bus
library

24 September 2025 6.S965 Fall 2025 39

cocotb_bus
• I think this was

originally part of
cocotb but was
split off

• Not sure why. I
don’t think it was
a bad thing like
happened with
Rust or Node or
RethinkDB

24 September 2025 6.S965 Fall 2025 40

OOPiness Ahead

• Part of the job of any verification framework is to
organize.
• And one of the (few) strengths of Object Oriented

Programming is organization.
• Cocotb_bus is very OOPy just like UVM in

SystemVerilog is very OOPy.
• The intention is to minimize code reuse and

make things portable.

24 September 2025 6.S965 Fall 2025 41

Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

24 September 2025 6.S965 Fall 2025 42

DUT

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

Design unit under test

This is just your HDL design

24 September 2025 6.S965 Fall 2025 43

Monitors

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

24 September 2025 6.S965 Fall 2025 44

Monitor/Bus Monitor
From cocotb source

24 September 2025 6.S965 Fall 2025 45

Monitors

• Monitors should listen to signals on a bus and
log transactions as they detect them for
processing by another party.

• A single Monitor is relatively useless

• Multiple monitors, however can generate lists of
transactions and together these can be used to
assess what the DUT is generating.

24 September 2025 6.S965 Fall 2025 46

At a high level…

• Monitors should be completely passive entities
that simply report what they see and not affect
the system
• Keeps it simple

24 September 2025 6.S965 Fall 2025 47

Monitor Python data structure
Wires set high/low

AXIS Monitor

• Start to develop this week!
• Monitors an AXIS bus
• If a valid/ready transaction occurs, do something

with it.
24 September 2025 6.S965 Fall 2025 48

AXIS Monitor

24 September 2025 6.S965 Fall 2025 49

Notice it isn’t concerned with setting the values or not...it just watches the
bus as a separate party

A little closer

• Make a internal variable to keep track of the
number of valid/ready things we saw happen on
the bus
• Then created a Python data structure from it (for

easy human interpretability) and reported it.

24 September 2025 6.S965 Fall 2025 50

The _recv method does a few
things:

24 September 2025 6.S965 Fall 2025 51

__init__ of Monitor Class:

Call function with transaction!

Or shove it into a queue

Or trigger various events

What would the
monitor/callbacks be useful for?
• maybe printing stuff and verify by eye

• But it would be nice to verify the data more
robustly, for example… That’s where maybe a
callback could come in

24 September 2025 6.S965 Fall 2025 52

One useful callback might be a
model
• You wrote a model in week 1 when “verifying”

that crappy divider I gave you in week 1
• A callback to a model might be useful if attached

to an input monitor.
• Every time an input to DUT is observed, you

trigger the model to compute what to expect of
of it.

24 September 2025 6.S965 Fall 2025 53

With these modifications…

24 September 2025 6.S965 Fall 2025 54

callback

Proven software model

Code Reusability!

• You’ll be building a few AXI-Streaming modules
this week

24 September 2025 6.S965 Fall 2025 55

AXI Streamers

• Many of our modules
will start to have
multiple standardized
busses

• Being able to reuse the
monitors will be super
nice.

24 September 2025 6.S965 Fall 2025 56

Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

24 September 2025 6.S965 Fall 2025 57

At a high level…

• Ideally, we want to just be able to issue high-
level commands of things to send and not have
to worry about:
• Turning signals on/off
• Waiting for signals to be on/off (e.g. READY)

• Drivers are almost always more complicated
than Monitors

24 September 2025 6.S965 Fall 2025 58

DriverPython data structure Wires set high/low

Bus Functional Model: “BFM”
• You will find this term thrown around a lot and it

is kinda/basically the same thing we’re doing
here.
• A BFM is a programming construct that allows

allows interfacing of testing
languages/frameworks to work with the
simulated digital designs

BFMPython data structures Wires set high/low

24 September 2025 6.S965 Fall 2025 59

Drivers

• Several different classes
and subclasses

24 September 2025 6.S965 Fall 2025 60

The Driver Base Class

24 September 2025 6.S965 Fall 2025 61

Drivers

• In week 4’s stuff we’re creating (and then using) a
Bus Driver that you write like the following:

• What is this “append” method?

24 September 2025 6.S965 Fall 2025 62

ind = AXISDriver(dut,'s00',dut.s00_axis_aclk)

for i in range(50):

 data = {'type':'single', "contents":{"data": random.randint(1,255),"last":0,"strb":15}}

 ind.append(data)

data = {'type':'burst', "contents":{"data": np.array(list(range(100)))}}
ind.append(data)

The append method

24 September 2025 6.S965 Fall 2025 63

What is self._sendQ ?

24 September 2025 6.S965 Fall 2025 64

Double Ended Queue

24 September 2025 6.S965 Fall 2025 65

An internal FIFO of things to do
• Just like in hardware a FIFO/queue allows

breathing room and a decoupling of commands
from implementation

24 September 2025 6.S965 Fall 2025 66

Driver
Python data structure Wires set high/low

Wires read high/low

Launches the running process

24 September 2025 6.S965 Fall 2025 67

An internal FIFO of things to do
• Just like in hardware a FIFO/queue allows

breathing room and a decoupling of commands
from implementation

24 September 2025 6.S965 Fall 2025 68

Driver

Python
data structure

Wires set high/low

Wires read high/low

thread

_send_thread coroutine

• Tracks the queue…if stuff in it…calls the _send
procedure

24 September 2025 6.S965 Fall 2025 69

_send
• Finally this is getting to the _driver_send

procedure which is a thing you’ll need to write

24 September 2025 6.S965 Fall 2025 70

Notice this is awaiting it
And actually the last few
pages have been awaits

Usefulness? Think of the AXI LITE

• One interface actually has three separate busses
in it. Have Driver for Each Bus, but need to sync
them…

24 September 2025 6.S965 Fall 2025 71

Events
• Events/Triggers could allow Driver 1 to only send

after Driver 2 sent or vice versa or whatever

24 September 2025 6.S965 Fall 2025 72

Python

data structure

Wires set high/low

Wires read high/low

Wires set high/low

Wires read high/lowthread
Driver1

Python data structure Wires set high/low

Driver2

Python data structure

Event happens

Event happens

await Done

Plug an entity in to Compare these
results

DUTDriver Monitor
(output)

Monitor
(input)

Sequencer

24 September 2025 6.S965 Fall 2025 73

Model Scoreboard

ScoreBoard

• There’s a
scoreboarding
class that is
designed to work
with data streams
that monitors will
produce

24 September 2025 6.S965 Fall 2025 74

Make a scoreboard

24 September 2025 6.S965 Fall 2025 75

Scoreboard instance
Thing for it to check… actual, expected

Scoreboard Class

• Has all the stuff running to check/compare the
actual/expected pairs as they come in.

24 September 2025 6.S965 Fall 2025 76

• Can also
override the
compare to do
whatever you
want…ranges,
whatever

Scoreboard sees failure and tells
you

24 September 2025 6.S965 Fall 2025 77

Scoreboard see no error and
you’re good

24 September 2025 6.S965 Fall 2025 78

Sequencer

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

24 September 2025 6.S965 Fall 2025 79

Sequencer

• This is tied a bit more into *what* we test on the
device so we’ll cover it in the future.

• For now we’ll be kinda kludging this part.

24 September 2025 6.S965 Fall 2025 80

Tasks to Do

• Week 3 due on Friday 5pm

• Week 4 coming out Friday mid-day.

• That will likely be our last Pynq-board lab, then
we’ll move to the RFSoC in Week 5.

24 September 2025 6.S965 Fall 2025 81

