6.5965
Digital Systems Laboratory |l

Lecture 7:

DRAM,
Models and Drivers and Other Things

6.205 FPGA

* Spartan 7 (xc7s50csga324-ish):.

e 2.7 Mb of BRAM
e 120 DSP slices

* 52K logic cells™

* Dev Board also has 128 MB of
DRAM

*”logic cell” is a vague term used to compare Xilinx/AMD FPGAs to other vendors. There actually is no such thing as

a “logic” cell in Xilinx architecture
https://docs.amd.com/v/u/en-US/ds180_7Series_Overview

24 September 2025 6.5965 Fall 2025 2

6.S965 Zyng 7000

* Series 7000 XC7Z020:
e 5.04 Mb of BRAM
e 220 DSP slices
e 85K logic cells

* Two 650 MHz A9 ARM processors

* High-speed interconnects between
two resources

e Board has 512 MB of DDR3

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zyng-7000.html

24 September 2025 6.5965 Fall 2025 3

6.5965 RFSoC

* UltraScale+ ZU48DR:

38 Mb of BRAM

+22Mb of UltraRAM
4272 DSP slices

930,000 Logic Cells

Four 5-Gsps 14 bit ADCs
Two 10-Gsps 14 bit DACs

Four 1.3 GHz ARM 53
Processors

* Two Real-time 533 MHz ARM
Processors
* Board has 4GB of DDR4 for FPGA portion (’PL”) and 4 GB
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zyng-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab

24 September 2025 6.5965 Fall 2025 4

CASDOUTPA » CASDOUTE

B RAM 5 i 36-Kbit Block RAM
—4—»{ omea
142: s Port A
* Block RAMs are hard primitives — &,
that exist in the FPGA — i
. . ——{>cwa DOUTPA |——~4
* Each oneistwo 18kbitorone36 — 1= | |
kbit dual-port memory withtwo .)
7—>one || Dpouts —
Cl.OCkS % onee L—— 1 e 2l
* Form the basis of FIFOs, regular — .« -
memory, lots of things of e
* Can be stacked together to B—

32 4 32

make larger memory structures, o
albeit with performance hit

CASDINPE

24 September 2025 6.5965 Fall 2025 5

What is UltraRAM?

* Like a larger BRAM.

* Actually less flexible than
BRAM, but its primitive size
Is ~8 times larger than
BRAM

* So for mid-scale memory
requirements, it can
surpass linked together
BRAMs in performance

24 September 2025 6.5965 Fall 2025

~
N
o o
& 4@
™ » @
o
r
=

HEEEAIER A

LEEP

ADDR_B

EN_B

RDB_WR_B

BWE_B
INJECT_SBITERR_B
INJECT_DBITERR_B
OREG_CE_B
OREG_ECC_CE_B

SBITERR_B

DBITERR_B

BAS

BAS

Reflective of Situation in all
devices (not just FPGAs/SOCs)

* Quick-to-access
memory is desirable
* BRAM
* URAM

* As far as memories go .

they take up a lot of
space

* To have more memory
you have to go off-chip

https://com%ﬂ't%%%teenn@ebgﬁe%g&%ta.edu/cs1 60Reader/ComputerArchit%b§§r6e

‘ 777777777

| MECHANICAL VIRTUAL MEMORY sLow |
HARD DRIVES _BASED MEMORY CHEAP

[S LARGE CAPCITHJ‘

THE
MEMORY HIERARCHY

REGISTER

CPU CACHE
LEVEL 1 (L1) CACHE
LEVEL 2 (L7 CACHE

LEVEL 3 (L3) CACHE
PHYSICAL MEMORY
RANDDOM ACCESS

ek O |
FAST |
PRICED REASONABLY |

MEMORY (RAMD AVERAGE CAPACITHJ

r 1

: (S)ZIL\IIZ‘?‘IATQ SOLID STATE MEMORY AVERAGE SPEED |
PRICED REASONABLY

I NON-VOLATILE FLASH-BASED MEMORY AVERAGE CAPACITY :

,,,,,,,,

Neanlwlo%g-? e5|ra rchy.html

Off-Chip Memory Resources

* On-chip memory is always hard and expensive to
make (it has gotten better, but still nowhere near
what is needed)

* DRAM has proven Zynq7020 DDR3
to be the way to get g

lOtS Of memory intO 'i:f"‘l S ﬂi 5 IEEEETE B e e L
a small spot

e But to make those
massive, small-in-

size designs, uses

differentfabtech i =
 Have to put off-chip |_JEEE SRS 3
as aresult .
24 September 2025 6.5965 Fall 2025 8

DRAM

* Extremely dense array of transistor/capacitor
“cells”

* So dense and tiny that read is destructive since
you’ve stolen all charge from cap in the
process....have to write back to it.

* Also So dense and tiny that the cells lose their
iInformation after about 100 ms due to parasitics
naturally

* SO0 nheed to be constantly read-out/rewritten,
even when not using else you’ll lose your info

(called a refresh)

24 September 2025 6.5965 Fall 2025

DRAM is pretty wild (aside)

~1980
8 KB

* MOSTEK developed the modern form of DRAM

* The MK4564 was the first widely successful
DRAM chip

* 64 Kbits of RAM organized into 256 rows and 256
columns of one bit.

* They got destroyed by Japanese competition in
the 1980s and closed up shop

* | found about 1100 of these chips (and variants)
in the EECS stockroom.

24 September 2025 6.5965 Fall 2025 10

DRAM is pretty wild (aside)

~2024
2GB

* Today you can buy 2GB DRAM variants for about
Ya the cost of what the 1980 version cost and you
get:

e 250,000 times the storage the 1980 version
* About 10,000 the throughput the 1980 version

24 September 2025 6.5965 Fall 2025 11

DRAM

* The constant need for refreshing means getting
Info into and out of the DRAM is not an easy

task...

* Even more complicated in modern devices
pecause they’ll have different
panks/channels/buffers

* Requires something to handle all the needs for
refreshes and balancing them with requests for
reads/writes, etc...

* This is the job of a Memory Interface/Controller

24 September 2025 6.5965 Fall 2025 12

Xilinx Series 7 FPGAs

* The FPGAs used in 6.205 (series 7...Spartan or
Artix) had no “hard” memory controller.

* Instead you’d use a Memory Interface Generator
(“MIG”) to synthesize all the control logic

* Downside of this is

It takes up a ton of __mig_Tseries0
— |G DDR3 s ||l=——t—[» DDR3
yO U r F PGA . sys_rst ui_clk_sync_rst
clk_ref i ui_clk
reSO u rceS sys_clk_i mmecm_locked > mmcm_locked
— aresetn init_calib_complete [init_calib_complete
° Al,SO ge n e ra lly u SeS Memory Interface Generator (MIG 7 S@ries)
axi_protocol_checker_0
an AXI flow ¢
‘“GJIF:(C‘AXI pc_status(96:0) pmm———{"% pc_status[96:0]
v pc_asserted m——— 3 pc_asserted

aresetn

24 September 2025 6.5965 Fall 2025 ~ AXIProtocol Checker 13

Open Memory Controllers

* You can write your own controller, butitis
a lot

* Even a simple controller for ~1980 DRAM
IS nothing to sneeze at.

* Modern DRAM needs to be periodically
recalibrated in addition to all the
refreshing, and many other things.

24 September 2025 6.5965 Fall 2025 14

@ UberDDR3 pusic ow
¥ main ~ ¥ 5Branches © 0 Tags Q Go to file t Add file ~

l ’ b e r D D R 3 . AngeloJacobo added back main wefgfile ~ al258e2- 3 months ago O 468 Comm its
example_demo update bistream files from latest Cl run 3 months ag

formal formal all passing 7 months ago

rtl use SIM_MODEL directive to use models during vivado si... 4 months ago

° R l l l l . tt testbench added back main wcfg file 3 months ago

-

e a y We W r I e n d tom_ip fixed bug on vivado IP (convert string to long for SELF_RE... 5 months ago

p u re SV/Ve r i lo g [.gitignore added icarus simulation scripts (PASSING!) 4 months ago

[LICENSE Update LICENSE to GPL 3.0 last year
memory controller O reovens
t h , (] run_compile.sh ignore new fiels due to new verilator, run_compile can no 7 months ag

at I’ve gotten
] README & GPL-3.0 license 7 =

working well on a
number of series 7
boards:

Table of Contents

https://github.com/AngeloJacobo/UberDDR3

*uses fewer resources and is more performant (in my own testing) than Xilinx’s own MIG

24 September 2025 6.5965 Fall 2025 15

Zyng 7000

Processing System

Static Memory Controller Dynamic Memory Controller
NOR, NAND, SRAM, QSPI DDR2, DDR3, LPDDR2

* On the Zyng-
7000 chips,
the DRAM is
con ’r’1e§:ted to — FLE

PS pInS ni . : W Sygtseggz't:&

- 32/32KB1/D Caches

* But not
directly to the

ARM cores
themselves

Multi Standards 10s (3.3V & High Speed 1.8V)

SysMon/ADC

Multi Standards 10s (3.3V & High Speed 1.8V) Multi Gigabit Transceivers

24 September 2025 6.S965 Fall 2025

Direct-Memory-Access

* The Memory
controller does have
interfaces to both
the ARM cores and
the PL

* For the PL, this gives

DDR3

24 September 2025 S350 Kl A baches | DSP. RAM

It - D I re Ct M e m 0 ry Dynamic Memory Controller
AC cess ” or “« DM A” DDR2, DDR3, LPDDR2
* As opposed to MA
only through the
Processor Programmable %
o Logic: E}
Cortex-A9 MPCore™ System Gates, Eﬂ

Interfacing to the Dynamic
Memory Controller

ZYNQ7 Processing System (5.5)
© Documentation &F Presets IP Location ¥ Import XPS Settings
. Page Navigator PS-PL Configuration Summary Report
C a I l d O It Zynq Block Design « Q) =&
PS-PL Configuration Search:
O u rS e ° Name Select Description

Peripheral /0 Pins i
> General

MIO Configuration > AXINon Secure Enablement 0 v | Enable AXI Non Secure Transaction

L] L
. > GP Slave AXI Interface

Clock Configuration
v HPSlave AXI Interface

DDR Configuration > S AXIHPO interface v Enables AXI high performance slave interface 0

a I I | O u I It Of > S AXIHP1 interface Enables AXI high performance slave interface 1
SMC Timing Calculation > S AXIHP2 interface Enables AXI high performance slave interface 2
Interrupts > S AXIHP3interface Enables AXI high performance slave interface 3
, ° > ACP Slave AXI Interface

> DMA Controller
> PS-PL Cross Trigger interface Enables PL cross trigger signals to PS and vice-versa

* Open up an HP AXI port from the PL into the PS
and directly talk to it via memory map
reads/writes

24 September 2025 6.5965 Fall 2025 18

A few pieces of IP can facilitate
the connection

* There are some pre-packaged pieces of |P that
take care of a lot of the boilerplate needed to talk
to the memory controller.

* Two big options:
* AXI Central Direct Memory Access
* AXI Direct Memory Access

24 September 2025 6.5965 Fall 2025 19

AXI| Central Direct Memory
Access

* Exposes the majority of the DDR3 memory space
as an memory mapped object

axi_cdma_0

axi_mem_intercon
-4 S_AXI_LITE ”n) .
m_axi_aclk M_AXI + S00_AXI) processing_system7_0
s_axi_lite_aclk cdma_introut ACLK
s_axi_lite_aresetn

ARESETN -Y. [l[+ s_axi_HPo_FIFO_CTRL

S00_ACLK H—H MO0_AX + i £4 S_AXI_HPO -
s00_ARESETN gl M_AXI_GPO_ACLK ZYNQ.
MOO_ACLK

AXI Central Direct Memory Acce'ss

S_AXI_HPO_ACLK
MOO_ARESETN

N

AXI Interconnect

ZYNQ7 Processing System

24 September 2025 6.5965 Fall 2025

20

Provides AXI-Lite-level memory
Interface

S_AXI_LITE:

. M_AXI:
Low Spged Full AXl interface to Memory
Control registers Controller

from PS to DMA

axi cdma 0
g
>4 S_AXI_LITE
—={ m_axi_aclk M_AXI + |
s axi_lite_ack cdma_introut =
q s axi_lite_aresetn

AX| Central Direct Memory Access

24 September 2025 6.5965 Fall 2025

Downside with it when interfacing
with PS-side programming?

* You have to know all your memory addresses in

order to effectively move data between the two
sides.

* Python doesn’t really make that an easy thing to
do.

* Even C when you’re running on an OS isn’t super
thrilled with you using hardened constant
memory locations

* Have to share data about where in memory we’re
looking

24 September 2025 6.5965 Fall 2025 22

AXI Direct Memory Access

e We’ll use this in week 4 and in future weeks

H+ wo_mas

math_doer 0

<00_xus_adk

200_ais_aresetn MOO_AXE + [

mo0_aas ack

mO0_awis aresan

axi_mem_intercon

o+ S AXIS 2MM

S a0 ite_adk
m_xd_mm2s_adk
m_a_s2mm_adk
20_resetn

M_AXLMALS [

M_ax1saam +

M_AXIS AMZS +
mm2s pamry_reset_out_n

S2mMm_pmry_reset out n
mm2s_mrowe
S2mm _irerowe

AXI Direct

L kol |
l?l MOO_AXI
m=n

SO1_ARESETN

AXI Inter

1st_ps7_0_100M

ps7_0_axi_periph

dowest_syne_clk mb_rset

o _reset_in bus_stuce_reset(00]
aux reset n peripheral_reset(00]
mb_debug sys_mt Interconnect aresen[00]
dom_Jodked peripheral_aresetn{00]

24 September 2025

ARESETN '?.
00_ACLK MW wmooaa +f3
LO_ARESETN. WEm
MI0_ACLK
MOO_ARESETN
AXI Interconnect

6.5965 Fall 2025

processing_system7_0

|+ .m0 se0Fro_cra
o} S A _HPO

M_AXI GPO_ACIX

S AX1_HPO_ACLK

ZYNG

M_AXLGPO + [Zjumed

FCIX_Quxo
FCLX_RESETON

L~ oor

{> FXED_IO

23

AXI Direct Memory Access

* Provides streaming input and output interfaces
to the memory

) Show disabled ports

.

+ S_AXI_LITE
+ S_AXIS_S2MM
+

s_axi_lite_aclk

m_axi_mm?2s_aclk
m_axi_s2mm_aclk

+
+
M_AXI_MM25 =+
M_AXI_S2MM =
M_AXIS_MM25 =+
+

mm2s_prmry_reset_out_n

s2mm_prmry_reset_out_n

axi_resetn)
mma2s_introut
s2mm_introut
axi_dma_tstvec[31:0]
24 September 2025

¥ RIS e

b4

Component Name |axi_dma_0

Enable Scatter Gather Engine

Enable Micro DMA

Width of Buffer Length Register (8-26) 23

Address Width (32-64) 32

) Enable Read Channel

Number of Channels 1
Memory Map Data Width | 32
Stream Data Width 32

Max Burst Size 16

Allow Unaligned Transfers

bits

bits

) Enable Write Channel

Number of Channels

Memory Map Data Width

Stream Data Width

Max Burst Size

Allow Unaligned Transfers

6.5965 Fall 2025

32

32

This enables the Cor
in Ethernet based sy
to and from Ethernet

24

Three General Flavors of AXI4

* AXI4 (Full AXI): For memory-mapped links. Provides
highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

* AXI4 Lite: Amemory-mapped simplified link
supporting only one data transfer per connection (no
bursts). (also restricted to 32 bit addr/data)

1. Addressis supplied
2. One data transfer

("« AX14 Stream: Meant for high-speed streaming data)
* Can do burst transfers of unrestricted size
* No addressing

* Meant to stream data from one device to another quickly
_ on its own direct connection)

24 September 2025 6.5965 Fall 2025 From the Zynq Book 25

Streaming means: no Addressing!

* Data flows unidirectionally

 Data’s “place” is where it is in the chain. It
doesn’t have a address it is supposed to live at

* For values that are independent of one another
this is pretty much all that’s needed

24 September 2025 6.5965 Fall 2025 26

All the AXls Showing up in axi_dma

S2MM = “Stream to Memory Map”

MM2S = “Memory Map to Stream”
M_AXI_MM2S/S2MM:

S_AXL_LITE: High-Speed Full AXl interface
Low* Speed to Memory Controller

Control registers
from PS to DMA

+|:

+|
. M_AXI MM25 = |-
|4+ S_AXI LITE -
o M_AXI_S2MM 4 [
= 4 5_AXIS_S2MM]
= M_AXIS_ MM25 4 =

+ =

s_axi_lite_aclk
mmz2s_prmry_reset_out_n

m_axi_mm?2s_aclk

S AXIS S2MM:
Write data into m_axi_s2mm_aclk
axi_resetn

memory from PL mm2s_introut
s2Zmm_introut
axi_dma_tstvec[31:0]

sZmm_prmry_reset_out_n

M_AXIS MM2S:
Read data from
memory into PL

é

24 September 2025 6.5965 Fall 2025 27

Block Diagram of Usage

Zynq PS

HP/
ACP Ports

S
S
Control interface

https://pynqg.readthedocs.io/en/v2.7.0/pynqg_libraries/dma.html

Overlay IP

AXI4 Stream(s)

24 September 2025 6.5965 Fall 2025 28

On the Python (processor) side...

* Use allocate to dynamically shift memory

from pynqg import PL

PL.reset()

from pyng import Overlay #import the overlay module

ol = Overlay('./design_1_wrapper.bit') #locateto the bit file
dma = ol.dma # GRAB THE DMA

from pyng import allocate

import numpy as np

Allocate buffers for the input and output signals

n = 1000000

in_buffer = allocate(shape=(n,), dtype=np.int32)

out_buffer = allocate(shape=(n,), dtype=np.int32)

Copy the samples to the in_buffer
np.copyto(in_buffer,samples) #samples come from somewhere

Trigger the DMA transfer and wait for the result
dma.sendchannel.transfer(in_buffer) #send data out into memory
dma.recvchannel.transfer(out_buffer) #wait for data to appear
dma.sendchannel.wait()

dma.recvchannel.wait()

24 September 2025 6.5965 Fall 2025 29

Pyng Allocate

. . Allocate
* Basically is
The pyng.allocate function is used to allocate memory that will be used by IP in the

l.i ke a m a llo C programmable logic.
C O m p at i b le IP connected to the AXI Master (HP or ACP ports) has access to PS DRAM. Before IP in the PL

accesses DRAM, some memory must first be allocated (reserved) for the IP to use and the size, and

Wit h -t h e P L address of the memory passed to the IP. An array in Python, or Numpy, will be allocated

somewhere in virtual memory. The physical memory address of the allocated memory must be
S i d e provided to IP in the PL.
[]

pyng.allocate allocates memory which is physically contiguous and returns a pynq.Buffer object
representing the allocated buffer. The buffer is a numpy array for use with other Python libraries
and also provides a .device_address property which contains the physical address for use with IP.
For backwards compatibility a .physical_address property is also provided

The allocate function uses the same signature as numpy.ndarray allowing for any shape and data-

type supported by numpy to be used with PYNQ.

https://pyng.readthedocs.io/en/latest/pyng_Llibraries/allocate.html#allocate

24 September 2025 6.5965 Fall 2025 30

Address Space

Diagram x Address Editor x Address Map x ‘ 200
Q = £ 1 2 Assigned (3) Unassigned (0) Excluded (0) Incomplete (2) Hide All o
Name A1 Interface Slave Segment Master Base Address Range Master High Address

> 2 Network 0 (/axi_cdma_0/Data)
> 2 Network 1 (/axi_cdma_0/Data_SG)
v 2 Network 2 (/axi_dma_0/Data_S2MM)
v #F faxi_dma_0
v B /axi_dma_0/Data_S2MM (32 address bits : 4G)
1§ /processing_system7_0/S_AXI_HPO S_AXI_ HPO HPO_DDR_LOWOCM 0x0 # 512M ~ Ox1FFF_FFFF
v 2 Network 3 (/processing_system7_0/Data)

v 4F /processing_system7_0
v B8 /processing_system7_0/Data (32 address bits : 0x40000000[1G])
1§ /axi_dma_0/S_AXI_LITE S_AXI_LITE Reg 0x4040_0000 /64K v 0x4040_FFFF
18 /fir_interface_0/S00_AXI SO0_AXI S00_AXI_reg 0x43C0_0000 7 64K ~ 0x43CO_FFFF

24 September 2025 6.S965 Fall 2025 31

Result/Speed:

* In lab this week, you’ll send down 2 million 32 bit
Integers into the PL fabric and then run some
filters on them and put the results back up into
the DRAM for processor consumption

* Timing it this takes about 0.021 seconds.

* That ends up being ~ 380 MBps processing
speed in a semi-sustained manner which is

nothing to sneeze at.

24 September 2025 6.5965 Fall 2025 32

Speed

* Peak throughput of the DDR3 on the Pynqg Z2 board:
* 16 bits * 525 MHz * 2 = 2.1 GBps peak bandwidth

* The 380 MBps actually involves moving data /nto and
out of the memory so really we’re getting 760MBps
data movement (~1/3 of peak bandwidth sustained)

* Also that is largely based on the fact that the AXIS
streaming system you’ll build is clocked at 100 MHz
and moving data on a 32 bit bus (about 400 MBps
throughput)

* Clocking faster and doing some other things should
be able to increase this if needed.

24 September 2025 6.5965 Fall 2025 33

Week 4: Part 1

* Use allocate to dynamically shift memory

from pynqg import PL

PL.reset()

from pyng import Overlay #import the overlay module

ol = Overlay('./design_1_wrapper.bit') #locateto the bit file
dma = ol.dma # GRAB THE DMA

from pyng import allocate

import numpy as np

Allocate buffers for the input and output signals

n = 1000000

in_buffer = allocate(shape=(n,), dtype=np.int32)

out_buffer = allocate(shape=(n,), dtype=np.int32)

Copy the samples to the in_buffer
np.copyto(in_buffer,samples) #samples come from somewhere

Trigger the DMA transfer and wait for the result
dma.sendchannel.transfer(in_buffer) #send data out into memory
dma.recvchannel.transfer(out_buffer) #wait for data to appear
dma.sendchannel.wait()

dma.recvchannel.wait()

24 September 2025 6.5965 Fall 2025 34

Week 4: Part 1

* AXI-fy your FIR filter

4
Time (usec)

* Compare its speed to scipy on the Pynqg board

directly by sending data down to PL and then
back up using DMA

24 September 2025 6.5965 Fall 2025 35

Week 4: Part 2

* Allocate a spot in memory and then write lines of
video to it from the PL

n = 65536

out_buffer = allocate(shape=(n,), dtype=np.int32)

Copy the samples to the in_buffer

Trigger the DMA transfer and wait for the result
dma.recvchannel.transfer(out_buffer) #wait for data to appear
dma. recvchannel.wait()

24 September 2025 6.5965 Fall 2025 36

Week 4: Pa rt 2 Individual lines of video data

plotted in python:

175 - = Oreeaen
—— blue
150 +
125 +
100 A
7=
50 -
25
0 -
0 500 1000 1500 2000 2500 3000
n

24 September 2025 6.5965 Fall 2025

More Cocotb

I’m coocoo for Cocotb

24 September 2025 6.5965 Fall 2025

38

Adding Layers to Cocotb

* So we’ve been kinda building up some loose testing
modules in Python using Cocotb.

e What we’d like to do is start to add some structure
and reusability to this.

* To help with this, we’ll start using the cocotb_bus
library

24 September 2025 6.5965 Fall 2025 39

cocotb_bus

. cocotb-bus ' Public ® Watch 11~

Q Gotofile t Add file ~ <> Code ~

g} p12tic and ktbarrett Re-add support for event data field that has beenrem... @ b99fifa - last week YY) 3,134 Commits

* | think this was
originally part of

¥ master ~ ¥ 4 Branches © 6 Tags

cocotb but was

[.github/workflows Brush up CI (#75) 2 months ago
L]
S p l I t Off M bin Replace xml.etree.cElementTree with ElementTree for Pyt... 4 years ago
W docs Document new scapy dependency; add newsfragment 10 months ago
[examples Ensure that comparisons are run on value returned by sig... last week
W src/cocotb_bus Re-add support for event data field that has been remove... last week
o N Ot S u re W h y I [0 tests Do not implicitly convert signal value to bool last week
[)
d ,t th . k .t Y .gitignore Initial commit of documentation System (#66) 10 months ago
O n I n I Wa S [.readthedocs.yml Initial commit of documentation System (#66) 10 months ago
L] L]

a b a d t h I n g ll ke [LICENSE Create an initial blank repository 3 years ago
d . t h [Makefile Fix broken reporting of available SIM settings 4 years ago
1 a p p e n e WI README.md Document new scapy dependency; add newsfragment 10 months ago
2 u St O r N O d e O r Y noxfile.py Brush up CI (#75) 2 months ago
2 et h i n k D B pyproject.toml Initial commit of documentation System (#66) 10 months ago
Y setup.py Brush up CI (#75) 2 months ago

0 README &f3 License Ve

24 September 2025 TTTTTE.S965 Fall2025 40

OOPiness Ahead

* Part of the job of any verification framework is to
organize.

* And one of the (few) strengths of Object Oriented
Programming is organization.

* Cocotb_bus is very OOPy just like UVM in
SystemVerilog is very OOPYy.

* The intention is to minimize code reuse and
make things portable.

24 September 2025 6.5965 Fall 2025 41

Standard Testing Framework

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

24 September 2025 6.5965 Fall 2025 42

DUT

Design unit under test

Monitor
(input)

This is just your HDL design
- === =p| Scoreboard

Monitor
(output)

Sequencer Driver

24 September 2025 6.5965 Fall 2025 43

Monitors

Monitor

(input) [~===~ Scoreboard

Monitor
(output)

Sequencer Driver

24 September 2025 6.5965 Fall 2025 44

Monitor/Bus Monitor

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

From cocotb source

class Monitor:

"""Base class for Monitor objects.

Monitors are passive 'listening' objects that monitor pins going in or out of a DUT.

This class should not be used directly,

but should be sub-classed and the internal :meth: _monitor_recv’ method should be overridde
This :meth: _monitor_recv’ method should capture some behavior of the pins, form a transact
and pass this transaction to the internal :meth: _recv’ method.

The :meth: _monitor_recv' method is added to the cocotb scheduler during the “"__init__ " p
so it should not be awaited anywhere.

The primary use of a Monitor is as an interface for a :class: ~cocotb.scoreboard.Scoreboard

Args:
callback (callable): Callback to be called with each recovered transaction
as the argument. If the callback isn't used, received transactions will
be placed on a queue and the event used to notify any consumers.
event (cocotb.triggers.Event): Event that will be called when a transaction
is received through the internal :meth: _recv’ method.
"Event.data’ is set to the received transaction.

24 September 2025 6.5965 Fall 2025 45

Monitors

* Monitors should listen to signals on a bus and
log transactions as they detect them for
processing by another party.

* Asingle Monitor is relatively useless

* Multiple monitors, however can generate lists of
transactions and together these can be used to
assess what the DUT is generating.

24 September 2025 6.5965 Fall 2025 46

At a high level...

Wires set high/low
= == § Python data structure

* Monitors should be completely passive entities
that simply report what they see and not affect
the system

* Keeps it simple

24 September 2025 6.5965 Fall 2025 47

14
15
16
17
18

AXIS Monitor

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

NN

class AXISMonitor(BusMonitor):

monitors axi streaming bus
transactions = 0
def __init_ (self, dut, name, clk):
self._signals = ['axis_tvalid', 'axis_tready', 'axis_tlast', 'axis_tdata', 'axis_tstrb']
BusMonitor.__init_ (self, dut, name, clk)
self.clock = clk
self.transactions = 0
async def _monitor_recv(self):

Monitor receiver
rising_edge = RisingEdge(self.clock) # make these coroutines once and reuse
falling_edge = FallingEdge(self.clock)
read_only = ReadOnly() #This is
while True:
await rising_edge
await falling_edge #sometimes see in AXI shit
await read_only #readonly (the postline)
valid = self.bus.axis_tvalid.value
ready = self.bus.axis_tready.value
last = self.bus.axis_tlast.value
data = self.bus.axis_tdata.value #.signed_integer
if valid and ready:
self.transactions+=1
thing = dict(data=data, last=1last,name=self.name,count=self.transactions,time=gs
print(thing)
self._recv(thing)

» Start to develop this week!

e Monitors an AXIS bus

* If a valid/ready transaction occurs, do something

with it.

24 September 2025

6.5965 Fall 2025 48

AXIS Monitor

async det _monitor_recv(selt):

25 e

26 Monitor receiver

27 e

28 rising_edge = RisingEdge(self.clock) # make these coroutines once and reuse
29 falling_edge = FallingEdge(self.clock)

30 read_only = ReadOnly() #This is

31 while True:

32 await rising_edge

33 await falling_edge #sometimes see in AXI shit

34 await read_only #readonly (the postline)

35 valid = self.bus.axis_tvalid.value

36 ready = self.bus.axis_tready.value

37 last = self.bus.axis_tlast.value

38 data = self.bus.axis_tdata.value #.signed_integer

39 if valid and ready:

40 self.transactions+=1

41 thing = dict(data=data, last=1last,name=self.name,count=self.transactions,time=g
42 print(thing)

43 self._recv(thing)

Notice it isn’t concerned with setting the values or not...it just watches the
bus as a separate party

24 September 2025 6.S965 Fall 2025 49

A little closer

if valid and ready: (///"’————__—_——_—_———_________—_———

self.transactions+=1
thing = dict(data=data, last=1last,name=self.name, count=self.transactions,time=gst())

self._recv(thing)

//////—7

 Make a internal variable to keep track of the
number of valid/ready things we saw happen on
the bus

* Then created a Python data structure from it (for
easy human interpretability) and reported it.

24 September 2025 6.5965 Fall 2025 50

The _recv method does afew
th i n gs : __init__ of Monitor Class:

def __init__ (self, callback=None, event=None):
self._event = event
if self._event is not None:
self._event.data = None # FIXME: This

126 v def _recv(self, transaction): celf ait event = E 0

127 """Common handling of a received transaction.'""" -Walt_ev = kven

128 self._wait_event.data = None

129 self.stats.received_transactions += 1 self._recvQ = deque()

130 self._callbacks = []

131 # either callback based consumer

132 for callback in self._callbacks:

133 callback(transaction) . . .
134 Call function with transaction!
135 # 0Or queued with a notification

136 if not self._callbacks:

137 self._recvQ.append(transaction) Orshove itinto a queue

138

139 if self._event is not None:

140 t t(self. t, t ti : :

Lt set_even (Se _even ransac lon) Or trlgger VarIOUS events
142 # If anyone was waiting then let them know

143 if self._wait_event is not None:

144 set_event(self._wait_event, transaction)

self._wait_event.clear()

24 September 2025 6.5965 Fall 2025 51

What would the
monitor/callbacks be useful for?

* maybe printing stuff and verify by eye

{'data’:
{'data’:
{'data’:
{'data’:

* But it would be nice to verify the data more

00000000000000000010100000110011,
00000000000000000000000001100011,
00000000000000000010100000110110,
00000000000000000010100000111001,

'last':
'last':
'last':
'last':

B B

'name':
'name':
'name’':
'name':

'moo"',
's00',
'moo’,
'moo"',

'count'
'count':
'count':
'count'

: 150,
150,
151,
1 152,

'time':
"time':
'time':
'time':

5105000}
5115000}
5115000}
5125000}

robustly, for example... That’s where maybe a

callback could come in

24 September 2025

6.5965 Fall 2025

52

One useful callback might be a
model

* You wrote a model in week 1 when “verifying”
that crappy divider | gave you in week 1

* A callback to a model might be useful if attached
to an input monitor.

* Every time an input to DUT is observed, you
trigger the model to compute what to expect of
of it.

24 September 2025 6.5965 Fall 2025 53

With these modifications...

Proven software model

0>
66 mq = [] #list for holding output
67

68 def model(transaction):

callback

69 #val = transaction.get('data')

70 val = transaction

71 print(val)

72 mq.append(3*xval+10000) #gold standard model
73

74

75 @cocotb.test()
76 async def test_a(dut):

77
78 inm = axismonitor(dut, 's@0',dut.s00_axis_aclk,callback=model)
79 outm = axismonitor(dut, 'm@0@',dut.s00_axis_aclk)

24 September 2025 6.5965 Fall 2025 54

Code Reusability!

* You’ll be building a few AXI-Streaming modules
this week

: DATA

From clock source

From reset source

24 September 2025 6.5965 Fall 2025

55

AXI| Streamers Nt

75
76
77
78
79

s_AXIS_tdata[31:0] 3 - | m_AXIS_tdata[31:0]
* Many of our modules ?_’\
Wi ll St a rt to h ave s_AXIS_tstrb ,: A > m_AXIS_tstrb
multiple standardized s m AXIS rsady

busses

axis_data fifo 1

=+ S_AXIS
s _axis_aresetn M_AXIS 4 F=
s axis_aclk

* Being able to reuse the
monitors will be super
nice.

@cocotb.test()
async def test_a(dut):

“AXI4-Stream Data FIFO

inm = axismonitor(dut, 's@0',dut.s00_axis_aclk,callback=model)
outm = axismonitor(dut, 'm@@',dut.s@0_axis_aclk)

24 September 2025 6.5965 Fall 2025 56

Standard Testing Framework

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

24 September 2025 6.5965 Fall 2025 57

At a high level...

Python data structure == e= e Driver Wires set high/low

* |deally, we want to just be able to issue high-
level commands of things to send and not have
to worry about:

* Turning signals on/off
* Waiting for signals to be on/off (e.g. READY)

* Drivers are almost always more complicated
than Monitors

24 September 2025 6.5965 Fall 2025 58

Bus Functional Model: “BFM”

* You will find this term thrown around a lot and it
Is kinda/basically the same thing we’re doing
here.

* ABFMis a programming construct that allows
allows interfacing of testing
languages/frameworks to work with the
simulated digital designs

Python data structures Wires set high/low

24 September 2025 6.5965 Fall 2025

cocotb-bus / src / cocotb_bus / drivers / __init__.py (&

Drivers

21

22 v class BitDriver:

23 """Drives a signal onto a single bit.
24

® Seve ral diffe re nt Classes 25 Useful for exercising ready/valid flags.

26 mnon

and subclasses

73 v class Driver:
"""Class defining the standard interface for a driver within a testbench.

The driver is responsible for serializing transactions onto the physical
pins of the interface. This may consume simulation time.

206 v class BusDriver(Driver):
207 """Wrapper around common functionality for buses which have:
208

209 * a list of :attr:_signals’ (class attribute)
210 * a list of :attr: _optional_signals’ (class attribute)
211 *x a clock

* a name

286

287 ~ class ValidatedBusDriver(BusDriver):

288 """Same as a :class: BusDriver’ except we support an optional generator
289 to control which cycles are valid.

24 September 2025 6.S965 Fall 2025 60

The Driver Base Class

72

73 v class Driver:

74 ""!"Class defining the standard interface for a driver within a testbench.
75

76 The driver is responsible for serializing transactions onto the physical
7. pins of the interface. This may consume simulation time.

78 e

79

80 v def __init__ (self):

81 ""Constructor for a driver instance."""

82 self._pending = Event(name="Driver._pending")

83 self._sendQ = deque()

84 self.busy_event = Event("Driver._busy")

85 self.busy = False

86

87 # Sub-classes may already set up logging

88 if not hasattr(self, "log"):

89 self.log = logging.getLogger(*cocotb.driver.%s" % (type(self).__qualname__))
90

91 # Create an independent coroutine which can send stuff

92 self._thread = cocotb.start_soon(self._send_thread())

93

94 v async def _acquire_lock(self):

95 if self.busy:

96 await self.busy_event.wait()

97 self.busy_event.clear()

98 self.busy = True

—

24 September 2025 6.5965 Fall 2025 61

Drivers

* In week 4’s stuff we’re creating (and then using) a
Bus Driver that you write like the following:

ind = AXISDriver(dut, 's00',dut.s00_axis_aclk)

for i in range(50):
data = {'type':'single', "contents":{"data": random.randint(1,255),"last":0,"strb":15}}
ind.append(data)

data = {'type':'burst', "contents":{"data": np.array(list(range(100)))}}
ind.append(data)

* What is this “append” method?

24 September 2025 6.5965 Fall 2025 62

The append method

110 v
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

def append(
self, transaction: Any, callback: Callable[[Any], Any] = None,
event: Event = None, *xkxkwargs: Any

) —> None:
"""Queue up a transaction to be sent over the bus.

Mechanisms are provided to permit the caller to know when the
transaction is processed.

Args:

transaction: The transaction to be sent.

callback: Optional function to be called
when the transaction has been sent.

event: :class: ~cocotb.triggers.Event® to be set
when the transaction has been sent.

xkkwargs: Any additional arguments used in child class'
rany: _driver_send’ method.

self._sendQ.append((transaction, callback, event, kwargs))
self._pending.set()

24 September 2025

6.5965 Fall 2025 63

What is self._sendQ ?

24 September 2025

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

v

class Driver:
"""Class defining the standard interface for a driver within a testbench.

The driver is responsible for serializing transactions onto the physical
pins of the interface. This may consume simulation time.

def __init_ (self):
"""Constructor for a driver instance."""
self._pending = Event(name="Driver._pending")
eL1.0USy_event = r river._busy")
self.busy = False

Sub-classes may already set up logging
if not hasattr(self, "log"):
self.log = logging.getLogger("cocotb.driver.%s" % (type(self).__qualname__))

Create an independent coroutine which can send stuff
self._thread = cocotb.start_soon(self._send_thread())

6.5965 Fall 2025

64

Double Ended Queue

< (¢} 25 geeksforgeeks.org

Courses & Tutorials &+ Jobs & Practice + Contests ee

< Python Course Python Basics Interview Questions Python Quiz Popular Packages Python Projects Practice Python Al With Python Learn Python3 Python Automat

Deque in Python

Last Updated : 20 Jun, 2024

% D2

Deque (Doubly Ended Queue) in Python is implemented using the module “collections”. Deque is
preferred over a list in the cases where we need quicker append and pop operations from both the
ends of the container, as deque provides an O(1) time complexity for append and pop operations as
compared to a list that provides O(n) time complexity.

ADD ELEMENT AT REAR ADD ELEMNET AT FRONT

N REAR FRONT ¢

10| 15| 20 30 40 50 60 | 70

<

REMOVE ELEMENT FROM REAR REMOVE ELEMENT FROM FRONT

Types of Restricted Deque Input
¢ Input Restricted Deque: Input is limited at one end while deletion is permitted at both ends.
¢ Output Restricted Deque: output is limited at one end but insertion is permitted at both ends.

Example: Python code to demonstrate deque

24 September 2025 6.5965 Fall 2025

An internal FIFO of things to do

* Just like in hardware a FIFO/queue allows
breathing room and a decoupling of commands
from implementation

Driver

Python data structure Wires set high/low

JUO0O0EE00

Wires read high/low

24 September 2025 6.5965 Fall 2025 66

Launches the running process

24 September 2025

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

v class Driver:

""""Class defining the standard interface for a driver within a testbench.
The driver is responsible for serializing transactions onto the physical
pins of the interface. This may consume simulation time.
v def __init_ (self):

"""Constructor for a driver instance."""

self._pending = Event(name="Driver._pending")

self._sendQ = deque()

self.busy_event = Event("Driver._busy")

self.busy = False

Sub-classes may already set up logging

if not hasattr(self, "log"):

self.log = logging.getlLogger("cocotb.driver.%s" % (type(self).__qualname__))

Create an independent coroutine which can send stuff

self._thread = cocotb.start_soon(self._send_thread())

6.5965 Fall 2025 67

An internal FIFO of things to do

* Just like in hardware a FIFO/queue allows
breathing room and a decoupling of commands
from implementation

Driver

Wires set high/low
Python _ _ o

data structure

JUO0O0EE00

Wires read high/low

24 September 2025 6.5965 Fall 2025 68

~send thread coroutine

* Tracks the queue...if stuff in it...calls the _send
procedure

100

186 v async def _send_thread(self):

187 while True:

188

189 # Sleep until we have something to send

190 while not self._sendQ:

191 self._pending.clear()

192 await self._pending.wait()

193

194 synchronised = False

195

196 # Send in all the queued packets,

197 # only synchronize on the first send

198 while self._sendQ:

199 transaction, callback, event, kwargs = self._sendQ.popleft()
200 self.log.debug("Sending queued packet...")

201 awalt self._send(transaction, callback, event,
202 sync=not synchronised, sxxkwargs)
203

204

24 Septembcidize OIOTVU T AN ZUZD

- send

* Finally this is getting to the _driver_send
procedure which is a thing you’ll need to write

163 v async def _send(
164 self, transaction: Any, callback: Callable[[Any], Anyl, event: Event,
165 sync: bool = True, sxxkwargs
166) —> None:
167 """Send coroutine.
168
169 Args:
. 170 transaction: The transaction to be sent.
NOtICG thIS IS awaltlng It 171 callback: Optional function to be called
172 when the transaction has been sent.
And aCtually the laSt feW 173 event: event to be set when the transaction has been sent.
H 174 sync: Synchronize the transfer by waiting for a rising edge.
pages have been awalts 175 *kkwargs: Any additional arguments used in child class'
176 rany: _driver_send’ method.
77
1
179
180 am\ Y
181 if event:
182 event.set()
183 if callback:
184 callback(transaction)

10rc

24 September 2025 6.5965 Fall 2025 70

Usefulness? Think of the AXI LITE

Write address channel

Address
and control
—>
Write data channel
Master Write Write Write Write Slave
interface data data data data interface

—_> ———> ——> ——»

Write response channel

Write
response

«—

* One interface actually has three separate busses
In it. Have Driver for Each Bus, but need to sync
them...

24 September 2025 6.5965 Fall 2025 71

Python data structure o= es a» § =P \\/ires set high/low

Events

* Events/Triggers could allow Driver 1 to only send
after Driver 2 sent or vice versa or whatever

Wires set high/low

Sttt Driver1
thread | -~ - __-—"' Wires read high/low
O - Pc?:’(t\: <xructure
- - :YthOn
- a
Wa/tbone \\\ ~o - ~ta~SEUCtu~re.‘ Wires set high/low

Driver2
h
Wires read high/low

24 September 2025 6.5965 Fall 2025 72

Plug an entity in to Compare these

results
-H
A
1

Monitor
(output)

Monitor
(input)

M o

24 September 2025 6.5965 Fall 2025 73

DUT

ScoreBoar

* There’s a
scoreboarding
class that is
designed to work
with data streams
that monitors will
produce

24 September 2025

ivu

17 v class Scoreboard:
18 """Generic scoreboarding class.
19
20 We can add interfaces by providing a monitor and an expected output queue.
21
22 The expected output can either be a function which provides a transaction
23 or a simple list containing the expected output.
24
25 TODO:
26 Statistics for end-of-test summary etc.
27
28 Args:
29 dut (SimHandle): Handle to the DUT.
30 reorder_depth (int, optional): Consider up to ‘reorder_depth’ elements
31 of the expected result list as passing matches.
32 Default is @, meaning only the first element in the expected result list
33 is considered for a passing match.
34 fail_immediately (bool, optional): Raise :exc: AssertionError’
35 immediately when something is wrong instead of just
36 recording an error. Default is *“True'®
37 B
38
39 v def __init_ (self, dut, reorder_depth=0, fail_immediately=True): # FIXME: reorder_depth ne|
40 self.dut = dut
41 self.log = logging.getlLogger("cocotb.scoreboard.%s" % self.dut._name)
42 self.errors = 0
43 self.expected = {}
44 self._imm = fail_immediately
45
46 @property
47 v def result(self):
48 """Determine the test result, do we have any pending data remaining?
49
50 Raises:
6.5965 Fall 2025 74

Make a scoreboard

@cocotb.test()

async def test_a(dut):

"""cocoth test for seven segment controller"""

inm = AXISMonitor(dut, 's00',dut.s00_axis_aclk,callback=model)
outm = AXISMonitor(dut, 'm@@',dut.s00_axis_aclk)

ind = AXISDriver(dut,'s00',dut.s@0_axis_aclk)

scoreboard = Scoreboard(dut)
scoreboard.add_interface(outm,mq)

Scoreboard instance
Thing for it to check... actual, expected

24 September 2025 6.5965 Fall 2025 75

Scoreboard Class

* Has all the stuff running to check/compare the
actual/expected pairs as they come in.

o Can also def compare(self, got, exp, log, strict_type=True):
. """Common function for comparing two transactions.
Ove rrlde the Can be re-implemented by a sub-class.
compare to do

got: The received transaction.

Wh ateve r you exp: The expected transaction.

log: The logger for reporting messages.
Wa nt ra n eS strict_type (bool, optional): Require transaction type to match
oeo g 9 exactly if “"True® , otherwise compare its string representation.

whatever

texc: ‘AssertionError’: If received transaction differed from
expected transaction when :attr: fail_immediately” is " “True' .
If xstrict_typex is “"True' ",
also the transaction type must match.

24 September 2025 6.5965 Fall 2025 76

Scoreboard sees failure and tells
you

/Users/ jodalyst/cocotb_development/fir_dev2/sin/test_fir.py:118: Deprecationdarning: Use “bv.integer” instead.
self._recv(data.value)
35.88ns cocotb.scoreboard. j_math.nB8
35.88ns INFO cocotb.scoreboard. j_math.nB8 Expected:
28312
35.88ns INFO cocotb.scoreboard. j_math.mB8 Received:
18312
/Users/ jodalyst/62685_python/1ib/python3.18/site-packages/cocotb_bus/scoreboard.py:148: DeprecationMarning: cocotb.utils.hexdiffs is deprecated. Use scapy.utils.hexdiff instead.
log.uarning("Difference:\n¥s" % hexdiffs{strexp, strgot))
/Users/ jodalyst/6285_python/Lib/python3.18/site-packages/cocotb_bus/scoreboard.py:148: Deprecationdarning: Passing strings to hexdiffs is deprecated, pass bytes instead
Llog.warning("Difference:\nis" % hexdiffs{strexp, strgot))
35.88ns UARNING cocotb.scoreboard. j_math.mBB Difference:
ane8 38333132 8312
8888 38333132 $312

/Users/ jodalyst/62685_python/ 1 ib/python3.18/site-packages/cocotb_bus/scoreboard.py:142: DeprecationMarning: TestFailure is deprecated, use an ““assert’” statement instead
raise TestFailure("Received transaction differed from expected "
35.88ns INFO ..Task 1.ARISHonitor._monitor_recy Test stopped by this forked coroutine
35.868ns INFO cocotb.regression test_a
Traceback (most recent call last):
File "/Users/jodalyst/cocotb_developnent/fir_dev2/sin/test_fir.py"., line 118, in _monitor_recv
self._recv(data.value)
File "/Users/jodalyst/62085_python/lib/python3.18/site-packages/cocotb_bus/monitors/__init__.py"., line 138, in _recv
callback{transaction}
File "/Users/jodalyst/6285_python/lib/python3.18/site-packages/cocotb_bus/scoreboard.py”, Lline 227, in check_received_tra

self.compare{transaction, exp, log, strict_type=strict_type)
File "/Users/jodalyst/6285_python/lib/python3.18/site-packages/cocotb_bus/scoreboard.py”, Lline 142, in compare
raise TestFailure("Received transaction differed from expected "
cocotb.result.TestFailure: Received transaction differed from expected transaction

35.86ns INFO cocotb.regression S e e T T s s e S T T T T s o

*x TEST STATUS SIM TIME (ns) REAL TIME (s> RATID {ns/s) ==

E s T S s rrrrrre=]

*¥x% test_fir.test_a 35.88 . 12819.39 =xx

B s s s rrrsrrss3

*x TESTS=1 PAS5=8 FAIL=1 SKIP=@ 35.808 . B843.29 =x

Scoreboard see no error an
you’re good

*x test_fir.test_a . 12819.39 ==

*x TESTS=1 PASS=8 FAIL=1 SKIP=@ . B843.29 xx

INFO: Results file: /Users/jodalyst/cocotb_development/fir_devZ/sin/sin_build/results.xnl
({6285_python) (base) DHCP-POOL-18-25-22-252:sin jodalyst$ python3 test_fir.py
/Users/ jodalyst/cocotb_development/fir_devZ/sin/test_fir.py:12: Userlarning: Python runners and associated APIs are an experimental feature and subject to change.
fron cocotb.runner import get_runner
INFO: Running command iverilog -o /Users/jodalyst/cocotb_development/fir_devZ/sin/sin_build/sim.vvp -D COCOTB_SIN=1 -s j_math -g2812 -Hall -s cocotb_iverilog_dump -f /Users/jodalyst/
cocotb_developnent/fir_devZ/sin/sin_build/cnds.f /Users/jodalyst/cocotb_development/fir_dev2/hdl/j_math.sv /lUsers/jodalyst/cocotb_development/fir_dev2/sin/sin_build/cocotb_iverilog_d
unp.v in directory /lUsers/jodalyst/cocotb_developnent/fir_dev2/sin/sin_build
INFO: Running command wvp -M /Users/jodalyst/6285_python/lib/python3.18/site-packages/cocotb/libs -n libcocotbvpi_icarus /Users/jodalyst/cocotb_development/fir_devZ/sin/sin_build/sin
.vvp in directory /Users/jodalyst/cocotb_developnent/fir_dev2/sin/sin_build
-.--ns INFD gpi ..nbed/gpi_enbed.cpp:189 in set_program_name_in_venv Using Python virtual environment interpreter at /lUsers/jodalyst/6
285_python/bin/python
.—-ns INFD gpi ../opi/GpiConmon.cpp:181 in gpi_print_registered_impl UPI registered
.B88ns INFOD cocotb Running on Icarus Verilog version 12.8 (stable)
.88ns INFO cocotb Running tests with cocotb v1.9.1 from /Users/jodalyst/6285_python/lib/python3.18/site-packages/cocotb
.B8ns INFO cocotbh Seeding Python random module with 1727293312
.B8ns INFOD cocotb.regression pytest not found, install it to enable better AssertionError messages
/Users/ jodalyst/cocotb_developnent/fir_dev2/sin/test_fir.py:12: UserMarning: Python runners and associated APIs are an experimental feature and subject to change.
from cocotb.runner import get_runner
8.88ns INFO cocotb.regression Found test test_fir.test_a
08.88ns INFO cocotb.regression test_a (1/1)
cocoth test for seven segment controller
/Users/ jodalyst/6285_python/lib/python3.18/site-packages/cocotb_bus/monitors/__init__.py:67: Deprecationlarning: This method is now private.
self._thread = cocotb.scheduler.add(self._monitor_recv(})
/Users/ jodalyst/6285_python/lib/python3.18/site-packages/cocotb_bus/drivers/__init__.py:92: Deprecationlarning: This method is nou private.
self._thread = cocotb.scheduler.add(self._send_thread(})
8.868ns INFO cocotb.scoreboard. j_math Created with reorder_depth 8
UCD info: dumpfile /lUsers/jodalyst/cocotb_developnent/fir_dev2/sin/sin_build/j_math.fst opened for output.
/Users/ jodalyst/cocotb_developnent/fir_dev2/sin/test_fir.py:178: Deprecationlarning: Setting values on handles using the *‘dut.handle = value®
““handle.value = value'" syntax
dut.mBB_axis_tready = val
/Users/ jodalyst/cocotb_developnent/fir_dev2/sin/test_fir.py:118: Deprecationlarning: Use “bv.integer® instead.
self._recv(data.value)
6728.88ns INFO cocotb.regression test_a passe
6728.88ns INFD cocotb.regression B S T s e s s S g oo
*x TEST STATUS SIM TINE {ns) REAL TIME (s} RATIO {(ns/s) =x
e T
*x test_fir.test_a PASS 6728.88 8.8s5 129322.58 xx
B T s T T S S a3
*x TESTS=1 PASS5=1 FAIL=B SKIP=8 6720.680 8.89 2485 .14 xx
sEmmsmooccossococsnin e s s

syntax is deprecated. Instead use the

INFO: Results file: /Users/jodalyst/cocotb_development/fir_devZ/sin/sin_build/results.xnl
{6285_python) (base) DHCP-POOL-18-25-22-252:sin jodalyst$ I

Seguencer

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

24 September 2025 6.5965 Fall 2025 79

Seguencer

* This is tied a bit more into *what* we test on the
device so we’ll cover it in the future.

* For now we’ll be kinda kludging this part.

24 September 2025 6.5965 Fall 2025

80

Tasks to Do

* Week 3 due on Friday 5pm
* Week 4 coming out Friday mid-day.

* That will likely be our last Pyng-board lab, then
we’ll move to the RFSoC in Week 5.

24 September 2025 6.5965 Fall 2025

81

