6.5965
Digital Systems Laboratory |l

Lecture 6:
AXI

22222222222222222222

Interface Between PS and PL

* Four Ways to
Transfer Data from
the PS to the PL

* 64 bits of GPIO
* 4 GP AXI Ports
* 4 HP AXI Ports
* 1 ACP Port

S
S
M
M
M
M
M
M

<

Just talked about this

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
9/22/25 6S965 Fall 2025 2

"2
/7(+E
cho
/7/76
e

math_doer_0

rst_ps7_0_100M

slowest_sync_ck mb_reset
ext_reset_in bus_struct_reset[0:0]
aux_reset_in peripheral_reset[0:0)
mb_debug_sys_rst interconnect_aresetn[0:0]
dem_locked peripheral_aresetn[0:0)

Processor System Reset

9/22/25

ps7_0_axi_peripl
]
|4 S00_AXT
ACLK
ARESETN .Y.
S00_ACLK E=E MOOAXT 4
SO0_ARESETN glig
MOO_ACLK
MOO_ARESETN

AXI Interconnect

]

axi_mem_intercon

{i|+ s00_axt
4 s01_AXI

dma
o M_AXI_MM2S .1'
+ S.AXILITE 5
= M_AXLS2MM -
= 4 SAXIS_S2MM =
= - M_AXIS MM2S 4 £
s_axi_lite_aclk

mm2s_prmry_reset_out_n
m_axi_mm2s_aclk prmny.t T
N s2mm_prmry_reset_out_n
m_axi_s2mm_aclk)
mm2s_introut

axi_resetn q
s2mm_introut

AXI Direct Memory Access

§—— ACLK

ARESETN
S00_ACLK
S00_ARESETN
MOO_ACLK
MOO_ARESETN
S01_ACLK
S01_ARESETN

Iyl

E—=E MO0_AXI 4}

AXI Interconnect

Sann

65965 Fall 2025

M_AXI_MM25 =}
M_AXI_S2MM |-
M_AXIS_MM25 =[5
i AXIS CNTRL o =

mMm2Z2s_prmry_reset_out_n

«| 4 S_AXI_LITE
§+ S AXIS S2MM

LR " A N\ 7 P)
- - x - = -
» 4 » » »
. 4’ h (- (- ..
LR

- 5 axi_|lite_aclk

\ . d -
. N g) ‘alk" . . N rFa' 4 >
o . . -
’ N Nd & Nl - .

- M_axi_mm2s_aclk
- mM_axl_sZmm_aclk
Q axl_resetn

sZmm_prmry_reset_out . n O-
M SIS reset cut |
mm2s_introut =
S2Mm_introut =

L S F S

9/22/25 6S965 Fall 2025

9/22/25 65965 Fall 2025

Search: O~
AF AXld-5Tream Lata Width Converter

TF AX¥|4-Stream Interconnect

F AXl4-Stream Protocaol Checker
15 AXl4-Stream Register Slice

F AXl4-Stream Subset Converter
IF AXI4-Stream Switch

IF AXl4-Stream to Video Out

1F aX14-Stream Verification IP

4% AX| AHBLite Bridge

4F AX| APB Bridge

F AXl BRAM Controller

ENTER to select, ESC to cancel, Ctrl+Q for IP details

Tt

M_AXIS_DATA —
is_data_tdata[31:0] »
m_axis_data_tlast p
m_axis_data_tready «
m_axis_data_tvalid »
event_frame_started
went_tlast_unexpected
event_tlast_missing
nt_status_channel_halt
_data_in_channel_halt
data_out_channel_halt

A

orm

ToOTTECTUIY 1T mIeTTacec
=

9/22/25

-

or

6S965 Fall 2025

ToCrosYTuTgy

signals to PS and vice-versa

Advanced Microcontroller Bus
Architecture (AMBA)

* Version 1 released in 1996 by ARM

e 2003 saw release of Advanced eXtensible
Interface (AXI3)

e 2011 saw release of AXI4

* There are no royalties affiliated with AMBA/AXI so
they’re used a lot.

* [tis a general, flexible, and relatively free*

communication protocol for development of
SOCs!!!

https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architectu

© 9/22/25 65965 Fall 2025 7

Master/Slave Terminology

* AXI historically used “Master/Slave” terminology
to describe different parties in the data
transactions

* | (and others) have been a big fan of moving away
from this terminology.

* For SPI, for example, instead of MOSI/MISO, do
COPI/CIPO (controller/peripheral), etc...

* The question is what to switch to? | used
Main/Secondary for a while to support
backwards compatibility

9/22/25 65965 Fall 2025 8

ARM (owner of AXI) updated in
2021 /2'|Sh? ArM Developer Develop Blogs Community CPU & Hardware Suppo

The following diagram shows how AXl is used to interface an interd

o S l.OW'.y ro lle d O ut S e Figure 1. AXl interface

All Learn the architecture
Documentation

* Docs for the most part R e
Overview \
a re n OW u p d ate d to What is AMBA, and why use it? Sub(j?;(illlate

M d AXI protocol overview AXI
u S e a n a ge r a n Channel transfers and transactions Interconnect
compone nt
Channel signals

Subordinate

Transfer behavior and transaction \

terminology

Check your knowledge Subordinate

Related information

* Probably good one to

There are only two AXI interface types, manager and subordinate.

go With, Still get to interfaces and subordinate interfaces.
keep the M and S.

9/22/25 635965 Fall 2025 9

A lot of frameworks updated

= O enjoy-digital / litex Q Type (/) to search

° C M M l D M M <> Code (© Issues 276 1 Pullrequests 75 ® Actions [Projects [0 Wiki @ Security [~ Insights
VI ISCUSSION

i N th e lltex th reg d igrate from "bus master" and "bus slave" terminology #1025

([
© Human alanvgreen opened on Sep 4, 2021 Contributor
In the computing context, many find the terms "master" and "slave" problematic and there have been many parallel efforts to
e ' l p a e migrate away from them. Here's (a list]

(https://en.wikipedia.org/wiki/Master%2Fslave_(technology)#Possible_replacement_conventions)..

In AMBA AXI documentation, "manager" is replacing "master" and "subordinate" is replacing "slave" (reference).

Would you be open to PRs updating the LiteX API to use the terms "manager" and "subordinate"?

®

© = enjoy-digital added ((ERRancement) auestion on Sep 6, 2021

=R enjoy-digital on Sep 6, 2021 Owner

Thanks @alanvgreen, I've indeed been thinking about it but haven't been able to spend the time to really think about the best
replacements, the way to ensure retro-compatibility methods call/imports. (And the issue that by providing retro-compatibility,
part of the problem is not fully addressed since these terms will still be in the code base... but at least not the default API).

So it's a bit more than replacing the terms: for these replacements to have a real meaning we also need to update all shared

https://github.com/enjoy-digital/litex

9/22/25 635965 Fall 2025 10

Vivado hasn’t updated

* Maybe we’re asking too much ~ WHY:MAKE 31 FLAVORS
of the toolchain for right now g MWHEN TOUCARTISE S

Re-customize IP 5 O &
ZYNQ7 Processing System (5.5)
@ Documentation ¥ Presets 1P Location ¥ Import XPS Settings
Re-customize IP D ©® &
Page Navigator ~ — PS-PL Configuration Summary Report
,,, AXI SmartConnect (1.0)
Zynq Block Design « O T =
PS-PL Configuration Search: | Q @ Documentation [IP Location
Name Select Description
Peripheral 1/O Pi
eriphera " > General (0 Show disabled ports Component Name |axi_smc
MIO Configuration > AXINon Secure Enablement 0 ~ | Enable AXI Non Secure Transaction
> GPSlave AXI Interface .
Clock Configuration Standard Properties
v HPSlave AXI Interface
Number of Slave Interfaces | 1 v

DDR Configuration > SAXIHPO interface Enables AXI high performance slave interface 0

Enables AXI high performance slave interface 1 Number of Master Interfaces | 1 v

Enables AXI high performance slave interface 2 Number of Clock Inputs :} [1-2]

> SAXIHP1 interface

SMC Timing Calculation > SAXIHP2 interface

Enables AXI high performance slave interface 3

> SAXIHP3interface
Has ARESETN Input 1 v

Interrupts
ACP Slave AXI Interface

v

DMA Controller
> PS-PLCross Trigger interface O Enables PL cross trigger signals to PS and vice-versa

v

From Vivado 2025,] wjth all the updates 11

9/22/25

Master/Slave Terminology

e all of the AMD/Xilinx, use Master/Slave and
everything has that M’s and S’s prepended,
appended, etc..

* I’'m going to just use their nomenclature so we
don’t have to constantly be mapping between
alternate names and sometimes also manager-
subordinate when possible or maybe just ”’M”
and “S” when possible.

9/22/25 65965 Fall 2025 12

Advanced Microcontroller Bus
Architecture (AMBA)

* Version 1 released in 1996 by ARM

e 2003 saw release of Advanced eXtensible
Interface (AXI3)

e 2011 saw release of AXI4

* There are no royalties affiliated with AMBA/AXI so
they’re used a lot.

* [tis a general, flexible, and relatively free*

communication protocol for development of
SOCs!!!

https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architectu

© 9/22/25 65965 Fall 2025 13

Memory

* Critical in maintaining the illusion of unified
memory/address space

9/22/25

r ~\ Memory 1
Hard IO
. J
’ ‘ Address
Space
FPGA /
~— .

[Memoryo

]Ev

*Not really memory per say...

635965 Fall 2025

Core 0

Core 1

14

AXI Ports

* Parallel Busses of two
different flavors that
allow us to pretty
quickly transfer data
between the
Processing System
and the FPGA section
using shared registers
and some other stuff

S
S
M
\"
M
M
M
M

<

9/22/25 6S965 Fall 2025 15

ACP Port

 Accelerator
Coherency Port

* 64-bit wide bus that
can transfer data from
very quickly from PL
fabric

S
S
M
\"
M
M
M
M

<

9/22/25 6S965 Fall 2025 16

Zyng Block Diagram

Zynq Block Design

64b

ACP
Slave
Ports

el 1/0 Peripherals General
SPI 0 Settings Application Processor Unit (APU)
BankO S ol
| TTCO—
MIO 1260 e ™ T
(15:0) 12C 1 < ARM Cortex -A9 ARM Cortex -A9
CANO System Level CcPU CPU
CAN 1 Control Regs
UART O
Vo UART 1 -
MUX GPIO v - .| GIC Snoop Control unit
(MIO) SD O DMAS8
164 ~—4 SD 1 Channgl ! 512 KB L2 Cache and Controller
USB 0
USB 1 ocm 256 KB
ENET O _— CoreSight Interconnect SRAM
ENET 1 Central Componciig 7N
Bank1 Interconnect 1
MIO FLASH Memory < T
(53:16) Interfaces ~— <] DAP %l
z';ﬁjhg/NOR » Memory Interfaces
QUAD SPI < DEVC | Programmable DDR2/3,LPDDR2
B = Nataih Logic to Memory N Controller
SMC Timing Interconnect
Calculation
DMA pync 12[13[14[15
8 |9 l10]11
Clock a s [6 |7 Processing System(PS)
Resets I Generation S 15
of1[2]3 DMA : i
01812034, ongea 32b GP 326GP | chammels Config |'RQ | High Performamce XADC
MIO (EMIO) PS-PL AXI AXIL AES/ AXI 32b/64b Slave
Clock Ports Master Slave SHA Ports
Ports Ports
Programmable Logic(PL)

* A large fraction of the arrows in this diagram
represent AMBA/AXI4 specification flows of

information!

9/22/25

6S965 Fall 2025

Three General Flavors of AXI4

* AXI4 (Full AXI): For memory-mapped links.
Provides highest performance.
1. Addressis supplied
2. Then a data burst transfer of up to 256 data words

* AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)

1. Addressis supplied
2. One data transfer

* AXI4 Stream: Meant high-speed streaming data
e Can do burst transfers of unrestricted size
* No addressing

e Meant to stream data from one device to another
quickly on its own direct connection

From the Zynq Book

9/22/25 65965 Fall 2025 18

Memory Map...

* Memory mapped means an address is specified
within the transaction by the master (read or
write). This corresponds to an address in the
system memory space.

* For AXl4-Lite, which supports a single data
transfer per transaction, data is then written to,
or read from, the specified address

* For Full-AXI4 sending a burst, the address
specified is for the first data word to be
transferred, and the slave must then calculate
the addresses for the data words that follow.

* AXI-Stream has no addressing so no memory
mapping

9/22/25 65965 Fall 2025

Burst vs. Single?

* A burst of data means you specify starting
conditions and then send a bunch of ordered
data:

e Benefitis better overhead!

* Downside is usually more complicated infrastructure
and transactional rules

* A single data transfer is how we give data to our
SPI module. One set of configurations, one
transfer

9/22/25 65965 Fall 2025 20

AXl ldea

« Communication between two devices (Master and
Slave, Manager and Subordinate) is carried out over

multiple assigned “channels”

e Each channel has its own collection of wires which
convey data, signals, etc.

* The channels can work somewhat independently,
however in practice what one channel does is often
the result of what a different one did previously

* Five Types of Channels (may have all or a subset):
 Read Address: "AR” channel

Read Data: “R” channel

Write Address: “AW” channel

Write Data: “W” channel

Write Response: “B” channel

9/22/25 65965 Fall 2025

21

Read Wiring

Generalized collection of wires
“Channel”. Will contain numerous wires

Read address channel
Address /
and control
 —

Master Slave
interface interface
Read data channel
Read Read Read Read
data data data data

< < < <

Master initiates communication, Slave responds

9/22/25 635965 Fall 2025 22

Write Wiring

Master
interface

Write address channel

Address
and control

—

Write data channel

Write
data

Write
data

Write
data

Write
data

>

>

Write response channel

Write
response

9/22/25

6S965 Fall 2025

D —

Slave
interface

23

Within Each Channel are wires:

* These wires serve specific purposes.

e Some are universal to all channels, and others
are specific

9/22/25 65965 Fall 2025

24

AXI Clock

ACLK
From clock sourc

* Everything in system will run off of AXI clock
usually called ACLK in documentation

* No combinatorial paths between inputs and
outputs. Everything must be registered.

* All sighals are sampled on rising edge

* AXI modules should also have Reset pins. AXI
work ACTIVE LOW so the Reset pin is usually
called ARSTn or ARESETn

9/22/25 635965 Fall 2025

25

Valid and Ready

ACLK
From clock source

* All of AXl uses the same handshake procedure:
* The source of a data generates a VALID signal
* The destination generates a READY signal

* Transfer of data only occurs when both are high
on arising edge of ACLK

e Both Master and Slave Devices can therefore
control the flow of their data as needed

9/22/25 635965 Fall 2025 26

Everything Else...

From clock source

* Everything else is information and depends on what
Is needed in situation. Could be:
* Address
* Data

* Other specialized wires like:

 STRB (used to specify which bytes in current data step are valid,
sent by Master along with data payload to Slave)

* RESP (sort of like a status)
* LAST (sent to indicate the final data clock cycle of data in a burst)

9/22/25 635965 Fall 2025 27

Each channel has its own subset of
“everything else” that goes along with
those core signals shared by all

For example, the Write Data Channel (’W?” channel)

Signal Source Description

WID Master Write ID tag. This signal is the ID tag of the write data transfer. Supported only in AXI3.
See Transaction ID on page AS-77.

Pa y lo a d WDATA Master Write data.

WSTRB Master Write strobes. This signal indicates which byte lanes hold valid data. There is one write
strobe bit for each eight bits of the write data bus. See Write strobes on page A3-49.

Supplemental

WLAST Master Write last. This signal indicates the last transfer in a write burst. See Write data channel Stuff
on page A3-39.

WUSER Master User signal. Optional User-defined signal in the write data channel.

WVALID Master Write valid. This signal indicates that valid write data and strobes are available. See
Co RE Channel handshake signals on page A3-38.

WREADY Slave Write ready. This signal indicates that the slave can accept the write data. See Channel
handshake signals on page A3-38.

9/22/25 635965 Fall 2025 28

The Read Data Channel:

Table A2-6 Read data channel signals

Signal Source Description

RID Slave Read ID tag. This signal is the identification tag for the read data group of signals
oenerated by the slave. See Transaction ID on page A5-77.

Payload] roata sive Read data.

RRESP Slave Read response. This signal indicates the status of the read transfer. See Read and write
response structure on page A3-54.

Supplement
RLAST Slave l;:;;l/l:;fé ';'his signal indicates the last transfer in a read burst. See Read data channel on al Stuff

RUSER Slave User signal. Optional User-defined signal in the read data channel.

DDOTIEd On N AXI4 er-delined Onagling On Nago

RVALID Slave Read valid. This signal indicates that the channel is signaling the required read data. See
C O R E Channel handshake signals on page A3-38.

RREADY Master Read ready. This signal indicates that the master can accept the read data and response
information. See Channel handshake signals on page A3-38.

9/22/25 6S965 Fall 2025 29

Read Address Chanel

Table A2-5 Read address channel signals

Signal Source Description

ARID Master Read address ID. This signal is the identification tag for the read address group of
signals. See Transaction ID on page A5-77.

Payload

ARLEN Master Burst length. This signal indicates the exact number of transfers in a burst. This
changes between AXI3 and AXI4. See Burst length on page A3-44.

ARSIZE Master Burst size. This signal indicates the size of each transfer in the burst. See Burst size on
page A3-45.

ARBURST Master Burst type. The burst type and the size information determine how the address for each
transfer within the burst is calculated. See Burst type on page A3-45.

ARLOCK Master Lock type. This signal provides additional information about the atomic characteristics
of the transfer. This changes between AXI3 and AXI4. See Locked accesses on
page A7-95.

ARCACHE Master Memory type. This signal indicates how transactions are required to progress through
a system. See Memory types on page A4-65.

ARPROT Master Protection type. This signal indicates the privilege and security level of the transaction,
and whether the transaction is a data access or an instruction access. See 4Access
permissions on page A4-71.

ARQOS Master Quality of Service, QoS. QoS identifier sent for each read transaction. Implemented
only in AXI4. See QoS signaling on page A8-98.

ARREGION Master Region identifier. Permits a single physical interface on a slave to be used for multiple
logical interfaces. Implemented only in AXI4. See Multiple region signaling on
page A8-99.

ARUSER Master User signal. Optional User-defined signal in the read address ch:

........ n_A i

annel.

ARVALID Master Read address valid. This signal indicates that the channel is signaling valid read
C O R E address and control information. See Channel handshake signals on page A3-38.

ARREADY Slave Read address ready. This signal indicates that the slave is ready to accept an address
and associated control signals. See Channel handshake signals on page A3-38.

9/22/25

30

Write Response “B” channel

Table A2-4 Write response channel signals

Signal Source Description
BID Slave Response ID tag. This signal is the ID tag of the write response. See Transaction ID on
page A5-77.

Payload

BUSER Slave User signal. Optional User-defined signal in the write response channel. Supported only

Slave Write response valid. This signal indicates that the channel is signaling a valid write
C 0 R E response. See Channel handshake signals on page A3-38.

Master Response ready. This signal indicates that the master can accept a write response. See
Channel handshake signals on page A3-38.

9/22/25 6S965 Fall 2025

Write Address Channel

Payload

CORE

9/22/25

Table A2-2 Write address channel signals

Signal

Source

Description

AWID

Master

Write address ID. This signal is the identification tag for the write address group
of signals. See Transaction ID on page A5-77.

Master

Burst length. The burst length gives the exact number of transfers in a burst. This
information determines the number of data transfers associated with the address.

This changes between AXI3 and AXI4. See Burst length on page A3-44.

AWSIZE

Master

Burst size. This signal indicates the size of each transfer in the burst. See Burst size
on page A3-45.

AWBURST

Master

Burst type. The burst type and the size information, determine how the address for
each transfer within the burst is calculated. See Burst type on page A3-45.

AWLOCK

Master

Lock type. Provides additional information about the atomic characteristics of the
transfer. This changes between AXI3 and AXI4.

See Locked accesses on page A7-95.

AWCACHE

Master

Memory type. This signal indicates how transactions are required to progress
through a system. See Memory types on page A4-65.

AWPROT

Master

Protection type. This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an instruction access.
See Access permissions on page A4-71.

AWQOS

Master

Quality of Service, QoS. The QoS identifier sent for each write transaction.
Implemented only in AXI4. See QoS signaling on page A8-98.

AWREGION

Master

Region identifier. Permits a single physical interface on a slave to be used for
multiple logical interfaces.

Implemented only in AXI4. See Multiple region signaling on page A8-99.

AWUSER

Master

Master

User signal. Optional User-defined signal in the write address channel.
Supported only in AXI4. See User-defined signaling on page A8-100.

Write address valid. This signal indicates that the channel is signaling valid write
address and control information. See Channel handshake signals on page A3-38.

Slave

Write address ready. This signal indicates that the slave is ready to accept an
address and associated control signals. See Channel handshake signals on
page A3-38.

32

Generalized Transaction

* All Channel Interactions follow same high-level
structure

* Data is handed off IF AND ONLY IF VALID and
READY are high on the rising edge of the clock

* If that happens, both parties must realize that
data transfer has happened

Keep in mind this
could be 64 parallel

wires of 1’s and 0’s of A 5

info or 8 bytes for ek L [L I L T 1 1
example... INFORMATION \ A

Or it could be VALID J \

something else READY F— \

Figure A3-4 VALID with READY handshake

9/22/25 635965 Fall 2025 33

VALID then READY

* Valid can be high first
* Then ready can show up later
* Only when both are high is data exchanged

Data transferred on this edge

D
T1 T2 T/
ACLK[|]
INFORMATION X X
VALID /i \\
READY i \\

Figure A3-2 VALID before READY handshake

9/22/25 635965 Fall 2025 34

READY then VALID

* Ready can be high first
* Then Valid can show up later
* Only when both are high is data exchanged

Data transferred on this edge

D
T1 T2 T/
ACLK| | |
INFORMATION X)
VALID I \
READY /i \

Figure A3-3 READY before VALID handshake

9/22/25 635965 Fall 2025 35

READY WITH VALID

* Ready and Valid come high at the same time
* Totally allowed
* Data is exchanged on that clock edge

Data transferred on this edge

D
T1 T/

ACLK | |
INFORMATION X X
VALID ﬂ “
READY ﬂ “

Figure A3-4 VALID with READY handshake

9/22/25 635965 Fall 2025 36

IMPORTANT

* the VALID signal of the AXI interface sending
iInformation must not be dependent on the
READY signal of the AXI interface receiving that
iInformation

* an AXl interface that is receiving information may wait
until it detects a VALID signal before it asserts its
corresponding READY signal.

* [n other words READY can depend on VALID, but not
the other way around.

* Once VALID is asserted, it cannot be deasserted
until READY has also been asserted for at least
one cycle

9/22/25 65965 Fall 2025 37

Other Important Things to Keep in Mind!

* Both parties must be monitoring READY and
VALID. A design should never “count” data
without checking both of those!

* Errors in design happen when you assume a
transfer happened only based off of VALID or
READY’s value.

9/22/25 65965 Fall 2025 38

Up to All Five AXI channels can
come from one device

* While operating independently at their individual
transaction level, they can be dependent on one
another atthe higher module level to provide overall
Interfaces

* Example:

* The slave device receives address on write channel address

* The write data channel then becomes active and knows
where to point incoming data

* The response channel then opens and does its thing
* And soon

* Hierarchy of Control/Design

9/22/25 65965 Fall 2025 39

Three General Flavors of AXI4

* AXI4 (Full AXI): For memory-mapped links. Provides
highest performance.

1. Address is supplied
2. Then a data burst transfer of up to 256 data words

* AXlI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection (no
bursts). (also restricted to 32 bit addr/data)

1. Addressis supplied
2. One data transfer

* AXI4 Stream: Meant for high-speed streaming data

e Can do burst transfers of unrestricted size
* No addressing

* Meant to stream data from one device to another quickly
on its own direct connection

9/22/25 65965 Fall 2025 From the Zynq Book 40

Complexity

* Interms of wires and options, Full-
AXl is the most complex

* AXI-LITE has a lot less options
(single data beat so all the
supplemental stuff that specifies
burst characteristics gets skipped)

* AXI-STREAM has even
less...basically a high-speed write
channel (Few options), but often
needs that extra TLAST signal

9/22/25 635965 Fall 2025

Full-AXI4

!

AXI-LITE

!

AXI-STREAM

41

;hre_e General Flavors of AXI4

* AXI4 (Full AXI): For memory-mapped links. Provides
highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words)

~N

« AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection (no
bursts). (also restricted to 32 bit addr/data)

1. Addressis supplied
2. One data transfer

* AXI4 Stream: Meant for high-speed streaming data
* Can do burst transfers of unrestricted size
* No addressing

* Meant to stream data from one device to another quickly
on its own direct connection

9/22/25 65965 Fall 2025 From the Zynq Book 42

AXI4

2 channels for read,
3 for write, or all 5
for read/write

* Single
address/control
commands can be
Issued and then
responses can be
read back

9/22/25

Master
interface

Read address channel

Address
and
control
—_—
Read data channel
Read Read Read Read
data data data data
Write address channel
Address
and
control
2
Write data channel
Write Write Write Write
data data data data

—_— ——> ——> ——»

Write response channel

Write
response

635965 Fall 2025

4—

Slave
interface

43

Read Address

AXI 4 R d Channel Signals Global Signals
e a ARIDI[3:0] Master ACLK Clock source

Read address ID Global clock
signal

ARADDR]|31:0 Mast
Read addre[ss] aster ARESETn Reset source

¢ ARSIZE iS O ARLEN][3:0] Master S}g?lt;?l reset
. Burst length
indexed so “0” has -

. ARSIZE[2:0] Master Read Data
size of 1 lol Burst size Channel Signals
ARBURST[1:0] Master RID[3:0] Slave
Burst type Read ID tag
ARLOCK][1:0] Master RDATA[31:0] Slave

e ARBURST Lock type Read data

RRESP[1:0] Slave

1F1 ARCACHE[3:0 Mast
specifies burst ARCACHE[3:0] Master Read response
1 1 RLAST Sl
typ e (f IX€E d y | Nn- ARPROTI2:0] Master Read last e
l Protection type
ace, wrap) RVALID Slve
p g p ARVALID Master Read valid
\I’{éﬁ?((ij address RREADY Master
Read ready
ARREADY Slave
Read address
ready

9/22/25 65965 Fall'2025 V.

AXI4 Write

e Similarto Read but also i

has data channel

9/22/25

Write Address Write Data
Channel Signals Channel Signals
AWID[3:0] Master WIDI[3:0] Master
Write address ID Write ID tag.
AWADDR[31:0] Master WI?ATA[31=0] Master
Write address Write data
AWLEN][3:0] Master WSTRBJ[3:0] Master
Write strobes
AWSIZE[2:0] Master WLAST Master
Burst size Write last
AWBURST[1:0] Master WVALID Master
Write valid
Burst type
AWLOCK[1:0] Master WREADY Slave
Lock type Write ready
AWCACHE[3:0] Master Write Response
Cache type. Channel Signals
AWPROT][2:0] Master BIDI[3:0] Slave
Protection type Response ID
AWVALID Master BRESP[1:0] Slave
Write address valid Write response
AWREADY Slave BVALID Slave
Write address ready Write response
valid
BREADY Master

Response ready

635965 Fall 2025

45

AXIl4 supports out-of-order reads

but not writes

* The ID signals allow

labels to accompany
requests and then on the
response those labels
can be used to link up
responses and requests if
they are out-of-order

9/22/25

65965 Fall 2025

Read Address
Channel Signals

ARIDI[3:0]

Master
Read address ID

ARADDR[31:0]
Read address

Master

Global Signals

ACLK

Global clock
signal

Clock source

ARLEN]3:0] Master

Burst length

ARSIZE[2:0]
Burst size

Master

ARESETn

Global reset
signal

Reset source

Read Data
Channel Signals

ARBURSTI[1:0] Master

Burst type

RID[3:0] Slave
Read ID tag

ARLOCK][1:0]
Lock type

Master

RDATA[31:0] Slave
Read data

ARCACHE[3:0] Master

Cache type

RRESP[1:0] Slave
Read response

ARPROT[2:0] Master

Protection type

RLAST Slave
Read last

ARVALID
Read address
valid

Master

RVALID Slave
Read valid

ARREADY Slave

Read address
ready

RREADY
Read ready

Master

46

Every Channel Supports AXI

* |[n the middle of a burst of write-data, the
slave/subordinate device is free to deassert its
READY signal to pause transfers!

* The master/manager must watch for this and
react appropriately.

9/22/25 65965 Fall 2025 47

Three General Flavors of AXI4

* AXI4 (Full AXI): For memory-mapped links. Provides
highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

7 + AXI4 Lite: A memory-mapped simplified link)
supporting only one data transfer per connection (no
bursts). (also restricted to 32 bit addr/data)

1. Addressis supplied
_ 2. One data transfer W,

* AXI4 Stream: Meant for high-speed streaming data
* Can do burst transfers of unrestricted size
* No addressing

* Meant to stream data from one device to another quickly
on its own direct connection

9/22/25 65965 Fall 2025 From the Zynq Book 48

AXI4-Lite

2 channels for read,
3 for write, or all 5
for read/write

* Single
address/control
commands can be
Issued and then
responses can be
read back

* No burst

9/22/25

Master
interface

Read address channel

Address
and
control
e
Read
data
<—
Write address channel
Address
and
control
>
Write
data
s

Write response channel

Write
response

635965 Fall 2025

4—

Slave
interface

49

AXI4-LITE Read transaction

S_AXI_ACLK

s Bl

lllll

o - -

o - -

|||||

‘B

o -

lllll

o -

of - -

llllll

o -

o - -

-

-

3

S_AXI_ARESETN

4

S_AXI_ARADDR

J70000004

\

el el e =

llllllllllll

m

= B PO D
a hathadad L e - o o
lllllllllllll
Pl - - - = B
lllllllllllll
e e e =
e e e =
lllllllllllll
s - =
b sttt sthatted &

70000004 :

lllll

lllll

lllll

lllll

lllll

lllll

https://www.realdigital.org/doc/a9fee931f7a172423e1ba73f66ca4081

50

6S965 Fall 2025

9/22/25

AXI4-LITE Write transaction

S_AXI_ACLK |

S_AXI_ARESETN -\ ; ; 1

sanamoon | 000000 — Yrooeoo0s _ Joooo

' ' L] ' ' ' * * '

aovmee \ § O § % 1 8 f N

0 0 0 0 0 t 0 ' ' . 0 N

' ' ' ' ' ' ' ' '] ' '

Smmm.\ ' ' ' ' ' ' ' ' t’ -\ '
= o))]])])) '
) 1)

smovosn | 000000 Jroooooos Joooo
wowao _ £ {4 E 4 YT T TR
AAqwsTRS | 00000000 JFF Joooo0000

T2 U S S T S S S O S | | U

2 x 2 .. ' 2 x1 2 2 1 2 .) .
S_AXI_BRESP \ 00000000
- -

S_AXI_BVALID -\

" e e " " e "

1T 1171

e ITr

- --]4

coeboned
b

' 1 ' ' '
sommor \ § ! 0§ 3 0} 1 i
A A A A ' A A

https://www.realdigital.org/doc/a9fee931f7a172423e1ba73f66ca4081

9/22/25 6S965 Fall 2025 51

Three General Flavors of AXI4

* AXI4 (Full AXI): For memory-mapped links. Provides
highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

* AXI4 Lite: Amemory-mapped simplified link
supporting only one data transfer per connection (no
bursts). (also restricted to 32 bit addr/data)

1. Addressis supplied
2. One data transfer

("« AX14 Stream: Meant for high-speed streaming data)
* Can do burst transfers of unrestricted size
* No addressing

* Meant to stream data from one device to another quickly
_ on its own direct connection)

9/22/25 65965 Fall 2025 From the Zynq Book 52

Good News about AXIS

* ltis the least complicated of the AXI protocols

DATA

From clock source

From reset source

9/22/25 6S965 Fall 2025 53

No Addressing!

* Data flows unidirectionally

 Data’s “place” is where it is in the chain. It
doesn’t have a address it is supposed to live at

* For values that are independent of one another
this is pretty much all that’s needed

* Often a few other signals...

9/22/25 65965 Fall 2025

54

Strobe

* The strobe line will clarify which bytes in data are
to be acted upon (default Ob1111 aka all)

DATA

: DATA

STRB

—f

. ACLK

65965 Fall 2025

From clock source

From%é&set source

TLAST

* For data sent in packets (such as samples of a
signal where), a TLAST signal is asserted on the
final sample to ensure

DATA

DATA

From clock source

Fromréset source 65260 Fall2025

It is too much!

Read Address
Channel Signals

Read Address

Channel Signals
ARID[3:0] Master
Read address ID
ARADDR][31:0] Master
Read address
ARLEN][3:0] Master
Burst length
ARSIZE[2:0] Master
Burst size
ARBURSTI[1:0] Master
Burst type
ARLOCK]1:0] Master
Lock type
ARCACHE[3:0] Master
Cache type
ARPROT[2:0] Master
Protection type
ARVALID Master
Read address
valid
ARREADY Slave
Read address
ready

9/22/25

ARID|[3:0] Master
Read address ID
ARADDR]J31:0] Master
Read address
Write Address Write Data
inel Signals Channel Signals
Global Signals 0] Master WID(3:0] Master
ess ID Write ID tag.
ACLK Clock source R31:0] Master WDATA[31:0] Master
Global clock .
. Write data
signal ress
ARESETn Reset source 3:0] Master WSTRBI[3:0] Master
Global reset g Write strobes
ignal
signa [2:0] Master WLAST Master
Write last
Read Data
. | WVALID Master
Channel Signals T[1-0] Master Write valid
RID[3:0] Slave
Read ID tag K[1:0] Master WREADY Slave
Write ready
RDATA[31:0] Slave
Read data AE[3:0] Master Write Response
RRESP[1:0] Slave . Channel Signals
Read response [[2:0] Master BID[3:0] Slave
RLAST Slave N type Response ID
Read last D Master BRESP[1:0] Slave
RVALID Slave ess valid Write response
Read valid
DY Slave BVALID Slave
RREADY Master ress ready Write response
Read ready valid
BREADY Master

6S965 Fall 2025

Response ready

G

T

Global Signals
ACLK Clock source
Global clock
signal
ARESETn Reset source
Global reset
signal

Read Data

Channel Signals
RID[3:0] Slave
Read ID tag
RDATA[31:0] Slave
Read data
RRESP[1:0] Slave
Read response
RLAST Slave
Read last
RVALID Slave
Read valid
RREADY Master
Read ready

g
Ut

57

One of the Strengths of the Vivado
Workflow is its encapsulating of all that

(necessary) mess up into bold “wires” that
you drag around

rst_ps7_0_50M
ps7_0_axi_periph joe6 0
slowest sync clk mb_reset ’) " N
ext_reset_in bus struct reset{0:0] — + SO0 _AX| — + SO0 _AX|
aux_reset_in peripheral_reset[0:0] ACLE s00 _axi_aclk
mb_debug sys rst interconnect aresetn[0:0] ARESETN .?. 00 axi aresetn
dcm_locked peripheral_aresetn[0:0] ‘ o SO0 _ACLK H—E MO0 AXIl 4 . A
.) l S00_ARESETN geom joet v1.0 (Pre-Production)
Processor System Reset MOO_ACLE
' MO0 ARESETN
processing_system7_0 1l .)
\ AX| Interconnect
DOR + |} —{» DDR
- FIXED_1O + ||| —{"% FIXED_IO
M AKX GPO ACLK ZYNO M_AX| GFO 4=
- FCLE CLED

FCLE_RESETD_N £=—-o

ZYNQ7T Processing System

9/22/25 635965 Fall 2025 58

Block Diagram Makes:

* The block diagram
automates this
portion of work.

e Or at least tries to

9/22/25

4 P> test_axipy ‘ test_square_rooter.py
.trigger(disp_interface_0_trigger));
assign leds = disp_interface_0_command[3:0];
design_1_processing_system7_0_0 processing_system7_0
(.DDR_Addr(DDR_addr),
.DDR_BankAddr (DDR_ba),
.DDR_CAS_n(DDR_cas_n),
.DDR_CKE (DDR_cke) ,
.DDR_CS_n(DDR_cs_n),
.DDR_C1k(DDR_ck_p),
.DDR_C1k_n(DDR_ck_n),
.DDR_DM(DDR_dm) ,
.DDR_DQ(DDR_dq) ,
.DDR_DQS(DDR_dqs_p) ,
.DDR_DQS_n(DDR_dgs_n),
.DDR_DRSTB(DDR_reset_n),
.DDR_ODT(DDR_odt),
.DDR_RAS_n(DDR_ras_n),
.DDR_VRN(FIXED_IO_ddr_vrn),
.DDR_VRP(FIXED_IO_ddr_vrp),
.DDR_WEB(DDR_we_n),
.FCLK_CLK@(processing_system7_0_FCLK_CLK®),
.FCLK_RESET@_N(processing_system7_0_FCLK_RESETO_N),
.MIO(FIXED_IO_mio),
.M_AXI_GPO_ACLK(processing_system7_0_FCLK_CLK®),
.M_AXI_GP@_ARADDR(processing_system7_0_M_AXI_GP@_ARADDR),
.M_AXI_GP@_ARBURST(processing_system7_0_M_AXI_GP@_ARBURST),
.M_AXI_GPO_ARCACHE (processing_system7_0_M_AXI_GP@_ARCACHE),
.M_AXI_GP@_ARID(processing_system7_0_M_AXI_GPO_ARID),
.M_AXI_GP@_ARLEN(processing_system7_0_M_AXI_GP@_ARLEN),
.M_AXI_GPO_ARLOCK(processing_system7_0_M_AXI_GP@_ARLOCK),
.M_AXI_GPO_ARPROT(processing_system7_0_M_AXI_GP@_ARPROT),
.M_AXI_GP@_ARQOS (processing_system7_0_M_AXI_GP@_ARQOS),
.M_AXI_GP@_ARREADY (processing_system7_0_M_AXI_GP@_ARREADY),
.M_AXI_GPO_ARSIZE(processing_system7_0_M_, GPO@_ARSIZE),
.M_AXI_GPO_ARVALID(processing_system7_0_M AXI _GP@_ARVALID),
.M_AXI_GPO_AWADDR(processing_system7_0_M_AXI_GP@_AWADDR),
.M_AXI_GP@_AWBURST (processing_system7_0_M_AXI_GP@_AWBURST),
.M_AXI_GP@_AWCACHE(processing_system7_0 M AXI _GP@_AWCACHE) ,
.M_AXI_GPO_AWID(processing_system7_0_M_AXI_GP@_AWID),
.M_AXI_GPO_AWLEN(processing_system7_0_M _GP@_AWLEN) ,
.M_AXI_GP0@_AWLOCK(processing_system7_0 I_GP@_AWLOCK),
.M_AXI_GP0@_AWPROT (processing_system7_0 I_GP@_AWPROT),
.M_AXI_GP@_AWQOS (processing_system7_0_M
.M_AXI_GPO_AWREADY (processing_system7_|
.M_AXI_GPO_AWSIZE(processing_system7_0_|

0_!
.M_AXI_GP@_AWVALID(processing_system7_| Oj
I

M_AX
AXI

Axf
_AX
AX

_M
M
_AXI_GP@_AWQOS),

M AXI _GP@_AWREADY) ,
M_AXI_GP@_AWSIZE),
AXI_GP@_AWVALID),
M

GP@_BID),

.M_AXI_GP@_BID(processing_system7_0_M_AX
.M_AXI_GP@_BREADY (processing_system7_0_M_AXI_GP@_BREADY),
.M_AXI_GP@_BRESP(processing_system7_0_M_AXI_GP@_BRESP),

ii AXI_GP@ BVALID(processing system7 @ M AXI GP@ BVALID)

//Copyright 1986-2022 Xilinx, Inc. All Rights Res{

And you Can Use AXI to Interface
with Tons of things!

* For data sent in packets (such as samples of a
signal where), a TLAST signal is asserted on the
final sample to ensure

WAL
+

;

z

n

=

o

I=
_+
I::I
'WEEIEE
+ +

I

s

7

)

(=

z

]
=

[=]
L

9/22/25 635965 Fall 2025

60

And you Can Use AXI to Interface
with Tons of things!

A running-average hardware
accelerator Using AXI Stream for
DMA (Direct Memory Access)

averager_2_1

-

=+ 500_AXIS
500 _axis aclk

500 _axis aresetn MOO_AXIS 4
mO0_axis_aclk

-—

mi0_axis_aresetn

.

averager_2 v1.0 (Pre-Producti an)

avg_dma axi_smc
3} r
. M_AXL MMZS 4|3 El 4 500 AXI
ot S AXLLTE M_AXI 52 MM I i ;;i 501_AxI .X.
=4 5_AXIS_S2MM Sl & = L MOO_AX] o | e

=+ G M_AXIS_MM25 o Z aclk U AXL

S el mmas_prmry_reset_out n Py rESEN u u

m_axi_mma2s_aclk R -7

m_axi_s2mm_aclk

- o mm2s_introut
Wy 3Xi_rEsE .
- s2mm_introut

D=
s2mm_prmry_reset_out_n o=
- AXl SmartConnect

AXl Direct Memory Access

- —10

ps7_0_axi_periph

processing_system7_0

Al DOR 4 ”—
ettt o Fuenso 4|

N N I i j—

" M_AXI_GPO_ACLK ZYN G MAXLGPO + i

LK H—E MOO_AX| | — S Axl HPO ACLK FCLK CLKO

FBSETHN m-——m - - - FCLK_RESETO_N

LK)

ESETHN ZYNQ7 Processing System

AXl Interconnect

9/22/25 6S965 Fall 2025 61

The AXI Interfaces on the Zynq Enable
PS to PL communication effectively

Interface Name Interface Description Master Slave
M_AXI_GPO PS PL
General Purpose (AXI_GP)
M_AXI_GP1 PS PL
S_AXI_GPO PL PS
General Purpose (AXI_GP)
S_AXI_GP1 PL PS
S_AXI_ACP Accelerator Coherency Port (ACP), PL PS
cache coherent transaction
S_AXI_HPO High Performance Ports (AXI_HP) with PL PS
read/write FIFOs.
S_AXI_HP1 PL PS
S AXI HP2 (Note that AXI_HP interfaces are sometimes PL PS
_ _ referred to as AXI Fifo Interfaces, or AFIs).
S_AXI_HP3 PL PS

Master/Slave refers to who controls/initiates comms on that bus that bus

From Zynq Book

9/22/25 635965 Fall 2025

General Purpose/Performance
“GP” AXI Ports

* 32 bits in size
* Maximum flexibility

* Allow register access from:
* PStoPL
* PLto PS

* Routed through lower-priority interconnects

9/22/25 65965 Fall 2025

63

High Performance “HP” AXI Ports

* Can be 32 or 64 bits wide (or variable between, but
avoid)

* Maximum bandwidth access to external memory and
on-chip-memory (OCM)

* When use all four HP ports at 64 bits, you can outpace
ability to write to DDR and OCM bandwidths!

* HP Ports : 4 * 64 bits * 150 MHz * 2 = 9.6 GByte/sec
* external DDR: 1 * 32 bits * 1066 MHz * 2 = 4.3 GByte/sec
* OCM: 64 bits * 222 MHz * 2 = 3.5 GByte/sec

* Optimized for large burst lengths

Taken from ECE699 lec 6 notes gm.edu

9/22/25 65965 Fall 2025 64

But Also Be On the Lookout for Issues!
AXI-Lite Packager Broke in 2024.

* Still not sure *what* broke going from 2023.2 to
2024.1

* The new source for AXI Lite mentions burst
mode...not sure if that’s a typo or indicative of
something else weird.

* Also incompletely specifies read logic compared
to <2024.1

9/22/25 65965 Fall 2025 65

Variants

* | think there was a bug in their READY
implementation

Not-working (2024.1) Less Not-working (2023.2)

> » M
S_AXI_ARREADY

_ AXI_ARVALID
DR [4:0]

|LBRESP [1:0]
S_AXI_BVALID

00000005
00000005

UNDEF 2
00009000 00000005
UNDEF
xx... (000000000001
0000000 63:0 xx...|0000000000000000
./ 0000000 a_out[: 00000006,
0000)
0000000
0000000
v 12
0
60000 ps + x... (00000000
ker 311379 s s x...)(00000000
200000 ps 250000 ps 350000 ps 400000 ps 450000 ps 500000 ps 55 ps 650000 ps 700000 ps 3 s 300000 p 350000 ps 400000 ps 450000 ps 500000 ps 55 0ps 650000 ps 700000 ps

Add 53

Read address channel

Address
and control

Reads Worked Fine &= ...

Read Read Read Read
data data data data

— — — —

* The “IP wizard” does fail to create all the
appropriate read logic by default, but for
registers it does, things work

* And you can add in the logic to read the
“forgotten” registers (>4) and things still work

9/22/25 65965 Fall 2025

Slave

67

Write address channe

Address

What was Broken? = ==

Write data channel

e Hard Crash/Timeout when a Write is made to the
AXI MMIO created

* My guess is itis related to the response channel
logic
* An AXI write interface will have three channels:
* Write Address (“AW?”) (address to write data to)

* Write Data (“W”) (data to write)
* Response Data (“B”) Aresponse

9/22/25 635965 Fall 2025 68

| think this IS one Issue:

* AXI_AWADDR getting used when AXI_AWREADY
and AXI_ AWVALID are both not asserted.

> P M €)

S_AXI_ACLK

S_AXI_ARESETN

S_AXI_AWADDR [4:0] 2z)00

S_AXI_AWREADY

S_AXI_AWVALID

S_AXI_WDATA [31:0] 00000007 72777..) 00000005 00...(00000009
S_AXI_WVALID

S_AXI_WREADY

S_AXI_BREADY

S_AXI_BRESP [1:0]

S_AXI_BVALID

0: Marker A: 9229 ps 110000 ps

1: Marker A: 29229 ps 130000 ps
slv_reg0 [31:0] 00000000 00000000 00000009
slv_reg1 [31:0] 00000000 00000000 00000007

Line Letting Un-hand-shaken data
through:

* Early in module there is this:

if (S_AXI_AWVALID && S_AXI_AWREADY)begin
axi_awaddr <= S_AXI_AWADDR;

* Elsewhere the write logic had this

//suck:
case ((S_AXI_AWVALID) ? S_AXI_AWADDR[ADDR_LSB+O0PT_MEM_ADDR_BITS:ADDR_LSB]
: axi_awaddr [ADDR_LSB+0OPT_MEM_ADDR_BITS:ADDR_LSB])

* Change to this:

//seems better:

case ((S_AXI_AWREADY && S_AXI_AWVALID) ? S_AXI_AWADDR [ADDR_LSB+0PT_MEM_ADDR_BITS:ADDR_LSB]
: axi_awaddr [ADDR_LSB+0PT_MEM_ADDR_BITS:ADDR_LSB])

9/22/25 65965 Fall 2025 70

Update: mostly fixed problem

* There’s a line that uses the raw address based
only on AXI_AWVALID

* Change it

> M ¢ I

S_AXI_ACLK

S_AXI_ARESETN

S_AXI_AWADDR [4:0] zz___)00

S_AXI_AWREADY

S_AXI_AWVALID

S_AX|_WDATA [31:0] 00000005 22272...) 00000005 00.. 00000009
S_AXI_WVALID

S_AXI_WREADY

S_AXI_BREADY

S_AXI_BRESP [1:0]

S_AXI|_BVALID

0: Marker A: 9229 ps 110000 ps

1: Marker A: 29229 ps 130000 ps
slv_reg0 [31:0] 00000000 00000000 00...) 00000009
slv_reg1 [31:0] ololofoolololo} 00000000

Still Not Exactly Sure

* So while Vivado is a powerful tool, we should
always be aware of what it is making for us and
how it is helping us.

* |t has been known to make non-AXIl-compliant
stuff in the past.

* And I’'m not the only one to speak about this.

9/22/25 65965 Fall 2025 72

AXI Culture

* This Gisselquist
guy is anywhere
anybody
mentions AXI| on
the internet

The most common AXI mistake

Apr 16,2019
D@n
Some time ago, | posted a set of formal properties which could |
slave or master. | then applied these properties to the AXI-lite sle
and found multiple errors within their core. e
Members
®23k ©32

9/22/25

25 zipcpu.com/blog/2021/05/22/vhdlaxil.html

|
Gisselquist
Technology, LLC

WV

Main/Blog

Aoout Us Fixing Xilinx's Broken AXI-lite Design in
T VHDL

g,. ZipCPU
-’

| think you have some basic misconception of what AXI actually is.

I'm willing to believe | have such a basic misconception. This is why I'm writing and asking for
enlightenment. Thank you for taking the time to help me understand this here.

It's a high performance protocol.

This may be where | need the most enlightenment. To me, a "high performance protocol" is
one that allows one beat of information to be communicated on every clock. Many if not most
of the AXI implementations I've seen don't actually hit this target simply because all of the
extra logic required to implement the bus slows it down. There's also something to be said for
low-latency, but in general my biggest criticisms are of lost throughput.

You can take advantage of slave features like command reordering with DDR.

demonstration designs, Xilinx has yet to fix their designs as of Vivado 2020.2. [1], [2] Indeed, at this
point, it’s not clear if Xilinx will ever fix their demonstration designs. Perhaps | shouldn’t complain-their
gns simply make the services | offer and sell that much more valuable.

»

Posted January 8, 2020

@HasanWAVE

Might it be because your Zynq design only supports AXI3 and not AXI4? The maximum AXI3 burst length is only 16 beats.
Which board are you using?

Also, this really belongs in the FPGA/embedded forum, not the microcontroller forum.

pan 65965 Fall 2025 73

[FPGA - 2 yr.
< m ;unithTheyFra:glf;tto
An actual demonstration of ZipCpu on an FPGA Board
Advice [Help

I'm at the beginning of my journey on writing my own softcore CPU. | found the ZipCpu to be very interesting, but
couldn't find a single project demo or a video where this CPU was loaded onto a board and a C program was run
on it. I'm not sure if there is a lot of extra complexity involved in porting it to an actual fpga given that it's working
fine on the simulator.

It would help if someone could point me to any project demo and code where a CPU was built from scratch and
an actual operating system was booted onto it. It would be a great encouragement for my upcoming project.

19 b O 29 R /> Share

a xfinity - Official -+ Promoted eoe

Level up your tech with Xfinity Mobile. B mobiic

Learn More xfinity.com &iPhone17

. threespeedlogic - 2y ago - Edited 2y ago

Why ZipCPU, and not any of the RISC-V cores out there?

| suspect (and am 100% prepared to be mistaken!) that the ZipCPU has a developer community of one
and a user community of one. It's going to be challenging to manage tooling and ecosystem interfaces for
any CPU with such a tiny community.

GO ¢ 218 OReply £ Award ¢ Share

3 Hairburt_Derhelle - 2y ago

Not only this. The developer is constantly promoting ZipCPU in forums when someone is asking
questions about other CPUs

5 OReply { Award 2> Share

9/22/25 65965 Fall 2025 74

Sources gy o

« “AMBA® AXITM and ACETM Protocol Specification”, ARM 2011

* “The Zynq Book”, L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and
R.W. Stewart, University of Glasgow

* “Building Zynq Accelerators with Vivado High Level Synthesis”
Xilinx Technical Note

 Some material from ECE699 Spring 2016
https://ece.gmu.edu/coursewebpages/ECE/ECE699 _SW_HW/S1
6/

Crack open the AXI spec sheet with a few data

sheets for some Xilinx IP cores (like the
CORDIC, FFT, etc...) and you should be able to
start making sense of it.

9/22/25 65965 Fall 2025 75

