
6.S965
Digital Systems Laboratory II

Lecture 5:
Some Intro Digital Signal Processing,

and maybe Drivers and Monitors

9/17/25 6.S965 Fall 2025 1

Vivado 2025.1

• 2025.1 has indeed fixed some bugs compared
to 2024.1*

• Current new issue that we’ve seen to look for:
• On updating IP, Vivado may possibly not realize the

IP has updated (and can’t be convinced
otherwise)... The fix is: Close and reopen project
• On updating IP, Vivado causes a core dump. The fix

is to just let computer restart and move on.

9/17/25 6.S965 Fall 2025 2
*which weren’t around in 2023.1 or .2

Signal Processing on the
FPGA

September 16, 2024 6.S965 Fall 2024 3

6.S965 RFSoC
• UltraScale+ ZU48DR:
• 38 Mb of BRAM
• +22Mb of UltraRAM
• 4272 DSP slices
• 930,000 Logic Cells
• Four 5-Gsps 14 bit ADCs
• Two 10-Gsps 14 bit DACs
• Four 1.3 GHz ARM 53

processors
• Two Real-time 533 MHz ARM

processors

September 16, 2024 6.S965 Fall 2024 4

• Board has 4GB of DDR4 for FPGA portion (”PL”) and 4 GB
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab

Pynq Z2 Board

• Series 7000 XC7Z020:
• 5.04 Mb of BRAM
• 220 DSP slices
• 85K logic cells
• Two 650 MHz A9 ARM processors
• High-speed interconnects between

two resources

• Board has 512 MB of DDR3

September 3, 2025 6.S965 Fall 2025 5

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html

HDMI IN
HDMI OUT

AUDIO IN

AUDIO OUT

Digital Design and DSP

• A lot of signal manipulation and signal
processing involves doing huge amounts of
math.
• Much of that math is irreducible.
• But also, much of that math exists in algorithms

that are “embarrassingly parallel”, meaning it is
very easy to split up and do in parralel
• And hardware is very good at that.

9/17/25 6.S965 Fall 2025 6

If you accidentally clicked “OK” rather
than “cancel” after your bitstream build
completes...
• It’ll open up your design...you can see the entire

circuit

9/17/25 6.S965 Fall 2025 7

Keep Zooming...
• Shows you every wire... And every component in

your design

9/17/25 6.S965 Fall 2025 8

You can go all the way down to the
flip-flops

9/17/25 6.S965 Fall 2025 9

Logic, BRAM, also DSP blocks

9/17/25 6.S965 Fall 2025 10

DSP Blocks???

• Logic is for Logicking

• Memory is for Remembering

• What are DSP blocks for?

September 16, 2024 6.S965 Fall 2024 11

DSP Blocks
• Multiply-then-add is a common operation chain

in many things, particularly Digital Signal
Processing
• FPGA has dedicated hardware modules called

DSP48 blocks on it
• Capable of single-cycle multiplies

• Can get inferred from using * in your Verilog that
isn’t a power of 2:
• x*y, for example, will likely will result in DSP getting

used
• May take a full clock cycle so would need to budget

timing accordingly

September 16, 2024 6.S965 Fall 2024 12

6.S965 Pynq Z2 Board

• Series 7000 XC7Z020:
• 5.04 Mb of BRAM
• 220 DSP slices
• 85K logic cells
• Two 650 MHz A9 ARM processors
• High-speed interconnects between

two resources

• Board has 512 MB of DDR3

September 3, 2025 6.S965 Fall 2025 13

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html

HDMI IN
HDMI OUT

AUDIO IN

AUDIO OUT

6.S965 RFSoC

• UltraScale+ ZU48DR:
• 38 Mb of BRAM
• +22Mb of UltraRAM
• 4272 DSP slices
• 930,000 Logic Cells
• Four 5-Gsps 14 bit ADCs
• Two 10-Gsps 14 bit DACs
• Four 1.3 GHz ARM 53

processors
• Two Real-time 533 MHz ARM

processors

September 16, 2024 6.S965 Fall 2024 14

• Board has 4GB of DDR4 for FPGA portion (”PL”) and 4 GB
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab

DSP48 Slice (High Level)

September 16, 2024 6.S965 Fall 2024 15

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

DSP48E2 (Ultrascale +)

September 16, 2024 6.S965 Fall 2024 16

DSP Blocks

September 16, 2024 6.S965 Fall 2024 17

• Can manually instantiate them
• Or you can have their usage come from inference
• Or you can use IP which has already laid them out

efficiently (for example an FFT block).

The need to Multiply-then-Add...

• Is pervasive in DSP applications, hence their
name
• We’ll see why in a bit.

9/17/25 6.S965 Fall 2025 18

A Digital System in an Analog World

September 16, 2024 6.S965 Fall 2024 19

• Many physical phenomena (sound, light, physics in
general) are best-described as continuous entities

Analog
phenomena

Digital
System

Analog
phenomena

Reconstruction

Manipulation

Sampling,
Quantization,
Digitization

The “System” can be
very large now.
• In the case of me watching

Cat TV on youtube, the
signals:
• depart the analog realm in

Cornwall, England where it is
recorded.
• Largely stays in digital format

(with some transmission
exceptions) until it exits my
phone or computer display
and hits my cat’s or my eyes in
Boston.

9/17/25 6.S965 Fall 2025 20

Visualizing Sampling

September 16, 2024 6.S965 Fall 2024 21

Continuous in Value and in Time

September 16, 2024 22

t

V(
t)

6.S965 Fall 2024

Discretization in Time

September 16, 2024 23

t

V(
t)

6.S965 Fall 2024

September 16, 2024 24

t

V(
t)

4 bit value encoding

6.S965 Fall 2024

Discretization in Time and
Quantization in Value

v[n] = [9,11,5,7,11,11,10,8,5,4,]

September 16, 2024 25

t

V(
t)

4 bit value encoding

Discretization in Time and
Quantization in Value

6.S965 Fall 2024

Store in memory

• v[n] = [9,11,5,7,11,11,10,8,5,4,]

• 10 4-bit values: need 40 bits to represent!

September 16, 2024 266.S965 Fall 2024

Reconstruction of Signal

September 16, 2024 27

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]

6.S965 Fall 2024

Reconstruction (with first-order hold
interpolation)

September 16, 2024 28

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]

6.S965 Fall 2024

Compare to original… not bad

September 16, 2024 29

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]

6.S965 Fall 2024

Errors

• Discretization Error: How ”off” our readings are
in time due to sampling at discrete intervals

• Quantization Error: How “off” our readings are
in reproduced value…if our bin size is 50mV and
our signal varies only by 20mV this is going to
cause problems

September 16, 2024 306.S965 Fall 2024

Continuous in Value and in Time

September 16, 2024 31

t

V(
t)

6.S965 Fall 2024

September 16, 2024 32

t

V(
t)

4 bit value encoding

6.S965 Fall 2024

Discretization in Time and
Quantization in Value

v[n] = [9,11,5,7,5,12,10,7,5,4,]

September 16, 2024 33

t

V(
t)

4 bit value encoding
6.S965 Fall 2024

Discretization in Time and
Quantization in Value

Reproduce

September 16, 2024 34

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

6.S965 Fall 2024

Reproduce

September 16, 2024 35

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

6.S965 Fall 2024

Compare to original… Did not Capture
the high-frequency Wiggles!

September 16, 2024 36

t

V(
t)

v[n] = [9,11,5,7,5,12,10,7,5,4,]

Potentially Bad Discretization Error

6.S965 Fall 2024

Continuous in Value and in Time

September 16, 2024 37

t

V(
t)

6.S965 Fall 2024

September 16, 2024 38

t

V(
t)

4 bit value encoding

6.S965 Fall 2024

Discretization in Time and
Quantization in Value

v[n] = [9,9,9,9,9,9,9,9,9,9]

September 16, 2024 39

t

V(
t)

4 bit value encoding
6.S965 Fall 2024

Discretization in Time and
Quantization in Value

Store in memory

• v[n] = [9,9,9,9,9,9,9,9,9,9]
• 10 4-bit values: need 40 bits in memory!
• Great. All is good.

September 16, 2024 406.S965 Fall 2024

v[n] = [9,9,9,9,9,9,9,9,9,9]

September 16, 2024 41

t

V(
t)

4 bit value encoding

Reproduce

6.S965 Fall 2024

v[n] = [9,9,9,9,9,9,9,9,9,9]

September 16, 2024 42

t

V(
t)

4 bit value encoding

Reproduce

6.S965 Fall 2024

v[n] = [9,9,9,9,9,9,9,9,9,9]

September 16, 2024 43

t

V(
t)

Compare… to original also meh

Those tiny wiggles might

be really important in

certain contexts!

Tiny heartbeats!Potentially Really Problematic
Quantization Error!

6.S965 Fall 2024

Conclusions
• Care must be taken when choosing what rate

you sample (discretize) your signal and at what
bit-depth you quantize your sample
• There’s no right answer, since it depends on

context/use cases.
• Ideally want to sample at high rate and quantize

with many bits…
• But taken to the extreme this uses a lot of

resources (lots of memory and resources/lots of
bits) so downward pressure on choices

September 16, 2024 6.S965 Fall 2024 44

Is that all there is to it?
• No, it is wayyy more complicated
• Let’s just consider sample rate for right now

September 16, 2024 456.S965 Fall 2024

Sample Rate
• How frequently we sample our signal directly

influences what we can effectively capture.
• A sample rate of 𝑓! is only capable of expressing

signals with frequencies less than "!
#

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies
in this region of the
spectrum can be fully
captured

Nyquist, Shannon, few
others showed this in the
1930s

September 16, 2024 6.S965 Fall 2024 46

Let’s consider this situation though….

September 16, 2024 47

t

V(
t)

6.S965 Fall 2024

September 16, 2024 48

t

V(
t)

4 bit value encoding

6.S965 Fall 2024

Let’s digitize it…at this sample rate we
shouldn’t be able to capture it

v[n] = [9,11,5,7,5,12,10,7,5,4,]

September 16, 2024 49

t

V(
t)

4 bit value encoding
6.S965 Fall 2024

Discretization in Time and
Quantization in Value

Store in memory

• v[n] = [9,11,5,7,5,12,10,7,5,4,]
• 10 4-bit values: need 40 bits in memory!
• Easy-peasy one-two-threesy

September 16, 2024 506.S965 Fall 2024

Reconstruct

September 16, 2024 51

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

6.S965 Fall 2024

Reproduce

September 16, 2024 52

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

6.S965 Fall 2024

Compare to original… Did not Capture
the high-frequency Wiggles!

September 16, 2024 53

t

V(
t)

Great….but we still captured something! What is
that signal expressed by the red interpolation?

6.S965 Fall 2024

Or....consider this…

September 16, 2024 54

t

V(
t)

6.S965 Fall 2024

Sample it…

September 16, 2024 55

t

V(
t)

6.S965 Fall 2024

Store it…

September 16, 2024 56

t

V(
t)

6.S965 Fall 2024

Reconstruct it…

September 16, 2024 57

t

V(
t)

6.S965 Fall 2024

We’ve created a a different signal from what was before! WTH?

Or Consider this…
 if we start with this data, knowing
nothing else...…

September 16, 2024 58

t

V(
t)

6.S965 Fall 2024

And we Reconstruct the signal…is
this ok?

September 16, 2024 59

t

V(
t)

6.S965 Fall 2024

First-order hold (connect-the dots)

If it came from this, ok… but…

September 16, 2024 60

t

V(
t)

6.S965 Fall 2024

It could have also come from
this…Uh oh

September 16, 2024 61

t

V(
t)

6.S965 Fall 2024

First-order hold (connect-the dots)

Which one Made the Signal

September 16, 2024 62

t

V(
t)

6.S965 Fall 2024

There’s ambiguity in what those samples could represent…that
means it really doesn’t convey much, if any, information

Aliasing
• While we can’t fully capture and reproduce signals

with a frequency higher than the Nyquist sampling
rate, it doesn’t mean they won’t have an impact!
• Energy from that high frequency will leak into the

frame…a form of “spectral leakage”
• A sample rate of 𝑓! can fully capture all information

in a signal if and only if, the highest frequency in that
signal is at or below "!

#
 !

• If you don’t do this, aliasing will appear (higher
frequencies appear as a different signal (an “alias”))
that can be expressed with the sample rate

September 16, 2024 6.S965 Fall 2024 63

Aliasing Can Happen in Space too
• Just like there are temporal frequencies (in time),

images have spatial frequencies.
• Same issues arise!

September 16, 2024 6.S965 Fall 2024 64

https://en.wikipedia.org/wiki/Aliasing

Anti-alias Filtered Not Anti-alias Filtered

This font has been
processed with an
anti-alias filter to
prevent artifacts
when displayed

Solution
• The ONLY way to guarantee that a set of discrete points

can unambiguously represent a signal is to guarantee
that prior to sampling, we remove all energy that it exists
in frequencies higher than the Nyquist Sampling Rate
• To do this we need a Low-Pass Filter!

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies
in this region of the
spectrum can be fully
captured

Nothing can exist in
this region of the
spectrum

September 16, 2024 6.S965 Fall 2024 65

There are exceptions

9/17/25 6.S965 Fall 2025 66

Low Pass Filter
• Prior to Sampling, we must be sure that our

signal has no significant energy above our
Nyquist Rate

Signal In Downstream

“Anti-Aliasing Filter”

LPF Filtered
Signal Sampler

September 16, 2024 6.S965 Fall 2024 67

How Do You Actually Make a Filter?
• Several types of filters. Two big ones:
• IIR: Infinite Impulse Response:

• Uses past output history for filtering
• FIR: Finite Impulse Response:

• Uses input history for filtering
• CIC: Cascaded Integrator Comb:

• Special case of FIR mixed with down-samplers/decimators

September 16, 2024 6.S965 Fall 2024 68

Filters
• Stateful systems that analyze history signals to

select for particular signal attributes:
• Low-pass Filter: Lets through low-frequency signals
• High-pass Filter: Lets through high-frequency signals
• Band-pass Filter: Lets through selective group of

frequencies
• Band-stop Filter: Blocks selective group of frequencies
• Matched-Filter: Values come from time-series of feature

of interest being convolved with signal

September 16, 2024 6.S965 Fall 2024 69

Infinite Impulse Response Filter (IIR)

• The current output (𝑦 𝑛) of the filter is based on
the weighted sum of the previous output (𝑦 𝑛 − 1)
of the filter + the value of the input (𝑥[𝑛))*
• Sometimes called a recursive filter: “y is based off

of y is based off of y…”
• Information enters the system through 𝑥 but its

influence on the output is dependent on the values
of 𝛼 and 𝛽

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 	𝛽 , 𝑥[𝑛]

September 16, 2024 6.S965 Fall 2024 70

*can also be based on multiple past values of y and x

Infinite Impulse Response (Modified)

• Fix the relationship of the new input and old
output to one variable 𝛼	:
• As 𝛼 → 1 input has less weight (takes time for it to

affect output…blocks more high frequency events)
• As 𝛼 → 0 input has more weight (output quickly

follows input…allows through more high frequency
events (and everything actually)

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]

0 ≤ 𝛼 ≤ 1

September 16, 2024 6.S965 Fall 2024 71

IIR Filter

September 16, 2024 72

t

x(
t)

6.S965 Fall 2024

y(
t)

t

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]

Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
September 16, 2024 6.S965 Fall 2024 73

Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
September 16, 2024 6.S965 Fall 2024 74

N

M

N+M

M
N

N+M

N+M+1 N
>>>M+1

Need to keep in mind bits!

𝛼 would be scaled up by 2M
and
Then the result is shifted back
down later

IIR

• Computationally lightweight

• No very flexible, often poor performance since
not a lot of parameters to adjust.

September 16, 2024 6.S965 Fall 2024 75

Finite Impulse Response
• Have the output be based off of a sliding window

of the past history of the input.
• Literally just convolution basically

• Very powerful!! Huge flexibility in choosing those
coefficients and can get a ton of behaviors!

September 16, 2024 6.S965 Fall 2024 76

𝑦 𝑛 = 𝑏$, 𝑥 𝑛 + 𝑏% , 𝑥 𝑛 − 1 + 𝑏# , 𝑥 𝑛 − 2

FIR Filter

September 16, 2024 77

t

x(
t)

6.S965 Fall 2024

y(
t)

t

𝑦 𝑛 = 𝑏! * 𝑥 𝑛 + 𝑏" * 𝑥 𝑛 − 1 + 𝑏# * 𝑥 𝑛 − 2

FIR Filters
• Extremely flexible
• Often times many, many “taps” long (N in 100s

is not uncommon)

• The values you pick for these taps are arrived at
using a number of DSP-oriented algorithms
(beyond scope of course…but in 6.341, etc)

September 16, 2024 6.S965 Fall 2024 78

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

FIR Filters
• Some online tools, Matlab, Python, Vivado all have

tools that allow you to:
• specify how you want your filter to look
• Provide you the coefficients needed to generate that filter

• The 𝑏 coefficients are generally provided as real
numbers between 0 and 1. But since we don’t want
to do floating point arithmetic, we usually scale
them by some power of two and then round to
integers.
• Since coefficients are scaled by 2M, we’ll have to re-scale

the answer by dividing by 2M. But this is easy – just get rid
of the bottom M bits!

• More taps generally means you can get better
response:
• Closer to ideal filter!

September 16, 2024 6.S965 Fall 2024 79

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

FIR Filters

• They implement convolution, so can be much
more than just “filters”
• You can use them to:
• Remove complicated features to signals
• Add complicated features to signals
• Making an FIR filter “dynamic” can lead to systems

that dynamically tune themselves.
• Make a ”matched filter” to look for features.

• Very much a work-horse type module.

September 16, 2024 6.S965 Fall 2024 80

FIR Filters Use A Lot of Math

• Each sample of a FIR involves the same amount
of multiply-accumulates as there are taps
• This means you can end up needing to do 100’s

of heavy math operations per sample
• And you also need access to all those old

samples to make it work.

9/17/25 6.S965 Fall 2025 81

FIR Filter (Iterative Implementation)

• For audio and mid-frequency phenomena, usually plenty
of clock cycles exist between each signal sample (you
have 2000 clock cycles of 100 MHz between each audio
sample of 48 ksps audio for example!)

• Just make a low-resource state-machine-based module.
• After every sample, do each multiply-accumulate for each

tap. As long as you have enough cycles, you can do
thousands of taps. Can even break up into more

September 16, 2024 6.S965 Fall 2024 82

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

Memory Requirements

• FIR filters may require large histories of signals
(thousands of samples back)
• Ideally you’d hold in a dense format (like BRAM)

but that only allows 1 or 2 reads per cycle.
• Might be fine for low data rates.

9/17/25 6.S965 Fall 2025 83

September 16, 2024 6.S965 Fall 2024 84

𝑦[𝑛]	 = 6
%&!

'!

𝑥 𝑛 − 𝑘 𝑏[𝑘]

𝑦[𝑛]	 = 𝑥 𝑛 − 0 𝑏[0] +	

𝑥 𝑛 − 1 𝑏[1]+	. . .	

𝑥 𝑛 − 30 𝑏[30] +	

Circular Buffer/Pointer

Higher Speed FIRs get nasty
though

9/17/25 6.S965 Fall 2025 85

• If your data stream is now operating closer to your
clock rate, for FIRs of any reasonable size, you won’t
have enough clock cycles to get and do everything
serially.
• Pipelining is the solution here.

How Much Data is That?

• If you’re handling a 200 MHz data stream, and running
it through a 30 tap FIR filter....

• That means you need to be doing 6 billion multiply-
accumulates per second

• This is where FPGAs, hardware systems really start to
shine

September 16, 2024 6.S965 Fall 2024 86

Finite Impulse Response Implementation

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏#

𝑥[𝑛 − 1]

×

+

𝑏$

𝑥[𝑛 − 2]

×

+

𝑏%

𝑥[𝑛 − 3]

×

+

𝑏&'#

𝑥[𝑛 − 𝑁 + 1]⋯

⋯

September 16, 2024 6.S965 Fall 2024 87

Disgustingly long combinational path…too much propagation delay

𝑦[𝑛]

Finite Impulse Response (Modified)

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏# ×

+

𝑏$ ×

+

𝑏% ×

+

𝑏&'#

⋯

⋯

September 16, 2024 6.S965 Fall 2024 88

Much nicer critical path (worst propagation delay)

[𝑛]

Bit Growth 𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏# ×

+

𝑏$ ×

+

𝑏% ×

+

𝑏&'#

⋯

⋯

September 16, 2024 6.S965 Fall 2024 89

N N
M M M M M

N+MN+M N+M N+M N+M

https://zipcpu.com/dsp/2017/07/21/bit-growth.html

Adding values that are N+M bits repeatedly grows the number of bits needed
to not lose precision…will grow at between 1 bit per N and 1 bit per log2(N)!
But this can grow large so there’s ways to handle it

Most FIR Filters (not all) are
symmetric too.
• Depending on situation can double-up and feed

back delayed signal

September 16, 2024 6.S965 Fall 2024 90

DSP Blocks
• If we return to the DSP blocks we spoke about

earlier...
• It is like it was made for this (it was):

September 16, 2024 6.S965 Fall 2024 91

Week 3’s Assignment

• Design (SV) and verify (cocotb and numpy) a
simple 15-tap FIR filter

• Drop it into a video pipeline on the Pynq board

• Control its tap values using an MMIO interface

• Use ILA to see bits and eyes to see results

9/17/25 6.S965 Fall 2025 92

Week 3:

9/17/25 6.S965 Fall 2025 93

Python

MMIO

FIR filtersComputer
(video source)

Monitor
(video sink)

Non-time-
sensitive
communication:

Time-sensitive
communication:

Week 3:

9/17/25 6.S965 Fall 2025 94

Python

MMIO

FIR filtersComputer
(video source)

Monitor
(video sink)

Non-time-
sensitive
communication:

Time-sensitive
communication:

Logic
Analyzer

Debugging

Math is pretty impressive

• We’ll be running 15-tap FIR filters on on all three
color channels at 720p video rate

• That works out to be 3.3 billion multiply-and-
accumulates per second controlled completely
from python

9/17/25 6.S965 Fall 2025 95

Original Video

9/17/25 6.S965 Fall 2025 96

Low-Pass Filter

9/17/25 6.S965 Fall 2025 97

High-Pass Filter

9/17/25 6.S965 Fall 2025 98

Few Observations

• The filter that we’re applying is 1D meaning it is
only applied in the horizontal direction as the
pixels scan across the page.

• This is very rarely done in image
processing...usually do FIR filters in two
dimensions in which case we call it a kernel

9/17/25 6.S965 Fall 2025 99

Starting Images

9/17/25 6.S965 Fall 2025 100

coeffs = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]

9/17/25 6.S965 Fall 2025 101

coeffs = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1]

9/17/25 6.S965 Fall 2025 102

coeffs = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]

9/17/25 6.S965 Fall 2025 103

coeffs = [3,5,-16,9,12,-5,-41,69,-41,-5,12,9,-16,5,3]

9/17/25 6.S965 Fall 2025 104

(high pass filter)

Vertical patterns aren’t seen!

9/17/25 6.S965 Fall 2025 105

9/17/25 6.S965 Fall 2025 106

coeffs = [3,5,-16,9,12,-5,-41,69,-41,-5,12,9,-16,5,3]
(high pass filter)

Where do the coefficients come
from?
• Lots of tools to design for them

• Scipy has some

• Matlab has some

9/17/25 6.S965 Fall 2025 107

FIR Wizard
• FIRs are so

common, Vivado
actually has some
IP infrastructure to
aid in designing
them
• Can tune how

pipelined vs.
Iterative/FSM you
want your FIR!
• Or use

Python/numpy to
determine
coefficients

September 16, 2024 6.S965 Fall 2024 108

http://t-filter.engineerjs.com

9/17/25 6.S965 Fall 2025 109

