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Digital Systems Laboratory II

Lecture 5:
Some Intro Digital Signal Processing,

and maybe Drivers and Monitors
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Vivado 2025.1 

• 2025.1 has indeed fixed some bugs compared 
to 2024.1*

• Current new issue that we’ve seen to look for:
• On updating IP, Vivado may possibly not realize the 

IP has updated (and can’t be convinced 
otherwise)...  The fix is: Close and reopen project
• On updating IP, Vivado causes a core dump. The fix 

is to just let computer restart and move on.
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Signal Processing on the 
FPGA
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6.S965 RFSoC
• UltraScale+ ZU48DR:
• 38 Mb of BRAM
• +22Mb of UltraRAM
• 4272 DSP slices
• 930,000 Logic Cells
• Four 5-Gsps 14 bit ADCs
• Two 10-Gsps 14 bit DACs
• Four 1.3 GHz ARM 53 

processors
• Two Real-time 533 MHz ARM 

processors
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• Board has 4GB of DDR4 for FPGA portion (”PL”) and 4 GB 
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab



Pynq Z2 Board

• Series 7000 XC7Z020:
• 5.04 Mb of BRAM
• 220 DSP slices
• 85K logic cells
• Two 650 MHz A9 ARM processors
• High-speed interconnects between 

two resources

• Board has 512 MB of DDR3

September 3, 2025 6.S965 Fall 2025 5

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html

HDMI IN
HDMI OUT

AUDIO IN

AUDIO OUT



Digital Design and DSP 

• A lot of signal manipulation and signal 
processing involves doing huge amounts of 
math.
• Much of that math is irreducible.
• But also, much of that math exists in algorithms 

that are “embarrassingly parallel”, meaning it is 
very easy to split up and do in parralel
• And hardware is very good at that.
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If you accidentally clicked “OK” rather 
than “cancel” after your bitstream build 
completes...
• It’ll open up your design...you can see the entire 

circuit 
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Keep Zooming...
• Shows you every wire... And every component in 

your design
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You can go all the way down to the 
flip-flops
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Logic, BRAM, also DSP blocks
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DSP Blocks???

• Logic is for Logicking

• Memory is for Remembering

• What are DSP blocks for?
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DSP Blocks
• Multiply-then-add is a common operation chain 

in many things, particularly Digital Signal 
Processing
• FPGA has dedicated hardware modules called 

DSP48 blocks on it
• Capable of single-cycle multiplies

• Can get inferred from using * in your Verilog that 
isn’t a power of 2:
• x*y, for example, will likely will result in DSP getting 

used
• May take a full clock cycle so would need to budget 

timing accordingly
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6.S965 Pynq Z2 Board

• Series 7000 XC7Z020:
• 5.04 Mb of BRAM
• 220 DSP slices
• 85K logic cells
• Two 650 MHz A9 ARM processors
• High-speed interconnects between 

two resources

• Board has 512 MB of DDR3
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https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html

HDMI IN
HDMI OUT

AUDIO IN

AUDIO OUT



6.S965 RFSoC

• UltraScale+ ZU48DR:
• 38 Mb of BRAM
• +22Mb of UltraRAM
• 4272 DSP slices
• 930,000 Logic Cells
• Four 5-Gsps 14 bit ADCs
• Two 10-Gsps 14 bit DACs
• Four 1.3 GHz ARM 53 

processors
• Two Real-time 533 MHz ARM 

processors
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• Board has 4GB of DDR4 for FPGA portion (”PL”) and 4 GB 
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab



DSP48 Slice (High Level)
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https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf



DSP48E2 (Ultrascale +)
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DSP Blocks

September 16, 2024 6.S965 Fall 2024 17

• Can manually instantiate them
• Or you can have their usage come from inference
• Or you can use IP which has already laid them out 

efficiently (for example an FFT block).



The need to Multiply-then-Add...

• Is pervasive in DSP applications, hence their 
name
• We’ll see why in a bit.
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A Digital System in an Analog World
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• Many physical phenomena (sound, light, physics in 
general) are best-described as continuous entities

Analog 
phenomena

Digital
System

Analog 
phenomena

Reconstruction

Manipulation 

Sampling,
Quantization,
Digitization



The “System” can be 
very large now.
• In the case of me watching 

Cat TV on youtube, the 
signals:
• depart the analog realm in 

Cornwall, England where it is 
recorded.
• Largely stays in digital format 

(with some transmission 
exceptions) until it exits my 
phone or computer display 
and hits my cat’s or my eyes in 
Boston.
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Visualizing Sampling
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Continuous in Value and in Time
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Discretization in Time
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Discretization in Time and 
Quantization in Value



v[n] = [9,11,5,7,11,11,10,8,5,4,]
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4 bit value encoding

Discretization in Time and 
Quantization in Value
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Store in memory

• v[n] = [9,11,5,7,11,11,10,8,5,4,]

• 10 4-bit values: need 40 bits to represent!
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Reconstruction of Signal
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4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]
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Reconstruction (with first-order hold 
interpolation)
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4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]
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Compare to original… not bad
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4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]
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Errors

• Discretization Error: How ”off” our readings are 
in time due to sampling at discrete intervals

• Quantization Error: How “off” our readings are 
in reproduced value…if our bin size is 50mV and 
our signal varies only by 20mV this is going to 
cause problems
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Continuous in Value and in Time
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Discretization in Time and 
Quantization in Value



v[n] = [9,11,5,7,5,12,10,7,5,4,]
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4 bit value encoding
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Discretization in Time and 
Quantization in Value



Reproduce
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4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]
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Reproduce
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4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]
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Compare to original… Did not Capture 
the high-frequency Wiggles!
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v[n] = [9,11,5,7,5,12,10,7,5,4,]

Potentially Bad Discretization Error
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Continuous in Value and in Time
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Discretization in Time and 
Quantization in Value



v[n] = [9,9,9,9,9,9,9,9,9,9]
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Discretization in Time and 
Quantization in Value



Store in memory

• v[n] = [9,9,9,9,9,9,9,9,9,9]
• 10 4-bit values: need 40 bits in memory!
• Great.  All is good.
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v[n] = [9,9,9,9,9,9,9,9,9,9]
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4 bit value encoding

Reproduce
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v[n] = [9,9,9,9,9,9,9,9,9,9]
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4 bit value encoding

Reproduce
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v[n] = [9,9,9,9,9,9,9,9,9,9]
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Compare… to original also meh

Those tiny wiggles might 

be really important in 

certain contexts!  

Tiny heartbeats!Potentially Really Problematic 
Quantization Error!
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Conclusions
• Care must be taken when choosing what rate 

you sample (discretize) your signal and at what 
bit-depth you quantize your sample
• There’s no right answer, since it depends on 

context/use cases.
• Ideally want to sample at high rate and quantize 

with many bits…
• But taken to the extreme this uses a lot of 

resources (lots of memory and resources/lots of 
bits) so downward pressure on choices
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Is that all there is to it?
• No, it is wayyy more complicated
• Let’s just consider sample rate for right now
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Sample Rate
• How frequently we sample our signal directly 

influences what we can effectively capture.
• A sample rate of 𝑓! is only capable of expressing 

signals with frequencies less than "!
#

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies 
in this region of the 
spectrum can be fully 
captured

Nyquist, Shannon, few 
others showed this in the 
1930s
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Let’s consider this situation though….
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4 bit value encoding

6.S965 Fall 2024

Let’s digitize it…at this sample rate we 
shouldn’t be able to capture it



v[n] = [9,11,5,7,5,12,10,7,5,4,]
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Discretization in Time and 
Quantization in Value



Store in memory

• v[n] = [9,11,5,7,5,12,10,7,5,4,]
• 10 4-bit values: need 40 bits in memory!
• Easy-peasy one-two-threesy
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Reconstruct
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v[n] = [9,11,5,7,5,12,10,7,5,4,]
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Reproduce
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Compare to original… Did not Capture 
the high-frequency Wiggles!

September 16, 2024 53

t

V(
t)

Great….but we still captured something! What is 
that signal expressed by the red interpolation?
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Or....consider this…

September 16, 2024 54

t

V(
t)

6.S965 Fall 2024



Sample it…
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Store it…
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Reconstruct it…
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We’ve created a a different signal from what was before! WTH?



Or Consider this…
 if we start with this data, knowing 
nothing else...…
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And we Reconstruct the signal…is 
this ok?
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First-order hold (connect-the dots)



If it came from this, ok… but…
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It could have also come from 
this…Uh oh
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First-order hold (connect-the dots)



Which one Made the Signal
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There’s ambiguity in what those samples could represent…that 
means it really doesn’t convey much, if any, information



Aliasing
• While we can’t fully capture and reproduce signals 

with a frequency higher than the Nyquist sampling 
rate, it doesn’t mean they won’t have an impact!
• Energy from that high frequency will leak into the 

frame…a form of “spectral leakage”
• A sample rate of 𝑓! can fully capture all information 

in a signal if and only if, the highest frequency in that 
signal is at or below "!

#
  !

• If you don’t do this, aliasing will appear (higher 
frequencies appear as a different signal (an “alias”)) 
that can be expressed with the sample rate
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Aliasing Can Happen in Space too
• Just like there are temporal frequencies (in time), 

images have spatial frequencies.
• Same issues arise!
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https://en.wikipedia.org/wiki/Aliasing

Anti-alias Filtered Not Anti-alias Filtered

This font has been 
processed with an 
anti-alias filter to 
prevent artifacts 
when displayed



Solution
• The ONLY way to guarantee that a set of discrete points 

can unambiguously represent a signal is to guarantee 
that prior to sampling, we remove all energy that it exists 
in frequencies higher than the Nyquist Sampling Rate
• To do this we need a Low-Pass Filter!

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies 
in this region of the 
spectrum can be fully 
captured

Nothing can exist in 
this region of the 
spectrum
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There are exceptions
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Low Pass Filter
• Prior to Sampling, we must be sure that our 

signal has no significant energy above our 
Nyquist Rate

Signal In Downstream

“Anti-Aliasing Filter”

LPF Filtered 
Signal Sampler
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How Do You Actually Make a Filter?
• Several types of filters. Two big ones:
• IIR: Infinite Impulse Response:

• Uses past output history for filtering
• FIR: Finite Impulse Response:

• Uses input history for filtering
• CIC: Cascaded Integrator Comb:

• Special case of FIR mixed with down-samplers/decimators
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Filters
• Stateful systems that analyze history signals to 

select for particular signal attributes:
• Low-pass Filter: Lets through low-frequency signals
• High-pass Filter: Lets through high-frequency signals
• Band-pass Filter: Lets through selective group of 

frequencies
• Band-stop Filter: Blocks selective group of frequencies
• Matched-Filter: Values come from time-series of feature 

of interest being convolved with signal
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Infinite Impulse Response Filter (IIR)

• The current output (𝑦 𝑛 )  of the filter is based on 
the weighted sum of the previous output (𝑦 𝑛 − 1 ) 
of the filter + the value of the input (𝑥[𝑛))*
• Sometimes called a recursive filter: “y is based off 

of y is based off of y…”
• Information enters the system through 𝑥 but its 

influence on the output is dependent on the values 
of 𝛼 and 𝛽

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 	𝛽 , 𝑥[𝑛]
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*can also be based on multiple past values of y and x



Infinite Impulse Response (Modified)

• Fix the relationship of the new input and old 
output to one variable 𝛼	:
• As 𝛼 → 1 input has less weight (takes time for it to 

affect output…blocks more high frequency events)
• As 𝛼 → 0 input has more weight (output quickly 

follows input…allows through more high frequency 
events (and everything actually)

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]

0 ≤ 𝛼 ≤ 1
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IIR Filter
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𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]



Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
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Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
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N

M

N+M

M
N

N+M

N+M+1 N
>>>M+1

Need to keep in mind bits!

𝛼 would be scaled up by 2M 
and 
Then the result is shifted back 
down later



IIR

• Computationally lightweight

• No very flexible, often poor performance since 
not a lot of parameters to adjust.
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Finite Impulse Response
• Have the output be based off of a sliding window 

of the past history of the input.
• Literally just convolution basically

• Very powerful!! Huge flexibility in choosing those 
coefficients and can get a ton of behaviors!
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𝑦 𝑛 = 𝑏$ , 𝑥 𝑛 + 𝑏% , 𝑥 𝑛 − 1 + 𝑏# , 𝑥 𝑛 − 2



FIR Filter
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𝑦 𝑛 = 𝑏! * 𝑥 𝑛 + 𝑏" * 𝑥 𝑛 − 1 + 𝑏# * 𝑥 𝑛 − 2



FIR Filters
• Extremely flexible
• Often times many, many “taps” long (N in 100s 

is not uncommon)

• The values you pick for these taps are arrived at 
using a number of DSP-oriented algorithms 
(beyond scope of course…but in 6.341, etc)
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𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]



FIR Filters
• Some online tools, Matlab, Python, Vivado all have 

tools that allow you to:
• specify how you want your filter to look
• Provide you the coefficients needed to generate that filter

• The 𝑏 coefficients are generally provided as real 
numbers between 0 and 1.  But since we don’t want 
to do floating point arithmetic, we usually scale 
them by some power of two and then round to 
integers.
• Since coefficients are scaled by 2M, we’ll have to re-scale 

the answer by dividing by 2M.  But this is easy – just get rid 
of the bottom M bits!

• More taps generally means you can get better 
response:
• Closer to ideal filter! 
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FIR Filters

• They implement convolution, so can be much 
more than just “filters” 
• You can use them to:
• Remove complicated features to signals
• Add complicated features to signals
• Making an FIR filter “dynamic” can lead to systems 

that dynamically tune themselves. 
• Make a ”matched filter” to look for features.

• Very much a work-horse type module.
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FIR Filters Use A Lot of Math

• Each sample of a FIR involves the same amount 
of multiply-accumulates as there are taps
• This means you can end up needing to do 100’s 

of heavy math operations per sample
• And you also need access to all those old 

samples to make it work.
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FIR Filter (Iterative Implementation)

• For audio and mid-frequency phenomena, usually plenty 
of clock cycles exist between each signal sample (you 
have 2000 clock cycles of 100 MHz between each audio 
sample of 48 ksps audio for example!)

• Just make a low-resource state-machine-based module.
• After every sample, do each multiply-accumulate for each 

tap. As long as you have enough cycles, you can do 
thousands of taps.  Can even break up into more 
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Memory Requirements

• FIR filters may require large histories of signals 
(thousands of samples back)
• Ideally you’d hold in a dense format (like BRAM) 

but that only allows 1 or 2 reads per cycle.
• Might be fine for low data rates.
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𝑦[𝑛]	 = 6
%&!

'!

𝑥 𝑛 − 𝑘 𝑏[𝑘]

𝑦[𝑛]	 = 𝑥 𝑛 − 0 𝑏[0] +	

𝑥 𝑛 − 1 𝑏[1]+	. . .	

𝑥 𝑛 − 30 𝑏[30] +	

Circular Buffer/Pointer



Higher Speed FIRs get nasty 
though
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• If your data stream is now operating closer to your 
clock rate, for FIRs of any reasonable size, you won’t 
have enough clock cycles to get and do everything 
serially.
• Pipelining is the solution here.



How Much Data is That?

• If you’re handling a 200 MHz data stream, and running 
it through a 30 tap FIR filter....

• That means you need to be doing 6 billion multiply-
accumulates per second

• This is where FPGAs, hardware systems really start to 
shine
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Finite Impulse Response Implementation

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏#

𝑥[𝑛 − 1]

×

+

𝑏$

𝑥[𝑛 − 2]

×

+

𝑏%

𝑥[𝑛 − 3]

×

+

𝑏&'#

𝑥[𝑛 − 𝑁 + 1]⋯

⋯
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Disgustingly long combinational path…too much propagation delay

𝑦[𝑛]



Finite Impulse Response (Modified)

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏# ×

+

𝑏$ ×

+

𝑏% ×

+

𝑏&'#

⋯

⋯
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Much nicer critical path (worst propagation delay)

[𝑛]



Bit Growth 𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏# ×

+

𝑏$ ×

+

𝑏% ×

+

𝑏&'#

⋯

⋯
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N N
M M M M M

N+MN+M N+M N+M N+M

https://zipcpu.com/dsp/2017/07/21/bit-growth.html

Adding values that are N+M bits repeatedly grows the number of bits needed 
to not lose precision…will grow at between 1 bit per N and 1 bit per log2(N)!  
But this can grow large so there’s ways to handle it



Most FIR Filters (not all) are 
symmetric too.
• Depending on situation can double-up and feed 

back delayed signal
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DSP Blocks
• If we return to the DSP blocks we spoke about 

earlier...
• It is like it was made for this (it was):
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Week 3’s Assignment

• Design (SV) and verify (cocotb and numpy) a 
simple 15-tap FIR filter

• Drop it into a video pipeline on the Pynq board

• Control its tap values using an MMIO interface

• Use ILA to see bits and eyes to see results
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Week 3:
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Python

MMIO

FIR filtersComputer
(video source)

Monitor
(video sink)

Non-time-
sensitive 
communication:

Time-sensitive 
communication:



Week 3:
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Python

MMIO

FIR filtersComputer
(video source)

Monitor
(video sink)

Non-time-
sensitive 
communication:

Time-sensitive 
communication:

Logic
Analyzer

Debugging



Math is pretty impressive

• We’ll be running 15-tap FIR filters on on all three 
color channels at 720p video rate

• That works out to be 3.3 billion multiply-and-
accumulates per second controlled completely 
from python
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Original Video
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Low-Pass Filter
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High-Pass Filter
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Few Observations 

• The filter that we’re applying is 1D meaning it is 
only applied in the horizontal direction as the 
pixels scan across the page.

• This is very rarely done in image 
processing...usually do FIR filters in two 
dimensions in which case we call it a kernel
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Starting Images
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coeffs = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
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coeffs = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1]
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coeffs = [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
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coeffs = [3,5,-16,9,12,-5,-41,69,-41,-5,12,9,-16,5,3]
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(high pass filter)



Vertical patterns aren’t seen!
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coeffs = [3,5,-16,9,12,-5,-41,69,-41,-5,12,9,-16,5,3]
(high pass filter)



Where do the coefficients come 
from?
• Lots of tools to design for them

• Scipy has some

• Matlab has some
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FIR Wizard
• FIRs are so 

common, Vivado 
actually has some 
IP infrastructure to 
aid in designing 
them
• Can tune how 

pipelined vs. 
Iterative/FSM you 
want your FIR!
• Or use 

Python/numpy to 
determine 
coefficients
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http://t-filter.engineerjs.com
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