
6.S965
Digital Systems Laboratory II

Lecture 4:
Zynq Architecture

9/15/25 6S965 Fall 2025 1

Some Stuff on the Pynq Z2 Board

Switches

Buttons

LEDs

HDMI IN

DDR3

HDMI OUT

Ethernet

Audio (Line in/out, etc)

uSD Slot (for OS)
Zynq XC7Z020-1CLG400

UART Bridge

USB (Host) Lots of pins broken out

Power Supply

9/15/25 6S965 Fall 2025 2

How Can You Work With it?
• The Zynq XC7Z020-1CLG400 has almost twice

the amount of “classic” FPGA material as the
Spartan 7 boards used in 6.205
• 13,300 Logic Cells
• 630 KByte of BRAM
• 220 DSP slices
• On-chip analog-to-digital converters on both
• Four Clock management tiles

• Also has two ARM 9 Cores

9/15/25 6S965 Fall 2025 3

Generic Zynq Architecture

9/15/25 6S965 Fall 2025 4

• Processing
System (PS)
• Programmable

Logic (PL)
• Both can be

manipulated

PL and PS
• When you’re designing a system, there are a lot

of things to control
• You can write Verilog, instantiate IP, and also

configure the processing cores

9/15/25 6S965 Fall 2025 5

Zynq Chip

• These changes happen outside the FPGA portion

9/15/25 6S965 Fall 2025 6

Addresses are at the Center of It All
• You have processors and you have circuits you

build, and they all share information through an
addressing system

*Not really memory per say...

FPGA

Core 0

Address
Space

Core 1

Hard IO

9/15/25 6S965 Fall 2025 7

Memory 1

Memory 0

Processing Cores are ARM

• ARM-A9 on the Pynq board (32 bit, two cores)
• ARM-A53 on the RFSoC4x2 board (64 bit, four

cores), also two 32 bit ARM-R5 cores.

• ARM stands for?
• Advanced RISC Machines
• RISC stands for?
• Reduced Instruction Set Computing

9/15/25 6S965 Fall 2025 8

Everything is Memory-Mapped

• Unlike CISC/x86 or other family processors, RISC
is all about reducing the instruction set.
• In x86 memory is accessed with certain

instructions and interfaces accessed with
different instructions.
• In RISC, that’s not the case...everything is

accessed through lw or sw or whatever, etc...

• Everything outside the processor in RISC is seen
as existing in an address space

9/15/25 6S965 Fall 2025 9

• In addition to having pointers take the address of
variables in code that refer to memory, code will
have certain addresses that are interfaces of the
computer to the outside world
• Call this Memory-Mapped-Input-Output (MMIO)
• Certain addresses act like little mailboxes to set or

get values from software to hardware/vice versa

L01-10

9/15/25 6S965 Fall 2025

software
0xABC 0x10FA961B

0xFFA 0x10101010

Interface
circuits

set
get

set
get

Addr:

…

Data:

Memory-Mapped-Input-Output
(MMIO)

MMIO Example…

L01-11

9/15/25 6S965 Fall 2025

Address: Value:
0x30000004: 0x00000023
0x30000008: 0x00000001
... ...
... ...
... ...
0x3fc93f58: 0x42016554
0x3fc93f5c: 0x30000004
0x3fc93f60: 0x30000008
0x3fc93f64: 0x00000000

void app_main(){
 int * temp_sensor = 0x30000004; //set pointer to a known address value
 int * heater = 0x30000008; //set pointer to a known address value
 //The two addresses above come from datasheet of processor!
 while(1){//run forever
 //check temperature...
 if (*temp_sensor <60){ //get value...less than 60?
 *heater = 1; //set value to 1 (let it warm)
 }else{
 *heater = 0; //set value to 0 (let it cool)
 }
 }
}

temp_sensor

points to

heater

points to

*temp_sensor
Gets access to
this value

*heater
Gets access to
this value

MMIO Example…

L01-12

9/15/25 6S965 Fall 2025

Address: Value:
0x30000004: 0x00000023
0x30000008: 0x00000001
... ...
... ...
... ...
0x3fc93f58: 0x42016554
0x3fc93f5c: 0x30000004
0x3fc93f60: 0x30000008
0x3fc93f64: 0x00000000

void app_main(){
 int * temp_sensor = 0x30000004; //set pointer to a known address value
 int * heater = 0x30000008; //set pointer to a known address value
 //The two addresses above come from datasheet of processor!
 while(1){//run forever
 //check temperature...
 if (*temp_sensor <60){ //get value...less than 60?
 *heater = 1; //set value to 1 (let it warm)
 }else{
 *heater = 0; //set value to 0 (let it cool)
 }
 }
} Thermometer circuit

will be writing values
to this memory spot

Heater circuit will be
reading values from
this memory spot to
know what to do

Everything Acts Like this on Zynq
• On a normal hard processor, the designers

would pre-assign what IO/interfaces get
assigned into each address location.

• The Zynq SOC is more of a mix, since it is
reconfigurable has a lot more flexibility in that
regard. In fact, one of the things the hardware
handoff file contains is the memory-map
addressing for a particular implementation after
you’ve built!

9/15/25 6S965 Fall 2025 13

Open up the 2800 lines of the
.hwh file to see...

• All the interactions
with UART Bus 0
happen from
0xE0000000 to
0xE0000FFF

9/15/25 6S965 Fall 2025 14

Then you’d proceed to manual

• Look up the address space of UART busses

9/15/25 6S965 Fall 2025 15

Keep Reading...
• See an interesting diagram in the docs explaining

how it works...and click on it so you can see the
unblurred version....

9/15/25 6S965 Fall 2025 16

Extract Meaning from this...
• Thank you Xilinx

https://docs.amd.com/viewer/attachment/mxcNFn1EFZjLI1eShoEn5w/oeiYFdxDVPZU5ktSckeTug-mxcNFn1EFZjLI1eShoEn5w

9/15/25 6S965 Fall 2025 17

Jokes* Aside...
• Further Down the page are details about

addresses to read/write to to configure the
UART0 and then where in that address space, the
In and out FIFO will live

*is it really a joke?
https://docs.amd.com/r/en-US/ug585-zynq-7000-SoC-
TRM/Configure-Controller-Functions

9/15/25 6S965 Fall 2025 18

And for “Custom” modules...

• Same thing... Here is the disp_interface I wrote
for lab 2:

9/15/25 6S965 Fall 2025 19

Then From the software side...

• Read/write to addresses that refer to the module
you made

9/15/25 6S965 Fall 2025 20

Look at Source of Pynq (or C that
it uses underneath)
• See how it

handles it
with the
underlying
calls.

9/15/25 6S965 Fall 2025 21

The Address Space is a Delicate Illusion
• Almost all modern compute use a hierarchy of

memory layers to facilitate quick, effective
access to data

https://cs.brown.edu/courses/csci1310/2020/notes/l10.html

• Our The Zynq SOC
is no different.

• And this goes for
even MMIO stuff

• And it is
complicated

9/15/25 6S965 Fall 2025 22

Memory Layout in Zynq Series

• Cores each have their
own L1 Cache
• Below that everything is

shared (L2 Cache, On-
Chip RAM, everything
else appropriately)

9/15/25 6S965 Fall 2025 23

https://www.jblopen.com/zynq-benchmarks/

L1 Data and Instruction Caches

• Each core has a pair of
L1 caches
• Works like an L1 cache

normally
does...effectively a
temporary clone of
relevant memory regions
for the cores to have
access to.

9/15/25 6S965 Fall 2025 24

https://www.jblopen.com/zynq-benchmarks/

L2 Cache

• There is a single L2
shared cache

• L1 draws from it

9/15/25 6S965 Fall 2025 25

https://www.jblopen.com/zynq-benchmarks/

DDR Memory

• Huge amount (512 MB or
more) of off-chip DDR2
or DDR3

• “Global” repository of
almost all the memory
space (not necessarily
entire address space)

• More on that later

9/15/25 6S965 Fall 2025 26

https://www.jblopen.com/zynq-benchmarks/

On-Chip RAM/Memory (OCR/OCM)
• There is ~256 KB of On-

Chip RAM
• Separate piece of

memory on chip with
fixed address space:
• 192kB at 0x0000_0000
• 64kB at 0xFFFC_0000

• As fast as a cache but
not used as a cache!

9/15/25 6S965 Fall 2025 27

https://www.jblopen.com/zynq-benchmarks/

OCM vs. Cache

• Cache represents a moving target of regions of
the ultimate address space (stuff from DRAM,
stuff from IO, etc...)

• The OCM is a fixed global address space that you
can directly address (both from with the PS and
from the PL)

9/15/25 6S965 Fall 2025 28

Zynq Block
Diagram

• These changes happen outside the FPGA portion

9/15/25 6S965 Fall 2025 29

Direct connection
from Central
Interconnect to OCM

On-Chip RAM/Memory (OCR/OCM)
• Why might OCM be

useful?
• Sensitive, low-latency

information can be
conveyed between the
FPGA and processor
without cacheing, etc...

9/15/25 6S965 Fall 2025 30

https://www.jblopen.com/zynq-benchmarks/

Direct connection
from Central
Interconnect to OCM

Snoopy Cache
• The Snoop Control Unit

is in charge of keeping
the multiple L1 caches
and the greater L2, OC,
DDR, etc... Synchronized
• Complicated piece of

hardware
• Further Reading:

• https://en.wikipedia.org/wiki/Bus_snooping

9/15/25 6S965 Fall 2025 31

https://www.jblopen.com/zynq-benchmarks/

Snoop Control Unit
• Critical in maintaining the illusion of unified

memory/address space

*Not really memory per say...

FPGA

Core 0

Address
Space

Core 1

Hard IO

9/15/25 6S965 Fall 2025 32

Memory 1

Memory 0

SCU is at center of it
• Anything going to processor has to go through

the SCU

9/15/25 6S965 Fall 2025 33

https://www.aldec.com/en/company/blog/144--introduction-to-zynq-architecture

Data Between PS and PL

• Because of MMIO, for the most part, data moves
between these two entities through the L2 cache
and then through the Snoop Control Unit

• You want the FPGA to see correct memory cache
values just like the

• One exception is the OCM, but that is relatively
small

9/15/25 6S965 Fall 2025 34

Two Other “Better” Ways...

• It may be desirable to link more closely to the
processor than through regular channels
• Accelerator Coherency Port (ACP)

• You may need to move massive amounts of data
into or out of memory and not want to go through
caches arbitration and things.
• Direct Memory Access (DMA)

9/15/25 6S965 Fall 2025 35

Accelerator Coherency Port (ACP)
• There is one Accelerator Coherency Port
• Direct Interface to SCU from the FPGA
• Allows quick, small-size interfacing between

Processors and FPGA fabric, if needed.

9/15/25 6S965 Fall 2025 36

https://www.aldec.com/en/company/blog/144--introduction-to-zynq-architecture

FPGA

ACP (right side)

• Instead of having the FPGA interface through
layers of caches (which can be slow), the DRAM
can be access directly from the

9/15/25 6S965 Fall 2025 37

Two Other “Better” Ways...

• It may be desirable to link more closely to the
processor than through regular channels
• Accelerator Coherency Port (ACP)

• You may need to move massive amounts of data
into or out of memory and not want to go through
caches arbitration and things.
• Direct Memory Access (DMA)

9/15/25 6S965 Fall 2025 38

Conventional Memory Access

• Instead of having the FPGA interface through
layers of caches (which can be slow), the DRAM
can be access directly from the

9/15/25 6S965 Fall 2025 39

Direct Memory Access (DMA)

• Instead of having the FPGA interface through
layers of caches (which can be slow), the DRAM
can be access directly from the

9/15/25 6S965 Fall 2025 40

Direct Memory Access (DMA)
• Instead of having the FPGA interface through

layers of caches (which can be slow), the DRAM
Memory controller can be Accessed Directly
from the FPGA.
• If used correctly, this can happen

simultaneously with the processor running,
provided it isn’t having cache misses and going
to DRAM
• Allows actual Memory-Mapped Linkage of

information between PS and PL
• Can facilitate massive amounts of data (100’s of

MBs at very high speeds when done in bursts)

9/15/25 6S965 Fall 2025 41

Illusion of Continuous Address Space
• Every piece in the

entire system can
talk and send
messages back
and forth using a
consistent and
global address
scheme

*Not really memory per say...

FPGA

Core 0

Address
Space

Core 1

Hard IO

9/15/25 6S965 Fall 2025 42

Memory 1

Memory 0

Zynq Block
Diagram

9/15/25 6S965 Fall 2025 43

Central Interconnect
handles address requests
between processor and
FPGA, external IO, etc...
Determines where to route
them

SCU and Cache
controllers know how to
direct address space
request to the correct
resources

Address Space Handling

• All of this address space handling between the
PS and the PL is accomplished with the
Advanced Microcontroller Bus Architecture
(AMBA)’s Advanced eXtensible Interface (or AXI)
protocol

• We’ll go over/review that in class this upcoming
Wednesday (hopefully)

9/15/25 6S965 Fall 2025 44

On Top of Low Level
Skipping AXI for a moment.

9/15/25 6S965 Fall 2025 45

Python for Zynq…Pynq

9/15/25 6S965 Fall 2025 46

Jupyter notebooks,
browser-based interface PYNQ enables JupyterLab

on Zynq and ZU+

Ubuntu-based
Linux

Jupyter web
server

IPython kernel

ARM A9 / A53

Overlays/designs

ZU+ Fabric

Hardware C-drivers wrapped
in Python packages

GUI

Taken from some Xilinx talk I went to…

Yocto

• Yocto is a project dating back >10 years…focus
of it is to build linux for embedded systems
applications
• With Yocto you can basically build images of

linux distributions targeted at small, particular
processors (such as the ARM cores on the Zynq
chip)
• Yocto is installed on your computer (kinda like

any tool) and then you build for other
systems…just like how we build for our FPGA
with Vivado.

9/15/25 6S965 Fall 2025 47

PetaLinux

• AMD/Xilinx took Yocto, added some stuff on top
intended to streamline these tools for their chips
and architectures specifically and called it
PetaLinux

9/15/25 6S965 Fall 2025 48

https://discuss.pynq.io/t/deploying-pynq-and-jupyter-with-petalinux/677

PYNQ uses an Ubuntu based Linux

9/15/25 6S965 Fall 2025 49

Kernel, Bootloader

Ubuntu Root File System

PYNQ’s
Ubuntu-based Linux

Python
Package

s

Dev
Tools

PYNQ uses the PetaLinux build flow and board support package:
• Access to all Xilinx kernel patches
• Works with any Xilinx supported board
• Configured with additional drivers for PS-PL interfaces

Ubuntu/
Debian

Package
s

Package
Manager/
Repositor

y

PYNQ uses Ubuntu’s:
• Root file system (RFS)
• Package manager (apt-get)
• Repositories

PYNQ bundles :
• Development tools

• Cross-compilers
• Latest Python packages

Taken from some Xilinx talk I went to…

PYNQ Framework

9/15/25 6S965 Fall 2025 50

APIs

Drivers

Bitstreams

Linux kernel

Python

FPGA

Overlay

xdevcfg sysgpio uio devmem

dma

axi_intc

AppsJupyter/
IPython

numpy opencvscikit-learnmatplotlib

PYNQ notebooks

XLNK

xlnk

GPIOPL Interrupt libcma.soMMIO

PYNQ libs

PYNQ IPs

PYNQ overlays

User designs

Taken from some Xilinx talk I went to…

Pynq Compromises
• With the Pynq framework you’re basically

starting with a pre-built Yocto/Petalinux
implementation that people have already
designed for you.
• To get the most out of a chip, one may want to go

and do their own custom version and build and
then make an image.
• You can 100% build your own PYNQ image from

scratch or with modifications:
• https://pynq.readthedocs.io/en/latest/pynq_sd_card.html

9/15/25 6S965 Fall 2025 51

We’re largely ignoring middle part

9/15/25 6S965 Fall 2025 52

APIs

Drivers

Bitstreams

Linux kernel

Python

FPGA

Overlay

xdevcfg sysgpio uio devmem

dma

axi_intc

AppsJupyter/
IPython

numpy opencvscikit-learnmatplotlib

PYNQ notebooks

XLNK

xlnk

GPIOPL Interrupt libcma.soMMIO

PYNQ libs

PYNQ IPs

PYNQ overlays

User designs

Taken from some Xilinx talk I went to…

Physical Pinout of Pynq

9/15/25 6S965 Fall 2025 53

ZYNQ 7020 is a chip like any other
chip
• Zynq package is a ball grid

array (all pins are underneath)
• One of the most unforgiving

packages out there…

9/15/25 6S965 Fall 2025 54

Can’t use iron

Still from video of somebody “reballing” an Xilinx chip
https://www.youtube.com/watch?v=DVTxHx0z-wo

Assigning Pins

• Pinout file can be found here:
• https://www.xilinx.com/content/dam/xilinx/support/packagefiles/z7

packages/xc7z020clg400pkg.txt

9/15/25 6S965 Fall 2025 55

Once design is synthesized you
can specify where to route (we’ll
not do this much since much of
this has been decided ahead of
time with the PYNQ board’s PCB
layout, but if you were designing
with the chip from scratch this
would be part of process

400 Pins
Listed Out
• Some pins

connect to the PL
part of chip
• Some pins

connect to the PS
part of chip.
• Just how it goes…

9/15/25 6S965 Fall 2025 56

Aside…The RFSoC is Bigger

• Go to this site (https://www.xilinx.com/support/package-pinout-files/zynq-

ultrascale-plus-pkgs.html) and use the non-functional sort
tools to find the pin file for the xczu48
• You’ll see that it is a 1156 pin BGA

9/15/25 6S965 Fall 2025 57

Now, the Pynq Z2 board made
some choices for us
• If you were the engineer

laying out the
chip/board from scratch
you would also need to
make these decision.
• Some decisions have

very little wiggle room,
others do.

9/15/25 6S965 Fall 2025 58

Schematic of
PYNQ Z2
Board

• The 512 MB DRAM is routed to PS_... Pins of the
Zynq chip.
• Meaning the DRAM is only accessible in the

processing side
• There is no PL-only accessible DRAM

9/15/25 6S965 Fall 2025 59

Schematic of
PYNQ Z2
Board

• Ethernet, SD card, some
HDMI control portions,
OTG/USB are all also
wired to PS_ pins
• That means those are

not accessible via

9/15/25 6S965 Fall 2025 60

Most other things on the board are
actually wired to pins that are part of
the PL (Programmable Logic)

• So pretty much
everything else…
• All these the random

pins, the audio, the
HDMI in/out, buttons,
etc…

9/15/25 6S965 Fall 2025 61

List of I/O Peripherals for the PS:

9/15/25 6S965 Fall 2025 62

Taken from The Zynq Book

• ”Hard” IP cores exist
on the PS that
perform certain
interfacing
roles/protocols:
• These can be

multiplexed out to
many subsets of
pins

Using them

• In a normal microcontroller, you would simply
activate a module, such as an SPI controller and
connect it to some pins.
• The way the Pynq Z2 board is laid out you can’t

do that.
• In an effort to ensure flexibility for development,

they connected most things and broke out most
general IO from the PL side.

9/15/25 6S965 Fall 2025 63

Assigning I/O pins to Hard IP
Peripherals

9/15/25 6S965 Fall 2025 64

Here I double-clicked on the

Zynq7 Processing IP Core

CAN and SPI can’t share same pins!

UART is fine

GPIO

Linking to Outside World
• The I/O pins normally

go to the outside
world, but on our
PYNQ board we need
to extend them into
the PL (which has its
own actual physical
output pins)
• Making the GPIO pins

EMIO (Extended)
Multiplexed In/Out)
puts them into the PL
for further
manipulation

9/15/25 6S965 Fall 2025 65

Week 1

9/15/25 6S965 Fall 2025 66

We have specified the Zynq PS to route its IO
pins out into the PL fabric and we can do what
we want with them

These represent pins that come
directly from the PS and interface
with DRAM (DDR) and some
hard-wired interfaces

Can then route into
outside world from PL’s

bank of usable pins

Clicking on these things is really just a nice
way to configure internal multiplexers

9/15/25 6S965 Fall 2025 67

CAN and SPI can’t share same pins!

UART is fine

GPIO

9/15/25 6S965 Fall 2025 68

Taken from the MicroZed Chronicles Blog/Xilinx Docs

PS_pins
Processor

Unconnected Pins
on PYNQ Z2 board

Route to PL IO
which is attached

Other PL-PS
Interconnects

9/15/25 6S965 Fall 2025 69

Interface Between PS and PL

• Four Ways to
Transfer Data from
the PS to the PL
• 64 bits of GPIO
• 4 GP AXI Ports
• 4 HP AXI Ports
• 1 ACP Port

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
9/15/25 6S965 Fall 2025 70

Just talked about this

GPIO Pins
• General Purpose Input Output

• You can via software (writing
to registers), control and be
controlled by ~54 pins
• These are good for low-speed

control, configuration, reset
signals…things like that.

9/15/25 6S965 Fall 2025 71

Interrupts

• The GPIO of the PS can be setup to have
interrupts even when you are routing them
“internally” into the PL Using EMIO.
• This means you can actually have the PL trigger

Python processes to run by setting up the
interrupts as well as some async programming
on the Python side

• https://pynq.readthedocs.io/en/latest/pynq_libraries/interrupt.html
• https://pynq.readthedocs.io/en/latest/overlay_design_methodology/

pynq_and_asyncio.html#pynq-and-asyncio

9/15/25 6S965 Fall 2025 72

https://pynq.readthedocs.io/en/latest/pynq_libraries/interrupt.html
https://pynq.readthedocs.io/en/latest/pynq_libraries/interrupt.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html

Interface Between PS and PL

• Four Ways to
Transfer Data from
the PS to the PL
• 64 bits of GPIO
• 4 GP AXI Ports
• 4 HP AXI Ports
• 1 ACP Port

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
9/15/25 6S965 Fall 2025 73

Just talked about this

Master/Slave Terminology
• I’ve been a big fan of moving away from this

terminology.
• For SPI, for example, instead of MOSI/MISO, do

COPI/CIPO (controller/peripheral), etc…
• However, all of the AMD/Xilinx, use

Master/Slave and everything has that M’s and
S’s prepended, appended, etc..
• I’m going to just use their nomenclature so we

don’t have to constantly be mapping between
alternate names.

9/15/25 6S965 Fall 2025 74

AXI Ports
• Parallel Busses of two

different flavors that
allow us to pretty
quickly transfer data
between the
Processing System
and the FPGA section
using shared registers
and some other stuff

9/15/25 6S965 Fall 2025 75

ACP Port
• Accelerator

Coherency Port
• 64-bit wide bus that

can transfer data from
very quickly from PL
fabric

9/15/25 6S965 Fall 2025 76

AXI Everywhere

9/15/25 6S965 Fall 2025 77

• There’s lot of neat IP we can work
with….if you wanted to implement a
hardware accelerated Fast Fourier
Transform you totally can…

AXI

AXI
AXI

AXI

Advanced Microcontroller Bus
Architecture (AMBA)
• Version 1 released in 1996 by ARM
• 2003 saw release of Advanced eXtensible

Interface (AXI3)
• 2011 saw release of AXI4
• There are no royalties affiliated with AMBA/AXI so

they’re used a lot.
• It is a general, flexible, and relatively free*

communication protocol for development

https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architectu
re 9/15/25 6S965 Fall 2025 78

Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links.

Provides highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing
• Meant to stream data from one device to another

quickly on its own direct connection

9/15/25 6S965 Fall 2025 79

From the Zynq Book

Memory Map?
• Memory mapped means an address is specified

within the transaction by the master (read or
write). This corresponds to an address in the
system memory space.
• For AXI4-Lite, which supports a single data

transfer per transaction, data is then written to,
or read from, the specified address
• For Full-AXI4 sending a burst, the address

specified is for the first data word to be
transferred, and the slave must then calculate
the addresses for the data words that follow.
• AXI-Stream has no addressing so no memory

mapping

9/15/25 6S965 Fall 2025 80

AXI Idea
• Communication between two devices (Master and

Slave) is carried out over multiple assigned
“channels”
• Each channel has its own collection of wires which

convey data, signals, etc.
• The channels can work somewhat independently,

however in practice what one channel does is often
the result of what a different one did previously
• Five Types of Channels (may have all or a subset):

• Read Address: ”AR” channel
• Read Data: “R” channel
• Write Address: “AW” channel
• Write Data: “W” channel
• Write Response: “B” channel

9/15/25 6S965 Fall 2025 81

Read Wiring

9/15/25 6S965 Fall 2025 82

Generalized collection of wires
“Channel”. Will contain numerous
wires

Master initiates communication, Slave responds

Write Wiring

9/15/25 6S965 Fall 2025 83

Within Each Channel are wires:

• These wires serve specific purposes.
• Some are universal to all channels, and others

are specific

9/15/25 6S965 Fall 2025 84

AXI Clock

• Everything in system will run off of AXI clock
usually called ACLK in documentation
• No combinatorial paths between inputs and

outputs. Everything must be registered.
• All signals are sampled on rising edge
• AXI modules should also have Reset pins. AXI

work ACTIVE LOW so the Reset pin is usually
called ARSTn or ARESETn

9/15/25 6S965 Fall 2025 85

M S
ACLK

From clock source

Valid and Ready

• All of AXI uses the same handshake procedure:
• The source of a data generates a VALID signal
• The destination generates a READY signal
• Transfer of data only occurs when both are high
• Both Master and Slave Devices can therefore

control the flow of their data as needed

9/15/25 6S965 Fall 2025 86

M S
ACLK

From clock source

VALID

READY

Everything Else…

• Everything else is information and depends on what
is needed in situation. Could be:
• Address
• Data
• Other specialized wires like:

• STRB (used to specify which bytes in current data step are valid,
sent by Master along with data payload to Slave)

• RESP (sort of like a status
• LAST (sent to indicate the final data clock cycle of data in a burst)

9/15/25 6S965 Fall 2025 87

M S
ACLK

From clock source

VALID

READY

<-STUFF->

Each channel has its own subset of
“stuff” that goes along with those
core signals shared by all

9/15/25 6S965 Fall 2025 88

Payload

Supplemental
Stuff

CORE

For example, the Write Data Channel (”W” channel)

The Read Data Channel:

9/15/25 6S965 Fall 2025 89

CORE

Payload

Supplement
al Stuff

9/15/25 6S965 Fall 2025 90

Read Address Chanel

CORE

Payload

Write Response

9/15/25 6S965 Fall 2025 91

CORE

Payload

9/15/25 6S965 Fall 2025 92

CORE

Payload

Write Address Channel

Generalized Transaction

• All Channel Interactions
follow same high-level
structure

9/15/25 6S965 Fall 2025 93

Sending One ”beat” of data (one clock-cycle of data)

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

Generalized Transaction

• All Channel Interactions
follow same high-level
structure

9/15/25 6S965 Fall 2025 94

Sending One ”beat” of data (one clock-cycle of data)

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

Generalized Transaction

• All Channel Interactions
follow same high-level
structure

9/15/25 6S965 Fall 2025 95

Sending One ”beat” of data (one clock-cycle of data)

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

Other Things to Keep in Mind

• the VALID signal of the AXI interface sending
information must not be dependent on the
READY signal of the AXI interface receiving that
information
• an AXI interface that is receiving information can

wait until it detects a VALID signal before it
asserts its corresponding READY signal.
• Fail to Follow these rules and could have devices

wait infinitely.
• Like when two people keep going “no, after you at a

door”

9/15/25 6S965 Fall 2025 96

And Up to All Five AXI channels
can come from one device
• While operating independently at their individual

transaction level, they can then report to the
larger module to provide overall interfaces
• Example:
• The slave device receives address on write channel

address
• The write data channel then becomes active and

knows where to point incoming data
• The response channel then opens and does its thing
• And so on

• Hierarchy of Control/Design

9/15/25 6S965 Fall 2025 97

And you Can Use AXI to Interface
with Tons of things!

9/15/25 6S965 Fall 2025 98

Connecting a FIR (from a Xilinx IP) to the FFT module

And you Can Use AXI to Interface
with Tons of things!

9/15/25 6S965 Fall 2025 99

Creating a AXI-controlled joe6 module that I can then call from Python

And you Can Use AXI to Interface
with Tons of things!

9/15/25 6S965 Fall 2025 100

A running-average hardware
accelerator Using AXI Stream for
DMA (Direct Memory Access)

The AXI Interfaces on the Zynq Enable
PS to PL communication effectively

9/15/25 6S965 Fall 2025 101

Master/Slave refers to who controls/initiates comms on that bus that bus

From Zynq Book

General Purpose/Performance
“GP” AXI Ports
• 32 bits in size
• Maximum flexibility
• Allow register access from:
• PS to PL
• PL to PS

9/15/25 6S965 Fall 2025 102

High Performance “HP” AXI Ports
• Can be 32 or 64 bits wide (or variable between, but

avoid)
• Maximum bandwidth access to external memory and

on-chip-memory (OCM)
• When use all four HP ports at 64 bits, you can outpace

ability to write to DDR and OCM bandwidths!
• HP Ports : 4 * 64 bits * 150 MHz * 2 = 9.6 GByte/sec
• external DDR: 1 * 32 bits * 1066 MHz * 2 = 4.3 GByte/sec
• OCM : 64 bits * 222 MHz * 2 = 3.5 GByte/sec

• Optimized for large burst lengths

9/15/25 6S965 Fall 2025 103

Taken from ECE699 lec 6 notes gm.edu

How it is Laid Out

9/15/25 6S965 Fall 2025 104

From The Zynq Book

Complexity
Full-AXI4

AXI-LITE

AXI-STREAM

9/15/25 6S965 Fall 2025 105

• In terms of wires and options, Full-
AXI is the most complex

• AXI-LITE has a lot less options
(single data beat so all the
supplemental stuff that specifies
burst characteristics gets skipped)

• AXI-STREAM has even
less…basically a high-speed write
channel (Few options), but often
needs that extra TLAST signal

Sources

• “AMBA® AXITM and ACETM Protocol Specification”, ARM 2011
• “The Zynq Book”, L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and

R.W. Stewart, University of Glasgow

• “Building Zynq Accelerators with Vivado High Level Synthesis”
Xilinx Technical Note

• Some material from ECE699 Spring 2016
https://ece.gmu.edu/coursewebpages/ECE/ECE699_SW_HW/S1
6/

9/15/25 6S965 Fall 2025 106

This is the thing right here…the

spec sheet/manual is

surprisingly good!!

Crack open the AXI spec sheet with a few data
sheets for some Xilinx IP cores (like the
CORDIC, FFT, etc…) and you should be able to
start making sense of it.

