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Some Stuff on the Pynq Z2 Board

Switches

Buttons

LEDs

HDMI IN

DDR3

HDMI OUT

Ethernet

Audio (Line in/out, etc)

uSD Slot (for OS)
Zynq XC7Z020-1CLG400

UART Bridge

USB (Host) Lots of pins broken out

Power Supply
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How Can You Work With it?
• The Zynq XC7Z020-1CLG400 has almost twice 

the amount of “classic” FPGA material as the 
Spartan 7 boards used in 6.205
• 13,300 Logic Cells 
• 630 KByte of BRAM 
• 220 DSP slices 
• On-chip analog-to-digital converters on both
• Four Clock management tiles

•  Also has two ARM 9 Cores
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Generic Zynq Architecture
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• Processing 
System (PS)
• Programmable 

Logic (PL)
• Both can be 

manipulated 



PL and PS
• When you’re designing a system, there are a lot 

of things to control
• You can write Verilog, instantiate IP, and also 

configure the processing cores

9/15/25 6S965 Fall 2025 5



Zynq Chip

• These changes happen outside the FPGA portion
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Addresses are at the Center of It All
• You have processors and you have circuits you 

build, and they all share information through an 
addressing system

*Not really memory per say...

FPGA

Core 0

Address 
Space

Core 1

Hard IO
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Memory 1

Memory 0



Processing Cores are ARM

• ARM-A9 on the Pynq board (32 bit, two cores)
• ARM-A53 on the RFSoC4x2 board (64 bit, four 

cores), also two 32 bit ARM-R5 cores.

• ARM stands for?
• Advanced RISC Machines
• RISC stands for?
• Reduced Instruction Set Computing
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Everything is Memory-Mapped

• Unlike CISC/x86 or other family processors, RISC 
is all about reducing the instruction set.
• In x86 memory is accessed with certain 

instructions and interfaces accessed with 
different instructions.
• In RISC, that’s not the case...everything is 

accessed through lw or sw or whatever, etc...

• Everything outside the processor in RISC is seen 
as existing in an address space
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• In addition to having pointers take the address of 
variables in code that refer to memory, code will 
have certain addresses that are interfaces of the 
computer to the outside world
• Call this Memory-Mapped-Input-Output (MMIO)
• Certain addresses act like little mailboxes to set or 

get values from software to hardware/vice versa

L01-10
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software
0xABC 0x10FA961B

0xFFA 0x10101010

Interface 
circuits

set
get

set
get

Addr:

…

Data:

Memory-Mapped-Input-Output 
(MMIO)



MMIO Example…

L01-11
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Address:                Value:
0x30000004:             0x00000023
0x30000008:             0x00000001
...         ...
...         ...
...         ...
0x3fc93f58:             0x42016554
0x3fc93f5c:             0x30000004 
0x3fc93f60:             0x30000008 
0x3fc93f64:             0x00000000

void app_main(){ 
  int * temp_sensor = 0x30000004; //set pointer to a known address value
  int * heater = 0x30000008; //set pointer to a known address value
  //The two addresses above come from datasheet of processor!
  while(1){//run forever
    //check temperature...
    if (*temp_sensor <60){ //get value...less than 60?
      *heater = 1; //set value to 1 (let it warm)
    }else{
      *heater = 0; //set value to 0 (let it cool)
    }
  }
}

temp_sensor

points to

heater

points to

*temp_sensor
Gets access to
this value

*heater
Gets access to
this value



MMIO Example…

L01-12
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Address:                Value:
0x30000004:             0x00000023
0x30000008:             0x00000001
...         ...
...         ...
...         ...
0x3fc93f58:             0x42016554
0x3fc93f5c:             0x30000004 
0x3fc93f60:             0x30000008 
0x3fc93f64:             0x00000000

void app_main(){ 
  int * temp_sensor = 0x30000004; //set pointer to a known address value
  int * heater = 0x30000008; //set pointer to a known address value
  //The two addresses above come from datasheet of processor!
  while(1){//run forever
    //check temperature...
    if (*temp_sensor <60){ //get value...less than 60?
      *heater = 1; //set value to 1 (let it warm)
    }else{
      *heater = 0; //set value to 0 (let it cool)
    }
  }
} Thermometer circuit 

will be writing values 
to this memory spot

Heater circuit will be 
reading values from 
this memory spot to 
know what to do



Everything Acts Like this on Zynq
• On a normal hard processor, the designers 

would pre-assign what IO/interfaces get 
assigned into each address location.

• The Zynq SOC is more of a mix, since it is 
reconfigurable has a lot more flexibility in that 
regard. In fact, one of the things the hardware 
handoff file contains is the memory-map 
addressing for a particular implementation after 
you’ve built!
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Open up the 2800 lines of the 
.hwh file to see...

• All the interactions 
with UART Bus 0 
happen from 
0xE0000000 to 
0xE0000FFF
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Then you’d proceed to manual

• Look up the address space of UART busses
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Keep Reading... 
• See an interesting diagram in the docs explaining 

how it works...and click on it so you can see the 
unblurred version....
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Extract Meaning from this...
• Thank you Xilinx

https://docs.amd.com/viewer/attachment/mxcNFn1EFZjLI1eShoEn5w/oeiYFdxDVPZU5ktSckeTug-mxcNFn1EFZjLI1eShoEn5w
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Jokes* Aside...
• Further Down the page are details about 

addresses to read/write to to configure the 
UART0 and then where in that address space, the 
In and out FIFO will live

*is it really a joke?
https://docs.amd.com/r/en-US/ug585-zynq-7000-SoC-
TRM/Configure-Controller-Functions
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And for “Custom” modules...

• Same thing... Here is the disp_interface I wrote 
for lab 2:
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Then From the software side...

• Read/write to addresses that refer to the module 
you made
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Look at Source of Pynq (or C that 
it uses underneath)
• See how it 

handles it 
with the 
underlying 
calls. 
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The Address Space is a Delicate Illusion
• Almost all modern compute use a hierarchy of 

memory layers to facilitate quick, effective 
access to data

https://cs.brown.edu/courses/csci1310/2020/notes/l10.html

• Our The Zynq SOC 
is no different.

• And this goes for 
even MMIO stuff

• And it is 
complicated
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Memory Layout in Zynq Series

• Cores each have their 
own L1 Cache
• Below that everything is 

shared (L2 Cache, On-
Chip RAM, everything 
else appropriately)
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https://www.jblopen.com/zynq-benchmarks/



L1 Data and Instruction Caches

• Each core has a pair of 
L1 caches
• Works like an L1 cache 

normally 
does...effectively a 
temporary clone of 
relevant memory regions 
for the cores to have 
access to.
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https://www.jblopen.com/zynq-benchmarks/



L2 Cache

• There is a single L2 
shared cache

• L1 draws from it
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DDR Memory

• Huge amount (512 MB or 
more) of off-chip DDR2 
or DDR3

• “Global” repository of 
almost all the memory 
space (not necessarily 
entire address space)

• More on that later
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On-Chip RAM/Memory (OCR/OCM)
• There is ~256 KB of On-

Chip RAM
• Separate piece of 

memory on chip with 
fixed address space:
• 192kB at 0x0000_0000
• 64kB at 0xFFFC_0000

• As fast as a cache but 
not used as a cache!

9/15/25 6S965 Fall 2025 27

https://www.jblopen.com/zynq-benchmarks/



OCM vs. Cache

• Cache represents a moving target of regions of 
the ultimate address space (stuff from DRAM, 
stuff from IO, etc...)

• The OCM is a fixed global address space that you 
can directly address (both from with the PS and 
from the PL)
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Zynq Block 
Diagram

• These changes happen outside the FPGA portion
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Direct connection 
from Central 
Interconnect to OCM



On-Chip RAM/Memory (OCR/OCM)
• Why might OCM be 

useful?
• Sensitive, low-latency 

information can be 
conveyed between the 
FPGA and processor 
without cacheing, etc...
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Direct connection 
from Central 
Interconnect to OCM



Snoopy Cache
• The Snoop Control Unit 

is in charge of keeping 
the multiple L1 caches 
and the greater L2, OC, 
DDR, etc... Synchronized
• Complicated piece of 

hardware
• Further Reading:

• https://en.wikipedia.org/wiki/Bus_snooping
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Snoop Control Unit
• Critical in maintaining the illusion of unified 

memory/address space

*Not really memory per say...

FPGA

Core 0

Address 
Space

Core 1

Hard IO
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Memory 1

Memory 0



SCU is at center of it
• Anything going to processor has to go through 

the SCU
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https://www.aldec.com/en/company/blog/144--introduction-to-zynq-architecture



Data Between PS and PL

• Because of MMIO, for the most part, data moves 
between these two entities through the L2 cache 
and then through the Snoop Control Unit

• You want the FPGA to see correct memory cache 
values just like the 

• One exception is the OCM, but that is relatively 
small
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Two Other “Better” Ways...

• It may be desirable to link more closely to the 
processor than through regular channels
• Accelerator Coherency Port (ACP)

• You may need to move massive amounts of data 
into or out of memory and not want to go through 
caches arbitration and things.
• Direct Memory Access (DMA)
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Accelerator Coherency Port (ACP)
• There is one Accelerator Coherency Port
• Direct Interface to SCU from the FPGA
• Allows quick, small-size interfacing between 

Processors and FPGA fabric, if needed.
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https://www.aldec.com/en/company/blog/144--introduction-to-zynq-architecture

FPGA



ACP (right side)

• Instead of having the FPGA interface through 
layers of caches (which can be slow), the DRAM 
can be access directly from the 
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Two Other “Better” Ways...

• It may be desirable to link more closely to the 
processor than through regular channels
• Accelerator Coherency Port (ACP)

• You may need to move massive amounts of data 
into or out of memory and not want to go through 
caches arbitration and things.
• Direct Memory Access (DMA)
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Conventional Memory Access

• Instead of having the FPGA interface through 
layers of caches (which can be slow), the DRAM 
can be access directly from the 
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Direct Memory Access (DMA)

• Instead of having the FPGA interface through 
layers of caches (which can be slow), the DRAM 
can be access directly from the 
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Direct Memory Access (DMA)
• Instead of having the FPGA interface through 

layers of caches (which can be slow), the DRAM 
Memory controller can be Accessed Directly 
from the FPGA.
• If used correctly, this can happen 

simultaneously with the processor running, 
provided it isn’t having cache misses and going 
to DRAM
• Allows actual Memory-Mapped Linkage of 

information between PS and PL 
• Can facilitate massive amounts of data (100’s of 

MBs at very high speeds when done in bursts)
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Illusion of Continuous Address Space
• Every piece in the 

entire system can 
talk and send 
messages back 
and forth using a 
consistent and 
global address 
scheme 

*Not really memory per say...

FPGA

Core 0

Address 
Space

Core 1

Hard IO
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Memory 1

Memory 0



Zynq Block 
Diagram
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Central Interconnect 
handles address requests 
between processor and 
FPGA, external IO, etc... 
Determines where to route 
them

SCU and Cache 
controllers know how to 
direct address space 
request to the correct 
resources



Address Space Handling

• All of this address space handling between the 
PS and the PL is accomplished with the 
Advanced Microcontroller Bus Architecture 
(AMBA)’s  Advanced eXtensible Interface (or AXI) 
protocol

• We’ll go over/review that in class this upcoming 
Wednesday (hopefully)
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On Top of Low Level
Skipping AXI for a moment.
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Python for Zynq…Pynq
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Jupyter notebooks,
browser-based interface PYNQ enables JupyterLab

on Zynq and ZU+

Ubuntu-based 
Linux

Jupyter web 
server

IPython kernel

ARM A9 / A53

Overlays/designs

ZU+ Fabric

Hardware C-drivers wrapped
in  Python packages

GUI

Taken from some Xilinx talk I went to…



Yocto

• Yocto is a project dating back >10 years…focus 
of it is to build linux for embedded systems 
applications
• With Yocto you can basically build images of 

linux distributions targeted at small, particular 
processors (such as the ARM cores on the Zynq 
chip)
• Yocto is installed on your computer (kinda like 

any tool) and then you build for other 
systems…just like how we build for our FPGA 
with Vivado.
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PetaLinux

• AMD/Xilinx took Yocto, added some stuff on top 
intended to streamline these tools for their chips 
and architectures specifically and called it 
PetaLinux
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https://discuss.pynq.io/t/deploying-pynq-and-jupyter-with-petalinux/677



PYNQ uses an Ubuntu based Linux
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Kernel, Bootloader

Ubuntu Root File System

PYNQ’s
Ubuntu-based Linux

Python
Package

s

Dev 
Tools

PYNQ uses the PetaLinux build flow and board support package:
• Access to all Xilinx kernel patches
• Works with any Xilinx supported board
• Configured with additional drivers for PS-PL interfaces

Ubuntu/
Debian

Package
s

Package
Manager/
Repositor

y

PYNQ uses Ubuntu’s:
• Root file system (RFS)
• Package manager (apt-get)
• Repositories

PYNQ bundles :
• Development tools

• Cross-compilers
• Latest Python packages

Taken from some Xilinx talk I went to…



PYNQ Framework
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APIs

Drivers

Bitstreams

Linux kernel

Python

FPGA

Overlay

xdevcfg sysgpio uio devmem

dma

axi_intc

AppsJupyter/
IPython

numpy opencvscikit-learnmatplotlib

PYNQ notebooks

XLNK

xlnk

GPIOPL Interrupt libcma.soMMIO

PYNQ libs

PYNQ IPs

PYNQ overlays

User designs

Taken from some Xilinx talk I went to…



Pynq Compromises
• With the Pynq framework you’re basically 

starting with a pre-built Yocto/Petalinux 
implementation that people have already 
designed for you.
• To get the most out of a chip, one may want to go 

and do their own custom version and build and 
then make an image. 
• You can 100% build your own PYNQ image from 

scratch or with modifications:     
• https://pynq.readthedocs.io/en/latest/pynq_sd_card.html
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We’re largely ignoring middle part
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APIs

Drivers

Bitstreams

Linux kernel

Python

FPGA

Overlay

xdevcfg sysgpio uio devmem

dma

axi_intc

AppsJupyter/
IPython

numpy opencvscikit-learnmatplotlib

PYNQ notebooks

XLNK

xlnk

GPIOPL Interrupt libcma.soMMIO

PYNQ libs

PYNQ IPs

PYNQ overlays

User designs

Taken from some Xilinx talk I went to…



Physical Pinout of Pynq
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ZYNQ 7020 is a chip like any other 
chip
• Zynq package is a ball grid 

array (all pins are underneath)
• One of the most unforgiving 

packages out there…
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Can’t use iron

Still from video of somebody “reballing” an Xilinx chip 
https://www.youtube.com/watch?v=DVTxHx0z-wo



Assigning Pins

• Pinout file can be found here:
• https://www.xilinx.com/content/dam/xilinx/support/packagefiles/z7

packages/xc7z020clg400pkg.txt
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Once design is synthesized you 
can specify where to route (we’ll 
not do this much since much of 
this has been decided ahead of 
time with the PYNQ board’s PCB 
layout, but if you were designing 
with the chip from scratch this 
would be part of process



400 Pins 
Listed Out
• Some pins 

connect to the PL 
part of chip
• Some pins 

connect to the PS 
part of chip.
• Just how it goes…
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Aside…The RFSoC is Bigger

• Go to this site (https://www.xilinx.com/support/package-pinout-files/zynq-

ultrascale-plus-pkgs.html) and use the non-functional sort 
tools to find the pin file for the xczu48
• You’ll see that it is a 1156 pin BGA 
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Now, the Pynq Z2 board made 
some choices for us
• If you were the engineer 

laying out the 
chip/board from scratch 
you would also need to 
make these decision.
• Some decisions have 

very little wiggle room, 
others do.
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Schematic of 
PYNQ Z2 
Board

• The 512 MB DRAM is routed to PS_... Pins of the 
Zynq chip.
• Meaning the DRAM is only accessible in the 

processing side
• There is no PL-only accessible DRAM
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Schematic of 
PYNQ Z2 
Board

• Ethernet, SD card, some 
HDMI control portions, 
OTG/USB are all also 
wired to PS_ pins
• That means those are 

not accessible via 

9/15/25 6S965 Fall 2025 60



Most other things on the board are 
actually wired to pins that are part of 
the PL (Programmable Logic)

• So pretty much 
everything else…
• All these the random 

pins, the audio, the 
HDMI in/out, buttons, 
etc…
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List of I/O Peripherals for the PS:
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Taken from The Zynq Book

• ”Hard” IP cores exist 
on the PS that 
perform certain 
interfacing 
roles/protocols:
• These can be 

multiplexed out to 
many subsets of 
pins



Using them

• In a normal microcontroller, you would simply 
activate a module, such as an SPI controller and 
connect it to some pins.  
• The way the Pynq Z2 board is laid out you can’t 

do that.
• In an effort to ensure flexibility for development, 

they connected most things and broke out most 
general IO from the PL side.
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Assigning I/O pins to Hard IP 
Peripherals
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Here I double-clicked on the 

Zynq7 Processing IP Core

CAN and SPI can’t share same pins!

UART is fine

GPIO



Linking to Outside World
• The I/O pins normally 

go to the outside 
world, but on our 
PYNQ board we need 
to extend them into 
the PL (which has its 
own actual physical 
output pins)
• Making the GPIO pins 

EMIO (Extended) 
Multiplexed In/Out) 
puts them into the PL 
for further 
manipulation 
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Week 1
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We have specified the Zynq PS to route its IO 
pins out into the PL fabric and we can do what 
we want with them

These represent pins that come 
directly from the PS and interface 
with DRAM (DDR) and some 
hard-wired interfaces

Can then route into 
outside world from PL’s 

bank of usable pins



Clicking on these things is really just a nice 
way to configure internal multiplexers 
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CAN and SPI can’t share same pins!

UART is fine

GPIO
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Taken from the MicroZed Chronicles Blog/Xilinx Docs

PS_pins
Processor

Unconnected Pins 
on PYNQ Z2 board

Route to PL IO 
which is attached



Other PL-PS 
Interconnects
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Interface Between PS and PL

• Four Ways to 
Transfer Data from 
the PS to the PL
• 64 bits of GPIO
• 4 GP AXI Ports
• 4 HP AXI Ports
• 1 ACP Port

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
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Just talked about this



GPIO Pins
• General Purpose Input Output

• You can via software (writing 
to registers), control and be 
controlled by ~54 pins
• These are good for low-speed 

control, configuration, reset 
signals…things like that.
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Interrupts

• The GPIO of the PS can be setup to have 
interrupts even when you are routing them 
“internally” into the PL Using EMIO.
• This means you can actually have the PL trigger 

Python processes to run by setting up the 
interrupts as well as some async programming 
on the Python side

• https://pynq.readthedocs.io/en/latest/pynq_libraries/interrupt.html
• https://pynq.readthedocs.io/en/latest/overlay_design_methodology/

pynq_and_asyncio.html#pynq-and-asyncio 
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Interface Between PS and PL

• Four Ways to 
Transfer Data from 
the PS to the PL
• 64 bits of GPIO
• 4 GP AXI Ports
• 4 HP AXI Ports
• 1 ACP Port

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
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Just talked about this



Master/Slave Terminology
• I’ve been a big fan of moving away from this 

terminology.
• For SPI, for example, instead of MOSI/MISO, do 

COPI/CIPO (controller/peripheral), etc…
• However, all of the AMD/Xilinx, use 

Master/Slave and everything has that M’s and 
S’s prepended, appended, etc..
• I’m going to just use their nomenclature so we 

don’t have to constantly be mapping between 
alternate names.
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AXI Ports
• Parallel Busses of two 

different flavors that 
allow us to pretty 
quickly transfer data 
between the 
Processing System 
and the FPGA section 
using shared registers 
and some other stuff
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ACP Port
• Accelerator 

Coherency Port
• 64-bit wide bus that 

can transfer data from 
very quickly from PL 
fabric
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AXI Everywhere
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• There’s lot of neat IP we can work 
with….if you wanted to implement a 
hardware accelerated Fast Fourier 
Transform you totally can…

AXI

AXI
AXI

AXI



Advanced Microcontroller Bus 
Architecture (AMBA)
• Version 1 released in 1996 by ARM
• 2003 saw release of Advanced eXtensible 

Interface (AXI3)
• 2011 saw release of AXI4 
• There are no royalties affiliated with AMBA/AXI so 

they’re used a lot. 
• It is a general, flexible, and relatively free* 

communication protocol for development

https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architectu
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Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links. 

Provides highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link 
supporting only one data transfer per connection 
(no bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing 
• Meant to stream data from one device to another 

quickly on its own direct connection
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Memory Map?
• Memory mapped means an address is specified 

within the transaction by the master (read or 
write). This corresponds to an address in the 
system memory space. 
• For AXI4-Lite, which supports a single data 

transfer per transaction, data is then written to, 
or read from, the specified address
• For Full-AXI4 sending a burst, the address 

specified is for the first data word to be 
transferred, and the slave must then calculate 
the addresses for the data words that follow. 
• AXI-Stream has no addressing so no memory 

mapping
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AXI Idea
• Communication between two devices (Master and 

Slave) is carried out over multiple assigned 
“channels”
• Each channel has its own collection of wires which 

convey data, signals, etc.
• The channels can work somewhat independently, 

however in practice what one channel does is often 
the result of what a different one did previously
• Five Types of Channels (may have all or a subset):

• Read Address: ”AR” channel
• Read Data:  “R” channel
• Write Address: “AW” channel
• Write Data: “W” channel
• Write Response: “B” channel
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Read Wiring
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Generalized collection of wires
“Channel”.  Will contain numerous 
wires

Master initiates communication, Slave responds



Write Wiring
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Within Each Channel are wires:

• These wires serve specific purposes.
• Some are universal to all channels, and others 

are specific
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AXI Clock

• Everything in system will run off of AXI clock 
usually called ACLK in documentation
• No combinatorial paths between inputs and 

outputs. Everything must be registered.
• All signals are sampled on rising edge
• AXI modules should also have Reset pins.  AXI 

work ACTIVE LOW so the Reset pin is usually 
called ARSTn or ARESETn
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Valid and Ready

• All of AXI uses the same handshake procedure:
• The source of a data generates a VALID signal
• The destination generates a READY signal
• Transfer of data only occurs when both are high
• Both Master and Slave Devices can therefore 

control the flow of their data as needed
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Everything Else…

• Everything else is information and depends on what 
is needed in situation. Could be:
• Address 
• Data 
• Other specialized wires like:

• STRB (used to specify which bytes in current data step are valid, 
sent by Master along with data payload to Slave)

• RESP (sort of like a status
• LAST (sent to indicate the final data clock cycle of data in a burst)
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Each channel has its own subset of 
“stuff” that goes along with those 
core signals shared by all
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Payload

Supplemental 
Stuff

CORE

For example, the Write Data Channel (”W” channel)



The Read Data Channel:
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al Stuff
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Read Address Chanel

CORE

Payload



Write Response

9/15/25 6S965 Fall 2025 91

CORE

Payload



9/15/25 6S965 Fall 2025 92

CORE

Payload

Write Address Channel



Generalized Transaction

• All Channel Interactions 
follow same high-level 
structure
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Keep in mind this 
could be 64 parallel 
wires of 1’s and 0’s of 
info or 8 bytes for 
example…
Or it could be 
something else
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• All Channel Interactions 
follow same high-level 
structure
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Other Things to Keep in Mind

• the VALID signal of the AXI interface sending 
information must not be dependent on the 
READY signal of the AXI interface receiving that 
information
• an AXI interface that is receiving information can 

wait until it detects a VALID signal before it 
asserts its corresponding READY signal.
• Fail to Follow these rules and could have devices 

wait infinitely.
• Like when two people keep going “no, after you at a 

door”
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And Up to All Five AXI channels 
can come from one device
• While operating independently at their individual 

transaction level, they can then report to the 
larger module to provide overall interfaces
• Example:
• The slave device receives address on write channel 

address
• The write data channel then becomes active and 

knows where to point incoming data
• The response channel then opens and does its thing
• And so on

• Hierarchy of Control/Design
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And you Can Use AXI to Interface 
with Tons of things!
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Connecting a FIR (from a Xilinx IP) to the FFT module



And you Can Use AXI to Interface 
with Tons of things!
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Creating a AXI-controlled joe6 module that I can then call from Python



And you Can Use AXI to Interface 
with Tons of things!
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A running-average hardware 
accelerator Using AXI Stream for 
DMA (Direct Memory Access)



The AXI Interfaces on the Zynq Enable 
PS to PL communication effectively
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Master/Slave refers to who controls/initiates comms on that bus that bus

From Zynq Book



General Purpose/Performance 
“GP” AXI Ports
• 32 bits in size
• Maximum flexibility 
• Allow register access from:
• PS to PL
• PL to PS
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High Performance “HP” AXI Ports
• Can be 32 or 64 bits wide (or variable between, but 

avoid)
• Maximum bandwidth access to external memory and 

on-chip-memory (OCM) 
• When use all four HP ports at 64 bits, you can outpace 

ability to write to DDR and OCM bandwidths!
• HP Ports : 4 * 64 bits * 150 MHz * 2 = 9.6 GByte/sec
• external DDR: 1 * 32 bits * 1066 MHz * 2 = 4.3 GByte/sec 
• OCM : 64 bits * 222 MHz * 2 = 3.5 GByte/sec 

• Optimized for large burst lengths
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How it is Laid Out
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Complexity
Full-AXI4

AXI-LITE

AXI-STREAM
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• In terms of wires and options, Full-
AXI is the most complex 

• AXI-LITE has a lot less options 
(single data beat so all the 
supplemental stuff that specifies 
burst characteristics gets skipped)

• AXI-STREAM has even 
less…basically a high-speed write 
channel (Few options), but often 
needs that extra TLAST signal



Sources

• “AMBA® AXITM and ACETM Protocol Specification”, ARM 2011
• “The Zynq Book”, L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and 

R.W. Stewart, University of Glasgow

• “Building Zynq Accelerators with Vivado High Level Synthesis” 
Xilinx Technical Note

• Some material from ECE699 Spring 2016 
https://ece.gmu.edu/coursewebpages/ECE/ECE699_SW_HW/S1
6/
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This is the thing right here…the 

spec sheet/manual is 

surprisingly good!!

Crack open the AXI spec sheet with a few data 
sheets for some Xilinx IP cores (like the 
CORDIC, FFT, etc…) and you should be able to 
start making sense of it. 


