6.5965
Digital Systems Laboratory |l

Lecture 4:

Zynq Architecture

6666666666666

Some Stuff on the Pyng Z2 Board

HDMI OUT -
Audio (Line infout, etc) USB (Host) Lots of pins broken out

Ethernet

i N 7 > - e -
. y l' :‘ e ::" A .« o . .
- N e (R - = (] = :
— g, o . v = : e
e 6% i ! & = EE G
= = i : x| £
- < -~ H B =~ % A) FE |
Terr = : oo =
- - :: o= =
SR () ” 5
yo L% t 50 DDR3
~ SREE A < - :] e
et o & -e " T X IX :
rl ge b e s F Yl e T Heeews L
Pl B T | B B e B, REEEEE, B
—— b LS]] " p 1 e
QAT it B - =
Eer o o e o ® = ll‘g o “ - e
T8 & H S
= k3 | /| y 4 ‘
> ! | | d " i e -
b aw ¥ W qe an % N
L | D - s

Buttons
Power Supply

. Zyng XC72020-1CLG400
Switches uSD Slot (for OS)

9/15/25 6S965 Fall 2025 2

How Can You Work With it?

* The Zyng XC7Z2020-1CLG400 has almost twice
the amount of “classic” FPGA material as the
Spartan 7 boards used in 6.205

* 13,300 Logic Cells
* 630 KByte of BRAM

* 220 DSP slices
* On-chip analog-to-digital converters on both

* Four Clock managementtiles

e Also has two ARM 9 Cores

9/15/25 65965 Fall 2025

Generic Zyng Architecture

. []
P ro C e S S I n g Processing System
System (PS) St o ok L

* Programmable
LO gl C (P L) Iil : ‘» Programmable

; Logic:
2

¢ B Ot h C a n b e % . X I ;-A;IM ore™ Cortex-A9 MPCore™ System Gates,

Unit UART 32 aches 32/32 KB 1/D Caches DSP, RAM

manipulated N

with DMA

Multi Standards 10s (3.3V & High Speed 1.8V)

2x USB
with DMA

2x GigE
with DMA

SysMon/ADC

Multi Standards 10s (3.3V & High Speed 1.8V)

9/15/25 6S965 Fall 2025 4

PL and PS

* When you’re designing a system, there are a lot
of things to control

* You can write Verilog, instantiate IP, and also
configure the processing cores

processing_system7_0

GPIO0 —
GPI10_1{63:0) <
GP10_0[6390) P
GP1O_T(63:0) P

ZYNQ

stop_slice

,—-n‘ DIn(63:0] Dout{0:0) F—

Inline Slice

ooR + |} 4 D DOR
FIXED_10 + ||} {O FIXED_IO
FCLK CLKO
rst_ps7_0_SOM pulse_maker_w_0
FCLK_RESETON s
ZYNQ7 Processing System e L £x RTL pulse
ext_reset_in bus_struct_reset[0:0] jw rst led_controller_.w_0
aux_reset_in peripheral_reset{0:0) m») 3
mb_debug_sys_rst mu.-uonne(l’afeseln[OO]. pulse_maker_w_v1 0 clk
dem_locked peripheral_aresetn{0:0] @» rst
o_up_slice
B At ar Cysram Bacet 90_UP_ it RTL q(3:0) leds(3:0]
OCessSor Dyste Keset | go_up
btns[3:0] | } - Din[3:0] Dout{0:0] go_down
| stop
Inline Slice L)
go_down_slice led_controller w_v1_0
b Din(3:0] Dout{0:0]
Inline Slice

Zynqg Chip

Zynq Block Design

processing_system7_0

-

ZYNQ.

GPI0_0 —]II

GP1O_I[63:0) <
GP1O_O[630) P
GP1O_T[63:0) P
DDR +
FIXED_IO +
FCLK_CLKO
FCLK_RESETO_N

ZYNQ7 Processing System

S | 1/0 Peripherals General
SP1 0 Settings Application Processor
BankO s Shol
12C 0
MIO . ™ ™
(15:0) 12C 1 - ARM Cortex -A9 ARM Cortex -A9
CARL . System Level CPU CPU
CAN 1 — Control Regs
UART O 64b
Vo UART 1 AXI
MUX GPIO v J- | GIC Snoop Control unit A
v Slave
(MIO) SD O DMAS8
53 ~— SD 1 Channal 1 512 KB L2 Cache and Controller Ports
USB 0
USB 1 OCM 256 KB
ENET 0 P CoreSight Interconnect SRAM
ENET 1 Central ComponElis y 'y
Bank1 Interconnect t
MIO FLASH Memory - 0
(53:16) Interfaces ~— _— ‘ DAP l v
SRAM/NOR 4 Memory Interfaces
NAND - <
QUAD SPI < DEVC | Programmable DDR2/3,LPDDR2
B f— Bkl Logic to Memory Controller
SMC Timing Interconnect
Calculation
DMA Bync 12131415
8 |9 l10]11 .
Clock 4|5 |6 [7 Processing System(PS)
Resets I Generation J izl
0| 1 | 2 | 3| DMA . .
ol ﬂﬁ%xtended 32b GP 226 GP Ml cornels |config IRQ High Performamce XADC
MIO (EMIO) PS-PL AXI AXI AES/ AXI 32b/64b Slave
Clock Ports Master Slave SHA Ports
Ports Ports
Programmable Logic(PL)

* These changes happen outside the FPGA portion

9/15/25

6S965 Fall 2025

-

Addresses are at the Center of It All

* You have processors and you have circuits you
build, and they all share information through an
addressing system

- ~ Memory 1)
Core O
Hard 10
. J \
{ ‘ Address
Space
FPGA /
Core 1
\ y . J
[Memory 0]

*Not really memory per say...
9/15/25 6S965 Fall 2025 7

Processing Cores are ARM

* ARM-A9 on the Pynqg board (32 bit, two cores)

* ARM-A53 on the RFSoC4x2 board (64 bit, four
cores), also two 32 bit ARM-R5 cores.

* ARM stands for?

* Advanced RISC Machines

* RISC stands for?

* Reduced Instruction Set Computing

9/15/25 65965 Fall 2025

Everything is Memory-Mapped

* Unlike CISC/x86 or other family processors, RISC
Is all about reducing the instruction set.

* |In Xx86 memory is accessed with certain
Instructions and interfaces accessed with

different instructions.

* In RISC, that’s not the case...everything is
accessed through Lw or sw or whatever, etc...

* Everything outside the processor in RISC is seen
as existing in an address space

9/15/25 65965 Fall 2025 9

Memory-Mapped-Input-Output
(MMIO)

* In addition to having pointers take the address of
variables in code that refer to memory, code will
have certain addresses that are interfaces of the
computer to the outside world

e Call this Memory-Mapped-Input-Output (MMIQO)

* Certain addresses act like little mailboxes to set or
get values from software to hardware/vice versa

Addr: Data:
Set éﬁ?i

_—"| OxABC | Ox10FA961B "\lmerface

circuits

software

“——[oxFFa Joxt0t01010 |, __~

Ser
sel

LO1-10
9/15/25 65965 Fall 2025

MMIO Example...

void app_main(){
int * temp_sensor = 0x30000004; //set pointer to a known address value
int x heater = 0x30000008; //set pointer to a known address value
//The two addresses above come from datasheet of processor!
while(1){//run forever
//check temperature...
if (xtemp_sensor <60){ //get value...less than 607
xheater = 1; //set value to 1 (let it warm)
Yelse{
xheater = 0; //set value to 0 (let it cool)
b

}
} *temp_sensor

Gets access to

Address: Value: - this value
0x30000004: 0x00000023 «— | *heater
0x30000008:, . 0x00000001 «—
e RN Gets access to
:"u.ffo this value
coe g S
Ox3fc93f58: T, . Ox42016554
Ox3fc93f5c: ", "0x30000004 « temp_sensor
0x3fc93f60: " 0x30000008
Ox3fc93f64: 0x00000000
T heater
LO1-11

9/15/25 65965 Fall 2025

MMIO Example...

void app_main(){
int * temp_sensor = 0x30000004; //set pointer to a known address value
int x heater = 0x30000008; //set pointer to a known address value
//The two addresses above come from datasheet of processor!
while(1){//run forever
//check temperature...
if (xtemp_sensor <60){ //get value...less than 607
xheater = 1; //set value to 1 (let it warm)
Yelse{
xheater = 0; //set value to 0 (let it cool)
b

¥ Thermometer circuit
will be writing values
to this memory spot

Address: Value: -

0x30000004 : 0x00000023 «— |
Ox30000008 : 0x00000001 «
. | ———— Heater circuit will be

reading values from

Ox3fc93f58: 0x42016554 this memory spot to
Ox3fc93f5c: 0x30000004 know what to do
0x3fC9360: 0x30000008
0x3CO3F64: 0x00000000

LO1-12

9/15/25 65965 Fall 2025

Everything Acts Like this on Zynq

* On a normal hard processor, the designers
would pre-assign what |O/interfaces get
assigned into each address location.

* The Zyng SOC is more of a mix, since itis
reconfigurable has a lot more flexibility in that
regard. In fact, one of the things the hardware
handoff file contains is the memory-map
addressing for a particular implementation after

you’ve built!

9/15/25 65965 Fall 2025 13

Open up the 2800 lines of the
.hwh file to see...

HAME VALUE=
HAME=
HAME=

HAME = UARLLUE =

HAME=

NAHE = UARLUE=

HAME=

NAHE = UALUE=

NHHE: -
::225; UALUE= &Lt 5
e VALUE=

HAME=
HAME=

- Rue e All the interactions

HAME= VALUE=

e oL L with UART Bus O

HAME= VALUE=
HAME= VALUE=

HAME = UALUE= h a p p e n frO m

NAME= VALUE=

NAME= UALUE="8≪

i it 0XE0000000 t
NAME= VALUE= X O
NAME= UALUE=

- e OXEOOOOFFF
NAME= UALUE= X

NAME= UALUE=

NAME= VALUE="8≪

NAME= UALUE=

NAME= VALUE=

HAME= VALUE="8Lt;

9715725 65965 Fall'2025 14

Then you’d proceed to manual

* Look up the address space of UART busses

Imacn Degins with &3 X UAKI w (N2 wone
AMD Technical Information Portal 5] signin
< Search Zynq 7000 SoC Technical Reference Manual (UG585) ~ UGsss 2023-06-30 (IR LR &N oH O
and also controls the receiver and transmitter paths according to the handshaking protocol.
— Search in document D¢
et | Keywords Q1 I | Features & @ ®
R e Each UART controller (UART 0 and UART 1) has the following features:
PDF{ZG . Quad-SPI Flash Controller + Programmable baud rate generator
tachments Sl L 64-byte receive and transmit FIFOs
General Purpose 1/ (GPIO) + Programmable protocol:
gir?t:.lalsetry Bevice lBrdioIG ° 6,7, 0r8data bitg
° 1, 1.5, or 2 stop bits
Gigabit Ethernet Controller ° Odd, even, space, mark, or no parity
SPI Controller + Parity, framing and overrun error detection
CAN Controller + Line-break generation
UART Controller + Interrupts generation
— Introduction » RxD and TxD modes: Normal/echo and diagnostic loopbacks using the mode switch
o Features + Loop UART 0 with UART 1 option
o System Viewpoint + Modem control signals: CTS, RTS, DSR, DTR, Rl and DCD are available only on the EMIO interface

N~

9/15/25 635965 Fall 2025 15

eep Reading...

* See an interesting diagram in the docs explaining
how it works...and click on it so you can see the
unblurred version....

AMDZ\ Technical Information Portal 5] signin
& Search Zynq 7000 SoC Technical Reference Manual (UG585) UG585 2023-06-30 T S

B T At S e R

e Search in document

Table of con- Keywords Q= System Viewpoint + @ ®
o Features
The system viewpoint diagram for the UART controllers is shown in
Y o System Viewpoint This Figure
PDF and at- Notices
tachments

. - Figure: UART System Viewpoint
Functional Description

Programming Guide

System Functions

I/O Interface

12C Controller

Programmable Logic Description

Programmable Logic Design
Guide

Programmable Logic Test and R B
Debug

Power Management The slcr register set (refer to section

SLCR Registers

) includes control bits for the UART clocks, resets and MIO-EMIO signal mapping. Software accesses the UART controller registers using the
APB 32-bit slave interface attached to the PS AXI interconnect. The IRQ from each controller is connected to the PS interrupt controller and

routed to the PL.
65965 Fall 2025 16

Terms al

Transparenc

Extract Meaning from this...
* Thank you Xilinx

AMDZ Technical Information Portal

€ Search ug585_c19_01.jpg

o
oy iy :5{“5 Pl W
DAY AN RATT e - VR E
—— Bulgeizag
P R A . v
LR)11 22
is = AN » PPN e
- |-
i
L Sy AP DU
Bivxnige-f
AR Y YR —

SIS MG

https://docs.amd.com/viewer/attachment/mxcNFn1EFZjLI1eShoEn5w/oeiYFdxDVPZU5ktSckeTug-mxcNFn1EFZjLI1eShoEn5w

9/15/25 65965 Fall 2025

Jokes™ Aside...

* Further Down the page are details about
addresses to read/write to to configure the
UARTO and then where in that address space, the
In and out FIFO will live

Configure Controller Functions + e ®

Example: Configure Controller Functions 4 @ @

This example configures the character frame, the baud rate, the FIFO trigger levels, the Rx timeout mechanism, and enables the controller.
All of these steps are necessary after a reset, but not necessary between enabling and disabling the controller.

1. Configure UART character frame . Write 0x0000_0020 into the uart.mode_reg0:

Disables clock pre-divider, UART_REF_CLK/8: [CLKS] =0
Selects 8-bit character length: [CHRL] = 00

Selects no parity: [PAR] = 100

Selects 1 stop bit: [NBSTOP] = 00

Selects normal channel mode (Mode Switch): [CHMODE] = 00

® o000

2. Configure the Baud Rate . Write to three registers: uart.Control_reg0, uart.Baud_rate_gen_reg0, and uart.Baud_rate_divider_reg0.
Examples for the calculated CD and BDIV values are shown in table

Table: UART Parameter Value Examples

. The baud rate generator is described in section

Baud Rate Generator

https://docs.amd.com/r/en-US/ugb85-zyng-7000-SoC- i s . o
TRM/Configure-Controller-Functions IS It reallyajoke.
9/15/25 6S965 Fall 2025 18

And for “Custom” modules...

* Same thing... Here is the disp_interface | wrote
for lab 2:

FRLANERYIL T

MODTHPE=

ACCESS="" INTERFACE= RANGE="uH85" USAGE=

DIR= LEFT= HAME= RIGHT= SIGIS= SIGNAME=

INSTAHCE= PORT=

9/15/25 65965 Fall 2025 19

Then From the software side...

j5 = ol.disp_interface_@ #find the AXI MMIO module which we can talk to (name of IP)

#Now it is time to interface with the j5 IP:

registers are four bytes in size, but address space is byte addressable! Keep in mind!
j5.write(0x08,0) #write @ to address location 0x@08 (command type)..

j5.write(0x0C,5) #write "5" to address location 0x@C (should show up on green LEDs due to slice
j5.write(0x10,2) #write 2 to address location 0x10

d = j5.read(0x04) # should read the value of all four push buttons (for test)

print(d) #print output (hopefully buttons)

d = j5.read(0x00) # read deadbeef hopefully (hard-coded in your mmio)

print(hex(d))

e Read/write to addresses that refer to the module

you made

9/15/25

635965 Fall 2025 20

Look at Source of Pynq (or C that
It uses underneath

L]
* See how it
4 Python productivity for Zynq import numpy as np
(Pynq)

__author__ = "Yun Rock Qu"

.
v2.1 __copyright__ = "Copyright 2016, Xilinx"
I __email__ = "pynq_support@xilinx.com"

""" This class exposes API for MMIO read and write.

WI t t e Getting Started Attributes

. Jupyter Notebooks virt_base : int
The address of the page for the MMIO base address
Python Environment virt_offset : int
The offset of the MMIO base address from the virt_base.

PYNQ Overlays base_addr : int
The base address, not necessarily page aligned.

PYNQ Libraries length : int)
The length in bytes of the address range.
L4 debug : bool

Overlay Design Methodolo,
Y g 8Y Turn on debug mode if it is True.
mmap_file : file

PYNQ SD Card Underlying file object for MMIO mapping
P k mem : mmap
pynq Fackage An mmap object created when mapping files to memory.
X X array : numpy.ndarray
Verification A numpy view of the mapped range for efficient assignment
Frequently Asked Questions (FAQs) 00D
Glossary def __init_ (self, base_addr, length=4, debug=False):

"""Return a new MMIO object.

Useful Links
Parameters
base_addr : int
The base address of the MMIO.
length : int
The length in bytes; default is 4.
debug : bool
Turn on debug mode if it is True; default is False.

Appendix

Change Log

if base_addr < 0 or length < 0:
raise ValueError("Base address or length cannot be negative.")

euid = os.geteuid()
if euid != 0:
raise EnvironmentError('Root permissions reguired. ')

9/15/25 6S965 Fall 2025 21

The Address Space is a Delicate Illusion

* Almost all modern compute use a hierarchy of
memory layers to facilitate quick, effective
access to data

* Our The Zynq SOC
IS no different.

Registers A
-1 KB (~100 b/core
* And this goes for | = zsxeeerecoe Licane
even MMIO stuff | veeecn iacem \oom :
8 MB L3Cache 12.8 ns L
128 MB L4 Cache \ 42.4
® And |t |S n Lw/“ $5-10/GB Main' Memory ' = “ .
Com plicated k / : So.lld St‘jate (flash) Drive
v* / $50/TB Disk Drive \ JL

@t/tﬂ)g:/é%e.brown.edu/courses/csci1 310/2020/notes/l1 O.htmb8965 Fall 2025 29

Memory Layout in Zynqg Series

e Cores each have their
own L1 Cache

* Below that everything is

shared (L2 Cache, On-
Chip RAM, everything
else appropriately)

https://www.jblopen.com/zyng-benchmarks/

gMPCore Cluster

Cortex-A9 Cortex-A9

I I [[
. |L1 Data| | L1 Ins. L1 Data| [L1 Ins.
Cache | | Cache Cache | | Cache

Snoop Control Unit (SCU)

On-Chip RAM

L2 Cache

Master Interconnect

[

Peripherals

FPGA

DDR Memory

9/15/25 635965 Fall 2025

23

L1 Data and Instruction Caches

* Each core has a pair of
L1 caches

* Works like an L1 cache
normally
does...effectively a
temporary clone of
relevant memory regions
for the cores to have
access to.

https://www.jblopen.com/zyng-benchmarks/

9/15/25 635965 Fall 2025

gMPCore Cluster

Cortex-A9 Cortex-A9
| 1 1 1 1
. |L1 Datal | L1 Ins. L1 Data| | L1 Ins.
' Cache | | Cache Cache | | Cache

Snoop Control Unit (SCU)

On-Chip RAM

L2 Cache

I

Master Interconnect

I I

Peripherals FPGA

DDR Memory

24

L2 Cache

* Thereis asingle L2
shared cache

L1 draws from it

https://www.jblopen.com/zyng-benchmarks/

9/15/25 635965 Fall 2025

;MPCore Cluster

Cortex-A9 Cortex-A9

I I I I
L1 Data| | L1 Ins. L1 Data| | L1 Ins.
Cache | | Cache Cache | | Cache

Snoop Control Unit (SCU)

On-Chip RAM

L2 Cache

I

Master Interconnect

[

Peripherals

FPGA

DDR Memory

25

DDR Memory

* Huge amount (512 MB or
more) of off-chip DDR2
or DDR3

gMPCore Cluster

Cortex-A9 Cortex-A9
[[[I
. |L1 Datal | L1 Ins. L1 Data| [L1 Ins.
5 Cache | | Cache Cache | | Cache

Snoop Control Unit (SCU)

* “Global” repository of

almost all the memory
space (not necessarily
entire address space)

e More on that later

https://www.jblopen.com/zyng-benchmarks/

9/15/25 635965 Fall 2025

On-Chip RAM

L2 Cache

I

Master Interconnect

[

Peripherals

FPGA

DDR Memory

26

On-Chip RAM/Memory (OCR/OCM)

 There is ~256 KB of On-

Chip RAM

* Separate piece of
memory on chip with
fixed address space:

* 192kB at 0x0000_0000
* 64kB at OxFFFC_0000

e As fast as a cache but
not used as a cache!

https://www.jblopen.com/zyng-benchmarks/

9/15/25 635965 Fall 2025

;MPCore Cluster

Cortex-A9 Cortex-A9
[[[I
. |L1 Datal | L1 Ins. L1 Data| [L1 Ins.
5 Cache | | Cache Cache | | Cache

Snoop Control Unit (SCU)

On-Chip RAM

L2 Cache

I

Master Interconnect

Peripherals FPGA

DDR Memory

27

OCMvs. Cache

* Cache represents a moving target of regions of
the ultimate address space (stuff from DRAM,
stuff from IO, etc...)

* The OCM is a fixed global address space that you
can directly address (both from with the PS and
from the PL)

9/15/25 65965 Fall 2025 28

/Zyng Block
Diagram

Zynq Block Design

Direct connection

from Central

Interconnect to OCM

64b

ACP
Slave
Ports

] 1/0 Peripherals General
SPI O Settings Application Processor Unit (APU)
BankO 152PCI !
MIO o ™ T
(15:0) 12CH g ARM Cortex -A9 ARM Cortex -A9
CAN O CcPU CPU
CAN 1 —
UART O
1o UART 1 T
MUX GPIO v - Snoop Control unit
(MIO) SD O v I
d —) 512 KB L2 Cache and Controller
oy - SD 1 > 4
USB 0
USB 1 ocm 256 KB
ENET O e CoreSight Interconnect SRAM
ENET 1 Central Components 3
Bank1 —_— Interconnect #
MIO FLASH Memory -)
(53:16) Interfaces f— <—] DAP 4
SRAM/NOR s Memory Interfaces
NAND " <
QUAD SPI pa— DEVC | Programmable DDR2/3,LPDDR2
T — =t Logic to Memory Controller
SMC Timing Interconnect
Calculation
DMA Bync 12[13[14]15
8 |9 [10]11)
Clock 4 [s [6 |7 Processing System(PS)
Resets | Generation J iz
0| a3 | 2 | 3| DMA . ;
of1f12034, o geq 32b GP 326GP |chammels Config |'RQ | High Performamce XADC
MIO (EMIO) PS-PL AXI AXI AES/ AXI 32b/64b Slave
Clock Ports Master Slave SHA Ports
Ports Ports
Programmable Logic(PL)

* These changes happen outside the FPGA portion

9/15/25 6S965 Fall 2025

On-Chip RAM/Memory (OCR/OCM)

* Why might OCM be
useful?

* Sensitive, low-latency
Information can be
conveyed between the
FPGA and processor
without cacheing, etc...

Direct connection
from Central
Interconnect to OCM

https://www.jblopen.com/zyng-benchmarks/

9/15/25 635965 Fall 2025

gMPCore Cluster

Cortex-A9 Cortex-A9
[[[I
. |L1 Datal | L1 Ins. L1 Data| [L1 Ins.
5 Cache | | Cache Cache | | Cache

Snoop Control Unit (SCU)

On-Chip RAM

L2 Cache

Master Interconnect

[

Peripherals

FPGA

DDR Memory

30

Snoopy Cache

* The Snoop Control Unit
IS in charge of keeping
the multiple L1 caches
and the greater L2, OC,
DDR, etc... Synchronized

* Complicated piece of
hardware

* Further Reading:

* https://en.wikipedia.org/wiki/Bus_shooping

https://www.jblopen.com/zyng-benchmarks/

9/15/25 635965 Fall 2025

gMPCore Cluster

Cortex-A9 Cortex-A9
: [[[I
. |L1 Datal | L1 Ins. L1 Data| [L1 Ins.
5 Cache | | Cache Cache | | Cache

[

[

I I

Snoop Control Unit (SCU)

On-Chip RAM

L2 Cache

I

Master Interconnect

[

Peripherals

FPGA

DDR Memory

31

Snoop Control Unit

* Critical in maintaining the illusion of unified
memory/address space

Memory 1 ()

()
Core 0
Hard 10
_)
(‘ Address
Space
FPGA /
Core 1
—_/ J

7

9/15/25 635965 Fall 2025

*Not really memory per say...
32

SCU is at center of It

* Anything going to processor has to go through

On-Chip Memory
(OCMm)

the SCU

https://www.aldec.com/en/company/blog/144--introduction-to-zyng-architecture

9/15/25

MMU
ARM 1
NEON/FPU
L1 (Inst) L1 (Data)

Snoop Control Unit (SCU)

lﬁ

ﬂ

{ L2 Cache J

L1 (Inst)

| Ll‘('Data)

635965 Fall 2025

MMU
ARM 2
NEON/FPU
33

Data Between PS and PL

* Because of MMIQO, for the most part, data moves
between these two entities through the L2 cache
and then through the Snoop Control Unit

* You want the FPGA to see correct memory cache
values just like the

* One exception is the OCM, but that is relatively
small

9/15/25 65965 Fall 2025 34

Two Other “Better” Ways...

* |t may be desirable to link more closely to the
processor than through regular channels

* Accelerator Coherency Port (ACP)

* You may need to move massive amounts of data
Into or out of memory and not want to go through
caches arbitration and things.

* Direct Memory Access (DMA)

9/15/25 65965 Fall 2025 35

Accelerator Coherency Port (ACP)

* There is one Accelerator Coherency Port
* Direct Interface to SCU from the FPGA

* Allows quick, small-size interfacing between
Processors and FPGA fabric, if needed.

MMU
ARM 1 (
On-Chip Memory
NEON/FPU
/ (ocM)
\ L ' l
[L1(nst) | [L1(Data) |
ZAY A
Snoop Control Unit (SCU))| FPGA
| 4 | L1(Inst) | | L1 (Data) |
L2 Cache MMU
ARM 2
NEON/FPU

https://www.aldec.com/en/company/blog/144--introduction-to-zyng-architecture

9/15/25 635965 Fall 2025

ACP (right side

Zynq Block Design

Summary Report

1/0 Peripherals

SPI1 O

USB_
ENET
ENET

' FLASH Memory

Interfaces

Resets

lofal lg"LaJExtended

MIO (EMIO)

PS-PL
Clock Ports

9/15/25

Logic to Memory
Interconnect

Gen
S = Application Processor Unit (APU)
QEEE
= ™ o
o ARM Cortex -A9 ARM Cortex -A9
System Level CcPU CPU
— Control Regs
1 =
T Snoop Control unit
1 ’ 512 KB L2 Cache and Controller
—_
OCM 256 KB
CoreSig Interconnect SRAM
Central Comp« 7'\
Interconnect - 1
o L
¢ <—] DAP | b 4
> ' Memory Interfaces
pa— DEVC I Programmable 4 DDRZI&E
Cont

A 4

12[13[14]15

8 o [10]11

a |5 |6 |7

Sz

DMA 7 IRQ
Channels Config
AES/
SHA

65965 Fall 2025

Processing System(PS)

’ XADC |

Programmable Logic(PL)

37

Two Other “Better” Ways...

* |t may be desirable to link more closely to the
processor than through regular channels

* Accelerator Coherency Port (ACP)

* You may need to move massive amounts of data
Into or out of memory and not want to go through
caches arbitration and things.

* Direct Memory Access (DMA)

9/15/25 65965 Fall 2025 38

Conventional Memory Access

Zynq Block Design
1/0 Peripherals General
Settin Application Processor Unit (APU)
SWDT
TIE
™ ™
ARM Cortex -A9 ARM Cortex -A9
System Level CPU CPU
Control Regs
GIC Snoo
2 4
Cl?x\ﬁ"‘ l L2 Cache and Controller
£ 3
£ OCM 256 KB
CoreSight Interconnect SRAM
Central Component v
Interconnect
FLASH Memory -
Interfaces o~ v
+ » Memory Interfaces
< DEVC Ballbad
. L Logic to Memory o Controll;
1 Interconnect »
4 Y Y
D bync 12[13 [14[15
Clock 8 |9 |10]11 P S PS
5 415 |6 |7 rocessin stem
Resets I Generatic | | Rrmrmrme g sy (PS)
of1[2 E B DMA .
lod 1412034 ged 32b GP 32b G Heiam Mlconfig High Performam XADC
PS-PL AT XTI AES/ AXI 32b/64b SI;
MIO (EMIO)
Clock Ports Maste 3 SHA Ports
Ports
Programmable Logic(PL)

39

9/15/25 6S965 Fall 2025

Direct Memory Access (DMA

Summary R

Zynq Block Design

1/0 Peripherals
Application Processor Unit (APU)

SWDT
TIE
> ™ ™
< ARM Cortex -A9 ARM Cortex -A9
. System Level CPU CPU
— Control Regs

'l + GI(‘:- | Snoop Control unit
—% 1 512 KB L2 Cache and Controller

> OCM 256 KB

CoreSight Interconnect SRAM
Central L_Compon 2
Interconnect

k|
L]
v

4

A

FLASH Memory
Interfaces & <— DAP
d SRAM/N(
NAND
UAD SP] <— DEVC I Programmable
S Logic to Memory

Interconnect i

b L
SMC Tim . 4 Y
Calculati
DMA Bync 12
% 8 |9
Clock 4 Processing System(PS)
Resets I Generati 3 o
) 1 DMA 7
M glli%xtended PS-PL Channels Config XADC
MIO (EMIO) 7 AES/
Clock Ports SHA

Programmable Logic(PL)

40

9/15/25 6S965 Fall 2025

Direct Memory Access (DMA)

* Instead of having the FPGA interface through
layers of caches (which can be slow), the DRAM

Memory controller can be Accessed Directly
from the FPGA.

* |[f used correctly, this can happen
simultaneously with the processor running,

provided it isn’t having cache misses and going
to DRAM

* Allows actual Memory-Mapped Linkage of
information between PS and PL

* Can facilitate massive amounts of data (100’s of
MBs at very high speeds when done in bursts)

9/15/25 65965 Fall 2025 41

Illusion of Continuous Address Space

* Every piece in the
entire system can

talk and send
messages back
and forth using a
consistent and
global address
scheme

9/15/25

Hard IO

FPGA

—/

A\

/

.

Memory 1

Address
Space

by

65965 Fall 2025

/

Core 0

Core 1

*Not really memory per say...
42

Central Interconnect SCU and Cache

handles address requests controllers know how to
Zyn q B lOC k between processor and direct address space

D o FPGA, external IO, etc... request to the correct
Iagra I I l Determines where to route resources
them

Zynq Block Design

—] 1/0 Peripherals General
SPI 0 Settings Application Processor Unit (APU)
BankO ISZP cl !
MIO 0 P w0 oy
(15:0) 12C 1 R ARM Cortex -A9
CANES - System Level
CAN 1 — Control Regs
UART 0 64b
Vo UART 1 AXI
MUX GPIO v Snoop Control unit Acy
(MIO) SD O DMAS Slave
<64 SD 1 channgl 512 KB L2 Cache and Controller Ports
USB 0
USB 1 OCM
ENET O CoreSight Interconnect
ENET 1 Central Components
Bank1 Interconnect {
MIO FLASH Memory
(53:16) Interfaces DAP | v
ili?\lhll:')/NOR » Memory Interfaces
~—
QUAD SPI DEVC | Programmable $| DDR2/3,LPDDR2
T T Logic to Memory N Controller
SMC Timing Jierconnect -
Calculation
DMA Bync 12[13 1415
| k 8 |19 110|111 .
Clock 4[5 6 [7 Processing System(PS)
Resets | Generation S5
0 | 1 | 2 | 3| DMA 7 f
of1f 1283t . Geq 32b GP 320CRIM |- ncis |config |RQ High Performamce XADC
MIO (EMIO) PS-PL AXI AXI AES/ AXI 32b/64b Slave
Clock Ports Master Slave SHA Ports
Ports Ports

Programmable Logic(PL)

9/15/25 6S965 Fall 2025 43

Address Space Handling

* All of this address space handling between the
PS and the PL is accomplished with the
Advanced Microcontroller Bus Architecture

(AMBA)’s Advanced eXtensible Interface (or AXI)
protocol

* We’ll go over/review that in class this upcoming
Wednesday (hopefully)

9/15/25 65965 Fall 2025 44

On Top of Low Level

Skipping AXI for a moment.

6666666666666

Python for Zyng...Pynq

Jupyter notebooks,

browser-based interface PYNQ enables JupyterLab
/ on Zynqg and ZU+

Jupyter web
Server Hardware C-drivers wrapped

IPython kernel ﬂ in Python packages

Ubuntu-based
Linux

Overlays/designs

ARM A9 / A53 ZU+ Fabric

[

E . HTML CSS JavaScript

Taken from some Xilinx talk | went to...
9/15/25 6S965 Fall 2025 46

Yocto yocto

PROJECT

* Yocto Is a project dating back >10 years...focus
of it is to build linux for embedded systems
applications

* With Yocto you can basically build images of
linux distributions targeted at small, particular
processors (such as the ARM cores on the Zynq
chip)

* Yocto is installed on your computer (kinda like
any tool) and then you build for other
systems...just like how we build for our FPGA
with Vivado.

9/15/25 65965 Fall 2025 47

PetalLinux

* AMD/Xilinx took Yocto, added some stuff on top
Intended to streamline these tools for their chips
and architectures spec:lflcally and called It
PetalLinux e et e el

https://discuss.pynq.io/t/deploying-pyng-and-jupyter-with-petalinux/677

9/15/25 65965 Fall 2025 48

PYNQ uses an Ubuntu based Linux

PYNQ uses Ubuntu’s: PYNQ bundles :
* Root file system (RFS) * Development tools
» Package manager (apt-get) » Cross-compilers
* Repositories + Latest Python packages
(" Pack Ubuntu/)
ackage untu
Manager/ Debian Dev PF;}::tl?aone
Repositor Package Tools S 9
. y S , PYNQ'’s

Ubuntu Root File System Ubuntu-based Linux

Kernel, Bootloader

PYNQ uses the PetalLinux build flow and board support package:
* Access to all Xilinx kernel patches

* Works with any Xilinx supported board

» Configured with additional drivers for PS-PL interfaces

Taken from some Xilinx talk | went to...
9/15/25 6S965 Fall 2025 49

PYNQ Framework

/Applications\

python .
sl
Jupyter

o~

4 Software)

g
=
g
=
g
E
]
Vivado™ HLS

nnnnnnnnnn

Hardware

- VIVADO!
Y. n

k) Y/\/Q

4 2)
Jupyter/ L[-L[PYNQ notebooks]
IPython
\ [matplotlib] [numpy] """" [scikit-learn] [opencv])
f LLL[X)
PYNQ libs]
Python [dma]
- { . H crio H interrupt { Mmio H tibcma.so Y
Linux kernel
{ xdevcfg]—[sysgpio H uio]-[devmem H xlnk]—‘
e l| axi_intc ,I N
[_[User designs] \
FPGA . L[_[PYNQ overlays]
L LL[PYNQ IPs])

Taken from some Xilinx talk | went to...

9/15/25

635965 Fall 2025

} Apps

} APIs

]- Drivers

]- Bitstreams

—/

PYNQ™

50

Pyng Compromises

* With the Pynq framework you’re basically
starting with a pre-built Yocto/Petalinux
Implementation that people have already
designed for you.

* To get the most out of a chip, one may want to go
and do their own custom version and build and

then make an image.

* You can 100% build your own PYNQ image from

scratch or with modifications:
* https://pynq.readthedocs.io/en/latest/pynq_sd_card.html

9/15/25 65965 Fall 2025 51

We’re largely ignoring middle part

]- Drivers

/Applications\ 4 2)
AR Jupyter/ LLL[PYNQ notebooks]
python S IPython
Jlﬁ)y\ter _ [matplotlib] [numpy] """" [scikit-learn] [opencv])
S’
D J < N
PYNQ libs
(" Software) | Python I S]
atiul . \ [PL]-[GPIO]-[Interrupt]-[MMIO]-[libcma.so]/
SDSeC™ [#)) ¢
K ~/ Linux kernel
- [xdevcfg]—[sysgpio]—[uio]-[devmem]—[xlnk]—“
(v e]
Hardware e L2 1 J R
P \/l\/ADO’ [_[User designs] N
%ZW%) FPGA . L[_[PYNQ overlays]
g LL[PYNQ IPs] y

Taken from some Xilinx talk | went to...

9/15/25

635965 Fall 2025

} Apps

]- APIs

]- Bitstreams

—/

PYNQ™

52

Physical Pinout of Pyng

6666666666666

ZYNQ 7020 is a chip like any other
chip

* /Zynq package is a ball grid
array (all pins are underneath)

Can’tuseiron

* One of the most unforgiving
packages out there...

Still from video of somebody “reballing” an Xilinx chip
https://www.youtube.com/watch?v=DVTxHx0z-wo

9/15/25 6S965 Fall 2025 54

Assigning Pins

Summary x| Device x| Schematic x| Device (2) x| Package x = 2?2000

Once design is synthesized you
can specify where to route (we’ll
not do this much since much of
this has been decided ahead of
time with the PYNQ board’s PCB
layout, but if you were designing
with the chip from scratch this
would be part of process

 Pinout file can be found here:

* https://www.xilinx.com/content/dam/xilinx/support/packagefiles/z7
packages/xc7z020clg400pkg.txt

9/15/25 635965 Fall 2025 55

400 Pins
Listed Out

* Some pins
connectto the PL
part of chip

* Some pins
connect to the PS
part of chip.

* Just how it goes...

9/15/25

Device/Package xc7z020c1g400 9/18/2012 09:51:09

Pin
R11
M9
Jie
J9
L9
L10
F11
F9
M10
K10
K9
F10
N6
R6
R10
G6
F6
T6
M6
L6
J6
V5
u7

H20
G19
G20
H15
G15
K14
J14
N15
N16
L14
L15
M14
M15
K16
J16
J15

E11l
c7

8

E14
D10
F14
D11
F15
D13
C13
E16
D15

Pin Name

DONE_0

DXP_0

GNDADC_0

VCCADC_0

VREFP_0

VN_0

VCCBATT_0

TCK_0

DXN_0

VREFN_0

VP_0

RSVDGND

RSVDVCC3

RSVDVCC2

INIT_B_@

TDI_0

TDO_0

RSVDVCC1

CFGBVS_0
PROGRAM_B_0

TMS_0
10_L6N_TO_VREF_13
I0_L11P_T1_SRCC_13
TIO0_L1IN_T1_SRCC_13
I0_L12P_T1_MRCC_13
I0_L12N_T1_MRCC_13
I0_L13P_T2_MRCC_13
10_L13N_T2_MRCC_13
10_L14P_T2_SRCC_13
I0_L14N_T2_SRCC_13
10_L15P_T2_DQS_13
I0_L15N_T2_DQS_13
10_LION_I1_AD1IN_35
I0_L11P_T1_SRCC_35
I0_L1IN_T1_SRCC_35
I0_L12P_T1_MRCC_35
I0_L12N_T1_MRCC_35
I0_L13P_T2_MRCC_35
I0_L13N_T2_MRCC_35
I0_L14P_T2_AD4P_SRCC_35
I0_L14N_T2_AD4N_SRCC_35
I0_L15P_T2_DQS_AD12P_35
I0_L15N_T2_DQS_AD12N_35
I0_L16P_T2_35
I0_L16N_T2_35
I0_L17P_T2_AD5P_35
I0_L17N_T2_AD5N_35
I0_L18P_T2_AD13P_35
I0_L18N_T2_AD13N_35
I0_L19P_T3_35
I0_L19N_T3_VREF_35
I0_L20P_T3_AD6P_35
I0_L20ON_T3_AD6N_35
I0_L21P_T3_DQS_AD14P_35
I0_L21N_T3_DQS_AD14N_35
I0_L22P_T3_AD7P_35
I0_L22N_T3_AD7N_35
I0_L23P_T3_35
I0_L23N_T3_35
I0_L24P_T3_AD15P_35
I0_L24N_T3_AD15N_35
10_25_35

PS_CLK_500
PS_MIO_VREF_501
PS_POR_B_500
PS_MI015_500
PS_MI017_501
PS_MI019_501
PS_MI021_501
PS_MI023_501
PS_MI025_501
PS_MI027_501
PS_MI029_501
PS_MI031_501
PS_MT033 501

Memory Byte Group Bank VCCAUX Group Super Logic Region
N

NA 0 NA A
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
] 13 NA NA
1 13 NA NA
1 13 NA NA
1 13 NA NA
1 13 NA NA
2 13 NA NA
2 13 NA NA
2 13 NA NA
2 13 NA NA
2 13 NA NA
2 13 NA NA
1 35 NA NA
1 35 NA NA
1 35 NA NA
1 35 NA NA
1 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
NA 35 NA NA
NA 500 NA NA
NA 501 NA NA
NA 500 NA NA
NA 500 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA

I/0 Type

CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
HR

MIO
MIO
MIO
MIO
MIO
MT0

No-Connect
N

Aside...The RFSoC is Bigger

e Go to this site (https://www.xilinx.com/support/package-pinout-files/zynq-
ultrascale-plus-pkgs.htmt) aNd use the non-functional sort
tools to find the pin file for the xczu48

* You'll see thatitisa 1156 pin BGA

Showing 1-24 ~ of 24 Sort By: Featured

Download Table

Price
e 2;];?;:?; @ - e ‘

XCZU48DR-1FFVE1156E s 0 1:$20,127. 50200 Zynq® Tray @ Active McCU, Quad ARM® - 256KB DDR, CANbus, 500MHz,
n Stock ra
|101 ZUBP F;FSOC AS3 FPGA UltraScale+™ FPGA Cortex®-A53 DMA, EBI/EMI, 1.2GHz
) 5686 Check Lead Time RFSoC MPCore™ with PCle Ethernet, 12C,
AMD CoreSight™, MMC/SD/SDIO,
Dual SPI,
ARM®Cortex™- UART/USART,
R5 with USB OTG %
CoreSight™ 3
B

9/15/25 635965 Fall 2025 57

Now, the Pynq Z2 board made
some choices for us

* If you were the engineer
laying out the
chip/board from scratch
you would also need to
make these decision.

e Some decisions have
very little wiggle room,
others do.

[
[
C o
ok
i
-,
e
=
e

9/15/25 6S965 Fall 2025 58

Schematicof =

PYNQ Z2
Board

P6
DDR3_VREF }—E

U15E

DDR PORT 502

PS_DDR_VREF1_502
PS_DDR_VREF0_502

PS_DDR_A14_502

PS_DDR_A13_502
PS_DDR_A12_502

PS_DDR_A11_502

PS_DDR_A10_502

PS_DDR_A9_502

PS_DDR_A5_502

PS_DDR_A4_502

PS_DDR_A3_502

PS_DDR_A2_502
PS_DDR_A1_502

PS_DDR_A0_502

PS_DDR_BA2_502
PS_DDR_BA1_502
PS_DDR_BAO_502

PS_DDR_DRST_B_502

502

PS_DDR_WE_B_502

PS_DDR_CKE_502

F
D4 |

4

G

F:

J

K

K

L.

L

M

K:

M3

K2

NZ

13 MEM_BANK[2..0] < NEARBARIG 5
MEM_BANK1 R4

MEM_BANKO 5

13 MEM_RE! g‘
13 MEM_RAS# =
13 MEM_CAS# N
13 MEM_MAO_CS_LO m

13 MEM_WE#

N3

2

13 MEM_CLKO_P

13 MEM_MAO_CKEO
13 MEM_CLKO_N

R218,,, 80.6 1%

PS_DDR_CKP_502
PS_DDR_CKN_502

PS_DDR_ODT_502

13 MEM_MAO_ODTO <<-

.! R219 80.6 1% DDR _VRP H5
VGGV R220 " 80.6 1% __DDR VRN G5

PS_DDR_VRP_502
PS_DDR_VRN_502

PS_DDR_DQ31_502
PS_DDR_DQ30_502
PS_DDR_DQ29_502
PS_DDR_DQ28_502
PS_DDR_DQ27_502
PS_DDR_DQ26_502
PS_DDR_DQ25_502
PS_DDR_DQ24_502
PS_DDR_DQ23_502
PS_DDR_DQ22_502
PS_DDR_DQ21_502
PS_DDR_DQ20_502
PS_DDR_DQ19_502
PS_DDR_DQ18_502
PS_DDR_DQ17_502
PS_DDR_DQ16_502
PS_DDR_DQ15_502
PS_DDR_DQ14_502
PS_DDR_DQ13_502
PS_DDR_DQ12_502
PS_DDR_DQ11_502
PS_DDR_DQ10_502
PS_DDR_DQ9_502
PS_DDR_DQ8_502
PS_DDR_DQ7_502
PS_DDR_DQ6_502
PS_DDR_DQ5_502
PS_DDR_DQ4_502
PS_DDR_DQ3_502
PS_DDR_DQ2_502
PS_DDR_DQ1_502
PS_DDR_DQO_502

PS_DDR_DM3_502
PS_DDR_DM2_502
PS_DDR_DM1_502
PS_DDR_DM0_502

PS_DDR_DQs_P3_502
PS_DDR_DQS_N3_502
PS_DDR_DQS_P2_502
PS_DDR_DQS_N2_502
PS_DDR_DQS_P1_502
PS_DDR_DQS_N1_502
PS_DDR_DQS_P0_502
PS_DDR_DQS_N0_502

V3

<
N

W3
Y2
Y4

B

<
=

N

[=
=

=
N

DOR? D(15.0) > DDR3_D[15.0] 13

ENEEEE

o|o|

E

ol

w32

Y1
T1
F1
Al

XC72020-1CLG400C

R225

20K

N M1 SYMEM_DM1 13
MEM_DMO 13

MEM_DQS1_P 13
MEM_DQS1_N 13
MEM_DQSO_P 13
MEM_DQSO_N 13

SP|SCLK FBVCEG1

e The 512 MB DRAM is routed to PS ... Pins of the

Zynq chip.

* Meaning the DRAM is only accessible in the
processing side

* There is no PL-only accessible DRAM

9/15/25

635965 Fall 2025

59

Schematic of
PYNQ Z2
Board

 Ethernet, SD card, some
HDMI control portions,
OTG/USB are all also
wired to PS_ pins

e That means those are
not accessible via

9/15/25 6S965 Fall 2025

U15G

Bank 501

PS_SRST_B_501
PS_MIO_VREF_501

PS_MIO16_501
PS_MIO17_501
PS_MIO18_501
PS_MI019_501
PS_MI020_501
PS_MI021_501
PS_MIO22_501
PS_MI023_501
PS_MIO24_501
PS_MI025_501
PS_MIO26_501
PS_MI027_501
PS_MI028_501
PS_MI029_501
PS_MIO30_501
PS_MIO31_501
PS_MI032_501
PS_MIO33_501
PS_MIO34_501
PS_MIO35_501
PS_MIO36_501
PS_MI037_501
PS_MIO38_501
PS_MIO39_501
PS_MIO40_501
PS_MI041_501
PS_MI042_501
PS_MIO43_501
PS_MI044_501
PS_MI045_501
PS_MIO46_501
PS_MIO47_501
PS_MIO48_501
PS_MI049_501
PS_MIO50_501
PS_MIO51_501
PS_MI052_501
PS_MIO53_501

B10 PS_RST

E11 VREF0OV9
A19 ETH_TXCK
E14 ETH TXDO
B18 ETH TXD1
D10 ETH_TXD2
A17 ETH_TXD3
F14 ETH TXCTL
B17 ETH_RXCK
D11 ETH_RXDO
A16 ETH RXD1
F15 ETH _RXD2
A15 ETH_RXD3
D13 ETH RXCTL
C16 OTG _DATA4
C13 OTG _DIR
C15 OTG STP
E16 OTG_NXT
A14 OTG_DATAQ
D15 OTG_DATA1
A12 OTG DATA2
F12 OTG_DATA3
A11 OTG_CLK
A10 OTG DATAS
E13 OTG_DATA6
C18 OTG_DATA7
D14 R217,, 40.2 5%
C17 SD"CMD

E12 SD_DO0

A9 SD D1

F13 SD D2

B15 SD_D3

D16 OTG_RESETN
B14 SD CD

B12

C12

B13 HDMI TX SCL
B9 HDMI_TX SDA
C10 ETH_MDC
C11 ETH MDIO

XC7Z020-1CLG400C

COMMON

ETH_TXCK
ETH_TXDO
ETH_TXD1
ETH_TXD2
ETH_TXD3
ETH_TXCTL 5
ETH_RXCK 5
ETH_RXDO 5
ETH_RXD1 5
ETH_RXD2 5
ETH_RXD3 5
ETH_RXCTL 5
OTG_DATA4 7
OTG DIR 7
OTG_STP 7
OTG_NXT 7
OTG_DATAO
OTG_DATA1
OTG_DATA2
OTG_DATA3
OTG_CLK 7
OTG_DATA5
OTG_DATA6 7
OTG_DATA7 7
SD_CCLK 5
SD_CMD 5
SD D0 5

SD D1 5

SD D2 5

SD D3 5
OTG_RESETN 7
SD CD 5

o,

EURNENEN]

~

HDMI_TX_SCL 6
HDMI_TX_SDA 6
ETH_MDC 5
ETH_MDIO 5

60

Most other things on the board are
actually wired to pins that are part of
the PL (Programmable Logic)

* SO pretty much
everything else...

* All these the random
pins, the audio, the
HDMI infout, buttons, eSS e
etc... B

PEEET - ORRET

".

9/15/25 6S965 Fall 2025 61

List of I/O Peripherals for the PS:

 "Hard” IP cores exist
on the PS that
perform certain
Interfacing
roles/protocols:

* These can be
multiplexed out to
many subsets of
pins

9/15/25

I/0 Interface

Description

SPI (x2)

Serial Peripheral Interface [10]
De facto standard for serial communications based on a 4-pin
interface. Can be used either in master or slave mode.

12C (x2)

I°C bus [14]
Compliant with the 12C bus specification, version 2. Supports
master and slave modes.

CAN (x2)

Controller Area Network
Bus interface controller compliant with ISO 118980-1, CAN
2.0A and CAN 2.0B standards.

UART (x2)

Universal Asynchronous Receiver Transmitter
Low rate data modem interface for serial communication. Often
used for Terminal connections to a host PC.

GPIO

General Purpose Input/Output
There are 4 banks GPIO, each of 32 bits.

SD (x2)

For interfacing with SD card memory.

USB (x2)

Universal Serial Bus

Compliant with USB 2.0, and can be used as a host, device, or
flexibly (“on-the-go” or OTG mode, meaning that it can switch
between host and device modes).

GigE (x2)

Ethernet
Ethernet MAC peripheral, supporting 10Mbps, 100Mbps and
1Gbps modes.

Taken from The Zynq Book

635965 Fall 2025 62

Using them

* |[n a normal microcontroller, you would simply
activate a module, such as an SPI controller and
connect it to some pins.

* The way the Pynq Z2 board is laid out you can’t
do that.

* |n an effort to ensure flexibility for development,
they connected most things and broke out most
general IO from the PL side.

9/15/25 65965 Fall 2025 63

ssigning I/0O pins to Hard IP

eripherals

ZYNQ7 Processing System (5.5)

© Documentation £F Presets

Page Navigator

Zynq Block Design
PS-PL Configuration
Peripheral I/0 Pins
MIO Configuration
Clock Configuration

DDR Configuration

SMC Timing Calculation

Interrupts

9/15/25

IP Location #F Import XPS Settings

Peripheral /O Pins

Search:

Peripherals

SPIO

» /I SPI1

UART O

» /1 UART 1

12C 0

12C 1

VI CAN O

CAN 1
TTCo
TTc1
SWDT
PITAG
TPIU
GPIO MIO

GPIO EMIO

il et B i B a0, 11

Re-customize IP

C4
C
/75

reen g

« O = = 0

a/'e Sa

Me .
|Bank1 LVCMOS 3.3V ; 'O/ns/

Bank 0 | LVCMOS 3.3V~

Ly o pl By oy By 0.0 S0, L2, L22 L2 o4 Lony LB Lo, o8, L2020, L2, L2220y L22 LSt L35

SPI0 mos SPI0 mos &>

UARTO UARTO UARTO
UARTL UARTL UARTL UARTL
E—
12C0 12C0 12C0
12C1 12c1 12C1
CANO CANO CANO
CAN1 cant CANL CANL
CANO: [MIO10-11]
TTCO
JICL TTC1
SWDT SWDT
PITAG PITAG PJ
Trace Trace

= [} 7 2 Sg 10 11 12 13 oy oy ulby uld
I I I —

20 21 L2223, .24, 25, LO6, W27, L8y L20

w
=]
w
=
5]
w
0
u

=
w
i

oK | | Cancel

6S965 Fall 2025 64

Linking to Outside World

* The I/0O pins normally ~2°°"° e e e e
go to the outside 7 oPo =P <
world, but on our
PYNQ board we need

to extend them into
the PL (which has its
own actual physical
output pins)

* Making the GPIO pins
EMIO (Extended)
Multiplexed In/Out)
puts them into the PL
for further
manipulation

9/15/25 6S965 Fall 2025 65

Week 1

We have specified the Zynq PS to route its 10
pins out into the PL fabric and we can do what
we want with them

These represent pins that come

directly from the PS and interface
with DRAM (DDR) and some
hard-wired interfaces

processing_system7_0
stop_slice
GPIg [
GPIO_I[6: l—- Dinf63:0] Dout{0:0)
GP1O_O[6 0 | ’
o GPIO_T(6 Inline Slice
ZYNQ : I D DOR
FIXED_IO + {O FIXED_IO
FCLK_CLKO
rst_ps7_0_S0M pulse_maker_w_0
FCLK_RESETO_N
| |
. slowest_sync_clk mb _reset = b ck
ZYNQ7? Processing Syster | |
: e S bt ext_reset_in bus_struct_reset[0:0] jm —J rst Rap Pulse led_controller w_0
aux_reset_in peripheral_reset{0:0) i {)
mb_debug_sys_rst interconnect_aresetn[00) @ pulse_maker_w_v1 0 clk
dem_locked peripheral_aresetn{0:0) t rst
) go_up_slice en RTL q@:0)
Pr e [e — “
SYyE esetl l—‘qo_up
tns(3:0) D> Din(3:0] Dout{0:0] — go_down
{ stop
Inline Slice L)
go_down_slice led_controller_w_v1_0
B b Can then route into
Inline Slice .
outsiae worlao mPL’S

bank of usable pins

9/15/25 6S965 Fall 2025 66

Clicking on these things is really just a nice

way to configure internal multiplexers

y

ZYNQ7 Processing System (5.5)

Page Navigator - Peripheral /O Pins

© Documentation £F Presets IP Location %} Import XPS Settings N and Sp
/¢
/73

Zynq Block Design « Q T = 0 a,'e
PS-PL Configuration Search: a
Peripheral I/0 Pins Bank 0 | LVCMOS 3.3V v | Bank 1 | LVCMOS 3.3V ~
) . Peripherals Clas il it i ey i e F ey et iy 10 11 14 15 16 17 18 18 20 21 22 23 24 25 26 27 28 23 30 31 32 33 34 35
MIO Configuration > SPI O

SPI0 mos SPI0 mos &>

Clock Configuration > /1 SPI1

UART O
DDR Configuration UARTO UARIO UARTO
> /) UART 1 UARTL UARTL UARTL UARTL
SMC Timing Calculation
12C 0
12co 12co 12co
Interrupts
l2C 1 12c1 12c1 12c1
» /) CAN D caND caND
’ CANT CAN1 cant cANL CAN1 CAN1 CAN1 CAN1 . . ne
CAN O [MIO 10-11 | RT f
Trco TTCo TTCO U A \ ‘S ‘
el e TTC1
swoT SWDT SWDT
PITAG PITAG PITAG P
TPIU Trace Trace
> /] GPIO MIO Ouul 2 3 4 s 6 Lz e ey 10 11 12 13 (1415 16,017 23 24 25 26 27 28 29 30 31 32 33 34 35
GPIO EMIO =

oK ‘ | Cancel

9/15/25 635965 Fall 2025 67

WAVE_OUT |
(swot || TTC 1,0 CLK N I'\ :
IOPs 7 T RESET_OuT |MIO| |
Pt 4 CLK_IN ol —_———
PS =] s e usso [*1 wtwo__weio |
S - E—SPoaPWR s
E APB TN USB 1 i uety | MO
Central i wioo] 8|
Jrterconnect AB S L RGMII0 or— |
—n o [e "1 f Gige o | S - : “QEL@‘E
e e | g
E AH::: OV = o RGMI : |
ioE 1 o
R Port
= X et P
] :‘“ SOI00 [=1 50100 e
E‘I AHB 32 — SDIO 1
OMA) o| mop
- E AMB 32 I—‘R"" SDIO 1 »!vluo g Vokage
Processor interconnect I = s
AX1 32 3_] E mnlm A Regs Quad SPI 0 ‘ o PS_pinS
AX132 MIO
(o] e en | Quad SPI 1 _ ot Al
= Regs oot Pin
AX132 = ONFi 0 |
D o e R
fmmmmhlhg L
[(MB se [cowe. [cPioBanks08 1 e — .
\ et (32w [GPiobams 283 - Unconnected Pins
APe — . a—
o O [] = - II SPI {0, 1) lli'L vl == on PYNQ Z2 board
< _.3 E‘o—-icm(o, Rl imw
==
\ ______________ Route to PL IO

L BRI Logie LN which is attached

Taken from the MicroZed Chronicles Blog/Xilinx Docs
9/15/25 65965 Fall 2025 68

Other PL-PS
Interconnects

6666666666666

Interface Between PS and PL

* Four Ways to
Transfer Data from
the PS to the PL

* 64 bits of GPIO
* 4 GP AXI Ports
* 4 HP AXI Ports
* 1 ACP Port

S
S
M
M
M
M
M
M

<

Just talked about this

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
9/15/25 6S965 Fall 2025 70

GPIO Pins

e General Purpose Input Output :

M

M

* You can via software (writing HP Ports M

to registers), control and be Sk -

controlled by ~54 pins M

* These are good for low-speed i v
control, configuration, reset GPIO

(2x 32 bit)

signals...things like that.

9/15/25 6S965 Fall 2025 71

g ™
{ \

GPio_0 = |||
Interrupts o om0 4 L
ZYNQ. GPIO O[63:0] P =

GPIO T[63:0] p» ==

* The GPIO of the PS can be setup to have
interrupts even when you are routing them
“internally” into the PL Using EMIO.

* This means you can actually have the PL trigger

Python processes to run by setting up the
interrupts as well as some async programming

on the Python side

* https://pyng.readthedocs.io/en/latest/pynqg_libraries/interrupt.html

* https://pyng.readthedocs.io/en/latest/overlay design methodology/
pyng and_asyncio.html#pynqg-and-asyncio

9/15/25 635965 Fall 2025 72

https://pynq.readthedocs.io/en/latest/pynq_libraries/interrupt.html
https://pynq.readthedocs.io/en/latest/pynq_libraries/interrupt.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html

Interface Between PS and PL

* Four Ways to
Transfer Data from
the PS to the PL

* 64 bits of GPIO
* 4 GP AXI Ports
* 4 HP AXI Ports
* 1 ACP Port

S
S
M
M
M
M
M
M

<

Just talked about this

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
9/15/25 6S965 Fall 2025 73

Master/Slave Terminology

* I’ve been a big fan of moving away from this
terminology.

* For SPI, for example, instead of MOSI/MISO, do
COPI/CIPO (controller/peripheral), etc...

* However, all of the AMD/Xilinx, use
Master/Slave and everything has that M’s and
S’s prepended, appended, etc..

* I’'m going to just use their nomenclature so we
don’t have to constantly be mapping between
alternate names.

9/15/25 65965 Fall 2025

AXI Ports

* Parallel Busses of two
different flavors that
allow us to pretty
quickly transfer data
between the
Processing System
and the FPGA section
using shared registers
and some other stuff

S
S
M
\"
M
M
M
M

<

9/15/25 6S965 Fall 2025 75

ACP Port

 Accelerator
Coherency Port

* 64-bit wide bus that
can transfer data from
very quickly from PL
fabric

S
S
M
\"
M
M
M
M

<

9/15/25 6S965 Fall 2025 76

e There’s lot of neat IP we can work

AXI EVGI’yWhere with....if you wanted to implement ¢
hardware accelerated Fast Fourier
Transform you totally can...

Search:
FoAXld-Stream Data Width Converter ~ AX|
T AX|4-Stream Interconnect
¥ A¥|4-Stream Protocol Cl
AX|4-Stream Register Sl xfft 0
¥ AX¥l4-Stream Subset Col L
o - =~ S _AXIS DATA MAXIS_DATA —t
AXI b & Mld'stream S'NltCh - - - m axis data tdata[Bl:D] P -
— = P s_axis data_tdata[31:0] - - -
AX|4-Stream to Video O AXl | < axis data tiast e
— . _ - < s axis data tready m_axis_data tready 4 |=
&¥14-Stream Verificatior L m axis data tvalld p |-
= i i — P s_axis data_tvalid - - AXI
AX] AHELite Bﬂdge =_ 5_AXIS_CONFIG event_frame_started j=
- _ = b s axis config tdata[15:0] event_tlast_unexpected =
AXI APB B”dge - - - ' event_tlast_missing (=
1 =| 9 s-axis_config_tready event status channel halt
LT | 1N | —
A¥] BRAM Controller — » s axis_config_tvalid ~status_ -
i event_data_in_channel_halt
EMTER to select, ESC to cal event_data out_channel_halt p=

Fast Fourier Transform

9/15/25 635965 Fall 2025 77

Advanced Microcontroller Bus
Architecture (AMBA)

* Version 1 released in 1996 by ARM

e 2003 saw release of Advanced eXtensible
Interface (AXI3)

e 2011 saw release of AXI4

* There are no royalties affiliated with AMBA/AXI so
they’re used a lot.

* [tis a general, flexible, and relatively free*
communication protocol for development

https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architectu

© 9/15/25 65965 Fall 2025 78

Three General Flavors of AXI4

* AXI4 (Full AXI): For memory-mapped links.
Provides highest performance.
1. Addressis supplied
2. Then a data burst transfer of up to 256 data words

* AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)

1. Addressis supplied
2. One data transfer

* AXI4 Stream: Meant high-speed streaming data
e Can do burst transfers of unrestricted size
* No addressing

e Meant to stream data from one device to another
quickly on its own direct connection

From the Zynq Book

9/15/25 65965 Fall 2025 79

Memory Map?

* Memory mapped means an address is specified
within the transaction by the master (read or
write). This corresponds to an address in the
system memory space.

* For AXl4-Lite, which supports a single data
transfer per transaction, data is then written to,
or read from, the specified address

* For Full-AXI4 sending a burst, the address
specified is for the first data word to be
transferred, and the slave must then calculate
the addresses for the data words that follow.

* AXI-Stream has no addressing so no memory
mapping

9/15/25 65965 Fall 2025

AXl ldea

« Communication between two devices (Master and
Slave) is carried out over multiple assigned

“channels”

e Each channel has its own collection of wires which
convey data, signals, etc.

* The channels can work somewhat independently,
however in practice what one channel does is often
the result of what a different one did previously

* Five Types of Channels (may have all or a subset):
 Read Address: "AR” channel

Read Data: “R” channel

Write Address: “AW” channel

Write Data: “W” channel

Write Response: “B” channel

9/15/25 65965 Fall 2025

81

Read Wiring

Master
interface

Generalized collection of wires

“Channel”. Will contain numerous

wires
Read address channel

/

/

Address
and control
—_—
Read data channel
Read Read Read Read
data data data data
< <

Master initiates communication, Slave responds

9/15/25

635965 Fall 2025

Slave
interface

82

Write Wiring

Master
interface

Write address channel

Address
and control

—

Write data channel

Write
data

Write
data

Write
data

Write
data

—_—> —> ———> —»

Write response channel

Write
response

9/15/25

635965 Fall 2025

«——

Slave
interface

83

Within Each Channel are wires:

* These wires serve specific purposes.

e Some are universal to all channels, and others
are specific

9/15/25 65965 Fall 2025

84

AXI Clock

ACLK
From clock sourc

* Everything in system will run off of AXI clock
usually called ACLK in documentation

* No combinatorial paths between inputs and
outputs. Everything must be registered.

* All sighals are sampled on rising edge

* AXI modules should also have Reset pins. AXI
work ACTIVE LOW so the Reset pin is usually
called ARSTn or ARESETn

9/15/25 635965 Fall 2025

85

Valid and Ready

ACLK
From clock source

* All of AXl uses the same handshake procedure:
* The source of a data generates a VALID signal

* The destination generates a READY signal

* Transfer of data only occurs when both are high

e Both Master and Slave Devices can therefore
control the flow of their data as needed

9/15/25 635965 Fall 2025 86

Everything Else...

From clock source

* Everything else is information and depends on what
Is needed in situation. Could be:
* Address
* Data

* Other specialized wires like:

 STRB (used to specify which bytes in current data step are valid,
sent by Master along with data payload to Slave)

 RESP (sort of like a status
* LAST (sent to indicate the final data clock cycle of data in a burst)

9/15/25 635965 Fall 2025 87

Each channel has its own subset of
“stuff” that goes along with those
core signals shared by all

For example, the Write Data Channel ("W” channel)

Signal Source Description

WID Master Write ID tag. This signal is the ID tag of the write data transfer. Supported only in AXI3.
See Transaction ID on page AS-77.

Pa y lo a d WDATA Master Write data.

WSTRB Master Write strobes. This signal indicates which byte lanes hold valid data. There is one write
strobe bit for each eight bits of the write data bus. See Write strobes on page A3-49.

Supplemental

WLAST Master Write last. This signal indicates the last transfer in a write burst. See Write data channel Stuff
on page A3-39.

WUSER Master User signal. Optional User-defined signal in the write data channel.

WVALID Master Write valid. This signal indicates that valid write data and strobes are available. See
C 0 R E Channel handshake signals on page A3-38.

WREADY Slave Write ready. This signal indicates that the slave can accept the write data. See Channel
handshake signals on page A3-38.

9/15/25 6S965 Fall 2025 88

The Read Data Channel:

Table A2-6 Read data channel signals

Signal Source Description

RID Slave Read ID tag. This signal is the identification tag for the read data group of signals
oenerated by the slave. See Transaction ID on page A5-77.

Payload] roata sive Read data.

RRESP Slave Read response. This signal indicates the status of the read transfer. See Read and write
response structure on page A3-54.

Supplement
RLAST Slave l;:;;l/l:;fé ';'his signal indicates the last transfer in a read burst. See Read data channel on al Stuff

RUSER Slave User signal. Optional User-defined signal in the read data channel.

DDOTIEd On N AXI4 er-delined Onagling On Nago

RVALID Slave Read valid. This signal indicates that the channel is signaling the required read data. See
C O R E Channel handshake signals on page A3-38.

RREADY Master Read ready. This signal indicates that the master can accept the read data and response
information. See Channel handshake signals on page A3-38.

9/15/25 6S965 Fall 2025 89

Read Address Chanel

Table A2-5 Read address channel signals

Signal Source Description

ARID Master Read address ID. This signal is the identification tag for the read address group of
signals. See Transaction ID on page A5-77.

Payload

ARLEN Master Burst length. This signal indicates the exact number of transfers in a burst. This
changes between AXI3 and AXI4. See Burst length on page A3-44.

ARSIZE Master Burst size. This signal indicates the size of each transfer in the burst. See Burst size on
page A3-45.

ARBURST Master Burst type. The burst type and the size information determine how the address for each
transfer within the burst is calculated. See Burst type on page A3-45.

ARLOCK Master Lock type. This signal provides additional information about the atomic characteristics
of the transfer. This changes between AXI3 and AXI4. See Locked accesses on
page A7-95.

ARCACHE Master Memory type. This signal indicates how transactions are required to progress through
a system. See Memory types on page A4-65.

ARPROT Master Protection type. This signal indicates the privilege and security level of the transaction,
and whether the transaction is a data access or an instruction access. See 4Access
permissions on page A4-71.

ARQOS Master Quality of Service, QoS. QoS identifier sent for each read transaction. Implemented
only in AXI4. See QoS signaling on page A8-98.

ARREGION Master Region identifier. Permits a single physical interface on a slave to be used for multiple
logical interfaces. Implemented only in AXI4. See Multiple region signaling on
page A8-99.

ARUSER Master User signal. Optional User-defined signal in the read address ch:

........ n_A i

annel.

ARVALID Master Read address valid. This signal indicates that the channel is signaling valid read
C O R E address and control information. See Channel handshake signals on page A3-38.

ARREADY Slave Read address ready. This signal indicates that the slave is ready to accept an address
and associated control signals. See Channel handshake signals on page A3-38.

9/15/25

90

Write Response

Table A2-4 Write response channel signals

Signal Source Description
BID Slave Response ID tag. This signal is the ID tag of the write response. See Transaction ID on
page A5-77.

Payload

BUSER Slave User signal. Optional User-defined signal in the write response channel. Supported only

Slave Write response valid. This signal indicates that the channel is signaling a valid write
C 0 RE response. See Channel handshake signals on page A3-38.

Master Response ready. This signal indicates that the master can accept a write response. See
Channel handshake signals on page A3-38.

9/15/25 6S965 Fall 2025

Write Address Channel

Payload

CORE

9/15/25

Table A2-2 Write address channel signals

Signal

Source

Description

AWID

Master

Write address ID. This signal is the identification tag for the write address group
of signals. See Transaction ID on page A5-77.

Master

Burst length. The burst length gives the exact number of transfers in a burst. This
information determines the number of data transfers associated with the address.

This changes between AXI3 and AX14. See Burst length on page A3-44.

AWSIZE

Master

Burst size. This signal indicates the size of each transfer in the burst. See Burst size
on page A3-45.

AWBURST

Master

Burst type. The burst type and the size information, determine how the address for
each transfer within the burst is calculated. See Burst type on page A3-45.

AWLOCK

Master

Lock type. Provides additional information about the atomic characteristics of the
transfer. This changes between AXI3 and AXI4.

See Locked accesses on page A7-95.

AWCACHE

Master

Memory type. This signal indicates how transactions are required to progress
through a system. See Memory types on page A4-65.

AWPROT

Master

Protection type. This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an instruction access.
See Access permissions on page A4-71.

AWQOS

Master

Quality of Service, QoS. The QoS identifier sent for each write transaction.
Implemented only in AXI4. See QoS signaling on page A8-98.

AWREGION

Master

Region identifier. Permits a single physical interface on a slave to be used for
multiple logical interfaces.

Implemented only in AXI4. See Multiple region signaling on page A8-99.

AWUSER

Master

Master

User signal. Optional User-defined signal in the write address channel.
Supported only in AXI4. See User-defined signaling on page A8-100.

Write address valid. This signal indicates that the channel is signaling valid write
address and control information. See Channel handshake signals on page A3-38.

Slave

Write address ready. This signal indicates that the slave is ready to accept an
address and associated control signals. See Channel handshake signals on
page A3-38.

92

Generalized Transaction

Table A3-1 Transaction channel handshake pairs

Transaction channel Handshake pair

([All C h a n n e l | nte ra Ct i O n S Write address channel AWVALID, AWREADY
. Write data channel WVALID, WREADY
fo l.lOW S a m e h I g h = leve l Write response channel ~ BVALID, BREADY
structure e e
Sending One "beat” of data (one clock-cycle of data)
T T2 T3
Keep in mind this ACLK[|] |

could be 64 parallel INFORMATION |) X

wires of 1’s and 0’s (%%D. \
info or 8 bytes for READY ! Jy 1.
example...
Or it could be

something else

Figure A3-2 VALID before READY handshake

9/15/25 635965 Fall 2025 93

Generalized Transaction

Table A3-1 Transaction channel handshake pairs

Transaction channel Handshake pair

Write address channel AWVALID, AWREADY

 All Channel Interactions

Write data channel WVALID, WREADY
fo llOW S a m e h I g h -— leve l Write response channel ~ BVALID, BREADY
Read address channel ARVALID, ARREADY
St r u Ct u re Read data channel RVALID, RREADY
Sending One "beat” of data (one clock-cycle of data)
T T2 T3
Keep in mind this
g ST o e S e A e B

could be 64 parallel

: | ATION X \
wires of 1’s and 0’s w
VALID Jy 1

info or 8 bytes for

example... READY] |
Or it could be
something else Figure A3-3 READY before VALID handshake

9/15/25 635965 Fall 2025 94

Generalized Transaction

Table A3-1 Transaction channel handshake pairs

Transaction channel Handshake pair

* All Channel Interactions el chows WAL, AVRBAOY
fo l_lOW same h igh - level Write response channel ~ BVALID, BREADY
Read address channel ARVALID, ARREADY
St ru Ct u re Read data channel RVALID, RREADY
Sending One "beat” of data (one clock-cycle of data)
T T2
Keep in mind this ackk [L L1
could be 64 parallel ORMATION \ \
wires of 1’s and 0’s M VALID J \
info or 8 bytes for READY [\
example...
Or it could be Figure A3-4 VALID with READY handshake

something else

9/15/25 635965 Fall 2025 95

Other Things to Keep in Mind

* the VALID signal of the AXl interface sending
iInformation must not be dependent on the
READY signal of the AXl interface receiving that
iInformation

* an AXl interface that is receiving information can
wait until it detects a VALID signal before it

asserts its corresponding READY signal.

* Fail to Follow these rules and could have devices
wait infinitely.
* Like when two people keep going “no, after you at a
door”

9/15/25 65965 Fall 2025 96

And Up to All Five AXI channels
can come from one device

* While operating independently at their individual
transaction level, they can then report to the
larger module to provide overall interfaces

* Example:

e The slave device receives address on write channel
address

* The write data channel then becomes active and
knows where to point incoming data

* The response channel then opens and does its thing
* And soon

* Hierarchy of Control/Design

9/15/25 65965 Fall 2025 97

And you Can Use AXI to Interface
with Tons of things!

Connecting a FIR (from a Xilinx IP) to the FFT module

xfft_0

fir compiler_0

M_AXIS DATA +E
event frame_started

Tl 5 AXIS DATA

| aciic M _AXIS DATA £ |4 S AXIS_DATA event_tlast unexpected
Tl 5 AXIS CONFIG event_tlast_ missing
FIR Compiler = aclk event_status_channel_halt

event data in channel halt

event data out channel halt

Fast Fourier Transform

9/15/25 635965 Fall 2025

And you Can Use AXI to Interface
with Tons of things!

Creating a AXI-controlled joe6 module that | can then call from Python

rst_ps7_0_50M

slowest sync_clk mb_reset

ext reset in bus struct reset[0:0]

peripheral_reset[0:0]
interconnect aresetn[0:0]

aux_reset in
mb_debug sys rst

ps7_0_axi_periph

dem_locked peripheral_aresetn[0:0]

Processor System Reset

| S00_AXI
ACLK
ARESETN .?.
500 ACLK

SOO_ARESETN gsm

MO0 _ACLK

processing_system7_0

“

DOR + |}

MOO_ARESETN

joe6 0

-

4 SDO_AXI

s00 _axi_aclk

H—HE MO0 AX| 4 [

AXIl Interconnect

FIXED 10 + ||
M _AX| GFO 4

M_AXI_GPD_ACLK ZYNO‘

FCLE_CLKD

FCLE_RESETD_N £=—-o

ZYNQ7T Processing System

9/15/25

6S965 Fall 2025

s00_axi_aresetn

- <
joet_v1.0 (Pre-Production)

) DDR

—) FIXED IO

99

And you Can Use AXI to Interface
with Tons of things!

A running-average hardware

accelerator Using AXI Stream for
e R DMA (Direct Memory Access)

-

=+ 500_AXIS
500 _axis aclk

500 _axis_aresetn MOO_AXIS 4
mO0_axis_aclk

-—

mi0_axis_aresetn

avera ger_2_w1.0 (Pre-Producti on)

avg_dma axi_smc
N\ r
w M_AXI MM25 4| 34 500_AXI
o[t SAXLLTE M_AXI 52 MM i i ;;i 501_AxI -X.
=4 5 _AXIS_S2MM Ay 1 & = LW MOO_AX] 4 [e

=+ G M_AXIS_MMZS 4 [e aclk e AXL
S el mmas_prmry_reset_out n Py rESEN u u
m_axi_mm2s_aclk S -

i+
s2mm_prmry_reset_out n
m_axi_s2mm_aclk b . >
- - MM25_introut fe
B axi_resetn

AXl SmartConnect

s2mm_introut

AXl Direct Memory Access

— —0

ps7_0_axi_periph

processing_system7_0
"\ .
Al DOR 4 ||—
S_AXI_HPO_FIFO_CTRL
"I S_AXI_HP'D_ - - FIXED_IO | || s
M | Fora | o _AXI_| I
" M_AXI_GPO_ACLK ZYN O MAXLGPO i

LK H—H MOO_AX| | S AXl HPO ACLK FCLK CLKD
FBSETHN m-——m - - - FCLE_RESETO_N
Lk)
ESETHN ZYNQT Processing System
AXl Interconnect

9/15/25 6S965 Fall 2025 100

The AXI Interfaces on the Zynq Enable
PS to PL communication effectively

Interface Name Interface Description Master Slave
M_AXI_GPO PS PL
General Purpose (AXI_GP)
M_AXI_GP1 PS PL
S_AXI_GPO PL PS
General Purpose (AXI_GP)
S_AXI_GP1 PL PS
S_AXI _ACP Accelerator Coherency Port (ACP), PL PS
cache coherent transaction
S_AXI HPO High Performance Ports (AXI_HP) with PL PS
read/write FIFOs.
S_AXI_HP1 PL PS
S AXI HP2 (Note that AXI_HP interfaces are sometimes PL PS
_ — referred to as AXI Fifo Interfaces, or AFIs).
S_AXI_HP3 PL PS

Master/Slave refers to who controls/initiates comms on that bus that bus

9/15/25

635965 Fall 2025

From Zynq Book

101

General Purpose/Performance
“GP” AXI Ports

* 32 bits in size
* Maximum flexibility

* Allow register access from:
* PStoPL
* PLto PS

9/15/25 65965 Fall 2025 102

High Performance “HP” AXI Ports

* Can be 32 or 64 bits wide (or variable between, but
avoid)

* Maximum bandwidth access to external memory and
on-chip-memory (OCM)

* When use all four HP ports at 64 bits, you can outpace
ability to write to DDR and OCM bandwidths!

* HP Ports : 4 * 64 bits * 150 MHz * 2 = 9.6 GByte/sec
* external DDR: 1 * 32 bits * 1066 MHz * 2 = 4.3 GByte/sec
* OCM: 64 bits * 222 MHz * 2 = 3.5 GByte/sec

* Optimized for large burst lengths

Taken from ECE699 lec 6 notes gm.edu

9/15/25 65965 Fall 2025 103

How it is Laid Out

Processing System

Programmable Logic

g :M i general
g E purpose
% § M s interfaces
2le > M_AXI_GP[1:0]
APU
i ! ACP interface
SCU 1< " S_AXIACP
g <S g general
:G:J = purpose
é g s M interfaces
Lle > S_AXI_GP[1:0]
Memory Interconnect =

S S S S

high performance interfaces
S_AXI_HP[3:0]

M M M M

Figure 2.9: The structure of AXI interconnects and interfaces connecting the PS and PL

9/15/25 635965 Fall 2025

From The Zynq Book

104

Complexity

* Interms of wires and options, Full- Full-AXl4
AXl is the most complex

* AXI-LITE has a lot less options 1
(single data beat so all the
supplemental stuff that specifies AXI-LITE
burst characteristics gets skipped) 1

 AXI-STREAM has even
less...basically a high-speed write AXI-STREAM

channel (Few options), but often
needs that extra TLAST signal

9/15/25 635965 Fall 2025 105

Sources gy o

« “AMBA® AXITM and ACETM Protocol Specification”, ARM 2011

* “The Zynq Book”, L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and
R.W. Stewart, University of Glasgow

* “Building Zynq Accelerators with Vivado High Level Synthesis”
Xilinx Technical Note

 Some material from ECE699 Spring 2016
https://ece.gmu.edu/coursewebpages/ECE/ECE699 _SW_HW/S1
6/

Crack open the AXI spec sheet with a few data

sheets for some Xilinx IP cores (like the
CORDIC, FFT, etc...) and you should be able to
start making sense of it.

9/15/25 65965 Fall 2025 106

