
6.S965
Digital Systems Laboratory II

Lecture 3:
More Simulation Thoughts

 and
Zynq Architecture

September 10, 2025 6S965 Fall 2025 1

Administrative

• Week 1’s stuff due Friday at 5pm
• Week 2’s stuff should be out at noon on Friday
• If you find yourself thinking, “I’m probably doing

something stupid…” in the context of Vivado, the
problem may not be you, it may be Vivado.
Please ask for help

September 10, 2025 6S965 Fall 2025 2

CocoTb Stuff
How some of it works...

September 10, 2025 6S965 Fall 2025 3

More on Cocotb and the Event
Loop
• As we start to write more with Cocotb, we need

to see what’s going on with how it is interacting
with the Verilog VPI/simulation cycle.

• Understanding its underlying interactions with
the Verilog simulations will help us write less
problematic code.

September 10, 2025 6S965 Fall 2025 4

Verilog Simulation
• A standard Verilog engine runs through a series of

time slots.
• Within each time slot are regions in which different

evaluations and updates are made

• The size of the simulation timeslot will be based off
the timescale specified. For example:
• `timescale 1ns/1ps
• Means we have basically 1ps time step/slot size

September 10, 2025 6S965 Fall 2025 5

“Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”
Clifford E. Cummings Sunburst Design, Inc.

Timeslot 0 Timeslot 1 Timeslot n…

Verilog Simulation
Time Step
• Active:

• Blocking Assignments
• RHS of non-blocking assignments
• Continuous assignments

• Inactive Region:
• “#0 Blocking Assignments”

(ignore)

• Non-Blocking Region:
• LHS updating of non-blocking

assignments

• Monitor/Postponed Region:
• Meant for evaluation of results

September 10, 2025 6S965 Fall 2025 6

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

TimeSlot

Iterative Nature
• The simulation may do run

through multiple cycles of the
three big stages until things
resolve
• Each iteration is a ”delta-

cycle” or “delta-step”
• These are all zero-time events

September 10, 2025 6S965 Fall 2025 7

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

TimeSlot

Example Code
• Here’s some simple

SystemVerilog:
• It has a variety of things

being done here

• One a simulation step,
all of the HDL is
evaluated and
processed in steps

September 10, 2025 6S965 Fall 2025 8

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Active Region

• Fully do (in any order) non-deterministic:
• assign a = b + c;
• b = c + d;
• d=e+2;

• Evaluate RHS of:
• c <= e+2;

September 10, 2025 6S965 Fall 2025 9

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

d updated and b updated. Because
other lines use them in their RHS,
the simulator will need to go back
through again

Active Region II

• Redo (in any order) non-deterministic:
• assign a = b + c;
• b = c + d;

• Evaluate RHS of:
• c <= e+2;

September 10, 2025 6S965 Fall 2025 10

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

b updated. Depending on the order
these lines were evaluated in, the
first one might need to run again
given the new value of b

Active Region III

• Redo (in any order) non-deterministic:
• assign a = b + c;

• Evaluate RHS of:
• c <= e+2;

September 10, 2025 6S965 Fall 2025 11

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Shouldn’t be anything left dangling

InActive Region

• Highly discourage to use this.
• Just skip this…is a weird delayed

region that people use to force order
on assignments
• Kinda like !important in CSS if

anybody does webdev

September 10, 2025 6S965 Fall 2025 12

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

NBA Region

• Transfer result of e+2 to c

September 10, 2025 6S965 Fall 2025 13

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

c updated. Because c was used in
the assignments of b and a, we will
return back to the Active region to
recalculate

Active Region IV

• Fully do (in any order) non-deterministic:
• assign a = b + c;
• b = c + d;

September 10, 2025 6S965 Fall 2025 14

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

b updated. Depending on the order
these lines were evaluated in, the
first one might need to run again
given the new value of b

Active Region V

• Redo (in any order) non-deterministic:
• assign a = b + c;

• Evaluate RHS of:
• c <= e+2;

September 10, 2025 6S965 Fall 2025 15

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Shouldn’t be anything left dangling

InActive Region II

• Highly discourage to use this.
• Just skip this…is a weird delayed

region that people use to force order
on assignments
• Kinda like !important in CSS if

anybody does webdev

September 10, 2025 6S965 Fall 2025 16

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

NBA Region II
• Nothing new this time through

September 10, 2025 6S965 Fall 2025 17

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Monitor Region

• Only after we’ve
completely “stabilized” in
all of our calculations.

September 10, 2025 6S965 Fall 2025 18

*NBA = Non-blocking Assignments

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

It is absolutely possible to have
unsolveable Verilog
• A simple combinational loop

is technically infinite:

• Might get some warnings
about combinational loop
• In simulation iVerilog will just

say this is always X

September 10, 2025 6S965 Fall 2025 19

logic [7:0] d;
assign d = d + 1;

Active

Inactive

NBA

Would you ever run through NBA
more than twice?
• In the earlier “good” example we ran through the

NBA region twice:
• First time through it we did a LHS update...this triggered a

loopback since some continual assignments used the
thing updated in their RHS

• Second time through nothing was left to do.
• Once a non-blocking assignment is carried out, it is

removed from the list of things that needs to be
addressed (prevents it from being done multiple
times...)
• So question: Could you ever run through the NBA

more than twice on a time step?

September 10, 2025 6S965 Fall 2025 20

Some messed up Verilog:

September 10, 2025 6S965 Fall 2025 21

module messed_up(
 input wire clk,
 input wire rst,
 input wire en,
 output logic [7:0] count
);
 logic a,b,c;
 initial begin
 //way to say these values start at something rather than X
 a = 0;
 b = 0;
 c = 0;
 count = 0;
 end
 always_ff @(posedge en)begin
 count <= count +1;
 a <= ~a;
 end
 always_ff @(posedge a)begin
 count <= count+1;
 b <= ~b;
 end
 always_ff @(posedge b) begin
 count <= count + 1;
 c <= ~c;
 end
endmodule

Wrote this Test Script:

September 10, 2025 6S965 Fall 2025 22

@cocotb.test()
async def test_a(dut):
 """cocotb test for seven segment controller"""
 dut._log.info("Starting...")
 cocotb.start_soon(Clock(dut.clk, 10, units="ns").start(start_high=False))
 dut.en.value = 0;
 dut.rst.value = 1;
 await Timer(10, "ns")
 dut.rst.value = 0;
 dut._log.info(f"About to set en to 1.")
 dut.en.value = 1;
 await RisingEdge(dut.en)
 dut._log.info(f"Rising Edge of en caught!")
 dut._log.info(f" Values: en: {dut.en.value}, a: {dut.a.value}, b: {dut.b.value}")
 await RisingEdge(dut.a)
 dut._log.info(f"Rising Edge of a caught!")
 dut._log.info(f" Values: en: {dut.en.value}, a: {dut.a.value}, b: {dut.b.value}")
 await RisingEdge(dut.b)
 dut._log.info(f"Rising Edge of b caught!")
 dut._log.info(f" Values: en: {dut.en.value}, a: {dut.a.value}, b: {dut.b.value}")
 await Timer(99, "ns")

When Run

• en goes high...
• count goes from 00 to 03 instantaneously at

10ns...

September 10, 2025 6S965 Fall 2025 23

With Readout...

September 10, 2025 6S965 Fall 2025 24

10.00ns INFO cocotb.messed_up About to set en to 1.
 10.00ns INFO cocotb.messed_up Rising Edge of en caught!
 10.00ns INFO cocotb.messed_up Values: en: 1, a: 0, b: 0
 10.00ns INFO cocotb.messed_up Rising Edge of a caught!
 10.00ns INFO cocotb.messed_up Values: en: 1, a: 1, b: 0
 10.00ns INFO cocotb.messed_up Rising Edge of b caught!
 10.00ns INFO cocotb.messed_up Values: en: 1, a: 1, b: 1

• For several cycles there the delta steps finish and
then the NBA is applied. That RHS assignment is
to a value in the sensitivity list of a always_ff,
bringing its lines of stuff onto the “queue” of stuff
to evaluate. Forcing another full round (at least)
• Notice how the the timestamp of all of this is

exactly the same!
• This is all happening in zero-time as the simulator

resolves itself.
• So it went through NBA like four/five times

September 10, 2025 6S965 Fall 2025 25

10.00ns INFO cocotb.messed_up About to set en to 1.
 10.00ns INFO cocotb.messed_up Rising Edge of en caught!
 10.00ns INFO cocotb.messed_up Values: en: 1, a: 0, b: 0
 10.00ns INFO cocotb.messed_up Rising Edge of a caught!
 10.00ns INFO cocotb.messed_up Values: en: 1, a: 1, b: 0
 10.00ns INFO cocotb.messed_up Rising Edge of b caught!
 10.00ns INFO cocotb.messed_up Values: en: 1, a: 1, b: 1

Could You Mess This Really Up?
• Oh yeah...

• This runs fine
but...

September 10, 2025 6S965 Fall 2025 26

module messed_up(
 input wire clk,
 input wire rst,
 input wire en,
 output logic [7:0] count
);
 logic a,b,c;
 initial begin
 //start at something rather than X
 a = 0;
 b = 0;
 c = 0;
 count = 0;
 end
 always_ff @(posedge en, posedge c)begin
 count <= count +1;
 a <= ~a;
 end
 always_ff @(posedge a, negedge a)begin
 count <= count+1;
 b <= ~b;
 end
 always_ff @(posedge b,negedge b) begin
 count <= count + 1;
 c <= ~c;
 end
endmodule

Could You Really Mess This Up?
• Hard Crash!

• Gets stuck in a
death spiral it
never gets out of

September 10, 2025 6S965 Fall 2025 27

module messed_up(
 input wire clk,
 input wire rst,
 input wire en,
 output logic [7:0] count
);
 logic a,b,c;
 initial begin
 //start at something rather than X
 a = 0;
 b = 0;
 c = 0;
 count = 0;
 end
 always_ff @(posedge en, posedge c, negedge c)begin
 count <= count +1;
 a <= ~a;
 end
 always_ff @(posedge a, negedge a)begin
 count <= count+1;
 b <= ~b;
 end
 always_ff @(posedge b,negedge b) begin
 count <= count + 1;
 c <= ~c;
 end
endmodule

Conclusion

• You can break the simulator in many different
ways.
• Thankfully if you write good HDL, it minimizes the

chances of that.

September 10, 2025 6S965 Fall 2025 28

So How Does CocoTB interact
with Verilog?
• It is interesting.
• You have two separate programs running and

they are effectively ping-ponging control back
and forth between each other.

September 10, 2025 6S965 Fall 2025 29

Python Verilog VVP

• You use PLI/VPI to run and
interact with the simulator
• And you also set up
callbacks to pause the
simulator at various points
to allow you to check in

September 10, 2025 6S965 Fall 2025 30

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

TimeSlot

PLI/VPI Usage

Verilog VPI

• As far as where it gets its hooks
into the simulation, it has several
major callbacks to different
points in simulation:
• others
• readonly

September 10, 2025 6S965 Fall 2025 31

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

????

????

????

Some Common VPI Callbacks
• Taken from

cocotb
source
code
• Also refer

to
icarusVeril
og source
code

September 10, 2025 6S965 Fall 2025 32

/****************************** CALLBACK REASONS ******************************/
/***************************** Simulation related *****************************/

#define cbValueChange 1
#define cbStmt 2
#define cbForce 3
#define cbRelease 4

/******************************** Time related ********************************/

#define cbAtStartOfSimTime 5
#define cbReadWriteSynch 6
#define cbReadOnlySynch 7
#define cbNextSimTime 8
#define cbAfterDelay 9

/******************************* Action related *******************************/

#define cbEndOfCompile 10
#define cbStartOfSimulation 11
#define cbEndOfSimulation 12
#define cbError 13
#define cbTchkViolation 14
#define cbStartOfSave 15
#define cbEndOfSave 16
#define cbStartOfRestart 17
#define cbEndOfRestart 18
#define cbStartOfReset 19
#define cbEndOfReset 20
#define cbEnterInteractive 21
#define cbExitInteractive 22
#define cbInteractiveScopeChange 23
#define cbUnresolvedSystf 24

September 10, 2025 6S965 Fall 2025 33

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

TimeSlot

Callbacks
cbNextTimeStep,
cbAfterDelay

cbValueChange

cbReadOnlySynch

cbReadWriteSynch

CocoTb’s OfficialTM Timing Model

September 10, 2025 6S965 Fall 2025 34

https://github.com/cocotb/cocotb/blob/master/docs/source/timing_model.rst

• Cocotb uses these callbacks to integrate a layer of
control around the standard Verilog Simulation
Construct
• The Result is their Own Simulation/Timing Model

September 10, 2025 6S965 Fall 2025 35

https://github.com/cocotb/cocotb/blob/master/docs/source/timing_model.rst

Active

Inactive

NBA

Jam this into there

Monitor

Drawing the
Two previous
slides together

• Using VPI callbacks
and Python you get
this hybrid
simulation step that
runs

September 10, 2025 6S965 Fall 2025 36

Active

Inactive

NBA

Values
Settle

Values
Change

Beginning
of Timestep

End of
Time Step Next Time Step

Previous Time Step

So in CocoTb when you want to
set a Callback...

• You’re going to do that through issuing await

• In Cocotb when you issue an await, what you’re
doing is throwing control to the underlying
Verilog simulator and it will then return control
back to you when it hits that event and the await
returns

September 10, 2025 6S965 Fall 2025 37

List of Events to await for

• NextTimeStep
• Timer
• RisingEdge, FallingEdge, Edge (soon

to be ValueChange)
• ReadWrite
• ReadOnly
• These all have almost 1:1 mappings to VPI

callbacks

September 10, 2025 6S965 Fall 2025 38

CocoTb’s Timing Model

September 10, 2025 6S965 Fall 2025 39

https://github.com/cocotb/cocotb/blob/master/docs/source/timing_model.rst

NextT
imeSt

ep,

Timer

RisingEdge,
FallingEdge,

Edge/ValueChange ReadWrite ReadOnly

• Or alternatively:

September 10, 2025 6S965 Fall 2025 40

Active

Inactive

NBA

Values
Settle

Values
Change

Beginning
of Timestep

End of
Time Step Next Time Step

Previous Time Step

NextTimeStep,
Timer

RisingEdge,
FallingEdge,

Edge/ValueChange

ReadWrite ReadOnly

Beginning of
TimeStep

• Start of a step.
• You get here by awaiting a Timer or awaiting the
NextTimeStep the simulator encounters!
• You can Read or Write values here.
• When await Timer(10, "ns") returns, you’re

in the beginning of the timestep.

September 10, 2025 6S965 Fall 2025 41

NextTimeStep,
Timer

All Value Assignments in Cocotb
• All Value Assignments made through Cocotb are

non-blocking and do not apply immediately!
• Run this code:

• Will return this:

September 10, 2025 6S965 Fall 2025 42

await Timer(10, "ns") #in start of timestep:
 dut._log.info(f"clk: {dut.clk.value} en:{dut.en.value} count: {dut.count.value.integer}")
 dut.en.value = 1 #set en to be 1...now check its value...
 dut._log.info(f"clk: {dut.clk.value} en:{dut.en.value} count: {dut.count.value.integer}")

20.00ns INFO cocotb.simple_logic2 clk: 1 en:0 count: 0
 20.00ns INFO cocotb.simple_logic2 clk: 1 en:0 count: 0

Delayed
Write

• Values written will
not actually get
applied until the
Values Settle
state

September 10, 2025 6S965 Fall 2025 43

Active

Inactive

NBA

Values
Settle

Values
Change

Beginning
of Timestep

End of
Time Step Next Time Step

Previous Time Step

NextTimeStep,
Timer

RisingEdge,
FallingEdge,

Edge/ValueChange

ReadWrite ReadOnly

One Exception

• In simulation states where you can write the
following will get queued up:

• However, you can override this and set immediately:

• This will immediately change the value in the
simulation.
• Be very very careful...only useful for initial conditions

(maybe)...can cause race conditions and/or non-
determinism

September 10, 2025 6S965 Fall 2025 44

dut.some_signal.value = 1

dut.some_signal.setimmediatevalue(1)

All Value Assignments in Cocotb
• If I change that code from the previous page:

• Will return this:

September 10, 2025 6S965 Fall 2025 45

await Timer(10, "ns") #in start of timestep:
 dut._log.info(f"clk: {dut.clk.value} en:{dut.en.value} count: {dut.count.value.integer}")
 dut.en.setimmediatevalue(1) #set en to be 1...now check its value...
 dut._log.info(f"clk: {dut.clk.value} en:{dut.en.value} count: {dut.count.value.integer}")

20.00ns INFO cocotb.simple_logic2 clk: 1 en:0 count: 0
 20.00ns INFO cocotb.simple_logic2 clk: 1 en:1 count: 0

JK it didn’t do this.
the simulation hangs forever and I’m not sure why.
Must have introduced a race condition iunno

NextTimeStep()!

• It will not just jump 1ns or 1ps forward
• SystemVerilog/Verilog are not simulating useless

time in between events. There is a schedule of
events and it will jump to the next even that is
scheduled to happen.
• In many clocked systems (in simulation), after

everything has settled on the rising edge of a
clock, the next even will likely be the falling edge.

September 10, 2025 6S965 Fall 2025 46

When Done with Beginning...

• Move on...can never go back (within this
timestep)

September 10, 2025 6S965 Fall 2025 47

HDL Evaluation
Step

• No way to get direct insight into the
progress of the HDL evaluation (vvp
engine). That will run until resolved and
values settle...
• Or until it encounters a change

callback

September 10, 2025 6S965 Fall 2025 48

Changes

• During HDL Evaluation if a signal with a
callback on it changes appropriately,
the callback fires and control returns to
Cocotb/Python
• You can do RisingEdge,
FallingEdge, and Edge
• Edge will be renamed ValueChange

in Cocotb 2.0

September 10, 2025 6S965 Fall 2025 49

Risin
gEdge

,

Falli
ngEdg

e,

Edge

Values
Change

• The Values Change
will happen
immediately upon
the event
happening.
• That means no

other line of Verilog
has had a chance
to react to it!

September 10, 2025 6S965 Fall 2025 50

Active

Inactive

NBA

Values
Settle

Values
Change

Beginning
of Timestep

End of
Time Step Next Time Step

Previous Time Step

NextTimeStep,
Timer

RisingEdge,
FallingEdge,

Edge/ValueChange

ReadWrite ReadOnly

Value
Change

• You can read and write signals in the Values Change
state.

• However, the state of values may be non-
deterministic here.

• BUT what you read here was unaffected by whatever
change brought you in...

September 10, 2025 6S965 Fall 2025 51

Risin
gEdge

,

Falli
ngEdg

e,

Edge

Delayed
Write

• Values written here
not actually get
applied until the
Values Settle state

September 10, 2025 6S965 Fall 2025 52

Active

Inactive

NBA

Values
Settle

Values
Change

Beginning
of Timestep

End of
Time Step Next Time Step

Previous Time Step

NextTimeStep,
Timer

RisingEdge,
FallingEdge,

Edge/ValueChange

ReadWrite ReadOnly

Delta Steps Happen

• When HDL Evaluation is done and no more
Values Change, simulation is stable.
• Moves to Values Settle

September 10, 2025 6S965 Fall 2025 53

Values Settle

• awaiting ReadWrite puts you in this point of your
simulation and pauses things.
• Everything, including non-blocking assignments

internal to the DUT will have resolved.
• External signals (specified from Cocotb) will not

have been applied yet!
• You can read/write values here.
• Reads are stable
• Writes after you’re done here and sim moves on.

September 10, 2025 6S965 Fall 2025 54

ReadWrite

Values Settle

• You can read/write values
• When the simulator continues, those delayed

writes from Cocotb will be applied
• The Verilog simulator will determine if it needs to

revisit the HDL evaluation stage
• If not, it goes to EndofTimeStep

September 10, 2025 6S965 Fall 2025 55

ReadWrite

EndOfTimeStep

• Effectively the original Monitor Phase
• This is the only state/phase where you can only

Read signals. Writing is not allowed since you
have already passed the spot in the timestep
where you can apply external signals (Values
Settle)
• Can’t go back.
• await ReadOnly() gets you here.

September 10, 2025 6S965 Fall 2025 56

ReadOnly

September 10, 2025 6S965 Fall 2025 57

Active

Inactive

NBA

Monitor

Original:

Active

Inactive

NBA

Values
Settle

Values
Change

Beginning
of Timestep

End of
Time Step Next Time Step

Previous Time Step

NextTimeStep,
Timer

RisingEdge,
FallingEdge,

Edge/ValueChange

ReadWrite ReadOnly

Now with Cocotb:

Cocotb and SystemVerilog

• Both simulation structures
have tried to achieve the
same thing and added on
many of the same structures
• Clearly broken out region to

react and inject external
inputs to DUT
• Clear Begin/End Spots

September 10, 2025 6S965 Fall 2025 58

Simplified SV time step
(loopbacks not shown)

Cocotb 2.0 Updates

• The Naming and Everything is Very Confusing
• Cocotb 2.0 is making an effort to:
• Have the current step of a simulation be more

transparent
• Have the naming be more clear
• We’ll see how that evolves in coming months/years

September 10, 2025 6S965 Fall 2025 59

Maybe Cocotb Demo

• Try to walk through the simulation trying to mess
with it.

September 10, 2025 6S965 Fall 2025 60

