
6.S965
Digital Systems Laboratory II

Lecture 2:
Verilog, Simulation, and Cocotb

9/8/25 6.S965 Fall 2025 1

Administrative

• Week 1’s material is out. Some students
actually already got through it, which means it is
doable.
• Lab stations 33 through 46 have user accounts,

Pynq boards set up for you.
• Username: kerb, password: MIT ID number

• Reach out for help on Piazza
• I’ve thrown some office hours in the calendar for

the week too.

9/8/25 6.S965 Fall 2025 2

Note on PYNQ Deployment
• Each Lab station set up like this:

9/8/25 6.S965 Fall 2025 3

router

Work station PYNQ board

Greater Internet

Local network

Note on PYNQ Deployment

• Each router has an IP address and login
credentials on it.
• In the browser at a work station go to router IP

address, log in and see what other devices are
on network.
• PYNQ should show up (when powered and

booted) and it’ll tell you what IP address it has
been assigned.
• Use that that sign into it/transfer files/etc...

9/8/25 6.S965 Fall 2025 4

How Does Verilog Actually Work?

• We spent all of 6.205 using Verilog and
SystemVerilog to write things, but we never really
spent any time thinking about how it actually
simulates

• If we’re going to spend a lot of time learning how
to thinking about simulation at least quasi-
formally we should at least.

9/8/25 6.S965 Fall 2025 5

Let’s look at a relatively simple
chunk of code
• Here’s some simple

SystemVerilog:
• It has a variety of

things being done
here

9/8/25 6.S965 Fall 2025 6

`timescale 1ns/1ps

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Compile and Run

• If you just wanted to simulate with icarusVerilog
we’d do:

• This would then produce a file we would run with
vvp (Verilog Virtual Processor) like so:

• Simulation runs…prints, waveforms generated,
etc…

9/8/25 6.S965 Fall 2025 7

iverilog -g2012 -o example.out example_tb.sv example.sv

vvp example.out

The Fundamental Problem

• When we design hardware we’re designing
systems that work “in parallel” or “at the same
time”.

• But when we simulate we can’t actually do that.
Simulation is really just a program that runs one
instruction after the other.

• As a result we need to fake the “at-the-same-
time” thing.

9/8/25 6.S965 Fall 2025 8

The Fundamental Problem II

• What happens if two things are supposed to
happen at the same time?

• Which one will get simulated first will be non-
deterministic

• That may or may not matter depending on the
design.

9/8/25 6.S965 Fall 2025 9

Verilog Simulation
• A standard Verilog engine runs through a series of

time slots.
• Within each time slot are regions in which different

evaluations and updates are made

• The size of the simulation timeslot will be based off
the timescale specified. For example:
• `timescale 1ns/1ps
• Means we have basically 1ps time step/slot size

9/8/25 6.S965 Fall 2025 10
“Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”
Clifford E. Cummings Sunburst Design, Inc.

Timeslot 0 Timeslot 1 Timeslot n…

The Verilog Simulation Time Step
• Within each time

slot are regions in
which different
evaluations and
updates are made
• They go through a

specific order

9/8/25 6.S965 Fall 2025 11

“Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”
Clifford E. Cummings Sunburst Design, Inc.

Four Main Regions

• Active:
• Blocking Assignments
• RHS of non-blocking assignments
• Continuous assignments

• Inactive Region:
• “#0 Blocking Assignments” (ignore)

• Non-Blocking Region:
• LHS updating of non-blocking

assignments
• Monitor/Postponed Region:

• Meant for evaluation of results

9/8/25 6.S965 Fall 2025 12

https://medium.com/@vritvlsi/verilog-event-scheduler-88e5e18e4afd

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

TimeSlot

Active Region

• Blocking Assignments (=)
• RHS of Non-Blocking

Assignments (<=)
• Continuous Assignments

(assign)
• Primitive/User-Defined

Primitives
• $display commands

9/8/25 6.S965 Fall 2025 13

https://medium.com/@vritvlsi/verilog-event-scheduler-88e5e18e4afd

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

Inactive Region

• Blocking Assignments (=) that
take place after #0

• Make sense? It
shouldn’t...everyone always
says to ignore this.

9/8/25 6.S965 Fall 2025 14

https://medium.com/@vritvlsi/verilog-event-scheduler-88e5e18e4afd

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

Non-Blocking
Assignment

• Updating the LHS of non-
blocking assignments

9/8/25 6.S965 Fall 2025 15

https://medium.com/@vritvlsi/verilog-event-scheduler-88e5e18e4afd

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

Go-Back Triggers
• The simulation does not go

necessarily go through each
stage once
• It monitors the changes to

things. If a change in one region
means another change should
happen, different stages may
be restart
• Each restart/iteration is a

“delta-step”

9/8/25 6.S965 Fall 2025 16

*NBA = Non-blocking Assignments

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

Return to the
code…
• Here’s some simple

SystemVerilog:
• It has a variety of

things being done
here

9/8/25 6.S965 Fall 2025 17

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Active Region

• Fully do (in any order) non-deterministic:
• assign a = b + c;
• b = c + d;
• d=e+2;

• Evaluate RHS of:
• c <= e+2;

9/8/25 6.S965 Fall 2025 18

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

d updated and b updated. Because
other lines use them in their RHS,
the simulator will need to go back
through again

Active Region II

• Redo (in any order) non-deterministic:
• assign a = b + c;
• b = c + d;

• Evaluate RHS of:
• c <= e+2;

9/8/25 6.S965 Fall 2025 19

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

b updated. Depending on the order
these lines were evaluated in, the
first one might need to run again
given the new value of b

Active Region III

• Redo (in any order) non-deterministic:
• assign a = b + c;

• Evaluate RHS of:
• c <= e+2;

9/8/25 6.S965 Fall 2025 20

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Shouldn’t be anything left dangling

InActive Region

• Highly discourage to use this.
• Just skip this…is a weird delayed

region that people use to force order
on assignments
• Kinda like !important in CSS if

anybody does webdev

9/8/25 6.S965 Fall 2025 21

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

NBA Region

• Transfer result of e+2 to c

9/8/25 6.S965 Fall 2025 22

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

c updated. Because c was used in
the assignments of b and a, we will
return back to the Active region to
recalculate

Active Region IV

• Fully do (in any order) non-deterministic:
• assign a = b + c;
• b = c + d;

9/8/25 6.S965 Fall 2025 23

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

b updated. Depending on the order
these lines were evaluated in, the
first one might need to run again
given the new value of b

Active Region V

• Redo (in any order) non-deterministic:
• assign a = b + c;

• Evaluate RHS of:
• c <= e+2;

9/8/25 6.S965 Fall 2025 24

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Shouldn’t be anything left dangling

InActive Region II

• Highly discourage to use this.
• Just skip this…is a weird delayed

region that people use to force order
on assignments
• Kinda like !important in CSS if

anybody does webdev

9/8/25 6.S965 Fall 2025 25

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

NBA Region II
• Nothing new this time through

9/8/25 6.S965 Fall 2025 26

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Monitor Region

• Only after we’ve
completely “stabilized” in
all of our calculations.

9/8/25 6.S965 Fall 2025 27

*NBA = Non-blocking Assignments

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

Non-Determinism
• Blocking Lines within

an always block will be
evaluated in order
• Blocking Lines across

multiple always blocks
will be analyzed in a
non-deterministic
fashion
• Might require iterations

in stages

9/8/25 6.S965 Fall 2025 28

logic clk;
logic [1:0] a,b,c,d,e;

//fine:
always_comb begin
 b = c + d;
 e = 1+b;
end

//Alternative:
//annoying but will resolve
always_comb begin
 b = c + d;
end

always_comb begin
 e = 1+b;
end

Non-Determinism
• Very possible to have

conflicting
assignments across
multiple blocks

• Non-deterministic
which will “win”

9/8/25 6.S965 Fall 2025 29

logic clk;
logic [1:0] a,b,c,d,e;

//not great, but will resolve:
always_comb begin
 b = c + d;
 b = 1 + e;
end

//Alternative:
//bad...actually non-deterministic
always_comb begin
 b = c + d;
end

always_comb begin
 b = 1 + e;
end

Avoid Issues?

• In Verilog, there are ways to end up in non-
determinism hell when you have very
complicated designs and are lazy with
blocking/non-blocking
• The language requires you to follow rules in order

for things to work properly.
• Good reading: “Nonblocking Assignments in

Verilog Synthesis, Coding Styles That Kill!” by
Clifford E. Cummings Sunburst Design, Inc.

9/8/25 6.S965 Fall 2025 30

Bad Fix
• You will

sometimes see
this is really
messed up code
where clearly
somebody just
wanted to clock
out and get the
thing working

9/8/25 6.S965 Fall 2025 31

logic clk;
logic [1:0] a,b,c,d,e;

//Alternative:
//bad...actually non-deterministic
always_comb begin
 b = c + d;
end

always_comb begin
 #0; //There. fixed it:
 b = 1 + e;
end

How Does #0 ”fix” it?

• Since you always have to go through
inactive after you’ve done active, it is
a way to guarantee that a line of HDL
gets the “final say” in step.
• This is rarely, rarely ever a good idea.
• Inactive region dates back to the

original Verilog (1984) simulation
engine and was an early attempt at
easing integration with external
interfaces and non-blocking
assignments

9/8/25 6.S965 Fall 2025 32

https://medium.com/@vritvlsi/verilog-event-scheduler-88e5e18e4afd

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

Why Even Have Inactive?
• I believe the original inactive dates back

to when there was only Active and
Inactive regions and the Inactive region
was a way to have flip-flops work
• The NBA was brought in later.
• Some Verilog simulators have their

external programming hooks in the
Inactive region as well (VPI...more on
that in a bit).
• And inactive is kept to this day for

reverse compatibility.

9/8/25 6.S965 Fall 2025 33

https://medium.com/@vritvlsi/verilog-event-scheduler-88e5e18e4afd

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

Cocotb
• As discussed in Week 1’s assignments, for the

purposes of observing your design is extremely
critical not to be evaluating signals before they
resolve (in active/inactive/nba regions).
• Simply grabbing signal value in cocotb is not

enough!
• Must wait until you are in the Monitor/Postponed

region

9/8/25 6.S965 Fall 2025 34

await ReadOnly()
• awaiting the ReadOnly() event in Cocotb allows

you to ensure you’re only observing signals after
they’ve stabilized and that you’re in the
monitor/postponed region of any simulation
step.

9/8/25 6.S965 Fall 2025 35

Interestingly…VHDL

• Interestingly, VHDL largely avoids the issues with
non-determinism in its design largely through its
use of syntax and how its simulator does
updates (no need to iterate back since it forces
you to specify causality even when doing
combinational logic)

9/8/25 6.S965 Fall 2025 36

The Verilog Simulation Time Step
• Within each time

slot are regions in
which different
evaluations and
updates are made
• They go through a

specific order and
may iterate until
values have
“settled”

9/8/25 6.S965 Fall 2025 37

“Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”
Clifford E. Cummings Sunburst Design, Inc.

SystemVerilog to the... Rescue?

• Whereas Verilog has like four-
ish stages in a simulation
step, SystemVerilog added a
ton more on top
• Just like language is superset

of Verilog, so is simulation
engine. New:
• Preponed
• Observed region
• Re regions...active region

9/8/25 6.S965 Fall 2025 38

The SystemVerilog Simulation
Time Step
• Just like language

is a superset of
Verilog
• Simulation in

System

9/8/25 6.S965 Fall 2025 39

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

System Verilog Simulation
• Still basic

Active/Inactive/NBA
region,
• But additional

regions added in for
more reliable
simulation and
control interfacing

9/8/25 6.S965 Fall 2025 40

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

System Verilog Simulation
• Active/Inactive/NBA region meant

for the hardware under simulation
• Re-active/Re-inactive/Re-NBA

region meant for simulation/testing
code. A testbench will set inputs in
the reactive region, for example
• Separating the two was an attempt

at avoiding bugs that showed up
when mixing simulation with
synthesis Verilog

9/8/25 6.S965 Fall 2025 41

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

SV Time Slot Expanded Out
• 17-total stages

in a single time
slot now

9/8/25 6.S965 Fall 2025 42

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

PLI regions?
• Sprinkled

throughout are
PLI regions
• These are

actually regions
to allow you to
interface with
the simulation

9/8/25 6.S965 Fall 2025 43

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

Program Language Interface (PLI)

• Original set of hooks built into the Verilog spec
that would allow you to read out data from the
Verilog simulation engine to C program
• You could also use them to inject inputs into

Verilog
• In the original Verilog standard, the PLI

integration was mixed in with the simulation part
which could lead to bugs.

9/8/25 6.S965 Fall 2025 44

PLI Died

• PLI is deprecated and was replaced with the
Verilog Procedural Interface or VPI
• You’ll still hear PLI and VPI used interchangeably,

but VPI is kinda the newer term.
• VPI is sometimes called “PLI 2.0”

9/8/25 6.S965 Fall 2025 45

VPI vs. DPI

• The VPI allows a set of C/C++ functions that can
be used to hook into various points in the
simulation timesteps (basically at those PLI
points)

• SystemVerilog has its own thing which is actually
called a Direct Programming Interface (DPI)

• DPI is higher level and nominally cleaner

9/8/25 6.S965 Fall 2025 46

https://www.asic-world.com/systemverilog/dpi1.html

Comparing and
Contrasting…

• It is complicated.
• I’ve also seen VPI backronymed to Verification

Peripheral Interface (Verilator)
• The big thing I want to point out here is pretty much

all System/Verilog simulation engines (and VHDL too)
have hooks into them that can allow C or other
languages to interface with them.

9/8/25 6.S965 Fall 2025 47

The Point of PLI/VPI/DPI

• All of these simulation entry points were created
to provide ways to automate simulation.
• But also they found use in allowing you to

interface non-HDL models of very complicated
things:
• Memory
• CPU’s
• Other bit-accurate models

• Key component of the developing Verification
field

9/8/25 6.S965 Fall 2025 48

Building Up

• About ten years ago, some folks started to wrap
up the VPI C material with Python and that ended
up evolving into what Cocotb is today

9/8/25 6.S965 Fall 2025 49

CoCoTb
Python for Simulation

9/8/25 6.S965 Fall 2025 50

Two Big Parts to Cocotb

• Takes advantage of Python’s asynchronous
programming capabilities to launch many
parallel running processes.
• Very nice…can spawn off lots of tasks to take care of

different jobs and not worry about having to task
switch between tracking them.

• It utilizes the Verilog Procedural Interface
• A built-in interface to the simulator’s runtime

environment that allows manipulation within the
environment by outside forces

9/8/25 6.S965 Fall 2025 51

CocoTb

• Uses a GPI (general programming interface)
which can then be further specified to use:
• VPI: for Verilog-type simulators (icarus Verilog)
• VHPI: for some VHDL type simulators
• FLI: for other weirder formats (specifically

Mentor/Siemans Questa)

9/8/25 6.S965 Fall 2025 52

What can you do through the VPI
that Cocotb builds upon?
• Basically anything you want.
• It gives you full access to all signals within the

simulated environment
• It also has built a lot of utility logic that will

“watch for events” through the use of
callbacks...which can basically trigger the
listening program to when things happen

9/8/25 6.S965 Fall 2025 53

Verilog VPI

• As far as where it gets its hooks
into the simulation, it has two
major callbacks to different
points in simulation:
• readwrite
• readonly

9/8/25 6.S965 Fall 2025 54

Active

Inactive

NBA

Monitor/
Postponed

Next
time
slot

Previous
time
slot

????

????

????

Does Vivado Support VPI?

• No
• Whereas many other simulators

(Mentor/Siemens, Cadence, Synopsis included)
have maintained a VPI for backwards support
Xilinx xsim did not

9/8/25 6.S965 Fall 2025 55

Does Vivado Support VPI?

• No

• Vivado does support ”DPI” though

• So that means Cocotb does not work with
Vivado

9/8/25 6.S965 Fall 2025 56

https://docs.amd.com/r/en-US/ug900-vivado-logic-simulation/Direct-Programming-Interface-DPI-in-Vivado-Simulator

Attempts to link Cocotb to Vivado

• There’s an open project on github of someone
trying to connect Cocotb to Vivado’s DPI:*:
• https://github.com/themperek/cocotb-vivado/tree/main

• Kiran Vuksanaj then built upon this in project
here through some further reverse-engineering of
Vivado’s DPI:
• https://github.com/kiran-vuksanaj/vicoco/tree/main

9/8/25 6.S965 Fall 2025 57

*doesn’t look touched in the half-year…

https://github.com/themperek/cocotb-vivado/tree/main
https://github.com/themperek/cocotb-vivado/tree/main
https://github.com/themperek/cocotb-vivado/tree/main
https://github.com/themperek/cocotb-vivado/tree/main
https://github.com/kiran-vuksanaj/vicoco/tree/main
https://github.com/kiran-vuksanaj/vicoco/tree/main
https://github.com/kiran-vuksanaj/vicoco/tree/main
https://github.com/kiran-vuksanaj/vicoco/tree/main
https://github.com/kiran-vuksanaj/vicoco/tree/main

Cocotb and Vivado

• There’s some interesting parallel projects out
there in this space:
• https://github.com/fvutils/pyhdl-if

• I think what will eventually be needed is some
sort of “buy-in” from Xilinx/AMD and I need to
keep pushing on this because right now some of
the important pieces of their DPI aren’t really
well documented, if at all.

9/8/25 6.S965 Fall 2025 58

https://github.com/fvutils/pyhdl-if
https://github.com/fvutils/pyhdl-if
https://github.com/fvutils/pyhdl-if
https://github.com/fvutils/pyhdl-if
https://github.com/fvutils/pyhdl-if

