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Preface

DSP and FPGAs

Digital signal processing (DSP) is the cornerstone of many products and services in the
digital age. It is used in applications such as high-definition TV, mobile telephony, digital
audio, multimedia, digital cameras, radar, sonar detectors, biomedical imaging, global
positioning, digital radio, speech recognition, to name but a few! The evolution of DSP
solutions has been driven by application requirements which, in turn, have only been
possible to realize because of developments in silicon chip technology. Currently, a mix
of programmable and dedicated system-on-chip (SoC) solutions are required for these
applications and thus this has been a highly active area of research and development
over the past four decades.

The result has been the emergence of numerous technologies for DSP implementa-
tion, ranging from simple microcontrollers right through to dedicated SoC solutions
which form the basis of high-volume products such as smartphones. With the archi-
tectural developments that have occurred in field programmable gate arrays (FPGAs)
over the years, it is clear that they should be considered as a viable DSP technology.
Indeed, developments made by FPGA vendors would support this view of their tech-
nology. There are strong commercial pressures driving adoption of FPGA technology
across a range of applications and by a number of commercial drivers.

The increasing costs of developing silicon technology implementations have put con-
siderable pressure on the ability to create dedicated SoC systems. In the mobile phone
market, volumes are such that dedicated SoC systems are required to meet stringent
energy requirements, so application-specific solutions have emerged which vary in their
degree of programmability, energy requirements and cost. The need to balance these
requirements suggests that many of these technologies will coexist in the immediate
future, and indeed many hybrid technologies are starting to emerge. This, of course,
creates a considerable interest in using technology that is programmable as this acts to
considerably reduce risks in developing new technologies.

Commonly used DSP technologies encompass software programmable solutions such
as microcontrollers and DSP microprocessors. With the inclusion of dedicated DSP
processing engines, FPGA technology has now emerged as a strong DSP technology.
Their key advantage is that they enable users to create system architectures which
allow the resources to be best matched to the system processing needs. Whilst memory
resources are limited, they have a very high-bandwidth, on-chip capability. Whilst the
prefabricated aspect of FPGAs avoids many of the deep problems met when developing
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SoC implementations, the creation of an efficient implementation from a DSP system
description remains a highly convoluted problem which is a core theme of this book.

Book Coverage

The book looks to address FPGA-based DSP systems, considering implementation at
numerous levels.
� Circuit-level optimization techniques that allow the underlying FPGA fabric to be

used more intelligently are reviewed first. By considering the detailed underlying
FPGA platform, it is shown how system requirements can be mapped to provide an
area-efficient, faster implementation. This is demonstrated for a number of DSP trans-
forms and fixed coefficient filtering.

� Architectural solutions can be created from a signal flow graph (SFG) representa-
tion. In effect, this requires the user to exploit the highly regular, highly computative,
data-independent nature of DSP systems to produce highly parallel, pipelined FPGA-
based circuit architectures. This is demonstrated for filtering and beamforming
applications.

� System solutions are now a challenge as FPGAs have now become a heterogeneous
platform involving multiple hardware and software components and interconnection
fabrics. There is a need for a higher-level system modeling language, e.g. dataflow
which will facilitate architectural optimizations but also to address system-level con-
siderations such as interconnection and memory.

The book covers these areas of FPGA implementation, but its key differentiating factor
is that it concentrates on the second and third areas listed above, namely the creation of
circuit architectures and system-level modeling; this is because circuit-level optimiza-
tion techniques have been covered in greater detail elsewhere. The work is backed up
with the authors’ experiences in implementing practical real DSP systems and covers
numerous examples including an adaptive beamformer based on a QR-based recursive
least squares (RLS) filter, finite impulse response (FIR) and infinite impulse response
(IIR) filters, a full search motion estimation and a fast Fourier transform (FFT) system
for electronic support measures. The book also considers the development of intellectual
property (IP) cores as this has become a critical aspect in the creation of DSP systems.
One chapter is given over to describing the creation of such IP cores and another to the
creation of an adaptive filtering core.

Audience

The book is aimed at working engineers who are interested in using FPGA technol-
ogy efficiently in signal and data processing applications. The earlier chapters will be of
interest to graduates and students completing their studies, taking the readers through
a number of simple examples that show the trade-off when mapping DSP systems into
FPGA hardware. The middle part of the book contains a number of illustrative, com-
plex DSP system examples that have been implemented using FPGAs and whose per-
formance clearly illustrates the benefit of their use. They provide insights into how
to best use the complex FPGA technology to produce solutions optimized for speed,
area and power which the authors believe is missing from current literature. The book
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summarizes over 30 years of learned experience of implementing complex DSP systems
undertaken in many cases with commercial partners.

Second Edition Updates

The second edition has been updated and improved in a number of ways. It has been
updated to reflect technology evolutions in FPGA technology, to acknowledge develop-
ments in programming and synthesis tools, to reflect on algorithms for Big Data appli-
cations, and to include improvements to some background chapters. The text has also
been updated using relevant examples where appropriate.

Technology update: As FPGAs are linked to silicon technology advances, their archi-
tecture continually changes, and this is reflected in Chapter 5. A major change is the
inclusion of the ARM® processor core resulting in a shift for FPGAs to a heterogeneous
computing platform. Moreover, the increased use of graphical processing units (GPUs)
in DSP systems is reflected in Chapter 4.

Programming tools update: Since the first edition was published, there have been a
number of innovations in tool developments, particularly in the creation of commercial
C-based high-level synthesis (HLS) and open computing language (OpenCL) tools. The
material in Chapter 7 has been updated to reflect these changes, and Chapter 10 has
been changed to reflect the changes in model-based synthesis tools.

“Big Data” processing: DSP involves processing of data content such as audio,
speech, music and video information, but there is now great interest in collating huge
data sets from on-line facilities and processing them quickly. As FPGAs have started to
gain some traction in this area, a new chapter, Chapter 12, has been added to reflect this
development.

Organization

The FPGA is a heterogeneous platform comprising complex resources such as hard and
soft processors, dedicated blocks optimized for processing DSP functions and process-
ing elements connected by both programmable and fast, dedicated interconnections.
The book focuses on the challenges of implementing DSP systems on such platforms
with a concentration on the high-level mapping of DSP algorithms into suitable circuit
architectures.

The material is organized into three main sections.

First Section: Basics of DSP, Arithmetic and Technologies
Chapter 2 starts with a DSP primer, covering both FIR and IIR filtering, transforms
including the FFT and discrete cosine transform (DCT) and concluding with adaptive
filtering algorithms, covering both the least mean squares (LMS) and RLS algorithms.
Chapter 3 is dedicated to computer arithmetic and covers number systems, arithmetic
functions and alternative number representations such as logarithmic number repre-
sentations (LNS) and coordinate rotation digital computer (CORDIC). Chapter 4 covers
the technologies available to implement DSP algorithms and includes microprocessors,
DSP microprocessors, GPUs and SoC architectures, including systolic arrays. In Chap-
ter 5, a detailed description of commercial FPGAs is given with a concentration on the
two main vendors, namely Xilinx and Altera, specifically their UltraScaleTM/Zynq® and
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Stratix® 10 FPGA families respectively, but also covering technology offerings from Lat-
tice and MicroSemi.

Second Section: Architectural/System-Level Implementation
This section covers efficient implementation from circuit architecture onto specific
FPGA families; creation of circuit architecture from SFG representations; and system-
level specification and implementation methodologies from high-level representations.
Chapter 6 covers only briefly the efficient implementation of FPGA designs from circuit
architecture descriptions as many of these approaches have been published; the text
covers distributed arithmetic and reduced coefficient multiplier approaches and shows
how these have been applied to fixed coefficient filters and DSP transforms. Chapter 7
covers HLS for FPGA design including new sections to reflect Xilinx’s Vivado HLS tool
flow and also Altera’s OpenCL approach. The process of mapping SFG representations
of DSP algorithms onto circuit architectures (the starting point in Chapter 6) is then
described in Chapter 8. It shows how dataflow graph (DFG) descriptions can be trans-
formed for varying levels of parallelism and pipelining to create circuit architectures
which best match the application requirements, backed up with simple FIR and IIR
filtering examples.

One of the ways to perform system design is to create predefined designs termed IP
cores which will typically have been optimized using the techniques outlined in Chapter
8. The creation of such IP cores is outlined in Chapter 9 and acts to address the key
to design productivity by encouraging “design for reuse.” Chapter 10 considers model-
based design for heterogeneous FPGA and focuses on dataflow modeling as a suitable
design approach for FPGA-based DSP systems. The chapter outlines how it is possible
to include pipelined IP cores via the white box concept using two examples, namely a
normalized lattice filter (NLF) and a fixed beamformer example.

Third Section: Applications to Big Data, Low Power
The final section of the book, consisting of Chapters 11–13, covers the application of
the techniques. Chapter 11 looks at the creation of a soft, highly parameterizable core
for RLS filtering, showing how a generic architecture can be created to allow a range of
designs to be synthesized with varying performance. Chapter 12 illustrates how FPGAs
can be applied to Big Data applications where the challenge is to accelerate some com-
plex processing algorithms. Increasingly FPGAs are seen as a low-power solution, and
FPGA power consumption is discussed in Chapter 13. The chapter starts with a dis-
cussion on power consumption, highlights the importance of dynamic and static power
consumption, and then describes some techniques to reduce power consumption.
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PS Processing system
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QR-RLS QR recursive least squares
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RCM Reduced coefficient multiplier
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RVC Reconfigurable video coding



List of Abbreviations xxv

SBNR Signed binary number representation
SCU Snoop control unit
SD Signed digits
SDF Synchronous dataflow
SDK Software development kit
SDNR Signed digit number representation
SDP Simple dual-port
SERDES Serializer/deserializer
SEU Single event upset
SFG Signal flow graph
SGR Squared Givens rotation
SIMD Single instruction, multiple data
SISD Single instruction, single data
SMP Shared-memory multi-processors
SNR Signal-to-noise ratio
SoC System-on-chip
SOCMINT Social media intelligence
SoPC System on programmable chip
SPI Serial peripheral interface
SQL Structured query language
SR-DFG Single-rate dataflow graph
SRAM Static random access memory
SRL Shift register lookup table
SSD Shifted signed digits
SVM Support vector machine
SW Search window
TCP Transmission Control Protocol
TFLOPS Tera floating-point operations per second
TOA Time of arrival
TR Throughout rate
TTL Transistor-transistor logic
UART Universal asynchronous receiver/transmitter
ULD Ultra-low density
UML Unified modeling language
VHDL VHSIC hardware description language
VHSIC Very high-speed integrated circuit
VLIW Very long instruction word
VLSI Very large scale integration
WBC White box component
WDF Wave digital filter







Introduction to Field Programmable Gate Arrays

. Introduction

Electronics continues to make an impact in the twenty-first century and has given birth
to the computer industry, mobile telephony and personal digital entertainment and ser-
vices industries, to name but a few. These markets have been driven by developments in
silicon technology as described by Moore’s law (Moore 1965), which is represented pic-
torially in Figure 1.1. This has seen the number of transistors double every 18 months.
Moreover, not only has the number of transistors doubled at this rate, but also the costs
have decreased, thereby reducing the cost per transistor at every technology advance.

In the 1970s and 1980s, electronic systems were created by aggregating standard com-
ponents such as microprocessors and memory chips with digital logic components, e.g.
dedicated integrated circuits along with dedicated input/output (I/O) components on
printed circuit boards (PCBs). As levels of integration grew, manufacturing working
PCBs became more complex, largely due to greater component complexity in terms
of the increase in the number of transistors and I/O pins. In addition, the development
of multi-layer boards with as many as 20 separate layers increased the design complex-
ity. Thus, the probability of incorrectly connecting components grew, particularly as the
possibility of successfully designing and testing a working system before production was
coming under greater and greater time pressures.

The problem became more challenging as system descriptions evolved during prod-
uct development. Pressure to create systems to meet evolving standards, or that could
change after board construction due to system alterations or changes in the design spec-
ification, meant that the concept of having a “fully specified” design, in terms of phys-
ical system construction and development on processor software code, was becoming
increasingly challenging. Whilst the use of programmable processors such as microcon-
trollers and microprocessors gave some freedom to the designer to make alterations in
order to correct or modify the system after production, this was limited. Changes to
the interconnections of the components on the PCB were restricted to I/O connectiv-
ity of the processors themselves. Thus the attraction of using programmability inter-
connection or “glue logic” offered considerable potential, and so the concept of field
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programmable logic (FPL), specifically field programmable gate array (FPGA) technol-
ogy, was born.

From this unassuming start, though, FPGAs have grown into a powerful technol-
ogy for implementing digital signal processing (DSP) systems. This emergence is due to
the integration of increasingly complex computational units into the fabric along with
increasing complexity and number of levels in memory. Coupled with a high level of pro-
grammable routing, this provides an impressive heterogeneous platform for improved
levels of computing. For the first time ever, we have seen evolutions in heterogeneous
FPGA-based platforms from Microsoft, Intel and IBM. FPGA technology has had an
increasing impact on the creation of DSP systems. Many FPGA-based solutions exist for
wireless base station designs, image processing and radar systems; these are, of course,
the major focus of this text.

Microsoft has developed acceleration of the web search engine Bing using FPGAs
and shows improved ranking throughput in a production search infrastructure. IBM
and Xilinx have worked closely together to show that they can accelerate the reading
of data from web servers into databases by applying an accelerated Memcache2; this
is a general-purpose distributed memory caching system used to speed up dynamic
database-driven searches (Blott and Vissers 2014). Intel have developed a multicore die
with Altera FPGAs, and their recent purchase of the company (Clark 2015) clearly indi-
cates the emergence of FPGAs as a core component in heterogeneous computing with
a clear target for data centers.

. Field Programmable Gate Arrays

The FPGA concept emerged in 1985 with the XC2064TM FPGA family from Xilinx. At
the same time, a company called Altera was also developing a programmable device,
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later to become the EP1200, which was the first high-density programmable logic device
(PLD). Altera’s technology was manufactured using 3-μm complementary metal oxide
semiconductor (CMOS) electrically programmable read-only memory (EPROM) tech-
nology and required ultraviolet light to erase the programming, whereas Xilinx’s tech-
nology was based on conventional static random access memory (SRAM) technology
and required an EPROM to store the programming.

The co-founder of Xilinx, Ross Freeman, argued that with continuously improving
silicon technology, transistors were going to become cheaper and cheaper and could be
used to offer programmability. This approach allowed system design errors which had
only been recognized at a late stage of development to be corrected. By using an FPGA
to connect the system components, the interconnectivity of the components could be
changed as required by simply reprogramming them. Whilst this approach introduced
additional delays due to the programmable interconnect, it avoided a costly and time-
consuming PCB redesign and considerably reduced the design risks.

At this stage, the FPGA market was populated by a number of vendors, including
Xilinx, Altera, Actel, Lattice, Crosspoint, Prizm, Plessey, Toshiba, Motorola, Algotronix
and IBM. However, the costs of developing technologies not based on conventional inte-
grated circuit design processes and the need for programming tools saw the demise of
many of these vendors and a reduction in the number of FPGA families. SRAM tech-
nology has now emerged as the dominant technology largely due to cost, as it does not
require a specialist technology. The market is now dominated by Xilinx and Altera, and,
more importantly, the FPGA has grown from a simple glue logic component to a com-
plete system on programmable chip (SoPC) comprising on-board physical processors,
soft processors, dedicated DSP hardware, memory and high-speed I/O.

The FPGA evolution was neatly described by Steve Trimberger in his FPL2007 ple-
nary talk (see the summary in Table 1.1). The evolution of the FPGA can be divided into
three eras. The age of invention was when FPGAs started to emerge and were being used
as system components typically to provide programmable interconnect giving protec-
tion to design evolutions and variations. At this stage, design tools were primitive, but
designers were quite happy to extract the best performance by dealing with lookup tables
(LUTs) or single transistors.

As highlighted above, there was a rationalization of the technologies in the early 1990s,
referred to by Trimberger as the great architectural shakedown. The age of expansion
was when the FPGA started to approach the problem size and thus design complexity
was key. This meant that it was no longer sufficient for FPGA vendors to just produce

Table . Three ages of FPGAs

Period Age Comments

1984–1991 Invention Technology is limited, FPGAs are much smaller than the
application problem size. Design automation is secondary,
architecture efficiency is key

1992–1999 Expansion FPGA size approaches the problem size. Ease of design
becomes critical

2000–present Accumulation FPGAs are larger than the typical problem size. Logic capacity
limited by I/O bandwidth
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place and route tools and it became critical that hardware description languages (HDLs)
and associated synthesis tools were created. The final evolution period was the period of
accumulation when FPGAs started to incorporate processors and high-speed intercon-
nection. Of course, this is very relevant now and is described in more detail in Chapter
5 where the recent FPGA offerings are reviewed.

This has meant that the FPGA market has grown from nothing in just over 20 years to
become a key player in the IC industry, worth some $3.9 billion in 2014 and expected to
be worth around $7.3 billion in 2022 (MarketsandMarkets 2016). It has been driven by
the growth in the automotive sector, mobile devices in the consumer electronics sector
and the number of data centers.

1.2.1 Rise of Heterogeneous Computing Platforms

Whilst Moore’s law is presented here as being the cornerstone for driving FPGA evo-
lution and indeed electronics, it also has been the driving force for computing. How-
ever, all is not well with computing’s reliance on silicon technology. Whilst the number
of transistors continues to double, the scaling of clock speed has not continued at the
same rate. This is due to the increase in power consumption, particularly the increase in
static power. The issue of the heat dissipation capability of packaging means that com-
puting platform providers such as Intel have limited their processor power to 30 W. This
resulted in an adjustment in the prediction for clock rates between 2005 and 2011 (as
illustrated in Figure 1.2) as clock rate is a key contributor to power consumption (ITRS
2005).

In 2005, the International Technology Roadmap for Semiconductors (ITRS) predicted
that a 100 GHz clock would be achieved in 2020, but this estimation had to be revised
first in 2007 and then again in 2011. This has been seen in the current technology where
a clock rate of some 30 GHz was expected in 2015 based on the original forecast, but we
see that speeds have been restricted to 3–4 GHz. This has meant that the performance
per gigahertz has effectively stalled since 2005 and has generated the interest by major
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Figure . Change in ITRS scaling prediction for clock frequencies
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computing companies in exploring different architectures that employ FPGA technol-
ogy (Putnam et al. 2014; Blott and Vissers 2014).

1.2.2 Programmability and DSP

On many occasions, the growth indicated by Moore’s law has led people to argue that
transistors are essentially free and therefore can be exploited, as in the case of pro-
grammable hardware, to provide additional flexibility. This could be backed up by the
observation that the cost of a transistor has dropped from one-tenth of a cent in the
1980s to one-thousandth of a cent in the 2000s. Thus we have seen the introduction of
hardware programmability into electronics in the form of FPGAs.

In order to make a single transistor programmable in an SRAM technology, the
programmability is controlled by storing a “1” or a “0” on the gate of the transistor,
thereby making it conduct or not. This value is then stored in an SRAM cell which,
if it requires six transistors, will will mean that we need seven transistors to achieve one
programmable equivalent in FPGA. The reality is that in an overall FPGA implementa-
tion, the penalty is nowhere as harsh as this, but it has to be taken into consideration in
terms of ultimate system cost.

It is the ability to program the FPGA hardware after fabrication that is the main appeal
of the technology; this provides a new level of reassurance in an increasingly compet-
itive market where “right first time” system construction is becoming more difficult to
achieve. It would appear that that assessment was vindicated in the late 1990s and early
2000s: when there was a major market downturn, the FPGA market remained fairly
constant when other microelectronic technologies were suffering. Of course, the impor-
tance of programmability has already been demonstrated by the microprocessor, but this
represented a new change in how programmability was performed.

The argument developed in the previous section presents a clear advantage of FPGA
technology in overcoming PCB design errors and manufacturing faults. Whilst this
might have been true in the early days of FPGA technology, evolution in silicon tech-
nology has moved the FPGA from being a programmable interconnection technology
to making it into a system component. If the microprocessor or microcontroller was
viewed as programmable system component, the current FPGA devices must also be
viewed in this vein, giving us a different perspective on system implementation.

In electronic system design, the main attraction of the microprocessor is that it consid-
erably lessens the risk of system development. As the hardware is fixed, all of the design
effort can be concentrated on developing the code. This situation has been comple-
mented by the development of efficient software compilers which have largely removed
the need for the designer to create assembly language; to some extent, this can even
absolve the designer from having a detailed knowledge of the microprocessor archi-
tecture (although many practitioners would argue that this is essential to produce good
code). This concept has grown in popularity, and embedded microprocessor courses are
now essential parts of any electrical/electronic or computer engineering degree course.

A lot of this process has been down to the software developer’s ability to exploit
an underlying processor architecture, the von Neumann architecture. However, this
advantage has also been the limiting factor in its application to the topic of this text,
namely DSP. In the von Neumann architecture, operations are processed sequentially,
which allows relatively straightforward interpretation of the hardware for programming
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purposes; however, this severely limits the performance in DSP applications which
exhibit high levels of parallelism and have operations that are highly data-independent.
This cries out for parallel realization, and whilst DSP microprocessors go some way
toward addressing this situation by providing concurrency in the form of parallel hard-
ware and software “pipelining,” there is still the concept of one architecture suiting all
sizes of the DSP problem.

This limitation is overcome in FPGAs as they allow what can be considered to be a sec-
ond level of programmability, namely programming of the underlying processor archi-
tecture. By creating an architecture that best meets the algorithmic requirements, high
levels of performance in terms of area, speed and power can be achieved. This concept
is not new as the idea of deriving a system architecture to suit algorithmic requirements
has been the cornerstone of application-specific integrated circuit (ASIC) implementa-
tions. In high volumes, ASIC implementations have resulted in the most cost-effective,
fastest and lowest-energy solutions. However, increasing mask costs and the impact of
“right first time” system realization have made the FPGA a much more attractive alter-
native.

In this sense, FPGAs capture the performance aspects offered by ASIC implementa-
tion, but with the advantage of programmability usually associated with programmable
processors. Thus, FPGA solutions have emerged which currently offer several hundreds
of giga operations per second (GOPS) on a single FPGA for some DSP applications,
which is at least an order of magnitude better performance than microprocessors.

. Influence of Programmability

In many texts, Moore’s law is used to highlight the evolution of silicon technology, but
another interesting viewpoint particularly relevant for FPGA technology is Makimoto’s
wave, which was first published in the January 1991 edition of Electronics Weekly. It is
based on an observation by Tsugio Makimoto who noted that technology has shifted
between standardization and customization. In the 1960s, 7400 TTL series logic chips
were used to create applications; and then in the early 1970s, the custom large-scale inte-
gration era emerged where chips were created (or customized) for specific applications
such as the calculator. The chips were now increasing in their levels of integration and
so the term “medium-scale integration” (MSI) was born. The evolution of the micropro-
cessor in the 1970s saw the swing back towards standardization where one “standard”
chip was used for a wide range of applications.

The 1980s then saw the birth of ASICs where designers could overcome the fact
that the sequential microprocessor posed severe limitations in DSP applications where
higher levels of computations were needed. The DSP processor also emerged, such as
the TMS32010, which differed from conventional processors as they were based on the
Harvard architecture which had separate program and data memories and separate
buses. Even with DSP processors, ASICs offered considerable potential in terms of
processing power and, more importantly, power consumption. The development of
the FPGA from a “glue component” that allowed other components to be connected
together to form a system to become a component or even a system itself led to its
increased popularity.
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The concept of coupling microprocessors with FPGAs in heterogeneous platforms
was very attractive as this represented a completely programmable platform with micro-
processors to implement the control-dominated aspects of DSP systems and FPGAs
to implement the data-dominated aspects. This concept formed the basis of FPGA-
based custom computing machines (FCCMs) which formed the basis for “configurable”
or reconfigurable computing (Villasenor and Mangione-Smith 1997). In these systems,
users could not only implement computational complex algorithms in hardware, but
also use the programmability aspect of the hardware to change the system function-
ality, allowing the development of “virtual hardware” where hardware could ‘virtually”
implement systems that are an order of magnitude larger (Brebner 1997).

We would argue that there have been two programmability eras. The first occurred
with the emergence of the microprocessor in the 1970s, where engineers could develop
programmable solutions based on this fixed hardware. The major challenge at this time
was the software environments; developers worked with assembly language, and even
when compilers and assemblers emerged for C, best performance was achieved by
hand-coding. Libraries started to appear which provided basic common I/O functions,
thereby allowing designers to concentrate on the application. These functions are now
readily available as core components in commercial compilers and assemblers. The need
for high-level languages grew, and now most programming is carried out in high-level
programming languages such as C and Java, with an increased use of even higher-level
environments such as the unified modeling language (UML).

The second era of programmability was ushered in by FPGAs. Makimoto indicates
that field programmability is standardized in manufacture and customized in applica-
tion. This can be considered to have offered hardware programmability if you think in
terms of the first wave as the programmability in the software domain where the hard-
ware remains fixed. This is a key challenge as most computer programming tools work
on the fixed hardware platform principle, allowing optimizations to be created as there
is clear direction on how to improve performance from an algorithmic representation.
With FPGAs, the user is given full freedom to define the architecture which best suits
the application. However, this presents a problem in that each solution must be hand-
crafted and every hardware designer knows the issues in designing and verifying hard-
ware designs!

Some of the trends in the two eras have similarities. In the early days, schematic cap-
ture was used to design early circuits, which was synonymous with assembly-level pro-
gramming. Hardware description languages such as VHSIC Hardware Description Lan-
guage (VHDL) and Verilog then started to emerge that could used to produce a higher
level of abstraction, with the current aim to have C-based tools such as SystemC and
Catapult® from Mentor Graphics as a single software-based programming environment
(Very High Speed Integrated Circuit (VHSIC) was a US Department of Defense funded
program in the late 1970s and early 1980s with the aim of producing the next genera-
tion of integrated circuits). Initially, as with software programming languages, there was
mistrust in the quality of the resulting code produced by these approaches.

With the establishment of improved cost-effectiveness, synthesis tools are equiva-
lent to the evolution of efficient software compilers for high-level programming lan-
guages, and the evolution of library functions allowed a high degree of confidence
to be subsequently established; the use of HDLs is now commonplace for FPGA
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implementation. Indeed, the emergence of intellectual property (IP) cores mirrored
the evolution of libraries such as I/O programming functions for software flows; they
allowed common functions to be reused as developers trusted the quality of the resulting
implementation produced by such libraries, particularly as pressures to produce more
code within the same time-span grew. The early IP cores emerged from basic function
libraries into complex signal processing and communications functions such as those
available from the FPGA vendors and the various web-based IP repositories.

. Challenges of FPGAs

In the early days, FPGAs were seen as glue logic chips used to plug components together
to form complex systems. FPGAs then increasingly came to be seen as complete systems
in themselves, as illustrated in Table 1.1. In addition to technology evolution, a number
of other considerations accelerated this. For example, the emergence of the FPGA as a
DSP platform was accelerated by the application of distributed arithmetic (DA) tech-
niques (Goslin 1995; Meyer-Baese 2001). DA allowed efficient FPGA implementations
to be realized using the lookup table or LUT-based/adder constructs of FPGA blocks
and allowed considerable performance gains to be gleaned for some DSP transforms
such as fixed coefficient filtering and transform functions such as the fast Fourier trans-
form (FFT). Whilst these techniques demonstrated that FPGAs could produce highly
effective solutions for DSP applications, the idea of squeezing the last aspect of per-
formance out of the FPGA hardware and, more importantly, spending several person-
months creating such innovative designs was now becoming unacceptable.

The increase in complexity due to technology evolution meant that there was a grow-
ing gap in the scope offered by current FPGA technology and the designer’s ability
to develop solutions efficiently using currently available tools. This was similar to the
“design productivity gap” (ITRS 1999) identified in the ASIC industry where it was per-
ceived that ASIC design capability was only growing at 25% whereas Moore’s law growth
was 60%. The problem is not as severe in FPGA implementation as the designer does not
have to deal with sub-micrometer design issues. However, a number of key issues exist:

� Understanding how to map DSP functionality into FPGA. Some of the aspects are
relatively basic in this arena, such as multiply-accumulate (MAC) and delays being
mapped onto on-board DSP blocks, registers and RAM components, respectively.
However, the understanding of floating-point versus fixed-point, wordlength opti-
mization, algorithmic transformation cost functions for FPGA and impact of routing
delay are issues that must be considered at a system level and can be much harder to
deal with at this level.

� Design languages. Currently hardware description languages such as VHDL and Ver-
ilog and their respective synthesis flows are well established. However, users are now
looking at FPGAs, with the recent increase in complexity resulting in the integration
of both fixed and programmable microprocessor cores as a complete system. Thus,
there is increased interest in design representations that more clearly represent sys-
tem descriptions. Hence there is an increased electronic design automation focus on
using C as a design language, but other representations also exist such as those meth-
ods based on model of computation (MoC), e.g. synchronous dataflow.
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� Development and use of IP cores. With the absence of quick and reliable solutions
to the design language and synthesis issues, the IP market in SoC implementation has
emerged to fill the gap and allow rapid prototyping of hardware. Soft cores are par-
ticularly attractive as design functionality can be captured using HDLs and efficiently
translated into the FPGA technology of choice in a highly efficient manner by conven-
tional synthesis tools. In addition, processor cores have been developed which allow
dedicated functionality to be added. The attraction of these approaches is that they
allow application-specific functionality to be quickly created as the platform is largely
fixed.

� Design flow. Most of the design flow capability is based around developing FPGA
functionality from some form of higher-level description, mostly for complex func-
tions. The reality now is that FPGA technology is evolving at such a rate that sys-
tems comprising FPGAs and processors are starting to emerge as an SoC platform
or indeed, FPGAs as a single SoC platform as they have on-board hard and soft
processors, high-speed communications and programmable resource, and this can
be viewed as a complete system. Conventionally, software flows have been more
advanced for processors and even multiple processors as the architecture is fixed.
Whilst tools have developed for hardware platforms such as FPGAs, there is a def-
inite need for software for flows for heterogeneous platforms, i.e. those that involve
both processors and FPGAs.

These represent the challenges that this book aims to address and provide the main
focus for the work that is presented.
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

DSP Basics

. Introduction

In the early days of electronics, signals were processed and transmitted in their natural
form, typically an analogue signal created from a source signal such as speech, then
converted to electrical signals before being transmitted across a suitable transmission
medium such as a broadband connection. The appeal of processing signals digitally was
recognized quite some time ago for a number of reasons. Digital hardware is generally
superior and more reliable than its analogue counterpart, which can be prone to aging
and can give uncertain performance in production.

DSP, on the other hand, gives a guaranteed accuracy and essentially perfect repro-
ducibility (Rabiner and Gold 1975). In addition, there is considerable interest in merg-
ing the multiple networks that transmit these signals, such as the telephone transmis-
sion networks, terrestrial TV networks and computer networks, into a single or multiple
digital transmission media. This provides a strong motivation to convert a wide range
of information formats into their digital formats.

Microprocessors, DSP microprocessors and FPGAs are a suitable platform for pro-
cessing such digital signals, but it is vital to understand a number of basic issues with
implementing DSP algorithms on, in this case, FPGA platforms. These issues range from
understanding both the sampling rates and computation rates of different applications
with the aim of understanding how these requirements affect the final FPGA imple-
mentation, right through to the number representation chosen for the specific FPGA
platform and how these decisions impact the performance. The choice of algorithm
and arithmetic requirements can have severe implications for the quality of the final
implementation.

As the main concern of this book is the implementation of such systems in FPGA
hardware, this chapter aims to give the reader an introduction to DSP algorithms to
such a level as to provide grounding for many of the examples that are described later.
A number of more extensive introductory texts that explain the background of DSP
systems can be found in the literature, ranging from the basic principles (Lynn and Fuerst
1994; Williams 1986) to more comprehensive texts (Rabiner and Gold 1975).
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Figure . Basic DSP system

Section 2.2 gives an introduction to basic DSP concepts that affect hardware imple-
mentation. A brief description of common DSP algorithms is then given, starting with a
review of transforms, including the FFT, discrete cosine transform (DCT) and the dis-
crete wavelet transform (DWT) in Section 2.3. The chapter then moves on to review
filtering in Section 2.4, giving a brief description of finite impulse response (FIR) filters,
infinite impulse response (IIR) filters and wave digital filters (WDFs). Section 2.5 is ded-
icated to adaptive filters and covers both the least mean squares (LMS) and recursive
least squares (RLS) algorithms. Concluding comments are given in Section 2.6.

. Definition of DSP Systems

DSP algorithms accept inputs from real-world digitized signals such as voice, audio,
video and sensor data (temperature, humidity), and mathematically process them
according to the required algorithm’s processing needs. A simple diagram of this pro-
cess is given in Figure 2.1. Given that we are living in a digital age, there is a constantly
increasing need to process more data in the fastest way possible.

The digitized signal is obtained as shown in Figure 2.2 where an analogue signal is
converted into a pulse of signals and then quantized to a range of values. The input is
typically x(n), which is a stream of numbers in digital format, and the output is given
as y(n).

Modern DSP applications mainly involve speech, audio, image, video and communi-
cations systems, as well as error detection and correction and encryption algorithms.
This involves real-time processing of a considerable amount of different types of con-
tent at a series of sampling rates ranging from 1 Hz in biomedical applications, right up
to tens of megahertz in image processing applications. In a lot of cases, the aim is to
process the data to enhance part of the signal (e.g. edge detection in image processing),
eliminate interference (e.g. jamming signals in radar applications), or remove erroneous
input (e.g. echo or noise cancelation in telephony); other DSP algorithms are essential
in capturing, storing and transmitting data, audio, images, and video compression tech-
niques have been used successfully in digital broadcasting and telecommunications.

54 125 127 54 -41 -87 

Quantise Digitization 

Figure . Digitization of analogue signals
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Figure . Example applications for DSP

Over the years, much of the need for such processing has been standardized; Figure 2.3
shows some of the algorithms required in a range of applications. In communications,
the need to provide efficient transmission using orthogonal frequency division multi-
plexing (OFDM) has emphasized the need for circuits for performing FFTs. In image
compression, the evolution initially of the Joint Photographic Experts Group (JPEG) and
then the Motion Picture Experts Group (MPEG) led to the development of the JPEG and
MPEG standards respectively involving a number of core DSP algorithms, specifically
DCT and motion estimation and compensation.

The appeal of processing signals digitally was recognized quite some time ago as dig-
ital hardware is generally superior to and more reliable than its analogue counterpart;
analogue hardware can be prone to aging and can give uncertain performance in pro-
duction. DSP, on the other hand, gives a guaranteed accuracy and essentially perfect
reproducibility (Rabiner and Gold 1975).

The proliferation of DSP technology has mainly been driven by the availability of
increasingly cheap hardware, allowing the system to be easily interfaced to computer
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technology, and in many cases, to be implemented on the same computers. The need for
many of the applications mentioned in Figure 2.3 has driven the need for increasingly
complex DSP systems, which in turn has seen the growth of research into developing
efficient implementation of some DSP algorithms. This has also driven the need for DSP
microprocessors covered in Chapter 4.

A number of different DSP functions can be carried out either in the time domain,
such as filtering, or in the frequency domain by performing an FFT (Rabiner and Gold
1975). The DCT forms the central mechanism for JPEG image compression which is also
the foundation for the MPEG standards. This DCT algorithm enables the components
within the image that are invisible to the naked eye to be identified by converting the
spatial image into the frequency domain. They can then be removed using quantization
in the MPEG standard without discernible degradation in the overall image quality. By
increasing the amount of data removed, greater reduction in file size can be achieved.
Wavelet transforms offer both time domain and frequency domain information and have
roles not only in applications for image compression, but also in extraction of key infor-
mation from signals and for noise cancelation. One such example is in extracting key
features from medical signals such as the electroencephalogram (EEG).

2.2.1 Sampling

Sampling is an essential process in DSP that allows real-life continuous-time domain sig-
nals, in other words analogue signals, to be represented in the digital domain. The pro-
cess of representation of analogue signals process begins with sampling and is followed
by the quantization within the analogue-to-digital converters (ADCs). Therefore, the
two most important components in the sampling process are the selection of the sam-
ples in time domain and subsequent quantization of the samples within the ADC, which
results in quantization noise being added to the digitized analogue signal. The choice of
sampling frequency directly affects the size of data processed by the DSP system.

A continuous-time (analogue) signal can be converted into a discrete-time signal by
sampling the continuous-time signal at uniformly distributed discrete-time instants.
Sampling an analogue signal can be represented by the relation

x(n) = xa(nT), −∞ < n < ∞, (2.1)

where xa(nT) represents the uniformly sampled discrete-time signal. The data stream,
x(n), is obtained by sampling the continuous-time signal at the required time interval,
given as the sampling instance, T ; this is called the sampling period or interval, and its
reciprocal is called the sampling rate, Fs.

The question arises as to how precise the digital data need to be to have a meaning-
ful representation of the analogue word. This definition is explained by the Nyquist–
Shannon sampling theorem which states that exact reconstruction of a continuous-time
baseband signal from its samples is possible if the signal is bandlimited and the sampling
frequency is greater than twice the signal bandwidth. The sampling theory was intro-
duced into communication theory by Nyquist (1928) and then into information theory
by Shannon (1949).

2.2.2 Sampling Rate

Many computing vendors quote clock rates, whereas the rate of computation in DSP
systems is given as the sampling rate. It is also important to delineate the throughput
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Figure . Sampling rates for many DSP systems

rate. The sampling rate for many typical DSP systems is given in Figure 2.4 and indicates
the rate at which data are fed into and/or from the system. It should not be used to dictate
technology choice as, for example, we could have a 128-tap FIR filter requirement for an
audio application where the sampling rate may be 44.2 kHz but the throughput rate will
be 11.2 megasamples per second (MSPS), as during each sample we need to compute
128 multiplications and 127 additions (255 operations) at the sampling rate.

In simple terms when digitizing an analogue signal, the rate of sampling must be at
least twice the maximum frequency fm (within the signal being digitized) so as to main-
tain the information and prevent aliasing (Shannon 1949). In other words, the signal
needs to be bandlimited, meaning that there is no spectral energy above the maximum
frequency fm. The Nyquist sampling rate fs is then determined as 2fm, usually by human
factors (e.g. perception).

A simple example is the sampling of speech, which is standardized at 8 kHz. This sam-
pling rate is sufficient to provide an accurate representation of the spectral components
of speech signals, as the spectral energy above 4 kHz, and probably 3 kHz, does not con-
tribute greatly to signal quality. In contrast, digitizing music typically requires a sample
rate of 44.2 kHz to cover the spectral range of 22.1 kHz as it is acknowledged that this
is more than sufficient to cope with the hearing range of the human ear which typically
cannot detect signals above 18 kHz. Moreover, this increase is natural due to the more
complex spectral composition of music when compared with speech.

In other applications, the determination of the sampling rate does not just come down
to human perception, but involves other aspects. Take, for example, the digitizing of
medical signals such as EEGs which are the result of electrical activity within the brain
picked up from electrodes in contact with the surface of the skin. In capturing the infor-
mation, the underlying waveforms can be heavily contaminated by noise. One particular
application is a hearing test whereby a stimulus is applied to the subject’s ear and the
resulting EEG signal is observed at a certain location on the scalp. This test is referred
to as the auditory brainstem response (ABR) as it looks for an evoked response from the
EEG in the brainstem region of the brain, within 10 ms of the stimulus onset.

The ABR waveform of interest has a frequency range of 100–3000 Hz, therefore
bandpass filtering of the EEG signal to this region is performed during the recording
process prior to digitization. However, there is a slow response roll-off at the bound-
aries and unwanted frequencies may still be present. Once digitized the EEG signal
may be filtered again, possibly using wavelet denoising to remove the upper and lower
contaminating frequencies. The duration of the ABR waveform of interest is 20 ms,
10 ms prior to stimulus and 10 ms afterward. The EEG is sampled at 20 kHz, therefore
with a Nyquist frequency of 10 kHz, which exceeds twice the highest frequency com-
ponent (3 kHz) present in the signal. This equates to 200 samples, before and after the
stimulus.
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. DSP Transformations

This section gives a brief overview of some of the key DSP transforms mentioned in
Chapter 13, including a brief description of applications and their use.

2.3.1 Discrete Fourier Transform

The Fourier transform is the transform of a signal from the time domain representation
to the frequency domain representation. In basic terms it breaks a signal up into its
constituent frequency components, representing a signal as the sum of a series of sines
and cosines.

The Fourier series expansion of a periodic function, f (t), is given by

f (t) = 1
2

a0 +
∞∑

n=1
[an cos(𝜔nt) + bn sin(𝜔nt)] (2.2)

where, for any non-negative integer n, 𝜔n is the nth harmonic in radians of f (t) given by

𝜔n = n w𝜋
T

, (2.3)

the an are the even Fourier coefficients of f (t), given by

an = 2
T ∫

t2

t1

cos(𝜔nt)dt, (2.4)

and the bn are the odd Fourier coefficients, given by

bn = 2
T ∫

t2

t1

sin(𝜔nt)dt (2.5)

The discrete Fourier transform (DFT), as the name suggests, is the discrete version
of the continuous Fourier transform, applied to sampled signals. The input sequence is
finite in duration and hence the DFT only evaluates the frequency components present
in this portion of the signal. The inverse DFT will therefore only reconstruct using these
frequencies and may not provide a complete reconstruction of the original signal (unless
this signal is periodic).

The DFT converts a finite number of equally spaced samples of a function, to a finite
list of complex sinusoids, where the transformation is ordered by frequency. This trans-
formation is commonly described as transferring a sampled function from time domain
to frequency domain. Given the N-point of equally spaced sampled function x(n) as an
input, the N-point DFT is defined by

X(k) =
N−1∑
n=0

x(n)e(−j2𝜋nk∕N) k = 0,… , N − 1, (2.6)

where n is the time index and k is the frequency index.
The compact version of the DFT can be written using the twiddle factor notation:

W nk
N = e−2n𝜋k∕N = exp

(
−2jn𝜋k

N

)
= cos

(
2n𝜋k

N

)
− j sin

(
2jn𝜋k

N

)
. (2.7)
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Using the twiddle factor notation, equation (2.7) can be written as follows:

X(k) =
N−1∑
n=0

x(n)W nk
n , k = 0,… , N − 1. (2.8)

The input sequence x(n) can be calculated from X(k) using the inverse discrete Fourier
transform (IDFT) given by

x(n) = 1
N

N−1∑
n=0

X(k)W−nk
N , n = 0,… , N − 1. (2.9)

The number of operations performed for one output can be easily calculated as N
complex multiplications and N − 1 complex additions from equations (2.8) and (2.9).
Therefore, the overall conversion process requires N2 complex multiplications and
N2 − N complex additions. The amount of calculation required for an N-point DFT
equation is approximately 2N2.

2.3.2 Fast Fourier Transform

In order to reduce the amount of mathematical operations, a family of efficient calcu-
lation algorithms called fast Fourier transforms was introduced by Cooley and Tukey
(1965). The basic methodology behind the FFT is the computation of large DFTs in small
pieces, and their combination with the help of reordering and transposition algorithms.
At the end, the combined result gives the same values as with the large sized DFT, but
the order of complexity of the main system reduces from N2 to the order of N log(N).

The transformed samples are separated by the angle 𝜃 and are periodic and mirrored to
the left and right of the imaginary and above and below the real axis. This symmetry and
periodicity in the coefficients of the transform kernel (WN ) gives rise to a family of FFT
algorithms which involves recursively decomposing the algorithm until only two-point
DFTs are required. It is computed using the butterfly unit and perfect shuffle network
as shown in Figure 2.5:

Xk =
N∕2−1∑

n=0
x(n)W nk

N + W Nk∕2
N

N∕2−1∑
n=0

x(n + N∕2)W nk
N . (2.10)

The FFT has immense impact in a range of applications. One particular use is in the
central computation within OFDM. This spread spectrum digital modulation scheme
is used in communication, particularly within wireless technology, and has resulted
in vastly improved data rates within the 802.11 standards, to name just one example.
The algorithm relies on the orthogonal nature of the frequency components extracted
through the FFT, allowing each of these components to act as a sub-carrier. Note that
the receiver uses the inverse fast Fourier transform (IFFT) to detect the sub-carriers and
reconstruct the transmission. The individual sub-carriers are modulated using a typical
low symbol rate modulation scheme such as phase-shift or quadrature amplitude mod-
ulation (QAM), depending on the application.

For the Institute of Electrical and Electronic Engineers (IEEE) 802.11 standard, the
data rate ranges up to 54 Mbps depending on the environmental conditions and noise,
i.e. phase shift modulation is used for the lower data rates when greater noise is present,
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Figure . Eight-point radix-2 FFT structure

and QAM is used in less noisy environments reaching up to 54 Mbps. Figure 2.6 gives
an example of the main components within a typical communications chain.

The IEEE 802.11a wireless LAN standard using OFDM is employed in the 5 GHz
region of the US ISM band over a channel bandwidth of 125 MHz. From this band-
width 52 frequencies are used, 48 for data and four for synchronization. The latter point
is very important, as the basis on which OFDM works (i.e. orthogonality) relies on the
receiver and transmitter being perfectly synchronized.

2.3.3 Discrete Cosine Transform

The DCT is based on the DFT, but uses only real numbers, i.e. the cosine part of the
transform, as defined in the equation

X(k) =
N−1∑
n=0

cos
[
𝜋

N

(
n + 1

2

)
k
]

, k = 0,… , N − 1. (2.11)
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Figure . Wireless communications transmitter



DSP Basics 

This two-dimensional (2D) form of the DCT is a vital computational component in
the JPEG image compression and also features in MPEG standards:

Fu,v = 𝛼(u)𝛼(v)
7∑

x=0

7∑
y=0

fx,y cos
[
𝜋

8

(
x + 1

2

)
u
]
cos

[
𝜋

8

(
y + 1

2

)
v
]

(2.12)

where u is the horizontal spatial frequency for 0 ≤ u < 8, v is the vertical spatial fre-
quency for 0 ≤ v < 8, 𝛼(u) and 𝛼(v) are constants, fx,y is the value of the (x, y) pixel and
Fu,v is the value of the (u, v) DCT coefficient.

In JPEG image compression, the DCT is performed on the rows and the columns of
the image block of 8 × 8 pixels. The resulting frequency decomposition places the more
important lower-frequency components at the top left-hand corner of the matrix, and
the frequency of the components increases when moving toward the bottom right-hand
part of the matrix.

Once the image has been transformed into numerical values representing the fre-
quency components, the higher frequency components may be removed through the
process of quantization as they will have less importance in image quality. Naturally, the
greater the amount to be removed the higher the compression ratio; at a certain point,
the image quality will begin to deteriorate. This is referred to as lossy compression. The
numerical values for the image are read in a zigzag fashion.

2.3.4 Wavelet Transform

A wavelet is a fast-decaying waveform containing oscillations. Wavelet decomposition
is a powerful tool for multi-resolution filtering and analysis and is performed by corre-
lating scaled versions of this original wavelet function (i.e. the mother wavelet) against
the input signal. This decomposes the signal into frequency bands that maintain a level
of temporal information (Mallat 1989). This is particularly useful for frequency analysis
of waveforms that are pseudo-stationary where the time-invariant FFT may not provide
the complete information.

There are many families of wavelet equations such as the Daubechies, Coiflet and
Symmlet (Daubechies 1992). Wavelet decomposition may be performed in a number
of ways, namely the continuous wavelet transform (CWT) or DWT which is described
in the next section.

Discrete Wavelet Transform
The DWT is performed using a series of filters. At each stage of the DWT, the input sig-
nal is passed though a high-pass and a low-pass filter, resulting in the detail and approx-
imation coefficients.

The equation for the low-pass filter is

y(n) = (x∗g)(n) =
∞∑
−∞

x(k)g(n − k), (2.13)

where g denotes high-pass. By removing half the frequencies at each stage, the signal
information can be represented using half the number of coefficients, hence the equa-
tions for the low and high filters become

ylow(n) =
∞∑
−∞

x(k)g(2n − k) (2.14)
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and

yhigh(n) =
∞∑
−∞

x(k)h(2n − k), (2.15)

respectively, where h denotes low-pass, and where n has become 2n, representing the
down-sampling process.

Wavelet decomposition is a form of subband filtering and has many uses. By breaking
the signal down into the frequency bands, denoising can be performed by eliminating
the coefficients representing the highest frequency components and then reconstructing
the signal using the remaining coefficients. Naturally, this could also be used for data
compression in a similar way to the DCT and has been applied to image compression.
Wavelet decomposition is also a powerful transform to use in analysis of medical signals.

. Filters

Digital filtering is achieved by performing mathematical operations on the digitized
data; in the analogue domain, filtering is performed with the help of electronic circuits
that are formed from various electronic components. In most cases, a digital filter per-
forms operations on the sampled signals with the use stored filter coefficients. With the
use of additional components and increased complexity, digital filters could be more
expensive than the equivalent analogue filters.

2.4.1 Finite Impulse Response Filter

A simple FIR filter is given by

y(n) =
N−1∑
i=0

aix(n − i), (2.16)

where the ai are the coefficients needed to generate the necessary filtering response such
as low-pass or high-pass and N is the number of filter taps contained in the function. The
function can be represented using the classical signal flow graph (SFG) representation
of Figure 2.7 for N = 3 given by

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2). (2.17)

In the classic form, the delay boxes of z−1 indicate a digital delay, the branches send the
data to several output paths, labeled branches represent a multiplication by the variable
shown and the black dots indicate summation functions. However, we find the form

x(n)

a0

z–1

y(n)

z–1

a1 a2

Figure . Original FIR filter SFG
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given in Figure 2.8 to be easier to understand and use this format throughput the book,
as the functionality is more obvious than that given in Figure 2.7.

An FIR filter exhibits some important properties including the following.
� Superposition. Superposition holds if a filter produces an output y(n) + v(n) from an

input x(n) + u(n), where y(n) is the output produced from input x(n) and v(n) is the
output produced from input u(n).

� Homogeneity. If a filter produces an output ay(n) from input ax(n) then the filter is
said to be homogeneous if the filter produces an output ay(n) from input ax(n).

� Shift invariance. A filter is shift invariant if and only if the input of x(n + k) generates
an output y(n + k), where y(n) is the output produced by x(n).

If a filter is said to exhibit all these properties then it is said to be a linear time-invariant
(LTI) filter. This property allows these filters to be cascaded as shown in Figure 2.9(a) or
in a parallel configuration as shown in Figure 2.9(b).

FIR filters have a number of additional advantages, including linear phase, meaning
that they delay the input signal but do not distort its phase; they are inherently stable;

x(n)   x(1n) Filter 
#1 

y(1n)        x(2n) Filter 
#2

(a) Cascade FIR filter

(b) Parallel FIR filter

y(2n)    y(n)

          x(1n) Filter 
#1

y(1n)   

x(n)     

Filter 
#2

y(2n)    

+
y(n)  

x(2n)   

Figure . FIR filter configurations
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they are implementable using finite arithmetic; and they have low sensitivity to quanti-
zation errors.

Low-Pass FIR Filter
FIR filter implementations are relatively simple to understand as there is a straightfor-
ward relationship between the time and frequency domain. A brief summary is now
given of digital filter design, but the reader is also referred to some good basic texts
(Bourke 1999; Lynn and Fuerst 1994; Williams 1986) which give a much more com-
prehensive description of filter design. One basic way of developing a digital filter is
to start with the desired frequency response, use an inverse filter to get the impulse
response, truncate the impulse response and then window the function to remove arti-
facts (Bourke 1999; Williams 1986). The desired response is shown in Figure 2.10, includ-
ing the key features that the designer wants to minimize.

Realistically we have to approximate this infinitely long filter with a finite number of
coefficients and, given that it needs data from the future, time-shift it so that it does not
have negative values. If we can then successfully design the filter and transform it back
to the frequency domain we get a ringing in the passband/stopband frequency ranges
known as rippling, a gradual transition between passband and stopband regions, termed
the transition region. The ripple is often called the Gibbs phenomenon after Willard
Gibbs who identified this effect in 1899, and it is outlined in the FIR filter response in
Figure 2.10.

It could be viewed that this is the equivalent of windowing the original frequency
plot with a rectangular window; there are other window types, most notably von Hann,
Hamming and Kaiser windows (Lynn and Fuerst 1994; Williams 1986) that can be used

1
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Figure . Filter specification features
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to minimize these issues in different ways and to different levels. The result of the design
process is the determination of the filter length and coefficient values which best meet
the requirements of the filter response.

The number of coefficients has an impact on both the ripple and transition region and
is shown for a low-pass filter design, created using the Hamming and Dolph–Chebyshev
schemes in MATLAB®. The resulting frequency responses are shown in Figures 2.11 and
2.12 for 100 and 400, taps respectively. The impact of increasing the number of taps in
the roll-off between the two bands and the reduction in ripple is clear.
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Increasing the number of coefficients clearly allows a better approximation of the filter
but at the cost of the increased computation needed to compute the additional taps, and
impacts the choice of windowing function.

2.4.2 Infinite Impulse Response filter

The main disadvantage of FIR filters is the large number of taps needed to realize some
aspects of the frequency response, namely sharp cut-off resulting in a high computation
cost to achieve this performance. This can be overcome by using IIR filters which use
previous values of the output as indicated in the equation

y(n) =
N−1∑
i=0

aix(n − i) +
M−1∑
j=1

biy(n − j). (2.18)

This is best expressed in the transfer function expression

H(z) =
∑N−1

i=0 aix(n − i)

1 −
∑M−1

i=1 biy(n − j)
, (2.19)

and is shown in Figure 2.12.
The design process is different from FIR filters and is usually achieved by exploiting

the huge body of analogue filter designs by transforming the s-plane representation of
the analogue filter into the z domain. A number of design techniques can be used such as
the impulse invariant method, the match z-transform and the bilinear transform. Given
an analogue filter with a transfer function, HA(s), a discrete realization, HD(z), can be
readily deduced by applying a bilinear transform given by

HD(z) = HA(s)||s= 2
T

(
z−1
z+1

) (2.20)

This gives a stable digital filter. However, in higher frequencies, distortion or warping is
introduced as shown in Figure 2.13. This warping changes the band edges of the digital
filter as illustrated in Figure 2.14 and gives a transfer function expression comprising
poles and zeros:

H(z) = G
(z − 𝜉1)(z − 𝜉2)… (z − 𝜉M)
(z − 𝜌1)(z − 𝜌2)… (z − 𝜌N )

. (2.21)
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The main concern is to maintain stability by ensuring that the poles are located within
the unit circle. There is a direct relationship between the location of these zeros and
poles and the filter properties. For example, a pole on the unit circle with no zero to
annihilate it will produce an infinite gain at a certain frequency (Meyer-Baese 2001).

Due to the feedback loops as shown in Figure 2.12, the structures are very sensitive to
quantization errors, a feature which increases as the filter order grows. For this reason,
filters are built from second-order IIR filters defined by

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + b1y(n − 1) + b2y(n − 2), (2.22)

leading to the structure of Figure 2.15.

2.4.3 Wave Digital Filters

In addition to non-recursive (FIR) and recursive (IIR) filters, a class of filter structures
called WDFs is also of considerable interest as they possess a low sensitivity to coefficient
variations. This is important in IIR filters as it determines the level of accuracy to which
the filter coefficients have to be realized and has a direct correspondence to the dynamic
range needed in the filter structure; this affects the internal wordlength sizes and filter
performance which will invariably affect throughput rate.
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Figure . Frequency impact of warping

WDFs possess a low sensitivity to attenuation due to their inherent structure, thereby
reducing the loss response due to changes in coefficient representation. This is impor-
tant for many DSP applications for a number of reasons: it allows short coefficient repre-
sentations to be used which meet the filter specification and which involve only a small
hardware cost; structures with low coefficient sensitivities also generate small round-
off errors, i.e. errors that result as an effect of limited arithmetic precision within the
structure. (Truncation and wordlength errors are discussed in Chapter 3.) As with IIR
filters, the starting principle is to generate low-sensitivity digital filters by capturing the
low-sensitivity properties of the analogue filter structures.

WDFs represent a class of filters that are modeled on classical analogue filter net-
works (Fettweis et al. 1986; Fettweis and Nossek 1982; Wanhammar 1999) which are
typically networks configured in the lattice or ladder structure. For circuits that operate
on low frequencies where the circuit dimensions are small relative to the wavelength,
the designer can treat the circuit as an interconnection of lumped passive or active
components with unique voltages and currents defined at any point in the circuit, on
the basis that the phase change between aspects of the circuit will be negligible.

x(n)
H1(z) H2(z) HN/2(z)

         y(n)

Figure . Cascade of second-order IIR filter blocks
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This allows a number of circuit-level design optimization techniques such as Kirch-
hoff’s law to be applied. However, for higher-frequency circuits, these assumptions no
longer apply and the user is faced with solving Maxwell’s equations. To avoid this, the
designer can exploit the fact that she is solving the problems only in certain places such
as the voltage and current levels at the terminals (Pozar 2005). By exploiting specific
types of circuits such as transmission lines which have common electrical propagation
times, circuits can then be treated as transmission lines and modeled as distributed
components characterized by their length, propagation constant and characteristic
impedance.

The process of producing a WDF has been covered by Fettweis et al. (1986). The main
design technique is to generate filters using transmission line filters and relate these to
classical filter structures with lumped circuit elements; this allows the designer to exploit
the well-known properties of these structures, termed a reference filter. The correspon-
dence between the WDF and its reference filter is achieved by mapping the reference
structure using a complex frequency variable, 𝜓 , termed Richard’s variable, allowing
the reference structure to be mapped effectively into the 𝜓 domain.

The use of reference structures allows all the inherent passivity and lossless features to
be transferred into the digital domain, achieving good filter performance and reducing
the coefficient sensitivity, thereby allowing lower wordlengths to be achieved. Fettweis
et al. (1986) give the simplest and most appropriate choice of𝜓 as the bilinear transform
of the z-variable, given by

𝜓 = z − 1
z + 1

= tanh(𝜌T∕2) (2.23)

where 𝜌 is the actual complex frequency. This variable has the property that the real
frequencies 𝜔 correspond to real frequencies 𝜙,

𝜙 = tan(𝜔T∕2), 𝜌 = j𝛼, 𝜓 = j𝜙, (2.24)

implying that the real frequencies in the reference domain correspond to real frequen-
cies in the digital domain. Other properties described in Fettweis et al. (1986) ensure
that the filter is causal. The basic principle used for WDF filter design is illustrated in
Figure 2.16, taken from Wanhammar (1999). The lumped element filter is shown in Fig-
ure 2.16(a) where the various passive components, L2s, 1

C3s and L4s, map to R2𝜓 , R3
𝜓

and R4𝜓 respectively in the analogous filter given in Figure 2.16(b). Equation (2.23) is
then used to map the equivalent transmission line circuit to give the 𝜙 domain filter in
Figure 2.16(c).

WDF Building Blocks
As indicated in Figure 2.16(c), the basic WDF configuration is based upon the various
one-, two- and multi-port elements. Figure 2.17 gives a basic description of the two-port
element. The network can be described by incident, A, and reflected, B, waves which are
related to the port currents, I1 and I2, port voltages, V1 and V2, and port resistances, R1
and R2, by (Fettweis et al. 1986)

A1 ≅ V1 + R1I1, (2.25)

B2 ≅ V2 + R2I2. (2.26)



 FPGA-based Implementation of Signal Processing Systems

R1

R

(b) ψ domain filter structure

RL

R2ψ R4ψ

ψ
R
ψ

R1

R2 R4

R3

RL

(c) Resulting two-port filter

R1

RL

L2

C3s

L4

1

(a) Reference lumped element filter

Figure . WDF configuration

The transfer function, S21, is given by

S21 = KB2∕A1, (2.27)

where

K =
√

R1∕R2. (2.28)

In a seminal paper, Fettweis et al. (1986) show that the loss, 𝛼, can be related to the
circuit parameters, namely the inductance or capacitance and frequency, 𝜔, such that

V1

I1

B1

I2

B1

A1 A2 V2

Figure . WDF building blocks



DSP Basics 

Adaptive

Algorithm

FIR

Transversal

Filter

∑w(n) yest(n)

e(n)

x(n)

y(n)

–
+

x(n)Figure . Adaptive filter system

the loss is 𝜔 = 𝜔0, indicating that for a well-designed filter, the sensitivity of the atten-
uation is small through its passband, thus giving the earlier stated advantages of lower
coefficient wordlengths.

As indicated in Figure 2.17, the basic building blocks for the reference filters are a
number of these common two-port and three-port elements or adapters. Some of these
are given in Figure 2.18, showing how they are created using multipliers and adders.

. Adaptive Filtering

The basic function of a filter is to remove unwanted signals from those of interest.
Obtaining the best design usually requires a priori knowledge of certain statistical
parameters (such as the mean and correlation functions) within the useful signal. With
this information, an optimal filter can be designed which minimizes the unwanted sig-
nals according to some statistical criterion.

One popular measure involves the minimization of the mean square of the error signal,
where the error is the difference between the desired response and the actual response
of the filter. This minimization leads to a cost function with a uniquely defined optimum
design for stationary inputs known as a Wiener filter (Widrow and Hoff 1960). However,
it is only optimum when the statistical characteristics of the input data match the a
priori information from which the filter is designed, and is therefore inadequate when
the statistics of the incoming signals are unknown or changing (i.e. in a non-stationary
environment).

For this situation, a time-varying filter is needed which will allow for these changes.
An appropriate solution is an adaptive filter, which is inherently self-designing through
the use of a recursive algorithm to calculate updates for the filter parameters. These then
form the taps of the new filter, the output of which is used with new input data to form
the updates for the next set of parameters. When the input signals are stationary (Haykin
2002), the algorithm will converge to the optimum solution after a number of iterations,
according to the set criterion. If the signals are non-stationary then the algorithm will
attempt to track the statistical changes in the input signals, the success of which depends
on its inherent convergence rate versus the speed at which statistics of the input signals
are changing.

In adaptive filtering, two conflicting algorithms dominate the area, the RLS and the
LMS algorithm. The RLS algorithm is a powerful technique derived from the method of
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least squares (LS). It offers greater convergence rates than its rival LMS algorithm, but
this gain is at the cost of increased computational complexity, a factor that has hindered
its use in real-time applications.

A considerable body of work has been devoted to algorithms and VLSI archi-
tectures for RLS filtering with the aim of reducing this computational complex-
ity (Cioffi 1990; Cioffi and Kailath 1984; Döhler 1991; Frantzeskakis and Liu 1994;
Gentleman 1973; Gentleman and Kung 1982; Givens 1958; Götze and Schwiegelshohn
1991; Hsieh et al. 1993; McWhirter 1983; McWhirter et al. 1995; Walke 1997). Much of
this work has concentrated on calculating the inverse of the correlation matrix, required
to solve for the weights, in a more stable and less computationally intensive manner than
straightforward matrix inversion.

The standard RLS algorithm achieves this by recursively calculating updates for the
weights using the matrix inversion lemma (Haykin 2002). An alternative and very popu-
lar solution performs a set of orthogonal rotations, (e.g. Givens rotations (Givens 1958))
on the incoming data matrix, transforming it into an equivalent upper triangular matrix.
The filter parameters can then be calculated by back substitution. This method, known
as QR decomposition, is an extension of QR factorization that enables the matrix to be
re-triangularized, when new inputs are present, without the need to perform the trian-
gularization from scratch. From this beginning, a family of numerically stable and robust
RLS algorithms has evolved from a range of QR decomposition methods such as Givens
rotations (Givens 1958) and Householder transformations (Cioffi 1990).

2.5.1 Applications of Adaptive Filters

Because of their ability to operate satisfactorily in non-stationary environments, adap-
tive filters have become an important part of DSP in applications where the statistics of
the incoming signals are unknown or changing. One such application is channel equal-
ization (Drewes et al. 1998) where the intersymbol interference and noise within a trans-
mission channel are removed by modeling the inverse characteristics of the contamina-
tion within the channel. Another is adaptive noise cancelation where background noise
is eliminated from speech using spatial filtering. In echo cancelation, echoes caused by
impedance mismatch are removed from a telephone cable by synthesizing the resound-
ing signal and then subtracting it from the original received signal.

The key application for this research is adaptive beamforming (Litva and Lo 1996;
Moonen and Proudler 1998; Ward et al. 1986). The function of a typical adaptive beam-
former is to suppress signals from every direction other than the desired “look direction”
by introducing deep nulls in the beam pattern in the direction of the interference. The
beamformer output is a weighted combination of signals received by a set of spatially
separated antennae, one primary antenna and a number of auxiliary antennae. The pri-
mary signal constitutes the input from the main antenna, which has high directivity. The
auxiliary signals contain samples of interference threatening to swamp the desired sig-
nal. The filter eliminates this interference by removing any signals in common with the
primary input signal.

2.5.2 Adaptive Algorithms

There is no distinct technique for determining the optimum adaptive algorithm for
a specific application. The choice comes down to a balance between the range of
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characteristics defining the algorithms, such as rate of convergence (i.e. the rate at which
the adaptive algorithm reaches within a tolerance of optimum solution); steady-state
error (i.e. the proximity to an optimum solution); ability to track statistical variations in
the input data; computational complexity; ability to operate with ill-conditioned input
data; and sensitivity to variations in the wordlengths used in the implementation.

Two methods for deriving recursive algorithms for adaptive filters use Wiener filter
theory and the LS method, resulting in the LMS and RLS algorithms, respectively. The
LMS algorithm offers a very simple yet powerful approach, giving good performance
under the right conditions (Haykin 2002). However, its limitations lie with its sensitivity
to the condition number of the input data matrix as well as slow convergence rates. In
contrast, the RLS algorithm is more elaborate, offering superior convergence rates and
reduced sensitivity to ill-conditioned data. On the negative side, the RLS algorithm is
substantially more computationally intensive than the LMS equivalent.

Filter coefficients may be in the form of tap weights, reflection coefficients or rotation
parameters depending on the filter structure, i.e. transversal, lattice or systolic array,
respectively (Haykin 2002). However, in this research both the LMS and RLS algorithms
are applied to the basic structure of a transversal filter (Figure 2.18), consisting of a linear
combiner which forms a weighted sum of the system inputs, x(n), and then subtracts
them from the desired signal, y(n), to produce an error signal, e(n):

e(n) = y(n) −
N−1∑
i=0

wix(n). (2.29)

In Figure 2.18, w(n) and w(n + 1) are the adaptive and updated adaptive weight vectors
respectively, and yest(n) is the estimation of the desired response.

2.5.3 LMS Algorithm

The LMS algorithm is a stochastic gradient algorithm, which uses a fixed step-size
parameter to control the updates to the tap weights of a transversal filter as in Fig-
ure 2.18 (Widrow and Hoff 1960). The algorithm aims to minimize the mean square
error, the error being the difference between y(n) and yest(n). The dependence of the
mean square error on the unknown tap weights may be viewed as a multidimensional
paraboloid referred to as the error surface, as depicted in Figure 2.19 for a two-tap exam-
ple (Haykin 2002).

The surface has a uniquely defined minimum point defining the tap weights for the
optimum Wiener solution (defined by the Wiener–Hopf equations detailed in the next
subsection). However, in the non-stationary environment, this error surface is contin-
uously changing, thus the LMS algorithm needs to be able to track the bottom of the
surface.

The LMS algorithm aims to minimize a cost function, V (w(n)), at each time step n,
by a suitable choice of the weight vector w(n). The strategy is to update the parameter
estimate proportional to the instantaneous gradient value, dV (w(n))

dw(n) , so that

w(n + 1) = w(n) − 𝜇dV (w(n))
dw(n)

, (2.30)
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where 𝜇 is a small positive step size and the minus sign ensures that the parameter esti-
mates descend the error surface. V (w(n)) minimizes the mean square error, resulting in
the following recursive parameter update equation:

w(n + 1) = w(n) − 𝜇x(n)(y(n) − yest(n)). (2.31)

The recursive relation for updating the tap weight vector (i.e. equation (2.30)) may be
rewritten as

w(n + 1) = w(n) − 𝜇x(n)(y(n) − xT (n)w(n)), (2.32)

and represented as filter output

yest(n) = wT (n)x(n), (2.33)

estimation error

e(n) = y(n) − yest(n), (2.34)

and tap weight adaptation

w(n + 1) = w(n) + 𝜇x(n)e(n). (2.35)

The LMS algorithm requires only 2N + 1 multiplications and 2N additions per iter-
ation for an N-tap weight vector. Therefore it has a relatively simple structure and the
hardware is directly proportional to the number of weights.

2.5.4 RLS Algorithm

In contrast, RLS is a computationally complex algorithm derived from the method of
least squares in which the cost function, J(n), aims to minimize the sum of squared
errors, as shown in equation (2.29):

J(n) =
N−1∑
i=0

|e(n − i)|2. (2.36)
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Substituting equation (2.29) into equation (2.36) gives

J(n) =
N−1∑
i=0

||||||y(n) −
N−1∑
i=0

wkx(n − i)
||||||
2

(2.37)

Converting from the discrete time domain to a matrix–vector form simplifies the rep-
resentation of the equations. This is achieved by considering the data values from N
samples, so that equation (2.29) becomes

e(n) =

⎡⎢⎢⎢⎢⎣
e1
e2
⋮

eN

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
y1
y2
⋮

yN

⎤⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎣
xT

1
xT

2
⋮

xT
N

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

W1
W2
⋮

WN

⎤⎥⎥⎥⎥⎦
, (2.38)

which may be expressed as:

e(n) = y(n) − X(n)w(n). (2.39)

The cost function J(n) may then be represented in matrix form as

J(n) = e(n)T e(n) = (y(n) − X(n)w(n))T (y(n) − X(n)w(n)). (2.40)

This is then multiplied out and simplified to give

J(n) = yT(n) − 2yT (n)X(n)w(n) + wT (n)XT (n)X(n)w(n), (2.41)

where XT (n) is the transpose of X(n). To find the optimal weight vector, this expression
is differentiated with respect to w(n) and solved to find the weight vector that will drive
the derivative to zero. This results in a LS weight vector estimation, wLS, which is derived
from the above expression and can be expressed in matrix form as

wLS(n) = (XT (n)X(n))−1XT y(n) (2.42)

These are referred to as the Wiener–Hopf normal equations

wLS(n) = 𝜙(n)−1𝜃(n), (2.43)

𝜙(n) = (XT (n)X(n)), (2.44)

𝜃(n) = XT (n)y(n), (2.45)

where, 𝜙(n) is the correlation matrix of the input data, X(n), and 𝜃(n) is the cross-
correlation vector of the input data, X(n), with the desired signal vector, y(n). By assum-
ing that the number of observations is larger that the number of weights, a solution can
be found since there are more equations than unknowns.

The LS solution given so far is performed on blocks of sampled data inputs. This solu-
tion can be implemented recursively, using the RLS algorithm, where the LS weights
are updated with each new set of sample inputs. Continuing this adaptation through
time would effectively perform the LS algorithm on an infinitely large window of data
and would therefore only be suitable for a stationary system. A weighting factor may be
included in the LS solution for application in non-stationary environments. This factor
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assigns greater importance to the more recent input data, effectively creating a mov-
ing window of data on which the LS solution is calculated. The forgetting factor, 𝛽, is
included in the LS cost function (from equation (2.39)) as

J(n) =
N−1∑
i=0

𝛽(n − i)e2(i), (2.46)

where 𝛽(n − i) has the property 0 < 𝛽(n − i) ≤ 1, i = 1, 2,… , N . One form of the forget-
ting factor is the exponential forgetting factor:

𝛽(n − i) = 𝜆n−i, i = 1, 2,… , N , (2.47)

where 𝜆 is a positive constant with a value close to but less than one. Its value is of
particular importance as it determines the length of the data window that is used and
will affect the performance of the adaptive filter. The inverse of 1 − 𝜆 gives a mea-
sure of the “memory” of the algorithm. The general rule is that the longer the mem-
ory of the system, the faster the convergence and the smaller the steady-state error.
However, the window length is limited by the rate of change in the statistics of the sys-
tem. Applying the forgetting factor to the Wiener–Hopf normal equations (2.43)–(2.45),
the correlation matrix and the cross-correlation matrix become

𝜙(n) =
n∑

i=0
𝜆n−1x(i)xT (i), (2.48)

𝜃(n) =
n∑

i=0
𝜆n−1x(i)y(i). (2.49)

The recursive representations are then expressed as

𝜙(n) =

[n−1∑
i=1

𝜆n−i−1x(i)xT (i)

]
+ x(n)xT (n), (2.50)

or more concisely as

𝜙(n) = 𝜆𝜙(n − 1) + x(n)xT (n). (2.51)

Likewise, 𝜃(n) can be expressed as

𝜃(n) = 𝜆𝜃(n − 1) + x(n)y(n). (2.52)

Solving the Wiener–Hopf normal equations to find the LS weight vector requires the
evaluation of the inverse of the correlation matrix, as highlighted by the following exam-
ple matrix–vector expression below:

⎡⎢⎢⎢⎣
w1
w2
w3

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
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X21X22X23
X31X32X33
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X21X22X23
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⎤⎥⎥⎥⎦
−1⎤⎥⎥⎥⎦
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correlation matrix

⋅

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣

X11X12X13
X21X22X23
X31X32X33

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

y11
y12
y13

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ .

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cross-correlation matrix

(2.53)

The presence of this matrix inversion creates an implementation hindrance in terms of
both numerical stability and computational complexity. Firstly, the algorithm would be
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subject to numerical problems if the correlation matrix became singular. Also, calculat-
ing the inverse for each iteration involves an order of complexity N3, compared with a
complexity of order N for the LMS algorithm, where N is the number of filter taps.

There are two particular methods to solve the LS solution recursively without the
direct matrix inversion which reduce this complexity to order N2. The first technique,
referred to as the standard RLS algorithm, recursively updates the weights using the
matrix inversion lemma. The alternative and very popular solution performs a set of
orthogonal rotations, e.g. Givens rotations (Givens 1958), on the incoming data trans-
forming the square data matrix into an equivalent upper triangular matrix (Gentleman
and Kung 1982). The weights can then be calculated by back substitution.

This method, known as QR decomposition (performed using one of a range of orthog-
onal rotation methods such as Householder transformations or Givens rotations), has
been the basis for a family of numerically stable and robust RLS algorithms (Cioffi 1990;
Cioffi and Kailath 1984; Döhler 1991; Hsieh et al. 1993; Liu et al. 1990, 1992; McWhirter
1983; McWhirter et al. 1995; Rader et al. 1986; Walke 1997). There are versions known
as fast RLS algorithms, which manipulate the redundancy within the system to reduce
the complexity to the order of N , as mentioned in Section 2.5.5.

Systolic Givens Rotations
The conventional Givens rotation QR algorithm can be mapped onto a highly parallel
triangular array (referred to as the QR array (Gentleman and Kung 1982; McWhirter
1983)) built up from two types of cells, a boundary cell (BC) and an internal cell (IC).
The systolic array for the conventional Givens RLS algorithm is shown in Figure 2.20.
Note that the original version (Gentleman and Kung 1982) did not include the product
of cosines formed down the diagonal line of BCs. This modification (McWhirter 1983)
is significant as it allows the QR array to both perform the functions for calculating the
weights and operate as the filter itself. That is, the error residual (a posteriori error) may
be found without the need for weight vector extraction. This offers an attractive solution
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in applications, such as adaptive beamforming, where the output of interest is the error
residual.

All the cells are locally interconnected, which is beneficial, as it is interconnection
lengths that have the most influence over the critical paths and power consumption of a
circuit. This highly regular structure is referred to as a systolic array. Its processing power
comes from the concurrent use of many simple cells rather than the sequential use of a
few very powerful cells and is described in detail in the next chapter. The definitions for
the BCs and ICs are depicted in Figures 2.21 and 2.22 respectively.

The data vector xT (n) is input from the top of the array and is progressively eliminated
by rotating it within each row of the stored triangular matrix R(n − 1) in turn. The rota-
tion parameters c and s are calculated within a BC such that they eliminate the input,
xi,i(n). These parameters are then passed unchanged along the row of ICs continuing
the rotation. The output values of the ICs, xi+1,j(n), become the input values for the next
row. Meanwhile, new inputs are fed into the top of the array, and so the process repeats.
In the process, the R(n) and u(n) values are updated to account for the rotation and then
stored within the array to be used on the next cycle.

For the RLS algorithm, the implementation of the forgetting factor, 𝜆, and the prod-
uct of cosines, 𝛾 , need to be included within the equations. Therefore the operations of
the BCs and ICs have been modified accordingly. A notation has been assigned to the
variables within the array. Each R and u term has a subscript, denoted by (i, j), which rep-
resents the location of the elements within the R matrix and u vector. A similar notation
is assigned to the X input and output variables. The cell descriptions for the updated BCs
and ICs are shown in Figures 2.21 and 2.22, respectively. The subscripts are coordinates
relating to the position of the cell within the QR array.

2.5.5 Squared Givens Rotations

There are division and square root operations within the cell computation for the stan-
dard Givens rotations (Figures 2.21 and 2.22). There has an extensive body of research
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into deriving Givens rotation QR algorithms which avoid these complex operations,
while reducing the overall number of computations (Cioffi and Kailath 1984; Döhler
1991; Hsieh et al. 1993; Walke 1997). One possible QR algorithm is the squared Givens
rotation (SGR) (Döhler 1991). Here the Givens algorithm has been manipulated to
remove the need for the square root operation within the BC and half the number of
multipliers in the ICs.

Studies by Walke (1997) showed that this algorithm provided excellent perfor-
mance within adaptive beamforming at reasonable wordlengths (even with mantissa
wordlengths as short as 12 bits with an increase of 4 bits within the recursive loops). This
algorithm turns out to be a suitable choice for the adaptive beamforming design. Fig-
ure 2.23 depicts the SFG for the SGR algorithm, and includes the BC and IC descriptions.
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This algorithm still requires the dynamic range of floating-point arithmetic but offers
reduced size over fixed-point algorithms, due to the reduced wordlength and operations
requirement. It has the added advantage of allowing the use of a multiply-accumulate
operation to update R. At little cost in hardware, the wordlength of the accumulator
can be increased to improve the accuracy to which R is accumulated, while allowing
the overall wordlength to be reduced. This has been referred to as the Enhanced SGR
algorithm (E-SGR) (Walke 1997).

However, even with the level of computation reduction achievable by the SGR algo-
rithm, the complexity of the QR cells is still large. In addition, the number of processors
within the QR array increases quadratically with the number of inputs, such that for an
N-input system, (N2 + N)∕2 QR processors are required; furthermore, implementing
a processor for each cell could offer data rates far greater than those required by most
applications. The following section details the process of deriving an efficient architec-
ture with generic properties for implementing the SGR QR-RLS algorithm.

. Final Comments

The chapter has given a brief review of DSP algorithms with the aim of providing a foun-
dation for the work presented in this book. Some of the examples have been the focus
of direct implementation using FPGA technology with the aim of giving enhanced per-
formance in terms of the samples produced per second or a reduction in power con-
sumption. The main focus has been to provide enough background to understand the
examples, rather than an exhaustive primer for DSP.

In particular, the material has concentrated on the design of FIR and IIR filtering as this
is a topic for speed optimization, particularly the material in Chapter 8, and the design
of RLS filters, which is the main topic of Chapter 11 and considers the development of
an IP core for an RLS filter solved by QR decomposition. These chapters represent a core
aspect of the material in this book.
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Arithmetic Basics

. Introduction

The choice of arithmetic has always been a key aspect for DSP implementation as it not
only affects algorithmic performance, but also can impact system performance criteria,
specifically area, speed and power consumption. This usually centers around the choice
of a floating-point or a fixed-point realization, and in the latter case, a detailed study
is needed to determine the minimal wordlength needed to achieve the required per-
formance. However, with FPGA platforms, the choice of arithmetic can have a much
wider impact on the performance as the system designer can get a much more direct
return from any gains in terms of reducing complexity. This will either reduce the cost
or improve the performance in a similar way to an SoC designer.

A key requirement of DSP implementations is the availability of suitable processing
elements, specifically adders and multipliers; however, many DSP algorithms (e.g. adap-
tive filters) also require dedicated hardware for performing division and square roots.
The realization of these functions, and indeed the choice of number systems, can have
a major impact on hardware implementation quality. For example, it is well known that
different DSP application domains (e.g. image processing, radar and speech) can have
different levels of bit toggling not only in terms of the number of transitions, but also in
the toggling of specific bits (Chandrakasan and Brodersen 1996). More specifically, the
signed bit in speech input can toggle quite often, as data oscillates around zero, whereas
in image processing the input typically is all positive. In addition, different applications
can have different toggling activity in their lower significant bits. This can have a major
impact in reducing dynamic power consumption.

For these reasons, it is important that some aspects of computer arithmetic are cov-
ered, specifically number representation as well as the implementation choices for some
common arithmetic functions, namely adders and multipliers. However, these are not
covered in great detail as the reality is that in the case of addition and multiplication,
dedicated hardware has been available for some time on FPGA and thus for many appli-
cations the lowest-area, fastest- speed and lowest-power implementations will be based
on these hardware elements. As division and square root operations are required in
some DSP functions, it is deemed important that they are covered here. As dynamic

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
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range is also important, the data representations, namely fixed-point and floating-point,
are also seen as critical.

The chapter is organized as follows. In Section 3.2 some basics of computer arith-
metic are covered, including the various forms of number representations as well as an
introduction to fixed- and floating-point arithmetic. This is followed by a brief intro-
duction to adder and multiplier structures in Section 3.3. Of course, alternative repre-
sentations also need some consideration so signed digit number representation (SDNR),
logarithmic number representations (LNS), residue number representations (RNS), and
coordinate rotation digital computer (CORDIC) are considered in Section 3.4. Dividers
and circuits for square root are then covered in Sections 3.5 and 3.6, respectively. Some
discussion of the choice between fixed-point and floating-point arithmetic for FPGA is
given in Section 3.7. In Section 3.8 some conclusions are given and followed by a dis-
cussion of some key issues.

. Number Representations

From our early years we are taught to compute in decimal, but the evolution of tran-
sistors implies the adoption of binary number systems as a more natural representa-
tion for DSP systems. This section starts with a basic treatment of conventional number
systems, namely signed magnitude and one’s complement, but concentrates on two’s
complement. Alternative number systems are briefly reviewed later as indicated in the
introduction, as they have been applied in some FPGA-based DSP systems.

If x is an (n + 1)-bit unsigned number, then the unsigned representation

x =
n∑

i=0
xi2i (3.1)

applies, where xi is the ith binary bit of n and x0 and xn are least significant bit (lsb)
and most significant bit (msb) respectively. The binary value is converted to decimal by
scaling each bit to the relevant significance as shown below, where 1110 is converted
to 14:

1 × 23 + 1 × 22 + 1 × 21 + 0 × 20 = 14.

Decimal to binary conversion is done by successive divisions by 2. For the expression
D = (x3x2x1x0)2 = x323 + x222 + x121 + x0, we successively divide by 2:

D∕2 = x322 + x221 + x1 = Q1, remainder = x0
Q1∕2 = x321 + x2 = Q2, remainder = x1

Q2∕2 = x3 = Q3, remainder = x2
Q3∕2 = 0 = Q4, remainder = x3.

So if 14 is converted to binary, this is done as follows:

14∕2 = 7, remainder = 0 = x0
7∕2 = 3, remainder = 1 = x1
3∕2 = 1, remainder = 1 = x2
1∕2 = 0, remainder = 1 = x3.
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(a) Sign and Magnitude (b) One’s complement
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(c) Two’s complement

1111    0000 
1110                     0001 

1101                               0010 

1100                                     0011 

1011                                     0100 

1010                               0101 
1001                      0110 

1000    0111

–1                    0

–2                                           1

–3                                                       2

–4                                                            3

–5                                                            4

–6                                                       5

–7                                            6

–8                          7

Figure . Number wheel representation of four-bit numbers

3.2.1 Signed Magnitude

In signed magnitude systems, the n − 1 lower significant bits represent the magnitude,
and the msb, xn, bit represents the sign. This is best represented pictorially in Fig-
ure 3.1(a), which gives the number wheel representation for a four-bit word. In the
signed magnitude notation, the magnitude of the word is decided by the three lower
significant bits, and the sign determined by the sign bit, or msb. However, this represen-
tation presents a number of problems. First, there are two representations of 0 which
must be resolved by any hardware system, particularly if 0 is used to trigger any event
(e.g. checking equality of numbers). As equality is normally achieved by checking bit-
by-bit, this complicates the hardware. Lastly, operations such as subtraction are more
complex, as there is no way to check the sign of the resulting value, without checking
the size of the numbers and organizing accordingly. This creates overhead in hardware
realization and prohibits the number system’s use in practical systems.

3.2.2 One’s Complement

In one’s-complement systems, the assignment of the bits is done differently. It is based
around representing the negative version of the numbers as the inverse or one’s com-
plement of the original number. This is achieved by inverting the individual bits, which
in practice can easily be achieved through the use of an inverter.
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The conversion for an n-bit word is given by

N = (2n − 1) − N , (3.2)

and the pictorial representation for a four-bit binary word is given in Figure 3.1(b). The
problem still exists of two representations of 0. Also, a correction needs to be carried
out when performing one’s complement subtraction (Omondi 1994). Once again, the
need for special treatment of 0 is prohibitive from an implementation perspective.

3.2.3 Two’s Complement

In two’s-complement systems, the inverse of the number is obtained by inverting the
bits of the original word and adding 1. The conversion is given by

N = 2n − N , (3.3)

and the pictorial representation for a four-bit binary word given in Figure 3.1(c). Whilst
this may seem less intuitively obvious than the previous two approaches, it has a num-
ber of advantages: there is a single representation for 0, addition and more importantly
subtraction can be performed readily in hardware and if the number stays within range,
overflow can be ignored in the computation. For these reasons, two’s complement has
become the dominant number system representation.

This representation therefore efficiently translates into efficient hardware structures
for the core arithmetic functions and means that addition and subtraction is easily
implemented. As will be seen later, two’s complement multiplication is a little more
complicated but the single representation of 0 is the differentiator. As will be seen in
the next section, the digital circuitry naturally falls out from this.

3.2.4 Binary Coded Decimal

By applying different weighting, a number of other binary codes can be applied as shown
in Table 3.1. The following codes are usually called binary coded decimal (BCD). The
2421 is a nine’s complement code, i.e. 5 is the inverse of 4, 6 is the inverse of 3, etc.
With the Gray code, successive decimal digits differ by exactly one bit. This coding styles

Table . BCD codes

BCD

Decimal   Gray

0 0000 0000 0000
1 0001 0001 0001
2 0010 0010 0011
3 0011 0011 0010
4 0100 0100 0110
5 0101 1011 1110
6 0110 1100 1010
7 0111 1101 1011
8 1000 1110 1001
9 1001 1111 1000
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tends to be used in low-power applications where the aim is to reduce the number of
transitions (see Chapter 13).

3.2.5 Fixed-Point Representation

Up until now, we have only considered integer representations and not considered the
real representations which we will encounter in practical DSP applications. A widely
used format for representing and storing numerical binary data is the fixed-point for-
mat, where an integer value x represented by xm+n−1, xm+n−2,… , x0 is mapped such that
xm+n−1, xm+n−2,… , xn represents the integer part of the number and the expression,
xn−1, xn−2,… , x0 represents the fractional part of the number. This is the interpretation
placed on the number system by the user and generally in DSP systems, users represent
input data, say x(n), and output data, y(n), as integer values and coefficient word values
as fractional so as to maintain the best dynamic range in the internal calculations.

The key issue when choosing a fixed-point representation is to best use the dynamic
range in the computation. Scaling can be applied to cover the worst-case scenario, but
this will usually result in poor dynamic range. Adjusting to get the best usage of the
dynamic range usually means that overflow will occur in some cases and additional cir-
cuitry has to be implemented to cope with this condition; this is particularly problematic
in two’s complement as overflow results in an “overflowed” value of completely different
sign to the previous value. This can be avoided by introducing saturation circuitry to
preserve the worst-case negative or positive overflow, but this has a nonlinear impact
on performance and needs further investigation.

The impact of overflow in two’s complement is indicated by the sawtooth represen-
tation in Figure 3.2(a). If we consider the four-bit representation represented earlier in
Figure 3.1 and look at the addition of 7 (0111) and 1(0001), then we see that this will
give 8 (1000) in unsigned binary, but of course this represents −8 in 2’s complement
which represents the worse possible representation. One approach is to introduce cir-
cuitry which will saturate the output to the nearest possible value, i.e. 7 (0111). This is
demonstrated in Figure 3.2(b), but the impact is to introduce a nonlinear impact to the
DSP operation which needs to be evaluated.

This issue is usually catered for in the high-level modeling stage using tools such
as those from MATLAB® or LabVIEW. Typically the designer is able to start with a

2n–1

Unsigned

–2n

Signed

(a) Overflow

2n–1

Unsigned

(b) Saturation

–2n

Signed

Figure . Impact of overflow in two’s complement
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floating-point representation and then use a fixed-point library to evaluate the perfor-
mance. At this stage, any impact of overflow can be investigated.

A FPGA-based solution may have timing problems as a result of any additional cir-
cuitry introduced for saturation. One conclusion that the reader might draw is that
fixed-point is more trouble than it is worth, but fixed-point implementations are par-
ticularly attractive for FPGA implementations (and some DSP microprocessor imple-
mentations), as word size translates directly to silicon area. Moreover, a number of opti-
mizations are available that make fixed-point extremely attractive; these are explored in
later chapters.

3.2.6 Floating-Point Representation

Floating-point representations provide a much more extensive means for providing real
number representations and tend to be used extensively in scientific computation appli-
cations, but also increasingly in DSP applications. In floating-point, the aim is to rep-
resent the real number using a sign (S), exponent (Exp) and mantissa (M), as shown in
Figure 3.3. The most widely used form of floating-point is the IEEE Standard for Binary
Floating-Point Arithmetic (IEEE 754). This specifies four formats:
� single precision (32-bit);
� double precision (64-bit);
� single extended precision;
� double extended precision.

The single-precision format is a 32-bit representation where 1 bit is used for S, 8 bits
for Exp and 23 bits for M. This is illustrated in Figure 3.3(a) and allows the representa-
tion of the number x where x is created by 2Exp−127 × M as the exponent is represented
as unsigned, giving a single-extended number of approximately ±1038.52. The double-
precision format is a simple extension of the concept to 64 bits, allowing a range of
±10308.25, and is illustrated in Figure 3.3(b); the main difference between this and single
precision being the offset added to the exponent and the addition of zero padding for
the mantissa.

The following simple example shows how a real number, −1082.5674 is converted
into IEEE 754 floating-point format. It can be determined that S = 1 as the number is
negative. The number (1082) is converted to binary by successive division (see earlier),

(b) Double precision

(a) Single precision

Figure . Floating-point representations
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Table . Truth table for a one-bit adder

Inputs Outputs

A B Ci−1 Si Ci

Ci = A or B 0 0 0 0 0
0 0 1 1 0

Ci = Ci−1

0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1

Ci = A or B 1 1 0 0 1
1 1 1 1 1

giving 10000111010. The fractional part (0.65625) is computed in the same way as above,
giving 10101. The parts are combined to give the value 10000111010.10101. The radix
point is moved left, to leave a single 1 on the left, giving 1.000011101010101 × 210. Filling
with 0s to get the 23-bit mantissa gives the value 10000111010101010000000. In this
value the exponent is 10 and, with the 32-bit IEEE 754 format bias of 127, we have 137
which is given as 10001001 in binary (giving the representation in Figure 3.3(a)).

. Arithmetic Operations

This section looks at the implementation of various arithmetic functions, including
addition and multiplication but also division and square root. As the emphasis is on
FPGA implementation which comprises on-board adders and multipliers, the book
concentrates on using these constructions, particularly fixed-point realizations. A brief
description of a floating-point adder is given in the following section.

3.3.1 Adders

Addition of two numbers A and B to produce a result S,

S = A + B, (3.4)

is a common function in computing systems and central to many DSP systems. Indeed,
it is a key operation and also forms the basic of multiplication which is, in effect, a series
of shifted additions.

A single-bit addition function is given in Table 3.2, and the resulting implementation
in Figure 3.4(a). This form comes directly from solving the one-bit adder truth table
leading to

Si = Ai ⊕ Bi ⊕ Ci−1, (3.5)
Ci = Ai ⋅ Bi + Ai ⋅ Ci−1 + Bi ⋅ Ci−1, (3.6)

and the logic gate implementation of Figure 3.4(a).
By manipulating the expression for Ci, we can generate the alternative expression

Ci = (Ai ⊕ Bi)Ci−1 + Ai ⋅ Ci−1. (3.7)
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(a) Conventional

(b) Revised

(c) Mux based
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Bi
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Ci–1

Si

4 input LUT 

Fast carry logic 

Figure . One-bit adder structure

This has the advantage of sharing the expression Ai ⊕ Bi between both the Si and Ci
expressions, saving one gate but as Figure 3.4(b) illustrates, at the cost of an increased
gate delay.

The truth table can also be interpreted as follows: when Ai = Bi, then Ci = Bi and
Si = Ci−1; and when Ai = Bi, then Ci = Ci−1 and Si = Ci−1. This implies a multiplexer
for the generation of the carry and, by cleverly using Ai ⊕ Bi (already generated in order
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Figure . n-bit adder structure

to develop Si), very little additional cost is required. This is the preferred construction
for FPGA vendors as indicated by the partition of the adder cell in Figure 3.4(c). By
providing a dedicated EXOR and mux logic, the adder cell can then be built using a
LUT to generate the additional EXOR function.

3.3.2 Adders and Subtracters

Of course, this only represents a single-bit addition, but we need to add words rather
than just bits. This can be achieved by chaining one-bit adders together to form a word-
level adder as shown in Figure 3.5. This represents the simplest but most area-efficient
adder structure. However, the main limitation is the time required to compute the word-
level addition which is determined by the time for the carry to propagate from the lsb
to the msb. As wordlength increases, this becomes prohibitive.

For this reason, there has been a considerable body of detailed investigations in alter-
native adder structures to improve speed. A wide range of adder structures have been
developed including the carry lookahead adder (CLA) and conditional sum adder (CSA),
to name but a few (Omondi 1994). In most cases the structures compromise architecture
regularity and area efficiency to overcome the carry limitation.

Carry Lookahead Adder
In the CLA adder, the carry expression given in equation (3.7) is unrolled many times,
making the final carry dependent only on the initial value. This can be demonstrated
by defining a generate function, Gi, as Gi = Ai ⋅ Bi, and a propagate function, Pi, as
Pi = Ai ⊕ Bi. Thus we can rewrite equations (3.5) and (3.7) as

Si = Pi ⊕ Ci−1, (3.8)
Ci = Pi ⋅ Ci−1 + Gi. (3.9)

By performing a series of substitutions on equation (3.9), we can get an expression for
the carry out of the fourth addition, namely C3, which only depends on the carry in of
the first adder C−1, as follows:

C0 = G0 + P0 ⋅ C−1, (3.10)
C1 = G(1) + P1 ⋅ C0 = G1 + P1 ⋅ G0 + P1 ⋅ P0 ⋅ C−1, (3.11)
C2 = G(2) + P2 ⋅ C1 = G2 + P2 ⋅ G1 + P2 ⋅ P1 ⋅ G0 + P2 ⋅ P1 ⋅ P0 ⋅ C−1, (3.12)

C3 = G(3) + P3 ⋅ C2 = G3 + P3 ⋅ G2 + P3 ⋅ P2 ⋅ G1 + P3 ⋅ P2 ⋅ P1 ⋅ G0
+ P3 ⋅ P2 ⋅ P1 ⋅ P0 ⋅ C−1. (3.13)
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Adder Comparisons
It is clear from the expressions in equations (3.10)–(3.13) that this results in a very
expensive adder structure due to this unrolling. If we use the gate model by Omondi
(1994), where any gate delay is given by T and gate cost or area is defined in terms of
2n (a two-input AND gates is 2, a three-input AND gates is 3, etc.) and EXORs count
as double (i.e. 4n), then this allows us to generate a reasonable technology-independent
model of computation. In this case, the critical path is given as 4T , which is only one
more delay than that for the one-bit adder of Figure 3.4(b).

For the CRA adder structure in Figure 3.4(b), it can be seen that the adder complexity
is determined by two 2-input AND gates (cost 2 × 2), i.e. 4, and one 2-input NOR gate,
i.e. 2, and then two 2-input EXOR gates, which is 2 × 4 (remember there is a double cost
for EXOR gates). This gives a complexity of 14, which if we multiply up by 16 gives a
complexity of 224 as shown in the first line of Table 3.2. The delay of the first adder cell
is 3T , followed by n − 2 delays of 2T and a final delay of T , this giving an average of 2nT
delays, i.e. 32T .

If we unloop the computation of equations (3.10)–(3.13) a total of 15 times, we can
get a structure with the same gate delay of 4T , but with a very large gate cost i.e. 1264,
which is impractical. For this reason, a merger of the CLA technique with the ripple
carry structure is preferred. This can be achieved either in the form of the block CLA
with inter-block ripple (RCLA) which in effect performs a four-bit addition using a CLA
and organizes the structure as a CRA (see Figure 3.6(a)), or a block CLA with intra-
group, carry ripple (BCLA) which uses the CLA for the computation of the carry and
then uses the lower-cost CRA for the reset of the addition (see Figure 3.6(b)).

S3        S2         S1        S0S7        S6         S5        S4

 A7 B7 A6 B6 A5 B5 A4 B4  A3 B3 A2 B2 A1 B1 A0 B0

S15      S14      S13     S12

 A15 B15 A14 B14 A13 B13 A12 B12

C–1
C15

(a) RCLA (m = 4)

(b) BCLA (m = 4)

 A3    B3

SN–1

C–1

A1      B1

S2  S1                          S0

A2      B2

Carry-Lookahead 

P3  G3 P2  G2 P1  G1 P0  G0

 A0    B0A7      B7

S7

C3

A5      B5

S6   S5  S4

A6     B6

Carry-Lookahead

P7  G7 P6  G6 P5  G5 P4  G4

 A4    B4

Figure . Alternative CLA structures
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These circuits also have varying critical paths as indicated in Table 3.3. A detailed
examination of the CLA circuit reveals that it takes 3T to produce the first carry, then
2T for each of the subsequent stages to produce their carry as the Gi terms will have
been produced, and finally 2T to create the carry in the final CLA block. This gives a
delay for the 16-bit RCLA of 10T .

The performance represents an estimation of speed against gate cost given as cost unit
(CU) and is given by cost multiplied by time divided by 10,000. Of course, this will only
come in to play when all circuits meet the timing requirements, which is unusual as it
is normally speed that dominates with choice of lowest area then coming as a second
measure. However, it is useful in showing some kind of performance measure.

3.3.3 Adder Final Remarks

To a large extent, the variety of different adder structures trade off gate complexity
with system regularity, as many of the techniques end up with structures that are
much less regular. The aim of much of the research which took place in the 1970s and
1980s was to develop higher-speed structures where transistor switching speed was the
dominant feature. However, the analysis in the introduction to this book indicates the
key importance of interconnect, and somewhat reduces the impact of using specialist
adder structures. Another critical consideration for FPGAs is the importance of being
able to scale adder word sizes with application need, and in doing so, offer a linear scale
in terms of performance reduction. For this reason, the ripple-carry adder has great
appeal in FPGAs and is offered in many of the FPGA structures as a dedicated resource
(see Chapter 5).

In papers from the 1990s and early 2000s there was an active debate in terms of adder
structure (Hauck et al. 2000; Xing and Yu 1971). However, it is clear that, even for adder
trees that are commonly used to sum numerous multiplication operations as commonly
occurs in DSP applications, the analysis outlined in (Hoe et al. 2011) supports the use
of the dedicated CRA adder structures on FPGAs.

3.3.4 Multipliers

Multiplication can be simply performed through a series of additions. Consider the
example below, which illustrates how the simple multiplication of 5 by 11 is carried
out in binary. The usual procedure in computer arithmetic is to align the data in a ver-
tical line and shift right rather than shift left, as shown below. However, rather than
perform one single addition at the end to add up all the multiples, each multiple is
added to an ongoing product called a partial product. This means that every step in the

Table . 16-bit adder comparisons

Adder type Time (gate delay) Cost (CUs) Performance

CRA (Figure 3.5) 32 224 0.72
Pure CLA 4 1264 0.51
RCLA (m = 4) (Figure 3.6(a)) 10 336 0.34
BCLA (m = 4) (Figure 3.6(b)) 14 300 0.42
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computation equates to the generation of the multiples using an AND gate and the use
of an adder to compute the partial product.

5 = 00101 multiplicand
11 = 01011 multiplier

00101
00101

00000
00101

00000
55 = 000110111

5 = 00101 multiplicand
11 = 01011 multiplier

00000 initial partial product
00101 add 1st multiple partial product
00101
000101 shift right
00101 add 2nd multiple partial product
00101
000101 shift right
00000 add 3rd multiple partial product
0001111
00001111 shift right
00101 add 4th multiple partial product
00110111
000110111shift right
00000 add 5th multiple partial product

55= 000110111

A parallel addition can be computed by performing additions at each stage of the mul-
tiplication operation. This means that the speed of operation will be defined by the time
required to compute the number of additions defined by the multiplicand. However, if
the adder structures of Figure 3.5 were to be used, this would result in a very slow mul-
tiplier circuit. Use of alternative fast adders structures (some of which were highlighted
in Table 3.3) would result in improved performance but this would be a considerable
additional cost.

Fast Multipliers
The received wisdom in speeding up multiplications is to either speed up the addition
or reduce the number of additions. The latter is achieved by recoding the multiplicand,
commonly termed Booth’s encoding (discussed shortly). However, increasing the addi-
tion speed is achieved by exploiting the carry-save adder structure of Figure 3.7. In con-
ventional addition, the aim is to reduce (or compress) two input numbers into a sin-
gle output. In multiplication, the aim is to reduce multiple numbers, i.e. multiplicands,
down to a single output value. The carry-save adder is a highly efficient structure that
allows us to compress three inputs down to two outputs at the cost of a CRA addition
but with the speed of the individual cells given in Figure 3.4(b) or (c), namely two or
three gate delays.

Thus it is possible to create a carry-save array multiplier as shown in Figure 3.8.
An addition is required at each stage, but this is a much faster, smaller CSA addition,
allowing a final sum and carry to be quickly generated. A final adder termed a carry
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Figure . Carry-save adder

propagation adder (CPA) is then used to compute the final addition using one of the
fast addition circuits from earlier.

Even though each addition stage is reduced to two or three gate delays, the speed of
the multiplier is then determined by the number of stages. As the word size m grows,
the number of stages is then given as m − 2. This limitation is overcome in a class of
multipliers known as Wallace tree multipliers (Wallace 1964), which allows the addition
steps to be performed in parallel. An example is shown in Figure 3.9.

As the function of the carry-save adder is to compress three words to two words, this
means that if n is the input wordlength, then after each stage, the words are represented
as 3k + l , where 0 ≤ l ≤ 2. This means that the final sum and carry values are produced
after log1.5 n rather than n − 1 stages as with the carry-save array multiplier, resulting in
a much faster implementation.

3rd multiple

1st multiple

    CSA1

2nd multiple

4th multiple

    CSA2

5th multiple

    CSA3

    CPA 

Figure . Carry-save array multiplier
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3rd multiple 

1st multiple
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    CSA2

    CSA3

    CPA 

6th multiple 

4th multiple

    CSA1

5th multiple 

Figure . Wallace tree multiplier

Booth Encoding
It was indicated earlier that the other way to improve the speed of a multiplier was to
reduce the number of additions performed in the multiplications. At first thought, this
does not seem obvious as the number of additions is determined by the multiplicand
(MD). However, it is possible to encode the binary input in such a way as to reduce the
number of additions by two, by exploiting the fact that an adder can easily implement a
subtraction.

The scheme is highlighted in Table 3.4 and shows that by examining three bits of the
multiplier (MR), namely MRi+1, MRi and MRi−1, it is is possible to reduce two bit oper-
ations down to one operation, either an addition or subtraction. This requires adding
to the multiplier the necessary conversion circuitry to detect these sequences. This is

Table . Modified Booth’s algorithm

MRi+1,i MRi−1 Action

00 0 Shift partial product by 2 places
00 1 Add MD and shift partial product by 2 places
01 0 Add MD and shift partial product by 2 places
01 1 Add 2 × MD and shift partial product by 2 places
10 0 Subtract 2 × MD and shift partial product by 2 places
10 1 Subtract MD and shift partial product by 2 places
11 0 Subtract MD and shift partial product by 2 places
11 1 Shift partial product by 2 places



Arithmetic Basics 

known as the modified Booth’s algorithm. The overall result is that the number of addi-
tions can be halved.

The common philosophy for fast additions is to combine the Booth encoding scheme
with Wallace tree multipliers to produce a faster multiplier implementation. In Yeh and
Jen (2000), the authors present an approach for a high-speed Booth encoded parallel
multiplier using a new modified Booth encoding scheme to improve performance and
a multiple-level conditional-sum adder for the CPA.

. Alternative Number Representations

Over the years, a number of schemes have emerged for either faster or lower-cost imple-
mentation of arithmetic processing functions. These have included SDNR (Avizienis
1961), LNS (Muller 2005), RNS (Soderstrand et al. 1986) and the CORDIC represen-
tation (Voider 1959; Walther 1971). Some of these have been used in FPGA designs
specifically for floating-point implementations.

3.4.1 Signed Digit Number Representation

SDNRs were originally developed by Avizienis (1961) as a means to break carry prop-
agation chains in arithmetic operations. In SDNR, each digit is associated with a sign,
positive or negative. Typically, the digits are represented in balanced form and drawn
from a range −k to (b − 1) − k, where b is the number base and typically k =

⌊
b
2

⌋
. For

balanced ternary which best matches conventional binary, this gives a digit set for x
where x ∈ (−1, 0, 1), or strictly speaking (1,0,1) where 1 represents −1. This is known as
signed binary number representation (SBNR), and the digits are typically encoded by
two bits, namely a sign bit, xs, and a magnitude bit, xm, as shown in Table 3.5. Avizienis
(1961) was able to demonstrate how such a number system could be used for perform-
ing parallel addition without the need for carry propagation (shown for an SBNR adder
in Figure 3.10), effectively breaking the carry propagation chain.

A more interesting assignment is the (+,−) scheme where an SBNR digit is encoded as
(x+, x−), where x = x+ + (x− − 1). Alternatively, this can be thought of as x− = 0 imply-
ing −1, x− = 1 implying 0, x+ = 0 implying 0, and x+ = 1 implying 1. The key advantage
of this approach is that it provides the ability to construct generalized SBNR adders from
conventional adder blocks.

Table . SDNR encoding

SDNR representations

SDNR digit Sig-and-mag +∕− coding

x xs xm x+ x−
0 0 0 0 1
1 0 1 1 0
1 0 1 0 1
0 or X 1 0 1 0
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Figure . SBNR adder

This technique was effectively exploited to allow the design of high- speed circuits
for arithmetic processing and digital filtering (Knowles et al. 1989) and also for Viterbi
decoding (Andrews 1986). In many DSP applications such as filtering, the filter is cre-
ated with coefficient values such that for fixed-point DSP realizations, the top part of
the output word is then required after truncation. If conventional pipelining is used, it
will take several cycles for the first useful bit to be generated, seemingly defeating the
purpose of using pipelining in the first place.

Using SBNR arithmetic, it is possible to generate the result msb or strictly most signifi-
cant digit (msd) first, thereby allowing the computation to progress much more quickly.
In older technologies where speed was at a premium, this was an important differen-
tiator and the work suggested an order-of-magnitude improvement in throughput rate.
Of course, the redundant representation had to be converted back to binary, but several
techniques were developed to achieve this (Sklansky 1960).

With evolution in silicon processes, SBNR representations are now being overlooked
in FPGA design as it requires use of the programmable logic hardware and is relatively
inefficient, whereas conventional implementations are able to use the dedicated fast
adder logic which will be seen in later chapters. However, its concept is very closely
related to binary encoding such as Booth’s encoding. There are many fixed-point appli-
cations where these number conventions can be applied to reduce the overall hardware
cost whilst increasing speed.

3.4.2 Logarithmic Number Systems

The argument for LNS is that it provides a similar range and precision to floating-point
but offers advantages in complexity over some floating-point applications. For exam-
ple, multiplication and division are simplified to fixed-point addition and subtraction,
respectively (Haselman et al. 2005; Tichy et al. 2006).

If we consider that a floating-point number is represented by

F = −1S × 1.M × 2Exp, (3.14)
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then logarithmic numbers can be viewed as a specific case of floating-point numbers
where the mantissa is always 1, and the exponent has a fractional part (Koren 2002).
The logarithmic equivalent, L, is then described as

L = −1SA × 2ExpA , (3.15)

where SA is the sign bit which signifies the sign of the whole number and ExpA is a
two’s complement fixed-point number where the negative numbers represent values less
than 1.0. In this way, LNS numbers can represent both very large and very small num-
bers. Typically, logarithmic numbers will have a format where two bits are used for the
flag bit (to code for zero, plus/minus infinity, and Not a Number (NaN (Detrey and de
Dinechin 2003)), and then k bits and l bits represent the integer and fraction respectively
(Haselman et al. 2005).

A major advantage of the LNS is that multiplication and division in the linear domain
ares replaced by addition or subtraction in the log domain:

log2

(
x
y

)
= log2(x) − log2(y). (3.16)

However, the operations of addition and subtraction are more complex. In Collange
et al. (2006), the development of an LNS floating-point library is described and it is
shown how it can be applied to some arithmetic functions and graphics applications.

However, LNS has only really established itself in small niche markets, whereas
floating-point number systems have become a standard. The main advantage comes
from computing a considerable number of operations in the algorithmic domain where
the advantages are seen as conversion is problem. Conversions are not exact and error
can accumulate for multiple conversions (Haselman et al. 2005). Thus whilst there has
been some floating-point library developments, FPGA implementations have not been
very common.

3.4.3 Residue Number Systems

RNS representations are useful in processing large integer values and therefore have
application in computer arithmetic systems, as well as in some DSP applications (see
later), where there is a need to perform large integer computations. In RNS, an integer is
converted into a number which is an N-tuple of smaller integers called moduli, given by
(mN , mN−1,… , m1). An integer X is represented in RNS by an N-tuple (xN , xN−1,… , x1),
where Xi is a non-negative integer, satisfying

X = mi.qi + xi, (3.17)

where qi is the largest integer such that 0 ≤ qi ≤ (mi − 1) and the value xi is known as the
residue of X modulo mi. The main advantage of RNS is that additions, subtractions and
multiplications are inherently carry-free due to the translation into the format. Unfor-
tunately, other arithmetic operations such as division, comparison and sign detection
are very slow and this has hindered the broader application of RNS. For this reason, the
work has mostly been applied to DSP operations that involve a lot of multiplications and
additions such as FIR filtering (Meyer-Baese et al. 1993) and transforms such as the FFT
and DCT (Soderstrand et al. 1986).
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Table . CORDIC functions

Configuration Rotation Vectoring

Linear Y = X × Y Y = X∕Y

Hyperbolic X = cosh(X) Z = arctanhY = sinh(Y )

Circular X = cos(X) Z = arctanh(Y )
Y = sin(Y ) X = sqr(X2 + Y 2)

Albicocco et al. (2014) suggest that in the early days RNS was used to reach the max-
imum performance in speed, but now it is used primarily to obtain power efficiency
and speed–power trade-offs and for reliable systems where redundant RNS are used.
It would seem that the number system is suffering the same consequences as SDNRs
as dedicated, high-speed computer arithmetic has now emerged in FPGA technology,
making a strong case for using conventional arithmetic.

3.4.4 CORDIC

The unified CORDIC algorithm was originally proposed by Voider (1959) and is used in
DSP applications for functions such as those shown in Table 3.6. It can operate in one
of three configurations (linear, circular and hyperbolic) and in one of two modes (rota-
tion and vectoring) in those configurations. In rotation, the input vector is rotated by a
specified angle; in vectoring, the algorithm rotates the input vector to the x-axis while
recording the angle of rotation required. This makes it attractive for computing trigono-
metric operations such as sine and cosine and also for multiplying or dividing numbers.

The following unified algorithm, with three inputs, X, Y and Z, covers the three
CORDIC configurations:

Xi+1 = Xi − m × Yi × di × 2i

Yi+1 = Yi + Xi × di × 2i

Zi+1 = Zi − ×ei.
(3.18)

Here m defines the configuration for hyperbolic (m = −1), linear (m = 0) or circular
(m = 1), and di is the direction of rotation, depending on the mode of operation. For
rotation mode di = −1 if Zi < 0 else +1, while in vectoring mode di = +1 if Yi < 0
else −1. Correspondingly, the value of ei as the angle of rotation changes depending
upon the configuration. The value of ei is normally implemented as a small lookup table
within the FPGA and is defined in Table 3.7 and outlines the pre-calculated values that
are typically stored in LUTs, depending upon the configuration.

The reduced computational load experienced in implementing CORDIC operations
in performing rotations (Takagi et al. 1991) means that it has been used for some DSP

Table . CORDIC angle of rotation

Configuration ei

Linear 2−i

Hyperbolic arctanh(2−i)
Circular arctan(2−i)
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applications, particularly those implementing matrix triangularization (Ercegovac and
Lang 1990) and RLS adaptive filtering (Ma et al. 1992) as this latter application requires
rotation operations.

These represent dedicated implementations, however, and the restricted domain of
the approaches where a considerable performance gain can be achieved has tended to
limit the use of CORDIC. Moreover, given that most FPGA architectures have dedicated
hardware based on conventional arithmetic, this somewhat skews the focus towards
conventional two’s-complement-based processing. For this reason, much of the descrip-
tion and the examples in this text have been restricted to two’s complement. However,
both main FPGA vendors have CORDIC implementations in their catalogs.

. Division

Division may be thought of as the inverse process of multiplication, but it differs in sev-
eral aspects that make it a much more complicated function. There are a number of ways
of performing division, including recurrence division and division by functional itera-
tion. Algorithms for division and square root have been a major research area in the
field of computer arithmetic since the 1950s. The methods can be divided into two main
classes, namely digit-by-digit methods and convergence methods. The digit-by-digit
methods, also known as direct methods, are somewhat analogous to the pencil-and-
paper method of computing quotients and square roots. The results are computed on
a digit-by-digit basis, msd first. The convergence methods, which include the Newton–
Raphson algorithm and the Taylor series expansion, require the repeated updating of an
approximation to the correct result.

3.5.1 Recurrence Division

Digit recurrence algorithms are well-accepted subtractive methods which calculate quo-
tients one digit per iteration. They are analogous to the pencil-and-paper method in that
they start with the msbs and work toward the lsbs. The partial remainder is initialized
to the dividend, then on each iteration a digit of the quotient is selected according to the
partial remainder. The quotient digit is multiplied by the divisor and then subtracted
from the partial remainder. If negative, the restoring version of the recurrence divider
restores the partial remainder to the previous value, i.e. the results of one subtraction
(comparison) determine the next division iteration of the algorithm, which requires the
selection of quotient bits from a digit set. Therefore, a choice of quotient bits needs to
be made at each iteration by trial and error. This is not the case with multiplication, as
the partial products may be generated in parallel and then summed at the end. These
factors make division a more complicated algorithm to implement than multiplication
and addition.

When dividing two n-bit numbers, this method may require up to 2n + 1 additions.
This can be reduced by employing the non-restoring recurrence algorithm in which
the digits of the partial remainder are allowed to take negative and positive values; this
reduces the number of additions/subtractions to n. The most popular recurrence divi-
sion method is an algorithm known as the SRT division algorithm which was named for
the three researchers who independently developed it, Sweeney, Robertson and Tocher
(Robertson 1958; Tocher 1958).
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Figure . Quadratic convergence

The recurrence methods offer simple iterations and smaller designs, however, they
also suffer from high latencies and converge linearly to the quotient. The number of bits
retired at each iteration depends on the radix of the arithmetic being used. Larger radices
may reduce the number of iterations required, but will increase the time for each itera-
tion. This is because the complexity of the selection of quotient bits grows exponentially
as the radix increases, to the point that LUTs are often required. Therefore, a trade-off
is needed between the radix and the complexity; as a result, the radix is usually limited
to 2 or 4.

3.5.2 Division by Functional Iteration

The digit recurrence algorithms mentioned in the previous subsection retire a fixed
number of bits at each iteration, using only shift and add operations. Functional iter-
ative algorithms employ multiplication as the fundamental operation and produce at
least double the number of correct bits with each iteration (Flynn 1970; Ito et al. 1995;
Obermann and Flynn 1997; Oklobdzija and Ercegovac 1982). This is an important fac-
tor as there may be as many as three multiplications in each iteration. However, with
the advantage of at least quadratic convergence, a 53-bit quotient can be achieved in six
iterations, as illustrated in Figure 3.11.

. Square Root

Methods for performing the square root operation are similar to those for performing
division. They fall broadly into the two categories, digit recurrence methods and meth-
ods based on convergence techniques. This section gives a brief overview of each.
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3.6.1 Digit Recurrence Square Root

Digit recurrence methods can be based on either restoring or non-restoring techniques,
both of which operate msd first. The algorithm is subtractive, and after each iteration
the resulting bit is set to 0 if a negative value is found, and then the original remainder
is ’restored’ as the new remainder. If the digit is positive, a 1 is set and the new remain-
der is used. The “non-restoring” algorithm allows the negative value to persist and then
performs a compensation addition operation in the next iteration. The overall process
of the square root and division algorithms is very similar, and, as such, there have been
a number of implementations of systolic arrays designed to perform both arithmetic
functions (Ercegovac and Lang 1991; Heron and Woods 1999).

The performance of the algorithms mentioned has been limited due to the dependence
of the iterations and the propagated carries along each row. The full values need to be
calculated at each stage to enable a correct comparison and decision to be made. The
SRT algorithm is a class of non-restoring digit-by-digit algorithms in which the digit can
assume both positive and negative non-zero values. It requires the use of a redundant
number scheme (Avizienis 1961), thereby allowing digits to take the values 0, −1 or 1.
The most important feature of the SRT method is that the algorithm allows each itera-
tion to be performed without full-precision comparisons at each iteration, thus giving
higher performance.

Consider a value R for which the algorithm is trying to find the square root, and Si the
partial square root obtained after i iterations. The scaled remainder, Zi, at the ith step is

Zi = 2i(R − S2
i
)
, (3.19)

where 1∕4 ≤ R < 1 and hence 1∕2 ≤ S < 1. From this, a recurrence relation based on
previous remainder calculations can be derived as (McQuillan et al. 1993)

Zi = 2iZi−1 − si
(
2Si−1 + si2−i), i = 2, 3, 4,… , (3.20)

where si is the root digit for iteration i − 1. Typically, the initial value for Z0 will be
set to R, while the initial estimate of the square root, S1, is set to 0.5 (due to the initial
boundaries placed on R).

There exist higher-radix square root algorithms (Ciminiera and Montuschi 1990;
Cortadella and Lang 1994; Lang and Montuschi 1992). However, for most algorithms
with a radix greater than 2, there is a need to provide an initial estimate for the square
root from a LUT. This relates to the following subsection.

3.6.2 Square Root by Functional Iteration

As with the convergence division in Section 3.6.1, the square root calculation can be per-
formed using functional iteration. It can be additive or multiplicative. If additive, then
each iteration is based on addition and will retire the same number of bits with each
iteration. In other words, they converge linearly to the solution. One example is the
CORDIC implementation for performing the Givens rotations for matrix triangulariza-
tion (Hamill et al. 2000). Multiplicative algorithms offer an interesting alternative as they
double the precision of the result with each iteration, that is, they converge quadratically
to the result. However, they have the disadvantage of increased computational complex-
ity due to the multiplications within each iterative step.
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Similarly to the approaches used in division methods, the square root can be estimated
using Newton–Raphson or series convergence algorithms. For the Newton–Raphson
method, an iterative algorithm can be found by using

xi+1 = Xi −
f (xi)
f ′(xi)

(3.21)

and choosing f (x) that has a root at the solution. One possible choice is f (x) = x2 − b
which leads to the following iterative algorithm:

xi+1 = 1
2

(
Xi −

b
xi

)
. (3.22)

This has the disadvantage of requiring division. An alternative method would be to aim
to drive the algorithm toward calculating the reciprocal of the square root, 1∕x2. For
this, f (x) = 1∕x2 − b is used, which leads to the following iterative algorithm:

xi+1 =
xi
2
(
3 − bx2

i
)

(3.23)

Once solved, the square root can then be found by multiplying the result by the original
value, X, that is, 1∕

√
X × X =

√
X.

Another method for implementing the square root function is to use series conver-
gence, i.e. Goldschmidt’s algorithm (Soderquist and Leeser 1995), which produces equa-
tions similar to those for division (Even et al. 2003). The aim of this algorithm is to com-
pute successive iterations to drive one value to 1 while driving the other value to the
desired result. To calculate the square root of a value a, for each iteration:

xi+1 = xi × r2
i , (3.24)

yi+1 = yi × ri, (3.25)

where we let x0 = y0 = a. Then by letting

ri =
3 − yi

2
, (3.26)

x → 1 and consequently yi →
√

a. In other words, with each iteration x is driven closer
to 1 while y is driven closer to

√
a. As with the other convergence examples, the algo-

rithm benefits from using an initial estimate of 1∕
√

a to pre-scale the initial values of x0
and y0.

In all of the examples given for both the division and square root convergence algo-
rithms, vast improvements in performance can be obtained by using a LUT to provide
an initial estimate to the desired solution. This is covered in the following subsection.

3.6.3 Initial Approximation Techniques

The number of iterations for convergence algorithms can be vastly reduced by provid-
ing an initial approximation to the result read from a LUT. For example, the simplest
way of forming the approximation R0 to the reciprocal of the divisor D is to read an
approximation to 1∕D directly from a LUT. The first m bits of the n-bit input value D
are used to address the table entry of p bits holding an approximation to the reciprocal.
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Table . Precision of approximations for example values of g and m

Address bits Guard bits g Output bits Precision

m 0 m m + 0.415 bits
m 1 m + 1 m + 0.678 bits
m 2 m + 2 m + 0.830 bits
m 3 m + 3 m + 0.912 bits

The value held by the table is determined by considering the maximum and minimum
errors caused by truncating D from n to m bits.

The time to access a LUT is relatively small so it provides a quick evaluation of the
first number of bits to a solution. However, as the size of the input value addressing the
LUT increases, the size of the table grows exponentially. For a table addressed by m bits
and outputting p bits, the table size will have 2m entries of width p bits. Therefore, the
size of the LUT soon becomes very large and will have slower access times.

A combination of p and m can be chosen to achieve the required accuracy for the
approximation, with the smallest possible table. By denoting the number of bits by which
p is larger than m as the number of guard bits g, the total error Etotal (Sarma and Matula
1993) may be expressed as

Etotal = 2m+1
( 1

2g+1

)
. (3.27)

Table 3.8 shows the precision of approximations for example values of g and m. These
results are useful in determining whether adding a few guard bits might provide suffi-
cient additional accuracy in place of the more costly step in increasing m to m + 1 which
more than doubles the table size.

Another simple approximation technique is known as read-only memory (ROM)
interpolation. Rather than just truncating the value held in memory after the mth bit, the
first unseen bit (m + 1) is set to 1, and all bits less significant than it are set to 0 (Fowler
and Smith 1989). This has the effect of averaging the error. The resulting approximation
is then rounded back to the lsb of the table entry by adding a 1 to the bit location just
past the output width of the table. The advantage with this technique is its simplicity.
However, it would not be practical for large initial approximations as there is no attempt
to reduce the table size.

There are techniques for table compression, such as bipartite tables, which use two or
more LUTs and then add the output values to determine the approximation (Schulte
et al. 1997). To approximate a reciprocal function using bipartite tables, the input
operand is divided into three parts as shown in Figure 3.12.

The n0 + n1 bits provide the address for the first LUT, giving the coefficient a0 of length
p0 bits. The sections d0 and d2, equating to n0 + n2 bits, provide addresses for the second
LUT, giving the second coefficient a1 of length p1 bits. The outputs from the tables
are added together to approximate the reciprocal, R0, using a two-term Taylor series
expansion. The objective is to use the first n0 + n1 msbs to provide the lookup for the
first table which holds coefficients based on the values given added with the mid-value
of the range of values for d2. The calculation of the second coefficient is based on the
value from sections d0 and d2 summed with the mid-value of the range of values for d1.
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n bits 
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Table
a0(d0,d1)

         adder 

n0 bits

d0         d1

Table
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n1 bits n2 bits

P0 bits P1 bits

P bits

Figure . Block diagram for bipartite
approximation methods

This technique forms a method of averaging so that the errors caused by truncation are
reduced. The coefficients for the reciprocal approximation take the form

a0(d0, d1) = f (d0 + d1 + 𝛿2), (3.28)
a0(d0, d1) = f ′(d0 + 𝛿1 + 𝛿2)(d2 − 𝛿2), (3.29)

where 𝛿1 and 𝛿2 are constants exactly halfway between the minimum and maximum
values for d1 and d2, respectively.

The benefit is that the two small LUTs will have less area than the one large LUT
for the same accuracy, even when the size of the addition is considered. Techniques to
simplify the bipartite approximation method also exist. One method (Sarma and Matula
1995) eliminates the addition by using each of the two LUTs to store the positive and
negative portions of a redundant binary reciprocal value. These are “fused” with slight
recoding to round off a couple of low-order bits to obtain the required precision of the
least significant bit. With a little extra logic, this recoding can convert the redundant
binary values into Booth encoded operands suitable for input into a Booth encoded
multiplier.

. Fixed-Point versus Floating-Point

If the natural assumption is that the “most accurate is always best,” then there appears to
be no choice in determining the number representation, as floating-point will be chosen.
Historically, though, the advantage of FPGAs was in highly efficient implementation of
fixed-point arithmetic as some of the techniques given in Chapter 7 will demonstrate.
However, the situation is changing as FPGA vendors start to make architectural changes
which make implementation of floating-point much more attractive, as will be seen in
Chapter 5.

The decision is usually made based on the actual application requirements. For exam-
ple, many applications vary in terms of the data word sizes and the resulting accuracy.
Applications can require different input wordlengths, as illustrated in Table 3.9, and
can vary in terms of their sensitivity to errors created as a result of limited, internal
wordlength. Obviously, smaller input wordlengths will have smaller internal accuracy
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Table . Typical wordlengths

Application Word sizes (bits)

Control systems 4–10
Speech 8–13
Audio 16–24
Video 8–10

requirements, but the perception of the application will also play a major part in deter-
mining the internal wordlength requirements. The eye is tolerant of wordlength limi-
tations in images, particularly if they appear as distortion at high frequencies, whereas
the ear is particularly intolerant to distortion and noise at any frequency, but specifically
high frequency. Therefore cruder truncation may be possible with some image process-
ing applications, but less so in audio applications.

Table 3.10 gives an estimation of the dynamic range capabilities of some fixed-point
representations. It is clear that, depending on the internal computations being per-
formed, many DSP applications can give an acceptable signal-to-noise ratio (SNR) with
limited wordlengths, say 12–16 bits. Given the performance gain of fixed-point over
floating-point in FPGAs, fixed-point realizations have dominated, but the choice will
also depend on application input and output wordlengths, required SNR, internal com-
putational complexity and the nature of computation being performed, i.e. whether spe-
cialist operations such as matrix inversions or iterative computations are required.

A considerable body of work has been dedicated to reducing the number precision to
best match the performance requirements. Constantinides et al. (2004) look to derive
accurate bit approximations for internal wordlengths by considering the impact on
design quality. A floating-point design flow is presented in Fang et al. (2002) which takes
an algorithmic input and generates floating-point hardware by performing bit width
optimization, with a cost function related to hardware, but also to power consumption.
This activity is usually performed manually by the designer, using suitable fixed-point
libraries in tools such as MATLAB® or LabVIEW, as suggested earlier.

3.7.1 Floating-Point on FPGA

Up until recently, FPGAs were viewed as being poor for floating-point realization. How-
ever, the adoption of a dedicated DSP device in each of the main vendors’ FPGA families
means that floating-point implementation has become much more attractive, particu-
larly if a latency can be tolerated. Table 3.11 gives area and clock speed figures for float-
ing core implementation on a Xilinx Virtex-7 device. The speed is determined by the
capabilities of the DSP48E1 core and pipelining within the programmable logic.

Table . Fixed wordlength dynamic range

Wordlength (bits) Wordlength range Dynamic range dB

8 −127 to +127 20 log 28 ≈ 48
16 −32768 to +32767 20 log 216 ≈ 96
24 −8388608 to +8388607 20 log 224 ≈ 145
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Table . Xilinx floating-point LogiCORE v7.0 on Virtex-7

Function DSP LUT Flip-flops Speed (MHz)

Single range multiplier 2 96 166 462
Double range multiplier 10 237 503 454
Single range accumulator 7 3183 3111 360
Double range accumulator 45 31738 24372 321
Single range divider 0 801 1354 579
Double range divider 0 3280 1982 116.5

The area comparison for floating-point is additionally complicated as the relation-
ship between multiplier and adder area is now changed. In fixed-point, multipliers are
generally viewed to be N times bigger than adders, where N is the wordlength. How-
ever, in floating-point, the area of floating-point adders is not only comparable to that
of floating-point multipliers but, in the case of double point precision, is much larger
than that of a multiplier and indeed slower. This corrupts the assumption, at the DSP
algorithmic stage, that reducing the number of multiplications in favor of additions is a
good optimization.

Calculations in Hemsoth (2012) suggest that the current generation of Xilinx’s Virtex-
7 FPGAs is about 4.2 times faster than a 16-core microprocessor. This figure is up from
a factor of 2.9× as reported in an earlier study in 2010 and suggests that the inclusion
of dedicated circuitry is improving the floating-point performance. However, these fig-
ures are based on estimated performance and not on a specific application implementa-
tion. They indicate 1.33 tera floating-point operations per second (TFLOPS) of single-
precision floating-point performance on one device (Vanevenhoven 2011).

Altera have gone one stage further by introducing dedicated hardened circuitry into
the DSP blocks to natively support IEEE 754 single-precision floating-point arithmetic
(Parker 2012). As all of the complexities of IEEE 754 floating-point are built within the
hard logic of the DSP blocks, no programmable logic is consumed and similar clock rates
to those for fixed-point designs are achieved. With thousands of floating-point opera-
tors built into these hardened DSP blocks, the Altera Arria® 10 FPGAs are rated from
140 giga floating-point operations per second (GFLOPS) to 1.5 TFLOPS across the
20 nm family. This will also be employed in the higher-performance Altera 14 nm
Stratix® 10 FPGA family, giving a performance range right up to 10 TFLOPS!

Moreover, the switch to heterogeneous SoC FPGA devices also offers floating-point
arithmetic in the form of dedicated ARM processors. As will be seen in subsequent
chapters, this presents new mapping possibilities for FPGAs as it is now possible to map
the floating-point requirements into the dedicated programmable ARM resources and
then employ the fixed-point capabilities of dedicated SoC.

. Conclusions

This chapter has given a brief grounding in computer arithmetic basics and given some
idea of the hardware needed to implement basic computer arithmetic functions and
some more complex functions such as division and square root. Whilst the chapter
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outlines the key performance decisions, it is clear that the availability of dedicated adder
and multiplier circuitry has made redundant a lot of FPGA-based research into new
types of adder/multiplier circuits using different forms of arithmetic.

The chapter has also covered some critical aspects of arithmetic representations and
the implications that choice of either fixed- or floating-point arithmetic can have in
terms of hardware implementation, particularly given the current FPGA support for
floating-point. It clearly demonstrates that FPGA technology is currently very appro-
priate for fixed-point implementation, but increasingly starting to include floating-point
arithmetic capability.
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Technology Review

. Introduction

The technology used for DSP implementation is very strongly linked to the astonishing
developments in silicon technology. As was highlighted in the introduction to this book,
the availability of a transistor which has continually decreased in cost has been the major
driving force in creating new markets and has overseen the development of a number of
DSP technologies. Silicon technology has offered an increasingly cheaper platform, and
has done so at higher speeds and at a lower power cost. This has inspired a number of
core markets, such as computing, mobile telephony and digital TV.

As Chapter 2 clearly indicated, there are numerous advantages for digital systems,
specifically guaranteed accuracy, essentially perfect reproducibility and better aging;
these developments are seen as key to the continued realization of future systems. The
earliest DSP filter circuits were pioneered by Leland B. Jackson and colleagues at Bell
Laboratories in the late 1960s and early 1970s (see Jackson 1970). At that time, the main
aim was to create silicon chips to perform basic functions such as FIR and IIR filtering.
A key aspect was the observation that the binary operation of the transistor was well
matched to digital operations required in DSP systems.

From these early days, a number of technologies emerged, ranging from simple micro-
controllers which can process systems with sampling rates typically in the moderate
kilohertz range, right through to dedicated SoC solutions that give performance in the
teraOPS region. The processor style architecture has been exploited in various forms,
ranging from single- to multicore processor implementations, DSP microprocessors
with dedicated hardware to allow specific DSP functionality to be realized efficiently,
and reconfigurable processor architectures. Specialized DSP functionality has also been
added to conventional central processing units (CPUs) and application-specific instruc-
tion processors (ASIPs) that are used for specific markets. All of these are briefly dis-
cussed in this chapter with the aim of giving a perspective against which FPGAs should
be considered.

The major change between this chapter and its first edition counterpart concerns
microprocessors: there has been a major development in architectures, particularly
with the evolution of the Intel multicore and Xeon Phi, resulting in a body of work on
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parallel programming (Reinders and Jeffers 2014). In addition, multicore DSP architec-
tures have evolved. Finally, graphical processing units (GPUs) are also included as they
are now being widely used in many other fields than graphics including DSP. As Chap-
ter 5 is dedicated to the variety of FPGA architectures, the FPGA perspective is only
alluded to. Major themes include level of programmability, the programming environ-
ment (including tools, compilers and frameworks), the scope for optimization of specifi-
cally DSP functionality on the required platform, and the quality of the resulting designs
in terms of area, speed, throughput, power and even robustness.

Section 4.2 starts with some remarks on silicon technology scaling and how Dennard
scaling has broken down, leading to the evolution of parallelism into conventional DSP
platforms. Section 4.3 outlines some further thoughts on architecture and programma-
bility and gives some insights towards the performance limitations of the technologies,
and also comments on the importance of programmability. In Section 4.4 the functional
requirements of DSP systems are examined, highlighting issues such as computational
complexity, parallelism, data independence and arithmetic advantages. The section ends
with a brief definition of technology classification and introduces concepts of single
instruction, multiple data (SIMD) and multiple instruction, multiple data (MIMD). This
is followed by a brief description of microprocessors in Section 4.5 with some more up-
to-date description of multicore architectures. DSP processors are then introduced in
Section 4.6 along with some multicore examples. Section 4.7 is a new section on GPUs
as these devices have started to be used in some DSP applications. For completeness,
solutions based on the system-on-chip (SoC) are briefly reviewed in Section 4.8, which
includes the development of parallel machines including systolic array architectures. A
core development has been the partnering of various technologies, namely ARM pro-
cessors and DSP microprocessors, and ARM processors incorporated in FPGA fabrics.
A number of examples of this evolution are given in Section 4.9. Section 4.10 gives some
thoughts on how the various technologies compare and sets the scene for FPGAs in the
next chapter.

. Implications of Technology Scaling

Since the first edition of this book, there has been a considerable shift in the direction of
evolution of silicon, largely driven by concerns in silicon scaling. Dennard’s law builds
on Moore’s law, relating how the performance of computing is growing exponentially at
roughly the same rate as Moore’s law. This was driven by the computing and supercom-
puting industries and therefore, by association, refers to DSP technologies.

The key issue is that Dennard’s law is beginning to break down as many computing
companies are becoming very concerned by the power consumption of their devices
and beginning to limit power consumption for single devices to 130 W (Sutter 2009).
This is what Intel has publicly declared. To achieve this power capping requires a slow-
down in clock scaling. For example, it was predicted in the 2005 of ITRS Roadmap (ITRS
2005) that clock scaling would continue and we would have expected to have a clock rate
of 30 GHz today (ITRS 2011). This was revised in 2007 to 10 GHz, and then in 2011 to
4 GHz, which is what is currently offered by computing chip companies. The implica-
tions of this are illustrated in Figure 4.1 reproduced from Sutter (2009).
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Figure . Conclusions from Intel CPU scaling

Moore’s law has continued unabated, however, in terms of number of devices on a
single silicon die, so companies have acted to address the shortfall in clock scaling by
shifting towards parallelism and incorporating multiple devices on a single die. As will
be seen later, this has implications for the wider adaption of FPGAs because as the guar-
anteed clock rate ratio of CPUs over FPGAs is considerably reduced, the performance
divide widens, making FPGAs an attractive proposition. This would seem to be reflected
in the various developments of computing companies in exploiting FPGA technologies
largely for data centers where the aim is to be able to reduce the overall power consump-
tion costs, as described in the next chapter.

The authors argue that the main criterion in DSP system implementation is the circuit
architecture that is employed to implement the system, i.e. the hardware resources avail-
able and how they are interconnected; this has a major part to play in the performance
of the resulting DSP system. FPGAs allow this architecture to be created to best match
the algorithmic requirements, but this comes at increased design cost. It is interesting
to compare the various approaches, and this chapter aims to give an overview of the
various technologies available for implementing DSP systems, using relevant examples
where applicable, and the technologies are compared and contrasted.

. Architecture and Programmability

In many processor-based systems, design simply represents the creation of the
necessary high-level code with some thought given to the underlying technology
architecture, in order to optimize code quality and thus improve performance. Crudely
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speaking, though, performance is sacrificed to provide this level of programmability.
Take, for example, the microprocessor architecture based on the von Neumann sequen-
tial model where the underlying architecture is fixed and the maximum achievable per-
formance will be determined by efficiently scheduling the algorithmic requirements
onto the inherently sequential processing architecture. If the computation under con-
sideration is highly parallel in nature (as is usually the case in DSP), then the resulting
performance will be poor.

If we were to take the other extreme and develop an SoC-based architecture that best
matches the parallelism of computational complexity of the algorithm (as will be out-
lined in the final section of this chapter), then the best performance in terms of area,
speed and power consumption should be achieved. This requires a number of design
activities to ensure that hardware implementation metrics best match the application
performance criteria and that the resulting design operates correctly.

To more fully understand this concept of generating a circuit architecture, consider
the “state of the art” in 1969. Hardware capability in terms of numbers of transis-
tors was limited and thus highly valued, so the processing in the filters described in
Jackson (1970) had to be undertaken in a rather serial fashion. Current FPGA technol-
ogy provides hundreds of bit parallel multipliers, so the arithmetic style and resulting
performance are quite different, implying a very different sort of architecture. The aim
is thus to make the best use of the available hardware against the performance criteria
of the application. Whilst this approach of developing the hardware to match the per-
formance needs is highly attractive, the architecture development presents a number
of problems related to the very process of producing this architecture, namely design
time, verification and test of the architecture in all its various modes, and all the issues
associated with producing a design that is right first time.

Whilst the implementation of these algorithms on a specific hardware platform can be
compared in terms of metrics such as throughput rate, latency, circuit area, energy, and
power consumption, one major theme that can also be used to differentiate these tech-
nologies is programmability (strictly speaking, ease of programmability). As will become
clear in the descriptive material in this section, DSP hardware architectures can vary in
their level of programmability. A simple platform with a fixed hardware architecture
can then be easily programmed using a high-level software language as, given the fixed
nature of the platform, efficient software compilers can be (and indeed have been) devel-
oped to create the most efficient realizations. However, as the platform becomes more
complex and flexible, the complexity and efficiency of these tools are compromised, as
now special instructions have to be introduced to meet this functionality and the prob-
lem of parallel processing rears its ugly head.

In this case, the main aim of the compiler is to take source code that may not have been
written for the specific hardware architecture, and identify how these special functions
might be applied to improve performance. In a crude sense, we suggest that making the
circuit architecture programmable achieves the best efficiency in terms of performance,
but presents other issues with regard to evolution of the architecture either to meet
small changes in applications requirements or relevance to similar applications. This
highlights the importance of tools and design environments, described in Chapter 7.

SoC is at the other end of the spectrum from a programmability perspective; in this
case, the platform will have been largely developed to meet the needs of the system
under consideration or some domain-specific, standardized application. For example,
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OFDM access-based systems such as LTE-based mobile phones require specific DSP
functionality such as orthogonal frequency division multiple access (OFDMA) which
can be met by developing an SoC platform comprising processors and dedicated hard-
ware IP blocks. This is essential to meet the energy requirements for most mobile phone
implementations. However, silicon fabrication costs have now pushed SoC implemen-
tation into a specialized domain where typically solutions are either for high volume, or
have specific domain requirements, e.g. ultra-low power in low- power sensors.

. DSP Functionality Characteristics

DSP operations are characterized as being computationally intensive, exhibiting a high
degree of parallelism, possessing data independence, and in some cases having lower
arithmetic requirements than other high-performance applications, e.g. scientific com-
puting. It is important to understand these issues more fully in order to judge their
impact for mapping DSP algorithms onto hardware platforms such as FPGAs.

4.4.1 Computational Complexity

DSP algorithms can be highly complex. For example, consider the N-tap FIR filter
expression given in Chapter 2 and repeated here:

y(n) =
N−1∑
i=0

aix(n − i). (4.1)

In effect, this computation indicates that a0 must be multiplied by x(n), followed by the
multiplication of a1 by x(n − i) to which it must be added, and so on. Given that the tap
size is N , this means that the computation requires N multiplications followed by N − 1
additions in order to compute y(n) as shown below:

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) +⋯ + aN−1x(n − N + 1) (4.2)

Given that another computation will start on the arrival of next sample, namely xn+1, this
defines the computations required per cycle, namely 2N operations (N multiplications
and N additions) per sample or two operations per tap. If a processor implementation
is targeted, then this requires, say, a loading of the data every cycle, which would need
two or three cycles (to load data and coefficients) and storage of the accumulating sum.
This could mean an additional three operations per cycle, resulting in six operations
per tap or, overall, 6N operations per sample. For an audio application with a sampling
rate of 44.2 kHz, a 128-tap filter will require 33.9 MSPS, which may seem realistic for
some technologies, but when you consider image processing rates of 13.5 MHz, these
computational rates quickly explode, resulting in a computation rate of 10 gigasamples
per second (GSPS). In addition, this may only be one function within the system and
thus represent only a small proportion of the total processing required.

For a processor implementation, the designer will determine if the hardware can meet
the throughput requirements by dividing the clock speed of the processor by the num-
ber of operations that need to be performed each cycle, as outlined above. This can give
a poor return in performance, since if N is large, there will be a large disparity between
clock and throughput rates. The clock rate may be fast enough to provide the necessary
sampling rate, but it will present problems in system design, both in delivering a very
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fast clock rate and controlling the power consumption, particularly dynamic power con-
sumption, as this is directly dependent on the clock rate.

4.4.2 Parallelism

The nature of DSP algorithms is such that high levels of parallelism are available. For
example, the expression in equation (4.1) can be implemented in a single processor,
or a parallel implementation, as shown in Figure 4.1, where each element in the figure
becomes a hardware component therefore implying 127 registers for the delay elements,
128 MAC blocks for computing the products, a1x(N − i), where i = 0, 1, 2,… , N − 1,
and their addition which can of course, be pipelined if required.

In this way, we have the hardware complexity to compute an iteration of the algo-
rithm in one sampling period. Obviously, a system with high levels of parallelism and
the needed memory storage capability will accommodate this computation in the time
necessary. There are other ways to derive the required levels of parallelism to achieve
the performance, outlined in Chapter 8.

4.4.3 Data Independence

The data independence property is important as it provides a means for ordering the
computation. This can be highly important in reducing the memory and data storage
requirements. For example, consider N iterations of the FIR filter computation of equa-
tion (4.1), below. It is clear that the x(n) datum is required for all N calculations and there
is nothing to stop us performing the calculation in such a way that N computations are
performed at the same time for y(n), y(n + 1),… , y(n + N − 1), using the x(n) datum and
thus removing any requirement to store it:

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) +⋯ + aN−1x(n − N + 1)
y(n + 1) = a0x(n + 1) + a1x(n) + a2x(n − 1) +⋯ + aN−1x(n − N + 2)
y(n + 2) = a0x(n + 2) + a1x(n + 1) + a2x(n) +⋯ + aN−1x(n + N + 3)

⋮ = ⋮

y(n + N − 1) = a0x(n + N − 1) + a1x(n + 1) + a2x(n + N + 1) +⋯ + aN−1x(n).
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Obviously the requirement is now to store the intermediate accumulator terms. This
obviously presents the designer with a number of different ways of performing system
optimization, and in this case gives in a variation of schedule in the resulting design.
This is just one implication of data independence.

4.4.4 Arithmetic Requirements

In many DSP technologies, the wordlength requirements of the input data are such
that the use of internal precision can be considerably reduced. For example, consider
the varying wordlengths for the different applications as illustrated at the end of Chap-
ter 3. Typically, the input wordlength will be determined by the precision of the ADC
device creating the source material. Depending on the amount and type of computation
required (e.g. multiplicative or additive), the internal word growth can be limited, which
may mean that a suitable fixed-point realization is sufficient.

The low arithmetic requirement is vital as it means small memory requirements, faster
implementations as adder and multiplier speeds are governed by input wordlengths,
and smaller area. For this reason, there has been a lot of work to determine maximum
wordlengths as discussed in the previous chapter. One of the interesting aspects is that
for many processor implementations both external and internal wordlengths will have
been predetermined when developing the architecture, but in FPGAs it may be required
to carry out detailed analysis to determine the wordlength at different parts of the DSP
system (Boland and Constantinides 2013).

All of these characteristics of DSP computation are vital in determining an efficient
implementation, and have in some cases driven technology evolution. For example, one
the main differences between the early DSP processors and microprocessors was the
availability of a dedicated multiplier core. This was viable for DSP processors as they
were targeted at DSP applications where multiplication is a core operation, but not for
general processing applications, and so multipliers were not added to microprocessors
at that time.

4.4.5 Processor Classification

The technology for implementing DSP ranges from microcontrollers right though to
single-chip DSP multi-processors, which range from conventional processor architec-
tures with a very long instruction word (VLIW) extension to allow instruction-level
parallelism through to dedicated architecture defined for specific application domains.
Although there have been other more comprehensive classifications after it, Flynn’s clas-
sification is the most widely known and used for identifying the instructions and the data
as two orthogonal streams in a computer. The taxonomy is summarized in Table 4.1,
which includes single instruction, single data (SISD) and multiple instruction, single
data (MISD). These descriptions are used widely to describe the various representations
for processing elements (PEs).

. Microprocessors

The classical von Neumann microprocessor architecture is shown in Figure 4.3. This
sequentially applies a variety of instructions to specified data in turn. The architecture
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Table . Flynn’s taxonomy of processors

Class Description Examples

SISD Single instruction stream operating von Neumann
on single data stream processor

SIMD Several PEs operating in lockstep VLIW processorson individual data streams

MISD Few practical
examples

MIMD Several PEs operating independently Multi-processor
on separate data streams

consists of five types of unit: a memory containing data and instructions, an instruction
fetch and decode (IFD) instruction, arithmetic logic unit (ALU) and the memory access
(MA) unit. These units correspond to the four different stages of processing, which
repeat for every instruction executed on the machine:

1. Instruction fetch
2. Instruction decode
3. Execute
4. Memory access.
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Figure . Von Neumann processor architecture
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During the instruction fetch (IF) stage, the IFD unit loads the instruction at the address
in the program counter (PC) into the instruction register (IR). In the second, instruction
decode (ID) stage, this instruction is decoded to produce an opcode for the ALU and the
addresses of the two data operands, which are loaded into the input registers of the ALU.
During the execute stage, the ALU performs the operation specified by the opcode on
the input operands to produce the result, which is written back into memory in the MA
stage.

In general, these types of SISD machine can be subdivided into two categories,
depending on their instruction set style. The complex instruction set computer (CISC)
machines have complex instruction formats which can become highly specific for spe-
cific operations. This leads to compact code size, but can complicate pipelined execu-
tion of these instructions. On the other hand, reduced instruction set computer (RISC)
machines have regular, simple instruction formats which may be processed in a regular
manner, promoting high throughput via pipelining, but will have increased code size.

The von Neumann processor architecture is designed for general-purpose computing,
and is limited for embedded applications, due to its highly sequential nature. This makes
this kind of processor architecture suitable for a wide range of applications. However,
whilst embedded processors must be flexible, they are often tuned to a particular appli-
cation and have advanced performance requirements, such as low power consumption
or high throughput. A key evolution in this area has been the ARM series of proces-
sors which have been primarily developed for embedded applications and, in particular,
mobile phone applications. More recently they have expanded to the wider internet of
things (IoT) markets and also data servers, specifically microservers (Gillan 2014).

4.5.1 ARM Microprocessor Architecture Family

The ARM family of embedded microprocessors are a good example of RISC proces-
sor architectures, exhibiting one of the key trademarks of RISC processor architectures,
namely that of instruction execution path pipelining. The pipelines of these processor
architectures (as identified for the ARM processor family in Table 4.2) are capable of

Table . ARM microprocessor family overview

Processor Instruction sets Extensions

ARM7TDMI, Thumb
ARM922T
ARM926EJ-S Improved ARM/Thumb Jazelle
ARM946E-S DSP instructions
ARM966E-S
ARM1136JF-S SIMD instructions Thumb-2, TrustZonezelle
ARM1176JZF-S Unaligned data support
ARM11 MPCore
Cortex-A8/R4/M3/M1 Thumb-2 v7A (applications) - NEON

Thumb-2 v7R (real-time) - H/W divide
Thumb-2 V7M (microcontroller) - H/W

Divide & Thumb-2 only
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enabling increased throughput of the unit, but only up to a point. A number of innova-
tions have developed as the processor has developed.

� ARM7TDMI has a three-stage pipeline with a single interface to memory.
� ARM926EJ-S has a five-stage pipeline with a memory management unit with various

caches and DSP extensions. The DSP extension is in the form of a single-cycle 32 × 16-
bit multiplier and supports instructions that are common in DSP architectures, i.e.
variations on signed multiply-accumulate, saturated add and subtract, and counting
leading zeros.

� ARM1176JZ(F)-S core has moved to a eight-stage pipeline with improved perfor-
mance in terms of branch prediction, a vector floating-point unit and intelligent
energy management.

� ARM11 MPCore technology has moved to multicore and has up to four MP11 pro-
cessors with cache coherency and an interrupt controller.

� ARM Cortex-A8 has moved to a 14-stage pipeline and has an on-board NEON media
processor.

With increased pipeline depth comes increased control complexity, a factor which
places a limit on the depth of pipeline which can produce justifiable performance
improvements. After this point, processor architectures must exploit other kinds of par-
allelism for increased real-time performance. Different techniques and exemplar pro-
cessor architectures to achieve this are outlined in Section 4.5.2.

The key innovation of the ARM processor is that the company believes that the archi-
tecture comprises the instruction set and the programmer’s model. Most ARMs imple-
ment two instruction sets, namely the 32-bit ARM instruction set and the 16-bit Thumb
instruction set. The Thumb set has been optimized for code density from C code as this
represents a very large proportion of example ARM code. It also gives improved perfor-
mance from narrow memory which is critical in embedded applications.

The latest ARM cores include a new instruction set, Thumb-2, which provides a mix-
ture of 32-bit and 16-bit instructions and maintains code density with increased flexibil-
ity. The Jazelle-DBX cores have been developed to allow the users to include executable
Java bytecode. A number of innovations targeted at DSP have occurred, e.g. as in the
ARM9 family where DSP operations were supported. The evolution in the ARM to sup-
port DSP operations has not substantially progressed beyond that highlighted. A more
effective route has been to incorporate the ARM processor with both DSP processors,
which is discussed in Section 4.9.

ARM Programming Route
The most powerful aspect of microprocessors is the mature design flow that allows pro-
gramming from C/C++ source files. ARM supports an Eclipse-based Integrated Design
Environment (IDE) or IDE-based design flow which provides the user with a C/C++
source editor which helps the designer to spend more time writing code and avoid chas-
ing down syntax errors. The environment will list functions, variables, and declarations,
allows full change history and re-factoring of function names and code segments glob-
ally. This provides a short design cycle allowing code to be quickly compiled into ARM
hardware.
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It is clear that there have been some architectural developments which make the ARM
processor more attractive for DSP applications, but, as indicated earlier, the preferred
route has been a joint offering either with DSP processors or FPGAs. ARM also offers
an mbed hardware platform (https://mbed.org/) which uses on-line tools.

4.5.2 Parallella Computer

A clear shift in microprocessors has been towards multicores and there have been many
examples of multicore structures, including Intel multicore devices and multicore DSP
devices (see later). The Parallella platform is an open source, energy-efficient, high-
performance, credit-card sized computer which is based on Adapteva’s Epiphany mul-
ticore chips. The Epiphany chip consists of a scalable array of simple RISC processors
programmable in C/C++ connected together with a fast on-chip network within a single
shared memory architecture. It comes as either a 16- or 64-core chip. For the 16-core
system, 1, 2, 3, 4, 6, 8, 9, 12 or 16 cores can be used simultaneously.

The Epiphany is a 2D scalable array of computing nodes which is connected by a low-
latency mesh network-on-chip and has access to shared memory. Figure 4.4 shows the
Epiphany architecture and highlights the core components:

� a superscalar, floating-point RISC CPU that can execute two floating-point operations
and a 64-bit memory load operation on every clock cycle;

� local memory in each mesh node that provides 32 bytes/cycle of sustained bandwidth
and is part of a distributed, shared memory system;

� multicore communication infrastructure in each node that includes a network inter-
face, a multi-channel DMA engine, multicore address decoder, and a network moni-
tor;

� a 2D mesh network that supports on-chip node-to-node communication latencies in
nanoseconds, with zero startup overhead.

The Adapteva processor has been encapsulated in a small, high-performance and low-
power computer called the Parallella Board. The main processor is a dual-core ARM A9
and also a Zynq FPGA. The board can run a Linux-based operating system. The main
memory of the board is contained in an SD card and this also includes the operating files
for the system. There is 1 GB of shared memory between the ARM host processor and
the Epiphany coprocessor.

The system is programmed in C/C++, but there are a number of extra commands
which are specific to the Parallella Board and handle data transfer between the Epiphany
and the ARM host processor. It can be programmed with most of the common parallel
programming methods, such as SIMD and MIMD, using parallel frameworks like open
computing language (OpenCL) or Open Multi-Processing (OpenMP). Two programs
need to be written, one for the host processor and one for the Epiphany itself. These
programs are then linked when they are compiled.

Programming Route
The Parallela is programmed by the Epiphany software development kit (SDK), known as
eSDK, and is based on standard development tools including an optimizing C-compiler,
functional simulator, debugger, and multicore IDE. It can directly implement regular
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ANSI-C and does not require any C-subset, language extensions, or SIMD style pro-
gramming. The eSDK interfaces with a hardware abstraction layer (HAL) which allows
interaction with the hardware through the user application.

The key issue with programming the hardware is to try to create the program in such
a way that the functionality will efficiently use the memory of each core which has an
internal memory of 32 kB which is split into four separate 8 kB banks. Also, every core
also has the ability to quickly access the memory of the other cores which means that
streaming will work effectively as data can then be passed in parallel. The cores also
have access to the memory shared with the ARM processor, which suggests a means of
supplying input data.

Efficiency is then judged by how effectively the computation can be distributed across
each core, so it is a case of ensuring an efficient partition. This will ensure that a good
usage of the core functionality can be achieved which preserves the highly regular
dataflow of the algorithm so that data passing maps to the memory between cores. This
may require a spatial appreciation of the architecture to ensure that the functionality
efficiency is preserved and a regular matching occurs. This allow the realization to
exploit the fast inter-core data transfers and thus avoid multiple accesses in and out of
shared memory.

. DSP Processors

As was demonstrated in the previous section, the sequential nature of microprocessor
architectures makes them unsuitable for efficient implementation of complex DSP sys-
tems. This has spurred the development of dedicated types of processors called DSP
microprocessors such as Texas Instrument’s TMS32010 which have features that are
particularly suited for DSP processing. These features have been encapsulated in the
Harvard architecture illustrated in Figure 4.5.

The earlier DSP microprocessors were based on the Harvard architecture. This differs
from the von Neumann architecture in terms of memory organization and dedicated
DSP functionality. In the von Neumann machine, one memory is used for storing both
program code and data, effectively providing a memory bottleneck for DSP implementa-
tion as the data independence illustrated in Section 4.4.3 cannot be effectively exploited
to provide a speedup. In the Harvard architecture, data and program memory are sep-
arate, allowing the program to be loaded into the processor independently of the data
which is typically streaming in nature.

DSP processors are designed also to have dedicated processing units, which in the
early days took the form of a dedicated DSP block for performing multiply-accumulation
quickly. In addition, separate data and program memories and dedicated hardware
became the cornerstone of earlier DSP processors. Texas Instrument’s TMS32010 DSP
(Figure 4.6), which is recognized as the first DSP processor, was an early example of the
Harvard architecture and highlights the core features, so it acts as a good example to
understand the broad range of DSP processors. In the figure, the separate program and
data buses are clearly highlighted. The dedicated hardware unit is clearly indicated in
this case as a 16-bit multiplier connected to the data bus which produces a 32-bit out-
put called P32, which can then be be accumulated as indicated by the 32-bit arithmetic
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logic unit (ALU) and accumulator (ACC) circuitry which is very effective in computing
the function given in equation (4.1).

4.6.1 Evolutions in DSP Microprocessors

A number of modifications have occurred to the original Harvard DSP architecture,
which are listed below (Berkeley Design Technology 2000).
� VLIW. Modern processor architectures have witnessed an increase in the internal

bus wordlengths. This allows a number of operations performed by each instruction
in parallel, using multiple processing functional units. If successful, the processor will
be able to use this feature to exploit these multiple hardware units; this depends on the
computation to be performed and the efficiency of the compiler in utilizing the under-
lying architecture. This is complicated by the move toward higher-level programming
languages which require good optimizing compilers that can efficiently translate the
high-level code and eliminate any redundancies introduced by the programmer.

� Increased number of data buses. In many recent devices the number of data buses has
been increased. The argument is that many DSP operations involve two operands,
thus requiring three p1eces of information (including the instruction) to be fed from
memory. By increasing the number of buses, a speedup is achieved, but this also
increases the number of pins on the device. However, some devices gets around this
by using a program cache, thereby allowing the instruction bus to double as a data
bus when the program is being executed out of the program cache.

� Pipelining. Whilst the introduction of VLIW has allowed parallelism, another way to
exploit concurrency is to introduce pipelining, both within the processing units in
the DSP architecture, and in the execution of the program. The impact of pipelining
is to break the processing time into smaller units, thereby allowing several overlapping
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computations to take place at once, in the same hardware. However, this comes at the
expense of increased latency. Pipelining can also be employed within the processor
control unit which controls the program fetch, instruction dispatch and instruction
decode operation.

� Fixed point operations. Some DSP systems only require fixed-point arithmetic and do
not need the full-precision arithmetic offered by some DSP processing units. For this
reason, fixed-point and floating-point DSP microprocessors have evolved to match
application environments. However, even in fixed-point, some applications do not
require the full fixed-point range of some processors, e.g. 32 bits in the TMS320C64xx
series processor, and therefore inefficiency exists. For example, for a filter application
in image processing applications, the input wordlength may vary between 8 and l6
bits, and coefficients could take 12–16 bits. Thus, the multiplication stage will not
require anything larger than a 16 × 16-bit multiplier. The DSP processors exploit this
by organizing the processing unit, e.g. the TMS320C6678, by allowing multiple mul-
tiplications to be take place in one time unit, thereby improving the throughput rate.
Thus, the processors are not compromised in terms of the internal wordlength used.

These optimizations have evolved over a number of years. and have led to improved
performance. However, it is important to consider the operation in order to understand
how the architecture performs in some applications.

4.6.2 TMS320C6678 Multicore DSP

The TMS320C6678 multicore fixed- and floating-point DSP microprocessor is based on
TI’s KeyStone multicore architecture and is illustrated in Figure 4.7. It comprises eight
C66x CorePac DSPs, each of which runs at 1.0–1.25 GHz, giving an overall clock rate
of up to 10 GHz. This gives 320 giga multiply-accumulates (GMAC) at the clock rate of
1.25 GHz. A key aspect has been the introduction of increasing levels of memory in the
form of 32 kB of L1 program cache and 32 kB of L1 data cache with 512 kB of L2 cache per
core. The chip also has 4 MB of L2 shared memory. Clearly, with technology evolution
and in line with processor developments and the response to the slowdown of Dennard
scaling (see Section 4.2), the response has been to create a multicore implementation of
previous processors in this case, the C6000, rather than scale the processor.

Another feature of the latest DSP families has been the inclusion of specific function-
ality, specifically network-on-chip topology in the form of a TeraNet switch fabric which
support up to 2 TB of data. There are also dedicated processing engines such as packet
and security accelerators to address the networking and security markets in which DSP
processors are increasingly being used. The devices also come with an additional fea-
tures such as 64-bit DDR3 and universal asynchronous receiver/transmitter (UART)
interfaces.

The key objective is to be able to exploit the processing capability offered by this mul-
ticore platform which depends on both the computation to be performed and the use
of optimizing compilers that perform a number of simplifications to improve efficiency.
These simplifications include routines to remove all functions that are never called and
to simplify functions that return values that are never used, to reorder function declara-
tions and propagate arguments into function bodies (Dahnoun 2000). The compiler also
performs a number of optimizations to take advantage of the underlying architecture
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including software pipelining, loop optimizations, loop unrolling and other routines to
remove global assignments and expressions (Dahnoun 2000).

. Graphical Processing Units

Another class of processors that has had a major impact is the graphical processing unit
(GPU). It was developed particularly to suit applications in image and video processing
and as such has resulted in a multi-processor array structure with a memory hierarchy
suited to store the initial image data and then portions of the image for highly parallel
computing. While originally designed with a fixed pipeline which is highly suitable for
graphics, the modern GPU’s pipeline is highly programmable and allows for general-
purpose computation. For this reason, the technology has now seen wider adoption. The
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Figure . Nvidia GeForce GPU architecture

creation of the general-purpose graphical processing unit (GPUPU) presents a powerful
computing platform as it comprises a CPU which computes the sequential part of the
code and the GPU calculates the computer-intensive part of the code.

There are many GPUs available from different manufacturers, and all offer massively
parallel floating-point computation and high-speed, large-capacity RAM. The Nvidia
GeForce GPU is illustrated in Figure 4.8 and shows the computing structure. The archi-
tecture is generally composed of a number of floating-point streaming processors (SP)
optimized for graphics processing, each of which contains a small amount of low-latency
shared memory along with a larger bank of SDRAM which is available to all multi-
processors. This is contained with the shared-memory multi-processors (SMP). The
architecture allows parallel execution of numerous SIMD functions.

Since products from different manufacturers will inevitably differ in their low-level
implementation, there are a number of abstract application programming interfaces
(APIs) including CUDA and OpenCL. CUDA can used to program the devices and allow
the software developer to access the massively parallel SIMD architecture of modern
GPUs for general processing tasks. CUDA was developed by Nvidia and is an extension
of C to enable programming of GPU devices; it allows easy management of parallelism
and handles communications with the host. OpenCL is a broadly supposed open stan-
dard, defined by the Khronos Group, that allows programming of both GPUs and CPUs.
It is supported by Intel, AMD, Nvidia, and ARM, and is the GPGPU development plat-
form most widely used by developers in both the USA and Asia-Pacific.

The key aspect of GPU is hundreds of cores that can be used for highly parallel
implementation of graphics algorithms and high levels of memory. As numerous com-
putations or threads can run on each processor engine, the GPU has thousands of
threads. Because the architecture is fixed and is now being applied to a wider range
of applications, the technology is cheap, certainly compared to DSP microprocessor
and FPGAs.

4.7.1 GPU Architecture

GPU implementations work well for streaming applications where large amounts of
data will be streamed to the GPU and then processed. Obviously this is the case for
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image and video processing which is what the hardware was developed for in the first
instance. When programming the device, it is paramount to consider the architectural
implications of the hardware, to produce efficient code. It could be argued to some
some extent that this places much more emphasis on the programmer’s ability to get
the performance out of the hardware, but this is increasingly the case for multicore
technology.

For example, the multi-processors share one off-chip global memory and it is not
cached, so it is very important to achieve memory coalescing (Luo et al. 2010). Memory
coalescing occurs when consecutive threads access consecutive memory locations. In
this case, it is important to coalesce several memory transactions into one transaction,
as there is a shared memory within each SMP which is common to all the streaming pro-
cessors inside the multi-processor. As the shared memory is on chip, it can be accessed
within a smaller number of clock cycles, whereas the global memory will be typically an
order of magnitude larger.

Thus the memory can be viewed as follows:

� Global memory is typically several gigabytes and is available to the GPU processors.
It is used for fast caching to the motherboard RAM, as it is used to read and write
large amounts of data and is normally associated with blocks of threads.

� Local shared memory is smaller (tens of kilobytes) and can be accessed extremely
quickly, so it can really speed up computations, since the instruction access cost
is much lower compared to global memory. It is usually associated with a block of
threads

� Private thread memory, as the name suggests, is a very small bank of memory used
within each thread for variables and temporary storage during the computation.

By carefully observing the memory structure and ensuring that the computation is
inherently parallel enough, it is possible to achieve a speedup. For example, the work on
breadth-first search graph operation (Luo et al. 2010) shows that a tenfold increase in
the number of vertices computed only incurs a fivefold increase in the compute time.
GPUs have also been applied to some DSP algorithms such as the low-density parity-
check (LDPC) decoder (Wang et al. 2011). The challenge has been to use the threads
to fully occupy the GPU computation resources when decoding the LDPC codes and
organizing the computation in such a way as to minimize the memory access times.
Work by Falcao et al. (2012) has compared the programming of a GPU and CPU using
OpenCL.

. System-on-Chip Solutions

Up to now, the DSP technology offerings have been in the form of some type of prede-
fined architectural offering. The major attraction of dedicated ASIC offerings is that the
architecture can be developed to specifically match the algorithmic requirements, allow-
ing the level of parallelism to be created to ultimately match the performance require-
ments. For the earlier 128-tap FIR filter, it is possible to dedicate a multiplier and adder
to each multiplication and addition respectively, thereby creating a fully parallel imple-
mentation. Moreover, this can then be pipelined in order to speed up the computation,
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giving if required an N times speedup for an N-tap filter. How the designer can achieve
this is described in detail in Chapter 8.

When considering programmability, SoC solutions will have been developed with
programmable parts as well as dedicated acceleration blocks. Indeed, the C6000 DSP
described in Section 4.6.2 could be considered to be a DSP SoC. Therefore, such an
approach would have to be driven by a critical factor such as immense computational
performance or power consumption or indeed both, in order to justify the considerable
costs and risks in creating a DSP SoC in the first place. This is normally counterbalanced
by increasing the levels of programmability, but this causes an increase in test and veri-
fication times. Non-recurring engineering (NRE) costs are such that the cost of produc-
ing a number of prototypes now typically exceeds the financial resources of most major
manufacturers. Thus the argument for using dedicated SoC hardware has to be com-
pelling. Currently, it is mostly only mass market smartphones and other mobile devices
which can justify this.

Whilst the sequential model has served well in the sense that it can implement a wide
range of algorithms, the real gain from DSP implementation comes from parallelism of
the hardware. For this reason, there has been considerable interest in developing par-
allel hardware solutions evolving from the early days of the transputer. However, it is
capturing this level of parallelism that is the key issue. A key architecture which was
developed to capture parallelism was the systolic array (Kung and Leiserson 1979; Kung
1988) which forms the starting point for this section.

4.8.1 Systolic Arrays

Systolic array architectures were introduced to address the challenges of very large scale
integration (VLSI) design by Kung and Leiserson (1979). In summary, they have the
following general features (Kung 1988):
� an array of processors with extensive concurrency;
� small number of processor types;
� control is simple;
� interconnections are local.

Their processing power comes from the concurrent use of many simple cells, rather
than the sequential use of a few very powerful cells. They are particularly suitable for
parallel algorithms with simple and regular dataflows, such as matrix-based operations.
By employing pipelining, the operations in the systolic array can be continually filtered
through the array, enabling full efficiency of the processing cells.

A systolic linear array is shown in Figure 4.9. Here, the black circles represent pipeline
stages after each processing element. The lines drawn through these pipeline stages are

schedule vector s

Figure . Linear systolic array
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schedule
vector s

Figure . Systolic array architecture

the scheduling lines depicting which PEs are operating on the same iteration at the same
time; in other words, these calculations are being performed at the same clock cycle. The
lines drawn through these pipeline stages are the scheduling lines depicting which PEs
are operating on the same iteration at the same time; in other words, these calculations
are being performed at the same clock cycle.

Figure 4.10 shows a classical rectangular systolic array each with local interconnec-
tions. This type of array is highly suitable for matrix–matrix operations. Each PE receives
data only from its nearest neighbor and each processor contains a small memory ele-
ments in which intermediate values are stored. The control of the data through the array
is by a synchronous clock, which effectively pumps the data through the array; hence the
name “systolic” arrays, by analogy with the heart pumping blood around the body. Fig-
ure 4.11 depicts the systolic array applied for QR decomposition. The array is built from
two types of cells, boundary and internal, all locally interconnected.

The concept of systolic arrays was employed in many DSP applications. McCanny
and McWhirter (1987) applied it at the bit level, whereas the original proposer of
the technique developed the concept into the iWarp which was an attempt in 1988
by Intel and Carnegie Mellon University to build an entirely parallel computing node
in a single microprocessor, complete with memory and communications links (Gross
and O’Hallaron 1998). The main issue with this type of development was that it was
very application-specific, coping with a range of computationally complex algorithms;
instead, the systolic array design concept was applied more successfully to develop a
wide range of signal processing chips (Woods et al. 2008). Chapter 12 demonstrates how
the concept has been successfully applied to the development of an IP core for recursive
least squares filtering.
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Figure . Triangular systolic array architecture

. Heterogeneous Computing Platforms

Since the first edition of this book, there have been many alternative developments due
to scaling issues, but rather than evolve existing platforms to cater for DSP processing,
the focus has been to derive new forms of multicore platforms:

� Multicore architectures such as the Parallela (highlighted in Section 4.5.2) which
offers high levels of parallelism, and coprocessing architectures such as the Intel Xeon
PhiTM processor which delivers up to 2.3 times higher peak FLOPS and up to 3 times
more performance per watt. The technology has been used for 3D image reconstruc-
tion in computed tomography which has primarily been accelerated using FPGAs
(Hofmann et al. 2014). They show how not only parallelization can be applied but
also that SIMD vectorization is critical for good performance.

� DSP/CPU processor architectures such as KeyStoneTM II multicore processors, e.g.
the 66AK2Hx platform which comprises a quad-ARM Cortex-A15 MPCoreTM pro-
cessor with up to eight TMS320C66x high-performance DSPs using the KeyStone II
multicore architecture. This has been applied for cloud radio access network (RAN)
stations; Flanagan (2011) shows how the platform can provide scalability.

� SoC FPGAs have evolved by incorporating processors (primarily the ARM processor)
on the FPGA fabric. These effectively present a hardware/software system where the
FPGA programmable fabric can be used to accelerate the data-intensive computation
and the processor can be used for control and interfacing. This is discussed in more
detail in the next chapter.
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. Conclusions

This chapter has highlighted the variety of technologies used for implementing complex
DSP systems. These compare in terms of speed, power consumption and, of course,
area, although this is a little difficult to ascertain for processor implementations. The
chapter has taken a specific slant on programmability with regard to these technologies
and, in particular, has highlighted how the underlying chip architecture can limit the
performance. Indeed, the fact that it is possible to develop SoC architectures for ASIC
and FPGA technologies is the key feature in achieving the high performance levels. It
could be argued that the fact that FPGAs allow circuit architectures and that they are
programmable are the dual factors that make them so attractive for some system imple-
mentation problems.

Whilst the aim of the chapter has been to present different technologies and, in some
cases, compare and contrast them, the reality is that modem DSP systems are now col-
lections of these different platforms. Many companies are now offering complex DSP
platforms comprising CPUs, DSP processors and embedded FPGA. Thus the next chap-
ter views FPGAs both as heterogeneous platforms in themselves but also as part of these
solutions.
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

Current FPGA Technologies

. Introduction

The analysis at the end of previous chapter makes it clear that the choice of the specific
technology and the resulting design approach directly impacts the performance that will
be achieved. For example, the use of simple DSP microcontrollers typically implies a
DSP system with relatively low performance requirements such as medical or industrial
control systems. The design effort is only that needed to produce efficient C or C++
source code for its implementation, and indeed it may be possible to use the software
compilers associated with MATLAB® or LabVIEW that the user may have used as the
initial design environment to scope the requirements such as wordlength and system
complexity.

This design approach can be applied for the full range of “processor”- style platforms,
but it may be required that dedicated handcrafted C code is produced to achieve the
necessary performance. This is probably particularly relevant in applications where per-
formance requirements are tight. Also, the hardware may possess dedicated function-
ality that is not well supported within the high-level tool environment. In these cases, it
is clear that the platform will be chosen to meet some superior area, speed and power
performance criteria.

Mindspeed’s T33xx family of wireless application processors (Mindspeed 2012) have
been directly targeted at base stations for mobile services and thus have dedicated func-
tionality such as forward error correction (FEC) and Mindspeed application processor
DSP blocks for advanced signal processing and encryption functions. In these cases,
the user has to compromise on ease of design, in order to take advantage of the spe-
cific architectural feature offered by the technology or use company-specific tool sets
to achieve the necessary performance. This notion is taken to the extreme in the SoC
arena where the user is faced with creating the circuit architecture to best match the
performance requirements.

Working towards this ultimate performance is effectively what an FPGA platform
offers. From “glue logic” beginnings, FPGAs have now become an advanced platform for
creating high- performance, state-of-the-art systems. Indeed, many high-performance
data-processing environments are starting to see the benefits of this technology. The
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Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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purpose of this chapter is to give a review of the current FPGA technologies with a focus
on how they can be used in creating DSP systems. The chapter acts to stress key features
and leaves the detail to the vendors’ data sheets. Whilst a number of technologies are
available, the focus is on the latest commercial offerings from the two dominant vendors,
namely Xilinx and Altera, whilst giving a brief description of the other solutions.

Section 5.2 gives a brief historical perspective on FPGAs, describing how they have
emerged from being a fine-grained technology to a complex SoC technology. Section 5.3
describes the Altera Stratix® 10 FPGA family, the most powerful FPGA family that the
company offers. The next sections then go on to describe the FPGA technology offerings
from Xilinx, specifically the UltraScaleTM (Section 5.4) and Zynq® (Section 5.5) FPGA
families. The technologies offered by Microsemi and Lattice offer specific features that
are very relevant in certain markets. For this reason, Lattice’s iCE40isp family of small,
low-power, integrated mobile FPGAs is described in Section 5.6, and Microsemi’s RTG4,
a radiation tolerant (RT) FPGA for signal processing applications, is described in Sec-
tion 5.7. Section 5.8 attempts to summarize the key features of recent FPGA devices and
gives some insights into FPGA-based DSP system design. Some conclusions are given
in Section 5.9.

. Toward FPGAs

In the 1970s, logic systems were created by building PCB boards consisting of transistor-
transistor logic (TTL) logic chips. However, as functions got larger, the logic size and lev-
els increased and thus compromised the speed of design. Typically, designers used logic
minimization techniques, such as those based on Karnaugh maps or Quine–McCluskey
minimization, to create a sum of products expression by generating the product terms
using AND gates and summing them using an OR gate.

The concept of creating a structure to achieve implementation of this functionality was
captured in the early programmable array logic (PAL) device, introduced by Monolithic
Memories in 1978. The PAL comprised a programmable AND matrix connected to a
fixed OR matrix which allowed sum of products structures to be implemented directly
from the minimized expression. The concept of an AND and OR matrix became the
key feature of a class of devices known as programmable logic devices (PLDs); a brief
classification is given in Table 5.1, the final member of which is of course the ROM.

As illustrated in Figure 5.1, a ROM possesses the same structure only with a fixed
AND plane (effectively a decode) and a programmable OR plane. In one sense, an n × m
structure can be viewed as providing the capability of storing four (in general, n2) two-bit
(or m-bit) words, as shown in Figure 5.2. The decoder, which is only required to reduce
the number of pins coming into the memory, is used to decode the address input pins,

Table . PLD types

AND matrix OR matrix

ROM Fixed Programmable
PLA Programmable Fixed
PAL Programmable Programmable
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and a storage area or memory array is used to store the data. As the decoder generates
the various address lines using AND gates and the outputs are summed using OR gates,
this provides the AND–OR configuration needed for Boolean implementation.

In general, as an n × 1-bit ROM could implement any n-input Boolean function, a
four-input ROM or LUT became the core component of the very first FPGA, the Xilinx
XC2000. The four-input LUT was small enough to achieve efficient utilization of the
chip area, but large enough to implement a reasonable range of functions, based on
early analysis (Rose et al. 1990). If a greater number of inputs is required, then LUTs
are cascaded together to provide the implementation, but at a slower speed. This was
judged to provide an acceptable trade-off.

The PLD structure had a number of advantages. It clearly matched the process of how
the sum of products was created by the logic minimization techniques. The function
could then be fitted into one PLD device, or, if not enough product terms were available,
then it could be fed back into a second PLD stage. Another major advantage was that
the circuit delay is deterministic, either comprising one logic level or two, etc. However,

Decoder
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Figure . Storage view of PLD architecture
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the real advantage comes in the form of the programmability which reduces the risk
in PCB development, allowing possible errors to be fixed by adjusting the PLD logic
implementation. But as integration levels grew, the idea of using the PLD as a building
block became an attractive FPGA proposition as illustrated by the early Altera MAX®

family. As mentioned earlier, Xilinx opted for the LUT approach.

5.2.1 Early FPGA Architectures

The early FPGA offerings were based around the Manhattan-style architecture shown
in Figure 5.3 where each individual cell comprised simple logic structures and cells were
linked by programmable connections. Thus, the FPGA could be viewed as comprising
the following:
� programmable logic units that can be programmed to realize different digital func-

tions;
� programmable interconnect to allow different blocks to be connected together;
� programmable I/O pins.

This was ideal for situations where FPGAs were viewed as glue logic as programma-
bility was then the key to providing redundancy and protection against PCB board man-
ufacture errors; it might even provide a mechanism to correct design faults. However,
technology evolution, outlined by Moore’s law, now provided scalability for FPGA ven-
dors. During the 1980s, this was exploited by FPGA vendors in scaling their technology
in terms of numbers of levels of interconnectivity and number of I/Os. However, it was
recognized that this approach had limited scope, as scaling meant that interconnect was
becoming a major issue and technology evolution now raised the interesting possibil-
ity that dedicated hardware could be included, such as dedicated multipliers and, more
recently, ARMTM processors. In addition, the system interconnectivity issue would be
alleviated by including dedicated interconnectivity in the form of Serializer/Deserializer
(SERDES) and RapidIO. Technology evolution has had a number of implications for
FPGA technology:
� Technology debate In the early days, three different technologies emerged, namely

conventional SRAM, anti-fuse and electrically erasable programmable read-only
memory (E2PROM) technologies. The latter two technologies both require special
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steps to create either the anti-fuse links or the special transistors to provide the
E2PROM transistor. Technological advances favored SRAM technology as it required
only standard technology: this became particularly important for Altera and Xilinx,
as FPGA fabrication was being outsourced and meant that no specialist technology
interaction with the silicon fabrication companies was needed. Indeed, it is worth
noticing that silicon manufacturers now see FPGA technologies as the most advanced
technology to test their fabrication facilities.

� Programmable resource functionality A number of different offerings again exist in
terms of the basic logic block building resource used to construct systems. Early offer-
ings (e.g. Algotronix and Crosspoint) offered simple logic functions or multiplexers
as the logic resource, but with interconnect playing an increasing role in determining
system performance, these devices were doomed. Coarser-grained technologies such
as the PLD-type structure (and, more particularly, the LUT), dominated because they
are flexible and well understood by computer programmers and engineers. Examining
the current FPGA offerings, it is clear that the LUT-based structure now dominates
with the only recent evolution an increase in the size of the LUT from a four-input
to a five- or six-input version in the Xilinx Virtex/ UltraScaleTM technology and to an
eight-input version in the Altera Stratix® family.

� Change in the FPGA market Growing complexity meant that the FPGA developed
from being primarily a glue logic component to being a major component in a complex
system. With DSP being a target market, FPGA vendors had to compare their tech-
nology offerings in terms of new competitors, primarily the DSP processor developers
such as TI and Analog Devices presented in Chapter 4.

� Tool flow Initially, FPGAs were not that complex, so up until the mid 1990s, tools
were basic. Eventually they had to become more complex, moving toward automatic
place and route tools. These still play a major role in vendors’ tool flows. With increas-
ing complexity, there has been an identified need for system-level design tools: DSP
Builder and SDK for OpenCL from Altera, and Vivado and the SDSoCTM develop-
ment environment from Xilinx. This may be an increasingly problematic issue as tools
tend to lag well behind technology developments; it is a major area of focus in this
book.

It has now got to the stage that FPGAs represent system platforms. This is recog-
nized by both major vendors who now describe their technology in these terms. Xilinx
describes its Zynq® UltraScale+TM FPGA as a technology comprising heterogeneous
multi-processing engines, while Altera describes its Stratix® 10 FPGA family as featur-
ing its third-generation hard processor system. Thus, the technology has moved from
the era of programmable cells connected by programmable interconnect, as highlighted
at the start of this section, to devices that are complex, programmable SoCs which
comprise a number of key components, namely dedicated DSP processor blocks and
processor engines.

. Altera Stratix® V and  FPGA Family

Altera offers a series of FPGAs covering a range of performance needs and applica-
tion domains (see Table 5.2). Its leading-edge FPGA is the Stratix® 10. Details were
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Table . Altera FPGA family

Family Brief description

Stratix® High-performance FPGA and SoC family with multiple DSP blocks embedded
memory, memory interfaces, transceiver blocks which supports partial
reconfiguration

Arria Focused on power efficiency, has a “hard” floating-point DSP block, support for
28.3 Gbps and “smart voltage” capability

MAX 10 A non-volatile technology that has programmable logic, DSP blocks and soft
DDR3 memory controller and supports dynamic reconfiguration

not widely available at the time of writing, so most of the following discussion is based
around the architecture of Stratix® V as many of the architectural features would appear
to have remained the same.

The FPGA architecture has evolved from the early Manhattan-style tiling of
LUTs/flip-flop cells (see Figure 5.3), into columns of programmable logic, dedicated DSP
silicon blocks and scalable memory blocks. Also included are dedicated PLLs, embed-
ded peripheral component interconnect (PCI) express bus standard, transceivers and
general-purpose I/Os. The core components include adaptive logic modules (ALMs),
DSP blocks and memory, covered below.

5.3.1 ALMs

The ALM is the core programmable unit and extends the basic concept of the four-
input LUT and D-type flip-flop which has been the core FPGA programmable part for
many years. As shown in Figure 5.4, it contains LUT-based resources that can be divided
between two combinational adaptive lookup tables (ALUTs) and four registers, allowing
various configurations.

With up to eight inputs for the two combinational ALUTs, one ALM can implement
various combinations of two functions, allowing backward compatibility with the older
four-input LUT architectures. One ALM can also implement any function with up to
six-input and certain seven-input functions. After many years of four-input LUTs, it
has now been deemed viable to use large LUT sizes. In addition, the user can configure
the ALM as a simple dual-port SRAM in the form of a 64 × 1 or a 32 × 2 block. The
ALM output can be registered and unregistered versions of the LUT or adder output.
The register output can also be fed back into the LUT to reduce fan-out delay.

It also contains four programmable registers, each with the functionality of clocks,
synchronous and asynchronous clear, synchronous load and circuitry to drive signals
to the clock and clear control signals; this providing a very wide range of functionality.
The registers can be bypassed and the output of the LUT can directly drive the ALM
outputs.

These ALMs are contained within logic array blocks (LABs), and the LAB contains
dedicated logic for driving control signals to its ALMs; it has two unique clock sources
and three clock enable signals. LAB-wide signals control the register logic using two
clear signals, and the Stratix® V device has a device-wide reset pin that resets all the
registers in the device.
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5.3.2 Memory Organization

The Stratix® V device contains two types of memory blocks each of which can be clocked
at 600 MHz:

� M20K The Stratix® V contains up to 11.2 GB of 20 kB blocks of dedicated memory
resources. The M20K blocks are ideal for larger memory arrays while still providing a
large number of independent ports.

� 640-bit memory LABs (MLABs) These are memory blocks that are configured from
the LABs and can be configured as wide or shallow memory arrays for use as shift
registers, wide shallow first-in, first-out (FIFO) buffers, and filter delay lines. For the
Stratix® V devices, the ALMs can be configured as ten 32 × 2 blocks, giving a 32 × 20-
bit or 64 × 10-bit simple dual-port SRAM block per MLAB.

The mixed-width port configuration is supported in the simple and true dual-port
RAM memory modes in various configurations (Altera 2015a). The aim is to provide
many modes of operation of the memory hierarchy to support as much functionality as
possible, a summary of which is given in Table 5.4. With the streaming nature of DSP
and image processing systems, there is a need to delay data, which is typically achieved
using shift registers and FIFOs, both of which are supported, and for many DSP opera-
tions there is a need to store fixed coefficient values, which the ROM and indeed RAM
mode of operation will permit. In more complex modes of operation, there is a need
to access and change temporary information, which is supported in the various RAM



Current FPGA Technologies 

Table . Supported embedded memory block configurations

Memory Block depth (bits) Programmable width

MLAB 32 × 16, × 18, or × 20
64 × 8, × 9, × 10

M20K 512 × 40, × 32
1K × 20, × 16
2K × 10, × 8
4K × 5, × 4
8K × 2

16K × 1

mode configurations. It is the FPGA vendor’s goal to provide underlying support for the
many modes of DSP functionality required.

Various clock modes are supported for the memory. This includes single, where a sin-
gle clock controls all registers of the memory block; read/write, where a separate clock is
available for each read and write port; input/output, where a separate clock is available
for each input and output port; and independent, where a separate clock is available for
each port (A and B).

Bit parity checking is supported where the parity bit is the fifth bit associated with
every four data bits in data widths of 5, 10, 20, and 40. The error correction code (ECC)
support provided allows detection and correction of data errors at the output of the
memory, providing single, double-adjacent and triple-adjacent error detection in a 32-
bit word.

5.3.3 DSP Processing Blocks

Each variable-precision DSP block spans one LAB row height and offers a range of mul-
tiplicative and additive support functionality targeted at support for DSP functionality,
specifically 9-bit, 18-bit, 27-bit, and 36-bit wordlength support and even based around
an 18 × 25 multiplier block with built-in addition, subtraction, and 64-bit accumulation
unit to combine multiplication results.

Table . Memory configurations

Memory mode Brief description

Single-port RAM Supports one read/one write operation. Read enable port can be
used to show the previous held values during the most recent
active read enable or to show new data being written

Simple dual-port RAM One read on port B and one write on port A, i.e. different locations
True dual-port RAM Any combination of two port operations: two reads, two writes, or

one read and one write at two different clock frequencies
Shift register Can create w × m × n shift register for input data width (w), tap size

(m), and tap number (n). Can also cascade memory blocks
ROM Can use memory as ROM. Various configuration of registered and

unregistered address lines and outputs
FIFO buffers Allow single and dual clock asynchronous FIFO buffers
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As illustrated in Figure 5.5, the Stratix® V variable- precision DSP block consists of
the following elements:

� input register bank to store the various input data and dynamic control signals;
� pre-adder which supports both addition and subtraction;
� internal coefficient storage which can support up to eight constant coefficients for the

multiplicands in 18-bit and 27-bit modes;
� multipliers which can be configured as a single 27 × 27-bit multiplier, two 18 × 18-bit

multipliers or three 9 × 9-bit multipliers;
� accumulator and chainout adder which supports a 64-bit accumulator and a 64-bit

adder;
� systolic registers, to register the upper multiplier’s two 18-bit inputs and to delay the

chainout output to the next variable- precision DSP block;
� 64-bit bypassable output register bank.

The processing architecture is highly programmable, allowing various functions to
be cascaded together or, in some cases, bypassed. This includes the input and output
registers and those referred to as systolic registers which can be used for pipelining,
acting to decrease the critical path but increase the latency. This will be achieved during
the place process in the synthesis flow using the Altera Quartus® design software. The
architecture of the block has been created in such a way as to make it cascadable, thereby
allowing core DSP functions to be implemented, such as a FIR filter which comprises a
classical multiplier and adder tree function.

Each DSP block can implement one 27 × 27-bit multiplier, two 18 × 18-bit multipli-
ers or three 9 × 9-bit multipliers. It can also be made to perform floating-point arith-
metic through the use of additional functionality. The multiplier can support signed and
unsigned multiplication and can dynamically switch between the two without any loss
of precision. The DSP block can also be configured to operate as a complex multiplier.

The unit can be configured as an adder, a subtracter, or as an accumulator, based on
its required mode of operation, and has been designed to automatically switch between
adder and subtracter functionality. The DSP blocks have been co-located with the ded-
icated embedded memory devices to allow coefficients and data to be effectively stored
and for memory-intensive DSP applications to be implemented.



Current FPGA Technologies 

5.3.4 Clocks and Interconnect

The Stratix® architecture is organized with three clock networks that are fixed in a hier-
archical structure of global clocks which are configured in an H tree structure to balance
delay; regional clocks which give low clock skew for logic contained within that quad-
rant; and periphery clocks which have higher skew than the other clocks. The clock
utilizes the Altera MultiTrack interconnect which provides low-skew clock and control
signal distribution. It consists of continuous, performance-optimized routing lines of
different lengths and speeds used for inter- and intra-design block connectivity.

The FPGA also provides robust clock management and synthesis for device clock
management, external system clock management, and high-speed I/O interfaces. It also
contains up to 32 fractional phase locked loops (PLLs) that can function as fractional
PLLs or integer PLLs, and output counters are dedicated to each fractional PLL that sup-
port integer or fractional frequency synthesis. This system of clocking and PLLs should
be sufficient to provide low-latency synchronous connections required in many DSP
systems.

5.3.5 Stratix® 10 innovations

Stratix® 10 builds on the Stratix® V architecture but with improved DSP performance.
It is manufactured on the Intel 14 nm tri-gate process which improves planar transistor
technology by creating a “wraparound” gate on the source-to-drain “channel,” and gives
better performance, reduces active and leakage power, gives better transistor density and
a reduction in transistor susceptibility to charged particle single event upsets (SEUs). It
offers improved floating-point arithmetic performance and improved bandwidth via the
new HyperFlexTM architecture (Altera 2015b). The technology also comprises a 64-bit
quad-core ARMTM CortexTM-A53, integrated 28.05- and 14.1-Gbps transceivers, up
to 6 × 72 DDR3 memory interfaces at 933 MHz and 2.5 TMACS of signal processing
performance.

HyperFlexTM is a high-speed interconnection architecture that allows users to employ
“hyper-registers” which are associated with each individual routing segment in the
device and can allow the speed to be improved; they can also be bypassed. The registers
are also available at the inputs of all functional blocks such as ALMs, M20K blocks, and
DSP blocks. The concept is based around pipelining to avoid long interconnect delays
by employing retiming procedures without the need for user effort. It results in an aver-
age performance gain of 1.4× for Stratix® 10 devices compared to previous generation
high-performance FPGAs.

The Stratix® 10 device offers an improved DSP block which in larger devices can
deliver up to 11.5 TMAC or 23 TMAC when using the pre-adder and 9.3 TFLOPS of
single-precision, floating-point performance using dedicated hardened circuitry (Altera
2015b). The fixed-point functionality operates at 1 GHz and its floating-point modes
operate at 800 MHz. The company argues that this gives a superior power efficiency of
80 GFLOPS/W when compared to GPUs.

. Xilinx UltrascaleTM/Virtex- FPGA families

Xilinx’s latest FPGA technology is centered on its UltraScaleTM family which has
been implemented in both a 16 nm and a 20 nm CMOS technology using planar
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and FinFET technologies and 3D scaling. In addition to the classical FPGA offerings,
there is a strong focus on multi-processing SoC (MPSoC) technologies. In addition,
multiple integrated ASIC-class blocks for 100G Ethernet, 150G Interlaken, and PCIe
Gen4 are available to allow fast and efficient data transfer into the FPGA. Static and
dynamic power gating is available to address the increasing energy concerns. Advanced
encryption standard (AES) bitstream decryption and authentication, key obfuscation,
and secure device programming are also included to address security aspects.

The family comprises the Kintex® UltraScale+TM which is focused on low power and
the Virtex® UltraScale+TM which is focused on performance. The family also includes
the Zynq® UltraScale+TM which incorporates hardware processing technologies in the
form of ARMTM processors. UltraRAM has been incorporated to provide larger on-
chip SRAM memory. DDR4 can support up to 2666 Mb/s for massive memory interface
bandwidth.

The FPGA resources are organized in columns as indicated in Figure 5.6. These include
CPUs, DSP blocks called DSP48E2 components and block random access memory
(BRAM). High-speed transceivers are used to get the data in and out of the FPGA device
quickly, in addition to clocking and memory interfacing circuitry. Xilinx has utilized
a new form of routing and an ASIC-like clocking to improve performance. The DSP
block has been tweaked to allow better fixed-point and IEEE Standard 754 floating-point
arithmetic.

5.4.1 Configurable Logic Block

The Xilinx configurable logic block (CLB) comprises a number of six-input func-
tional generators, flip-flops, fast-carry logic for adder implementation and various pro-
grammable hardware to allow various configurations to be created. One quarter of the
slice is shown in Figure 5.7 and gives an idea of the core functionality. The six-input
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function generator can realize a six-input Boolean function or two arbitrarily defined
five-input Boolean functions, as long as these two functions share common inputs. The
propagation delay through a LUT is independent of the function implemented, and sig-
nals from function generators can connect to slice outputs or to other resources within
the slice.

As with the Altera ALM, the six-input functional generator can be configured as a
synchronous or distributed RAM. Multiple LUTs in a slice can be combined in various
ways to store larger amounts of data up to 256 bits per CLB. Multiple slices can be
combined to create larger memories, either single-port RAM (32 × 1−16-bit, 64 × 1−8-
bit, 128 × 1−4-bit, 256 × 1−2-bit, 512 × 1-bit), a dual-port RAM (32 × 1−4-bit,
64 × 1−4-bit, 128 × 2-bit, 256 × 1-bit), a quad-port RAM (32 × 1−8-bit, 64 × 1−2-bit,
128 × 1-bit), an octal-port (64 × 1-bit) and a simple dual-port RAM (32 × 1−14-
bit, 64 × 1−7-bit).

The availability of the registers means that sequential circuitry can be implemented by
connecting the six-input functional generator to the flip-flops and thus realizing coun-
ters or a finite state machine. This allows for a range of controllers to be created that are
typically used to organize dataflow in DSP systems.

5.4.2 Memory

As with the other main FPGA vendor, Xilinx offers a range of memory sizes and con-
figurations. The UltraScaleTM architecture’s memory is organized into 36 kB block
RAMs, each with two completely independent ports that share only the stored data
(Xilinx 2015a). Like the DSP blocks, the memory is organized into columns as shown in
Figure 5.6. Each block can be configured as a single 36 kB RAM or two independent
18 kB RAM blocks. Memory accesses are synchronized to the clock, and all inputs, data,
address, clock enables, and write enables are registered with an option to turn off address
latching. An optional output data pipeline register allows higher clock rates at the cost
of an extra cycle of latency.

BRAMs can be configured vertically to create large, fast memory arrays, and FIFOs
with greatly reduced power consumption. BRAM sites that remain unused in the user
design are automatically powered down and there is an additional pin on the BRAM to
control the dynamic power gating feature. The BRAMs can be configured as 32K × 1-
bit, 16K × 2-bit, 8K × 4-bit, 4K × 9 (or 8)-bit, 2K × 18 (or 16)-bit, 1K × 36 (or 32)-bit,
or 512 × 72 (or 64)-bit. The two ports can have different aspect ratios without any con-
straints. Moreover, as each block RAM can be organized as two 18 kB block RAMs, they
be configured to any aspect ratio from 16K × 1 to 512 × 36-bit.
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Only in simple dual-port (SDP) mode can data widths greater than 18 bits (18 kB
RAM) or 36 bits (36 kB RAM) be accessed. This may have implications for how the
memory will be used in the prospective DSP system. In this mode, one port is dedicated
to read operation, the other to write operation. In SDP mode, one side (read or write)
can be variable, while the other is fixed to 32/36 or 64/72. Both sides of the dual-port
36 kB RAM can be of variable width.

The memory also has an error detection and correction and each 64-bit-wide BRAM
can generate, store, and utilize eight additional Hamming code bits and perform single-
bit and double-bit error detection during the read process. The ECC logic can also be
used when writing to or reading from external 64- to 72-bit-wide memories.

5.4.3 Digital Signal Processing

Each DSP slice fundamentally consists of a dedicated 27 × 18-bit two’s complement
multiplier and a 48-bit accumulator (Xilinx 2015c) as shown in Figure 5.8. The multiplier
can be dynamically bypassed, and two 48-bit inputs can feed a SIMD arithmetic unit
(dual 24-bit add/subtract/accumulate or quad 12-bit add/subtract/accumulate), or a
logic unit that can generate any one of ten different logic functions of the two operands.
The DSP slice includes an additional pre-adder which improves the performance in
densely packed designs and reduces the DSP slice count by up to 50%. The 96-bit-wide
XOR function, programmable to 12, 24, 48, or 96-bit wide, enables performance
improvements when implementing FEC and cyclic redundancy checking algorithms.
The DSP also includes a 48-bit-wide pattern detector that can be used for convergent or
symmetric rounding. The pattern detector is also capable of implementing 96-bit-wide
logic functions when used in conjunction with the logic unit.

The DSP block contains the following components:
� a 27 × 18 two’s-complement multiplier with dynamic bypass;
� a power-saving 27-bit pre-adder;
� a 48-bit accumulator that can be cascaded to build 96-bit and larger accumulators,

adders, and counters;
� an SIMD arithmetic unit, namely a dual 24-bit or quad 12-bit add/subtract/

accumulate;
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Figure . Xilinx DSP48E2 DSP block. Reproduced with permission of Xilinx, Incorp.
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� a 48-bit logic unit that can implement bitwise AND, OR, NOT, NAND, NOR, XOR,
and XNOR functions;

� a pattern detector that allows a number of features including terminal counts,
overflow/underflow, convergent/symmetric rounding support, and wide 96-bit wide
AND/NOR when combined with logic unit to be performed;

� optional pipeline registers and dedicated buses for cascading multiple DSP slices in a
column for larger functions.

Whilst the DSP48E2 slice is backward compatible with older technologies, a number
of minor changes have been made to the previous DSP48E1 block, including wider func-
tionality in the slice including increased word size in the multiplier from 25 to 27 bits
and accompanying size increase in the pre-adder. The number of operands to the ALU
has been increased and means of cascading blocks have been improved.

As has been indicated previously, it is important to have a core understanding of the
underlying technology when implementing DSP functionality. For use of the DSP48E2
block, pipelining is encouraged for both performance as it decreases the critical path
at the expense of increased latency (see Chapter 9) and power as pipelining reduces
the switched capacitance aspect of dynamic power consumption by both reducing the
routing length and the switching activity due to less routing (see Chapter 13).

. Xilinx Zynq FPGA Family

The Xilinx Zynq merits a separate section as it represents a new form of FPGA-based
system that makes it highly suitable for achieving a new form of computing architec-
ture, historically referred to as an FPGA-based custom computing machine (FCCM)
or reconfigurable computing. A simplified version of the Xilinx Zynq architecture is
given in Figure 5.9. It comprises a dedicated ARMTM processor environment which has
been called a processing system (PS) connected to the standard programmable logic (PL)
which is the same as that for the Xilinx UltraScaleTM. As the PL has been just described,
the description will concentrate on the PS aspects.

The Zynq processing system has an ARMTM processor and a set of resources which
form the application processing unit (APU) comprising peripheral interfaces, cache
memory, memory interfaces, interconnect, and clock generation circuitry (Crockett
et al. 2014). The system is shown in Figure 5.10 and is composed of two ARMTM

processing cores, each of which has a NEONTM media processing engine (MPE) and
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Figure . Xilinx Zynq architecture
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floating-point unit (FPU), a level 1 cache memory and a memory management unit
(MMU) unit. The APU also contains a level 2 cache memory, and a further on-chip
memory (OCM). Finally, a snoop control unit (SCU) forms a bridge between the
ARMTM processors and the level 2 cache and OCM memories and also interfaces to
the PL.

The ARMTM can operate at up to 1 GHz, and each has separate level 1 caches for data
and instructions, both of which are 32 kB. This allows local storage of frequently required
data and instructions for fast processor performance. The two cores additionally share
a level 2 cache and there is a further 256 kB of on-chip memory within the APU. The
MMU allows translation between virtual and physical addresses.

The Zynq technology has been applied to a number of image processing and evolv-
able applications. A Zyng-based FPGA-based traffic sign recognition system has been
developed for driver assistance applications (Siddiqui et al. 2014; Yan and Oruklu 2014).
Dobai and Sekanina (2013) argue that the technology has the potential to become “the
next revolutionary step in evolvable hardware design.”

As FPGAs become more popular in computing systems, there is no doubt that these
type of architectures will become popular. Computing vendors develop memory inter-
faces to directly read from and write to the FPGA directly, such as IBM’s coherent accel-
erator processor interface (CAPI). The use of FPGAs to process data will only become
prevalent if data can be quickly loaded and offloaded.

. Lattice iCEisp FPGA Family

Lattice Semiconductor offers a range of low-power and low-cost products. Its technolo-
gies include those listed below:

� MachXO is a non-volatile technology that includes multi-time programmable non-
volatile configuration memory and infinitely reconfigurable flash memory. It is con-
tained in small wafer-level chip-scale packaging and is available with low-voltage
cores. They comprise mainly LUTs, DRAM and SRAM and various other support-
ing functionality.
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� LatticeECP3 is mainly a communications FPGA targeted at industrial, telecommuni-
cations or automotive infrastructure equipment; it implements SERDES giving up to
16 channels at 3.125 Gbps and 800 Mbps DDR3 access.

� iCE40 is a family of ultra-low power, non-volatile FPGAs fabricated in a 40 nm
CMOS low-power process and targeted at a range of hand-held and battery-powered
applications.

The iCE40isp is chosen as the focus here as it is targeted at low power consumption
applications and represents an alternative when compared to the earlier FPGA families.
It comprises ultra-low density (ULD) devices with small power consumption. It has five
devices with densities ranging from 384 to 7680 LUTs arranged into programmable logic
blocks (PLBs), along with DSP functional blocks, embedded block random access mem-
ory (EBR) and PLLs. The architecture (see Figure 5.11) is comprised of a tiling of PLBs
connected to a number of EBRs. There are also Inter-Integrated Circuit (I2C) and Serial
Peripheral Interface (SPI) cores that enable flexible device configuration through SPI
which gives advantages in interfacing for image processing. Static and dynamic power
consumption reduction is achieved by programmable low-swing differential I/Os and
turning off on-chip PLLs dynamically.

5.6.1 Programmable Logic Blocks

The Lattice iCE40isp is comprised of PLBs, containing eight logic cells each of which
includes three primary logic elements as outlined below:
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� a four-input LUT which allows any four-input combinational logic function to be
implemented or cascaded of any complexity and also implemented as a 16 × 1 ROM;

� a D-type flip-flop with an optional clock enable and reset control input allowing con-
figuration for a range of sequential circuits and memory storage;

� carry logic for fast arithmetic functions allowing fast arithmetic circuits.

This architecture is similar to the earlier Altera and Xilinx technologies and would
therefore be expected to give high levels of performance for a wide of application
domains. Given the need to use the fast adder combination for DSP implementa-
tion, the design performance will benefit from many of the techniques highlighted in
Chapter 6.

5.6.2 Memory

Using programmable logic resources, an EBR implements a variety of logic functions,
each with configurable input and output data widths. The EBR is the embedded block
RAM of the device, each 4 kB in size, and can be configured to create a number of mem-
ory configurations and sequential digital circuits (Lattice 2015):

� random-access memory (RAM) which can be configured as single-port RAM with
a common address, enable, and clock control lines or two-port RAM with separate
read and write control lines, address inputs and enable;

� register file and scratchpad RAM;
� FIFO memory for data buffering applications;
� 256-bit deep by 16-bit wide ROM with registered outputs, contents loaded during

configuration;
� counters and sequencers.

5.6.3 Digital Signal Processing

As with other FPGA families, a DSP block is used which is an embedded block which
can be configured into combination of the following functional units by selecting appro-
priate parameter values (Lattice 2014):

� a single 16 × 16-bit multiplier (generating 32-bit product output);
� two independent 8 × 8-bit multipliers (generating two independent 16-bit product

output);
� a single 32-bit accumulator;
� two independent 16-bit accumulators;
� a single 32-bit adder/subtracter;
� two independent 16-bit adder/subtracters;
� a single 32-bit multiply-add/multiply-subtracter;
� two independent 16-bit multiply-adders/multiply-subtracters.

The key features of the Lattice iCE40isp FPGA family make it look similar to the other
FPGA families, so the design process is similar to many of the other FPGAs. The key
design focus is clearly the low-power design aspect.
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. MicroSemi RTG FPGA Family

Built on 65 nm process technology, Microsemi’s RTG4 FPGA is a flash-based FPGA
fabric with high-performance SERDES interfaces. Its key feature is its use of uPROM,
a non-volatile flash memory, which uses the same flash technology as the FPGA con-
figuration cells. uPROM is immune to memory upsets and has a total ionizing dose
performance exceeding 100 krad, similar to the FPGA flash configuration cells. RTG4
devices have up to 374 kB of uPROM memory.

The RTG4 has up to 151,824 registers which are radiation hardened. Each logic ele-
ment contains a four-input LUT with fast carry chains which can operate up to 300 MHz.
There are also multiple embedded memory blocks and dedicated arithmetic units. A
high-speed serial interface provides 3.125 Gbps native SERDES communication, while
the DDR2/DDR3/ low-power double data rate (LPDDR) memory controllers provide
high-speed memory interfaces. The RTG4 FPGA fabric is composed of four blocks, the
logic module, LSRAM, uSRAM, and Mathblocks.

The RTG4 FPGAs are manufactured on a process with substantial reliability capability
and are qualified to military standard (MIL-STD)-883 Class B. The devices are immune
to SEU-induced changes in configuration, and thus no reconfiguration is required. The
hardwired SEU-resistant flip-flops in the logic cells and in the Mathblocks avoid any
data errors, due to radiation.

5.7.1 Programmable Logic Blocks

The logic module is the basic logic element and has the following advanced features:

� a fully permutable four-input LUT optimized for lowest power;
� a dedicated carry chain based on carry lookahead technique;
� a separate SEU-hardened flip-flop that can be used independently of the LUT where

each flip-flop has its own synchronous reset while there is only one global asyn-
chronous reset that drives all flip-flops.

The four-input LUTs can be configured to implement either a four-input combinato-
rial function or an arithmetic function, where the LUT output is XORed with the carry
input to generate the sum output. Once again, the DSP system implementations will
benefit from many of the techniques highlighted in Chapter 6. The availability of the
carry lookahead technique will offer a performance gain as described in Chapter 3.

5.7.2 Memory

The RTG4 FPGA has a number of different memory flavors:

� Dual-port LSRAM is targeted for storing large amounts of data when implementing
specific functions. Each block can store up to 24.5 kB and contains two independent
data ports, A and B. The LSRAM block is synchronous and the data output ports
have pipeline registers which have control signals that are independent of the SRAM’s
control signals.

� The three-port uSRAM has two read ports, A and B, which are independent of each
other and can operate synchronously or asynchronously, and one write port, C, which
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is always synchronous. The uSRAM block can store up to 1.5 kB and is primarily
targeted for building embedded FIFOs or storing DSP coefficients.

� The Non-volatile, flash uPROM memory can be used for power-on initialization of
RAMs and embedded IPs. The RTG4 devices have up to 374 kB of uPROM memory.

The uSRAMs are ideally suited to serve the needs of coefficient storage, and LSRAMs
are used for data storage.

5.7.3 Mathblocks for DSP

The RTG4 comprises a number of custom 18 × 18-bit multiply-accumulate (MAC)
blocks for efficient implementation of complex DSP algorithms. Each block has the fol-
lowing features:
� native 18 × 18-bit signed multiplications;
� dot product multiplication;
� built-in addition, subtraction, and accumulation units to combine multiplication

results efficiently.

. Design Stratregies for FPGA-based DSP Systems

Previous sections have described how the FPGA has evolved from an early interconnec-
tion technology to one involving processors and dedicated DSP technology features. The
changes from a DSP perspective largely come down to changes in processing capabilities
and memory.

5.8.1 DSP Processing Elements

As will be seen in the following sections, most FPGAs have leaned toward incorporation
of a DSP block which is targeted mainly at fixed-point capability by allowing computa-
tions of the order of 9–10 bits. Accumulation capability is usually based around the need
to accumulate numerous multiplications, as is the case for various forms of filtering and
DSP transforms. The fact that the block is a dedicated silicon function means that it can
run at reasonable clock rate, 500–600 MHz for the FPGAs considered here. Moreover,
the capability to allow it to run at this higher speed is permitted by allowing pipelining
to be employed.

This effectively means that this block should be treated as a fundamental building
block for DSP systems and should be a core consideration when developing high-level
models. For example, given the wordlength of typically 9 (or 18) bits, designers should
treat increase in wordlength as a nonlinear function, i.e. when the design wordlength is
increased from 9–10 bits, this represents a doubling in hardware. Thus these wordlength
borderlines (9–10 and 18–19 bits) should be considered in the wordlength analysis.

Also the details of the actual DSP clocks should be taken into consideration in the
detailed system modeling. Rather than just a multiplicative resource as in the earlier
FPGAs, these DSP blocks have been developed with a lot of additive capability. In some
cases, this can allow adder trees or linear chains of adders to be created. Again, this
should be taken into consideration when developing the system description for the
required algorithm.
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5.8.2 Memory Organization

Compared to the computational processors, FPGAs are considered to have low levels of
memory, and this has seen to be a major inhibitor for use in computational acceleration.
However, as Figure 5.12 indicates for the Xilinx Virtex-7 FPGA, this is presented as a
layered structure and thus can be thought of in the same way as cache memories in
processors. The major positive aspect is the availability of high levels of bandwidth, as
the figure highlights. Thus a strategy based on parallelism to take advantage of the large
number of computational blocks would be highly beneficial.

As well as providing parallel storage opportunities, the availability of smaller memory
blocks also suggests different implementation strategies for some systems, in terms of
locally stored data, whether this is partially computed results or values for computations
such as FFT coefficients. Moreover, the availability of small memory and fast adder logic
as in many FPGA platforms has been the platform for distributed arithmetic and other
approaches for fast DSP implementation.

5.8.3 Other FPGA-Based Design Guidelines

In addition to the summary on DSP units and memory organization, there are a num-
ber of other more detailed strategies that will clearly work well for the range of FPGAs
presented in this chapter:

� Use pipelining at the circuit architecture level to improve performance. The availabil-
ity of registers within the programmable hardware, and indeed the DSP units, means
the pipelining can be deployed at no cost as the resources are readily available.
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� Use the LUTs in the CLB functionality to implement efficient shift registers as RAM
for storing filter coefficients. This comes from the capability implemented by most
FPGA vendors to allow the LUTs to be used in in various modes.

� Develop DSP applications with a clear understanding of implementations of DSP
block wordlengths so as to avoid using general-purpose interconnect. This involves
restricting the usage to one column for highest performance and lowest power.

� Time multiplexing when resources are limited as the circuitry has been designed to
operate at a specific speed and will be otherwise underutilized. This is because mul-
tiplexers are readily available and located near the LUTs and fast adder circuitry.

� It may also be advisable to use the CLB carry logic to implement small multipliers,
adders, and counters rather than underutilize valuable DSP unit resources. This may
be relevant in cases where FPGA resources are limited or the design is complex and
could be accommodated in a smaller FPGA fabric.

. Conclusions

The chapter has highlighted the variety of different technologies used for implement-
ing DSP complex systems. These compare in terms of speed, power consumption and,
of course, area (although this is a little difficult to ascertain for processor implementa-
tions). The chapter has taken a specific slant on programmability with regard to these
technologies and, in particular, has highlighted how the underlying chip architecture
can limit the performance. Indeed, the fact that it is possible to develop SoC architec-
tures for ASIC and FPGA technologies is the key feature in achieving the high perfor-
mance levels. It could be argued that the fact that FPGAs allow circuit architectures and
are programmable are the dual factors that makes them so attractive for some system
implementation problems.

Whilst the aim of the chapter has been to present different technologies and, in some
cases, compare and contrast them, the reality is that modem DSP systems are now col-
lections of these different platforms. Many companies are now offering complex DSP
platforms comprising CPUs, DSP processors and embedded FPGA.
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Detailed FPGA Implementation Techniques

. Introduction

Chapter 4 highlighted the wide range of technologies available for implementing DSP
systems and Chapter 5 described the various FPGA offerings. The remaining chapters
now describe the issues for implementing complex DSP systems onto FPGA-based het-
erogeneous platforms and also a single FPGA device! This encompasses considerations
such as selection of a suitable model for DSP system implementation, partitioning of
DSP complexity into hardware and software, mapping of DSP functions efficiently onto
FPGA hardware, development of a suitable memory architecture, and achievement of
design targets in terms of throughput, area and energy. However, it is imperative that
the reader understands the detailed FPGA implementation of DSP functionality in order
that this process is inferred correctly at both the system partitioning and circuit archi-
tecture development stages.

A key advantage of FPGAs is that the user can develop highly parallel, pipelined cir-
cuitry which can offer very high levels of performance. If these individual circuits can
be optimized to exploit specific features of the underlying hardware, then this will offer
increased speed or allow more processing functionality, or even both. This comes from
efficiently mapping data paths or, in some cases, the controlling circuitry which controls
the flow of data, into FPGA hardware. Controllers are usually mapped into finite state
machines (FSMs) or implemented as software routines in dedicated processors such as
the ARMTM processor in the Xilinx Zynq® or Altera Stratix® 10 devices.

There are a number of areas where circuit-level optimizations may come into play. For
example, the user must consider how circuitry maps into LUT-based architectures and
schemes for implementing efficient FSMs. A lot of these optimizations are included in
synthesis compiler tools so are only briefly reviewed here. Other features may be specific
to the data paths and exploit the underlying FPGA hardware features.

At the system partitioning level, for example, it may become clear that the current sys-
tem under consideration will consume more than the dedicated multiplicative resources
available. The designer can then restrict the design space so that the mapping ensures
that only the dedicated multiplier resources are used, or other FPGA resources such as
LUTs and dedicated adders, to implement the additional multiplicative need. Indeed, if

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
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the DSP functions use operators where the coefficients do not change, then it may be
possible to build area-efficient fixed-coefficient multipliers. From a circuit architecture
perspective, it may be possible to balance the use of the FPGA dedicated DSP blocks
against the LUT/fast adder hardware, thus providing a balance between FPGA resource
area and throughput rate. For this reason, techniques for efficiently implementing LUT-
based structures for single and limited range of coefficients are covered.

Section 6.2 treats the programmable logic elements in the FPGA and highlights
how the LUT and dedicated adder circuitry can be used for implementing logic and
DSP functionality. Some simple optimizations for mapping into LUTs and efficient
implementation of FSMs are covered in Section 6.3. In Section 6.4, the class of fixed-
coefficient filters and transforms is described with some discussion on how they can be
mapped efficiently into programmable logic. Techniques called distributed arithmetic
and reduced coefficient multiplier (RCM) used to implemented fixed or limited-range
coefficient functions are then described in Sections 6.5 and 6.6, respectively. Final com-
ments are made in Section 6.7.

. FPGA Functionality

The previous chapter highlighted a number of different FPGA technologies, which to a
large extent could be classified as having the following characteristics:
� Programmable elements comprising of a small memory element, typically a LUT, reg-

isters(s) and some form of fast addition. The LUT resource varies in size resource from
a four-input in the Lattice’s iCE40isp and Microsemi’s RTG4 FPGA, through a six-
input in Xilinx’s Zynq® and UltraScale+TM families, to an eight-input LUT in Altera’s
Stratix® V and 10 families. Most fast adder circuitry is based around a single-bit adder
with the other functionality implemented in the LUT.

� Dedicated DSP resources usually targeted at fixed-point multiply-accumulate func-
tionality, typically 18-bit data input for Xilinx, Microsemi RTG4 and Altera FPGAs
and 16-bit for the Lattice iCE40isp. Additional accumulation and subtracter circuitry
is available for creating FIR filter and transform circuitry. The wordlengths are such
that they are highly suitable for fixed-point implementation for a range of audio,
speech, video and radar applications.

� Distributed memory can be used for storage of values or creation of dedicated DSP
functionality, in the form of either registers and LUTs in the programmable logic
blocks, or 640 b and 20 kB embedded RAM blocks in Altera’s Stratix® family and
36 kB distributed random access memory (disRAM) blocks in the Xilinx families.

It is worth examining these elements in a little more detail with the aim of gauging how
they can be used to create efficient DSP functionality by fully considering their range of
application.

6.2.1 LUT Functionality

The reason why most FPGA vendors chose the LUT as the logic fundamental building
block, is that an n-input LUT can implement any n-input logic function. As shown in
Figure 6.1, the use of LUTs places different constraints on the design than the use of
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Figure . Mapping logic functionality into LUTs

logic gates. The diagram shows how the function can be mapped into logic gates, where
the number of gates is the design constraint, but this is irrelevant from a LUT imple-
mentation perspective, as the underlying criterion is the number of functional inputs.

The cost model is therefore more directly related to determining the number of LUTs
which is directly impacted by the number of inputs and number of outputs in the design
rather than the logic complexity. The only major performance change has been in the
increase in LUT size, as outlined in the previous chapter.

This is, however, only one of the reasons for using an n-input LUT as the main logic
building block of FPGAs. Figure 6.2 shows a simplified view of the resources of the CLB
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Figure . Additional usage of CLB LUT resource. Reproduced with permission of Xilinx, Incorp.
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for the Xilinx family of FPGA devices; this comprises two LUTs, shown on the left, two
flip-flops, shown on the right, and the fast carry adder chain, shown in the middle. The
figure highlights how the memory resource shown on the left-hand side can be used as
a LUT, but also as a shift register for performing a programmable shift and as a RAM
storage cell.

The basic principle governing how the LUT can be used as a shift register is covered
in detail in a Xilinx application note (Xilinx 2015). As shown in Figure 6.3, the LUT can
be thought of as a 16:1 multiplexer where the four-bit data input addresses the specific
input stored in the RAM. Usually the contents of the multiplexer are treated as fixed,
but in the case of the SRL16, the Xilinx name for the 16-bit shift register lookup table
(SRL), the fixed LUT values are configured instead as an addressable shift register, as
shown in Figure 6.3.

The shift register inputs are the same as those for the synchronous RAM configuration
of the LUT, namely, a data input, clock and clock enable. The LUT uses a special output
called the Q31 in the Xilinx library primitive device (for the five-bit SRL, SRL32E), which
is in effect the output provided from the last flip-flop.

The design works as follows. By setting up an address, say 0111, the value of that mem-
ory location is read out as an output, and at the same time a new value is read in which
is deemed to be the new input, DIN in Figure 6.3. If the next address is 0000 and the
address value is incrementally increased, it will take 7 clock cycles until the next time
that the address value of 0111 is achieved, corresponding to an shift delay of 7. In this
way, the address size can mimic the shift register delay size. So rather than shift all the
data as would happen in a shift register, the data are stored statically in a RAM and the
changing address line mimics the shift register effect by reading the relevant data out at
the correct time.

Details of the logic cell SRL32E structure are given in Figure 6.4. The cell has an associ-
ated flip-flop and a multiplexer which make up the full cell. The flip-flop provides a write
function synchronized with the clock, and the additional multiplexer allows a direct
SHIFTIN D input, or, if a large shift register is being implemented, an MC31 input from
the cell above. The address lines can be changed dynamically, but in a synchronous
design implementation it would be envisaged that they would be synchronized to
the clock.

This capability has implications for the implementation of DSP systems. As will be
demonstrated in Chapter 8, the homogeneous nature of DSP operations is such that
hardware sharing can be employed to reduce circuit area. In effect, this results in a
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scaling of the delays in the original circuit; if this transformation results in a huge shift
register increase, then the overall emphasis to reduce complexity has been negated.
Being able to use the LUTs as shift registers in addition to the existing flip-flops can
result in a very efficient implementation. Thus, a key design criterion at the system level
is to balance the flip-flop and LUT resource in order to achieve the best programmable
logic utilization in terms of CLB usage.

6.2.2 DSP Processing Elements

The DSP elements in the previous chapter feature in most types of DSP algorithms. For
example, FIR filters usually consist of tap elements of a multiplier and an adder which
can be cascaded together. This is supported in the Xilinx DSP48E2 and Altera variable-
precision DSP blocks and indeed other FPGA technologies.

Many of the DSP blocks such as that in Figure 5.6 are designed with an
adder/subtracter block after the two multipliers to allow the outputs of the multipli-
ers to be summed and then with an additional accumulator to allow outputs from the
DSP blocks above to be summed, allowing large filters to be constructed. The availabil-
ity of registers on the inputs to these accumulators allows pipelining of the adder chain
which, as the transforms in Chapter 8 show, gives a high-performance implementation,
thus avoiding the need for an adder tree.

Sometimes, complex multiplication, as given by

(a + jb)(c + jd) = (ac − bd) + j(ad + bc), (6.1)

is needed in DSP operations such as FFT transforms. The straightforward realization as
shown in Figure 6.5(a) can be effectively implemented in the DSP blocks of Figure 5.6.
However, there are versions such as that in Figure 6.5(b) which eliminate one multipli-
cation at a cost of a further three additions (Wenzler and Lueder 1995). The technique
known as strength reduction rearranges the computations as follows:

(a + jb)(c + jd) = [a(c − d) + d(a − b)] + j[b(c + d) + d(a − b)]. (6.2)
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Figure . Complex multiplier realization

The elimination of the multiplication is done by finding the term that repeats in the cal-
culation of the real and imaginary parts, d(a − b). This may give improved performance
in programmable logic depending on how the functionality is mapped.

6.2.3 Memory Availability

FPGAs offer a wide range of different types of memory, ranging from relatively large
block RAMs, through to highly distributed RAM in the form of multiple LUTs right
down to the storage of data in the flip-flops. The challenge is to match the most suitable
FPGA storage resources to the algorithm requirements. In some cases, there may be a
need to store a lot of input data, such as an image of block of data in image processing
applications or large sets of coefficient data as in some DSP applications, particularly
when multiplexing of operations has been employed. In these cases, the need is probably
for large RAM blocks.

As illustrated in Table 6.1, FPGA families are now adopting quite large on-board
RAMs. The table gives details of the DSP-flavored FPGA devices from both Altera

Table . FPGA RAM size comparison for various FPGAs

Family BRAM (MB) disRAM (MB)

Xilinx Kintex® KU115 75.9 18.3
Xilinx Kintex® KU13P 26.2 11.0
Xilinx Virtex® VU13P 46.4 11.0
Xilinx Zynq® ZU19EG 34.6 11.0
Altera Stratix® V GX BB 52.8 11.2
Altera Stratix® V GS D8 51.3 8.2
Altera Stratix® V E EB 52.8 11.2
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Figure . Dataflow for motion estimation IP core

and Xilinx. Considering both vendors’ high-end families, the Xilinx UltraScaleTM and
Altera Stratix® V/10 FPGA devices, it can be determined that block RAMs have grown
from being a small proportion of the FPGA circuit area to a larger one. The Xilinx
UltraScaleTM block RAM stores can be configured as either two independent 18 kB
RAMs or one 36 kB RAM. Each block RAM has two write and two read ports. A 36 kB
block RAM can be configured with independent port widths for each of those ports as
32K × 1, 16K × 2, 8K × 4, 4K × 9, 2K × 18 or 1K × 36. Each 18kB RAM can be config-
ured as a 16K × 1, 8K × 2, 4K × 4, 2K × 9 or 1K × 18 memory.

This section has highlighted the range of memory capability in the two most com-
mon FPGA families. This provides a clear mechanism to develop a memory hierarchy
to suit a wide range of DSP applications. In image processing applications, various sizes
of memory are needed at different parts of the system. Take, for example, the motion
estimation circuit shown in Figure 6.6 where the aim is to perform the highly complex
motion estimation (ME) function on dedicated hardware. The figure shows the memory
hierarchy and data bandwidth considerations for implementing such a system.

In order to perform the ME functions, it is necessary to download the current block
(CB) and area where the matching is to be performed, namely the search window (SW),
into local memory. Given that the SW is typically 24 × 24 pixels, the CB sizes are 8 × 8
pixels and a pixel is typically eight bits in length, this corresponds to 3 kB and 0.5 kB
memory files which would typically be stored in the embedded RAM blocks. This is
because the embedded RAM is an efficient mechanism for storing such data and the
bandwidth rates are not high.

In an FPGA implementation, it might then be necessary to implement a number of
hardware blocks or IP cores to perform the ME operation, so this might require a num-
ber of computations to be performed in parallel. This requires smaller memory usage
which could correspond to smaller distributed RAM or, if needed, LUT-based memory
and flip-flops. However, the issue is not just the data storage, but the data rates involved
which can be high, as illustrated in the figure.

Smaller distributed RAM, LUT-based memory and flip-flops provide much higher
data rates as they each possess their own interfaces. Whilst this data rate may be com-
parable to the larger RAMs, the fact that each memory write or read can be done in
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parallel results in a very high data rate. Thus it is evident that even in one specific appli-
cation, there are clear requirements for different memory sizes and date rates; thus the
availability of different memory types and sizes, such as those available in FPGAs that
can be configured, is vital.

. Mapping to LUT-Based FPGA Technology

At circuit level much of the detailed logic analysis and synthesis work has focused on
mapping functions into logic gates, but in FPGA the underlying cost function is a four-
to eight-input LUT and flip-flop combination, so the goal is to map to this underlying
fabric. The understanding of this fabric architecture will influence how the design will
be coded or, in some instances, how the synthesis tool will map it.

6.3.1 Reductions in Inputs/Outputs

Fundamentally, it comes down to a mapping of the functionality where the number of
inputs and outputs has a major influence on the LUT complexity as the number of inputs
defines the size of the LUT and the number of outputs will typically define the number
of LUTs. If the number of inputs exceeds the number of LUT inputs, then it is a case of
building a big enough LUT from four-input LUTs to implement the function.

There are a number of special cases where either the number of inputs or outputs can
be reduced as shown in Table 6.2. For the equation

f = Σ(m5, m15, m29, m45, m53, m61, m63) (6.3)

a simple analysis suggests that six 4-input LUTs would be needed. However, a more
detailed analysis reveals that f1 and f4 can be simplified to B and C respectively and
thus implemented by connecting those outputs directly to the relevant inputs. Thus, in
reality only four LUTs would be needed. In other cases, it may be possible to exploit
logic minimization techniques which could reveal a reduction in the number of inputs
which can also result in a number of LUTs needed to implement the function.

In addition to logic minimization, there may be recoding optimizations that can be
applied to reduce the number of LUTs. For example, a direct implementation of the
expression in equation (6.3) would result in seven LUTs as shown in Figure 6.7, where
the first four LUTs store the four sections outlined in the tabular view of the function.

Table . Example function for ROM

A B C f1 f2 f3 f4 f5 f6

0 0 t 0 0 0 0 0 0 0
0 0 1 0 X 0 1 0 0
0 1 0 X 0 0 X 0 1
0 1 1 X 1 0 X 1 0
1 0 0 0 0 1 X X 0
1 0 1 0 0 1 1 1 0
1 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 0 0
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The three LUTs on the right of the figure are then used to allow the various terms to
allow minterms to be differentiated.

A B C D E F

5 0 0 0 1 0 1 (5)
15 0 0 1 1 1 1 (15)
29 0 1 1 1 0 1 (13)
45 1 0 1 1 0 1 (13)
47 1 0 1 1 1 1 (15)
53 1 1 0 1 0 1 (5)
61 1 1 1 1 0 1 (13)
63 1 1 1 1 1 1 (15)

The number of LUTs can be reduced by cleverly exploiting the smaller number of
individual minterms. Once A and B are ignored, there are only three separate minterms
for C, D, E and F , namely m5, m13 and m15. These three terms can then be encoded using
two new output bits, X and Y . This requires two additional LUTs, but it now reduces
the encoding to one 4-input LUT as shown in Figure 6.8.

C D E F X Y

5 0 1 0 1 0 1
13 1 1 0 1 1 0
15 0 1 1 1 1 1

All others 0 0

It is clear that much scope exists for reducing the complexity for LUT-based FPGA
technology. In most cases, this can be performed by routines in the synthesis tools,
whilst in others, it may have to be achieved by inferring the specific encoding directly in
the FPGA source code.
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6.3.2 Controller Design

In many cases, much of the design effort is concentrated on the DSP data path as this is
where most of the design complexity exists. However, a vital aspect which is sometimes
left until the end is the design of the controller. This can have a major impact on the
design critical path. One design optimization that is employed in synthesis tools is one-
hot encoding.

For a state machine with m possible states with n possible state bits, the number of
possible state assignments, Ns, is given by

Ns = 2n!∕(2n − m)! m ≥ n ≥ log2(m). (6.4)

This represents a very large number of states. For example, for n = 3 and m = 4, this
gives 1680 possible state assignments.

In one-hot encoding, the approach is to use as many state bits as there are states and
assign a single “1” for each state. The “1” is then propagated from from one flip-flop to
the next. For example, a four-bit code would look like 0001, 0010, 0100, 1000. Obvi-
ously, four states could be represented by two-bit code requiring only two rather than
four flip-flops, but using four flip-flops, i.e. four states, leaves 12 unused states (rather
than none in the two-bit case), allowing for much greater logic minimization and, more
importantly, a lower critical path, (i.e. improved speed).

. Fixed-Coefficient DSP

The techniques in the previous section refer to efficient optimizations that can be applied
to mapping a general range of functions in a LUT-based FPGA technology. In many
cases, particularly the one-hot encoding, these optimizations are included within the
HDL-based synthesis tools. Indeed, it is usually preferable to avoid hard-coding opti-
mizations such as the recoding described in Section 6.3.1 into the HDL source and to
leave such optimizations to the synthesis tools by providing the algorithm description
in as pure a form as possible. However, it is still important to have an appreciation of
such processes.

In this section, a number of DSP-specific optimization techniques are explored. These
come about as a result of the features of a number of DSP operations such as filtering
where the coefficient values have been fixed or operand values are fixed as a result of the
applied mathematical transformations.

Fixed-coefficient DSP functions include filtering for a single application such as band-
pass FIR filters; in such examples, the filter will have been designed for a specific role in
a DSP system. In addition, there are structures in multi-rate filtering such as polyphase
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Figure . Low-pass FIR filter

filtering (Turner et al. 2002; Vaidyanathan 1990) where structures will result which will
have fixed coefficients. In addition, there are a number of DSP transforms such as the
FFT, DCT and discrete sine transform (DST). In these cases, scope exists for using the
FPGA resources in an highly efficient manner, resulting in very high-performance FPGA
implementations.

6.4.1 Fixed-Coefficient FIR Filtering

Let us consider a simple application of a bandpass filter design such as the one demon-
strated in Figure 6.9. The filter was described in MATLAB® and its details are given
below. The filter is viewed as having a bandpass between 0.35 and 0.65 times the normal-
ized frequency. The maximum frequency range is designed to occur with the 0.45–0.55
range, and outside this range the filter is deemed to have a magnitude of −60 dB.

To create a realistic implementation, we have set the coefficient wordlength to eight
bits. The performance is compromised as shown in the figure, particularly in reducing
the filter’s effectiveness in reducing the “not required” frequencies, particularly at the
normalized frequency of 0.33 where the magnitude has risen to 48 dB. The resulting
filter coefficients are listed in Table 6.3 and have been quantized to eight bits.

f = fdesign.bandpass(.35,.45,.55,.65,60,1,60);
Hd = design(f, ’equiripple’);
fvtool(Hd)
Hf = Hd;
Hf.Arithmetic = ’fixed’;
set(Hf, ’CoeffWordLength’, 8);
fvtool(Hf)
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Table . Eight-bit bandpass FIR filter coefficients

−0.0010 0.0020 0.0029 −0.0039 −0.0068 0.0078
0.0098 −0.0098 −0.0117 0.0098 0.0078 −0.0029
0.0029 −0.0117 −0.0225 0.0342 0.0488 −0.0625

−0.0771 0.0908 0.1035 −0.1133 −0.1201 0.1240
0.1240 −0.1201 −0.1133 0.1035 0.0908 −0.0771

−0.0625 0.0488 0.0342 −0.0225 −0.0117 0.0029
−0.0029 0.0078 0.0098 −0.0117 −0.0098 0.0098

0.0078 −0.0068 −0.0039 0.0029 0.0020 −0.0010

6.4.2 DSP Transforms

A number of transforms commonly used in DSP applications also result in structures
where multiplication is required by a single or limited range of coefficients, largely
depending on how the transform is implemented. These transforms include the FFT
(Cooley and Tukey 1965), the DCT (Natarajan and Rao 1974) and the DST.

The FFT transforms a signal from the time domain into the frequency domain, effec-
tively transforming a set of data points into a sum of frequencies. Likewise, the DCT
transforms the signal from the time domain into the frequency domain, by transforming
the input data points into a sum of cosine functions oscillating at different frequencies.
It is an important transformation, and has been widely adopted in image compression
techniques.

The 2D DCT works by transforming an N × N block of pixels to a coefficient set which
relates to the spatial frequency content that is present in the block. It is expressed as

y(k, l) = 𝛼(k)𝛼(l)
N−1∑
n=0

N−1∑
m=0

xn,mc(n, k), c(m, k) (6.5)

where c(n, k) = cos(2n + l)𝜋k∕2N and c(m, k) = cos(2m + l)𝜋k∕2N , and the indices k
and l range from 0 to N − 1 inclusive. The values a(k) and a(l) are scaling variables.
Typically, the separable property of the function is exploited, to allow it to be decom-
posed into two successive lD transforms; this is achieved using techniques such as row–
column decomposition which requires a matrix transposition function between the two
one-dimensional (1D) transforms (Sun et al. 1989).

The equation for an N-point 1D transform, which relates an input data sequence x(i),
i = 0…N − 1, to the transformed values Y (k), k = 0…N − 1, is given by

Y (0) = 𝛼(0)
N−1∑
n=0

xic(n, k), c(m, k), (6.6)

Y (k) = 𝛼(k)
N−1∑
n=0

xi cos [k𝛼(2i + 1)∕2N] , ∀k = 1,… , N − 1, (6.7)

where 𝛼(0) = 1∕
√

N , otherwise 𝛼(k) = 2∕
√

N . This reduces the number of coefficients
to only seven. Equations (6.6) and (6.7) can be broken down into a matrix–vector
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computation. This yields

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y (0)
Y (1)
Y (2)
Y (3)
Y (4)
Y (5)
Y (6)
Y (7)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4)
C(1) C(3) C(5) C(7) −C(7) −C(5) −C(3) −C(1)
C(2) C(6) −C(6) −C(2) −C(2) −C(6) C(6) C(2)
C(3) −C(7) −C(1) −C(5) C(5) C(1) C(7) −C(3)
C(4) −C(4) −C(4) C(4) C(4) −C(4) −C(4) C(4)
C(5) −C(1) C(7) C(3) −C(3) −C(7) C(1) −C(5)
C(6) −C(2) C(2) −C(6) −C(6) C(2) −C(2) C(6)
C(7) −C(3) C(3) −C(1) C(1) −C(1) C(5) −C(7)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(0)
X(1)
X(2)
X(3)
X(4)
X(5)
X(6)
X(7)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(6.8)

where C(k) = cos(2𝜋k∕32).
In the form described above, 64 multiplications and 64 additions are needed to com-

pute the 1D DCT but these can be reduced by creating a sparse matrix by manipulating
the terms in the input vector on the right.

In its current form the matrix–vector computation would require 64 multiplications
and 63 additions to compute the 1D DCT or Y vector. However, a lot of research work
has been undertaken to reduce the complexity of the DCT by pre-computing the input
data in order to reduce the number of multiplications. One such approach proposed by
Chen et al. (1977) leads to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y (0)
Y (2)
Y (4)
Y (6)
Y (1)
Y (3)
Y (5)
Y (7)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(4) C(4) C(4) C(4) 0 0 0 0
C(2) C(6) −C(6) −C(2) 0 0 0 0
C(4) −C(4) −C(4) C(4) 0 0 0 0
C(6) −C(2) C(2) −C(6) 0 0 0 0

0 0 0 0 C(1) C(3) C(5) C(7)
0 0 0 0 C(3) −C(7) −C(1) −C(5)
0 0 0 0 C(5) −C(1) C(7) C(3)
0 0 0 0 C(7) −C(5) C(3) −C(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0) + x(7)
x(1) + x(6)
x(2) + x(5)
x(3) + x(4)
x(0) − x(7)
x(1) − x(6)
x(2) − x(5)
x(3) − x(4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6.9)

These types of optimizations are possible and a range of such transformations exist for
the DCT for both the 1D version (Hou 1987; Lee 1984; Sun et al. 1989) and the direct
2D implementation (Duhamel et al. 1990; Feig and Winograd 1992; Haque 1985; Vetterli
1985), one of which is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y (0)
Y (4)
Y (2)
Y (6)
Y (1)
Y (3)
Y (5)
Y (7)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(4) 0 0 0 0 0 0 0
0 −C(4) 0 0 0 0 0 0
0 0 C(2) C(6) 0 0 0 0
0 0 C(6) −C(2) 0 0 0 0
0 0 0 0 C(1) C(3) C(5) C(7)
0 0 0 0 C(3) −C(7) −C(1) −C(5)
0 0 0 0 C(2) −C(1) C(7) C(3)
0 0 0 0 C(1) −C(5) C(3) −C(1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(0)
w(1)
w(2)
w(3)
w(4)
w(5)
w(6)
w(7)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(6.10)
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where

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(0)
w(1)
w(2)
w(3)
w(4)
w(5)
w(6)
w(7)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(0) + x(7) + x(3) + x(4) + x(1) + x(2) + x(5) + x(6)
x(0) + x(7) + x(3) + x(4) − x(1) − x(2) − x(5) − x(6)

x(0) + x(7) − x(3) − x(4)
x(1) + x(6) − x(2) − x(5)

x(0) − x(7)
x(1) − x(6)
x(2) − x(5)
x(3) − x(4)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.11)

The introduction of zero terms within the matrix corresponds to a reduction in multi-
plications at the expense of a few extra additions. Furthermore, it gives a regular circuit
architecture from this matrix computation as shown in Figure 6.10. Each of the multi-
plications is a fixed-coefficient multiplication.

The DCT has been surpassed in recent years by the wavelet transform (Daubechies
1990) which transforms the input signal into a series of wavelets. It exploits the fact that
the signal is not stationary and that not all frequency components are available at once.
By transforming into a series of wavelet, better compression can be achieved. As with
the FIR filter and transform examples, only a limited range of functionality is needed
and various folding transforms can be used to get the best performance (Shi et al. 2009).

Y(0) Y(4) Y(2) Y(6) Y(7) Y(5) Y(1) Y(3)

X(3) X(4)

D

14D

D D D

D D D DD DD D D D

D D D D

14D

X(2) X(5)X(0) X(7) X(1) X(6) X(3)X ( 4) X(2) X(5)X(0) X(7) X(1) X(6)

Figure . DCT circuit architecture
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6.4.3 Fixed-Coefficient FPGA Techniques

As was described earlier, a fully programmable MAC functionality is provided by FPGA
vendors. In some DSP applications, however, and also in smaller FPGAs which have lim-
ited DSP hardware resources, there may be a need to use the underlying programmable
hardware resources. There are a number of efficient methods that can perform a mul-
tiplication of a stream of data by a single coefficient or a limited range of coefficients
giving high speed, but using smaller of resources when compared to a full multiplier
implementation in programmable hardware.

In a processor implementation, the requirement to perform a multiplicative operation
using a limited range of coefficients, or indeed a single one, has limited performance
impact, due to the way the data are stored. However, in FPGA implementations, there
is considerable potential to alter the hardware complexity needed to perform the task.
Thus, dedicated coefficient multiplication or fixed- or constant-coefficient multiplica-
tion (KCM) has considerable potential to reduce the circuitry overhead. A number of
mechanisms have been used to derive KCMs. These includes DA (Goslin 1995; Goslin
and Newgard 1994), string encoding and common sub-expression elimination (Cocke
1970; Feher 1993).

This concept translated particularly well to the LUT-based and dedicated fast adder
structures which can be used for building these types of multipliers; thus an area gain
was achieved in implementing a range of these fixed-coefficient functions (Goslin and
Newgard 1994; Peled and Liu 1974). A number of techniques have evolved for these
fixed-coefficient multiplications and whilst a lot of FPGA architectures have dedicated
multiplicative hardware on-board in the form of dedicated multipliers or DSP blocks, it
is still worth briefly reviewing the approaches available. The section considers the use
of DA which is used for single fixed-coefficient multiplication (Peled and Liu 1974) and
also the RCM approach which can multiply a range of coefficient values (Turner and
Woods 2004).

The aim is to use the structure which best suits the algorithmic requirements. Initially,
DA was used to create FPGA implementations that use KCMs, but these also have been
extended to algorithms that require a small range of coefficient values. However, the
RCM is a technique that has been particularly designed to cope with a limited range
of coefficients. Both of these techniques are discussed in the remaining sections of this
chapter.

. Distributed Arithmetic

Distributed arithmetic is an efficient technique for performing multiply-and-add in
which the multiplication is reorganized such that multiplication and addition and per-
formed on data and single bits of the coefficients at the same time. The technique is
based on the assumption that we will store the computed values rather than carry out
the computation (as FPGAs have a readily supply of LUTs).

6.5.1 DA Expansion

Assume that we are computing the sum of products computation in

y(n) =
N−1∑
i=0

aix(n − i), (6.12)
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Figure . LUT-based 8-bit multiplier

where the values x(i) represent a data stream and the values a0, a1,… , aN−1 represent a
series of coefficient values. Rather than compute the partial products using AND gates,
we can use LUTs to generate these and then use fast adders to compute the final mul-
tiplication. An example of an eight-bit LUT-based multiplier is given in Figure 6.11; it
can seen that this multiplier would require 4 kB of LUT memory resource, which would
be considerable. For the multiplicand, MD, MD0−7 is the lower eight bits and MD8−15 is
the higher eight bits. The same idea is applied to the multiplier, MR.

The memory requirement is vastly reduced (to 512 bits for the eight-bit example)
when the coefficients are fixed, which now makes this an attractive possibility for an
FPGA architecture. The obvious implementation is to use a LUT-based multiplier cir-
cuit such as that in Figure 6.11 to perform the multiplication a0x(0). However, a more
efficient structure results by employing DA (Meyer-Baese 2001; Peled and Liu 1974;
White 1989). In the following analysis (White 1989), it should be noted that the coeffi-
cient values a0, a1,… , aN−1 are fixed. Assume the input stream x(n) is represented by a
2’s-complement signed number which would be given as

x(n) = −x0(n) +
M−1∑
j=1

xj(n).2j, (6.13)

where xj(n).2j denotes the jth bit of x(n) which in turn is the nth sample of the stream of
data x. The term x0(n) denotes the sign bit and so is indicated as negative in the equation.
The data wordlength is thus M bits. The computation of y can then be rewritten as

y =
N−1∑
i=0

a(i)

(
−x0(n) +

M−1∑
j=1

xj(n).2j

)
. (6.14)

Multiplying out the brackets, we get

y =
N−1∑
i=0

ai(−x0(n)) +
N−1∑
i=0

ai

M−1∑
j=1

xj(n).2j (6.15)
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The fully expanded version of this is

y = a0(−x0(0)) + a0(x1(0).21 + x2(0).22 +…+ xM−1(0).2M−1)

+ a1(−x0(1)) + a1(x1(1).21 + x2(1).22 +…+ xM−1(1).2M−1) +…

+ aN−1(−x0(N − 1)) + aN−1(x1(N − 1).21 + x2(N − 1).22 +…

+ xM−1(N − 1).2M−1).

Reordering, we get

y =
N−1∑
i=0

ai(−x0(i) +
M−1∑
j=1

[N−1∑
i=0

a1(xj(i))

]
2j, (6.16)

and once again the expanded version gives a clearer idea of how the computation has
been reorganized:

y = 20(a0(−x0(0)) + a0(x1(0).21 + x2(0).22 +…+ xM−1(0).2M−1))

+ 21(a1(−x0(1)) + a1(x1(1).21 + x2(1).22 +…+ xM−1(1).2M−1)) +…

+ 2M+1(aN−1(−x0(N − 1)) + aN−1(x1(N − 1).21 +…+ xM−1(N − 1).2M−1)).

Given that the coefficients are now fixed values, the term
∑N−1

i=0 aixi(n) in equation (6.16)
has only 2K possible values and the term

∑N−1
i=0 ai(−x0(n)) has only 2K possible values.

Thus the implementation can be stored in a LUT of size 2 × 2K bits which, for the earlier
eight-bit example, would represent 512 bits of storage.

This then shows that if we use the x inputs as the addresses to the LUT, then the stored
values are those shown in Table 6.4. By rearranging the equation

N−1∑
i=0

aix0(i) = a0(x0(0)) + a1(x0(1)) + a2(x0(2)) + a3(x0(3)) (6.17)

to achieve the representation
N−1∑
i=0

ai(−x0(i)) = x0(0)(−a0) + x0(1)(−a1) + x0(2)(−a2) + x0(3)(−a3), (6.18)

we see that the contents of the LUT for this calculation are simply the inverse of those
stored in Table 6.2 and can be performed by subtraction rather than addition for the
2’s-complement bit. The computation can either be performed using parallel hardware
or sequentially, by rotating the computation around an adder, as shown in Figure 6.12
where the final stage of computation is a subtraction rather than addition.

6.5.2 DA Applied to FPGA

It is clear that this computation can be performed using the basic CLB structure of the
earlier Xilinx XC400 and early Virtex FPGA families and the logic element in the earlier
Altera families where the four-bit LUT is used to store the DA data; the fast adder is
used to perform the addition and the data are stored using the flip-flop. In effect, a CLB
can perform one bit of the computation meaning that now only eight LUTs are needed
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Table . LUT contents for DA computation

Address

x0
3 x0

2 x0
1 x0

0 LUT contents

0 0 0 0 0
0 0 0 1 a0
0 0 1 0 a1
0 0 1 0 a1 + a0
0 1 0 0 a2
0 1 0 1 a2 + a0
0 1 1 0 a2 + a1
0 1 1 0 a2 + a1 + a0
1 0 0 0 a3
1 0 0 1 a3 + a0
1 0 1 0 a3 + a1
1 0 1 0 a3 + a1 + a0
1 1 0 0 a3 + a2
1 1 0 1 a3 + a2 + a0
1 1 1 0 a3 + a2 + a1
1 1 1 0 a3 + a2 + a1 + a0

to perform the computation, admittedly at a slower rate than a parallel structure, due to
the sequential nature of the computation. The mapping effectiveness is increased as the
LUT size is increased in the later FPGA families.

This technique clearly offers considerable advantages for a range of DSP functions
where one part of the computation is fixed. This includes some fixed FIR and IIR filters,
a range of fixed transforms, namely the DCT and FFT, and other selected computations.
The technique has been covered in detail elsewhere (Meyer-Baese 2001; Peled and Liu
1974; White 1989), and a wide range of application notes are available from each FPGA
vendor on the topic.

. Reduced-Coefficient Multiplier

The DA approach has enjoyed considerable success and was the focal point of the earlier
FPGA technologies in DSP computations. However, the main limitation of the technique
is that the coefficients must be fixed in order to achieve the area reduction gain. If some

x1

x2

x0

+
x3

z–1

/2

+/–

y

Figure . DA-based multiplier block
diagram
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Multiplier

a0 a1 a2 a3

MUX 

Input (X) Output (Y)

Coefficient (Q)

Coefficient
selection

Figure . Reduced-complexity multiplier

applications require the full coefficient range then a full programmable multiplier must
be used, which in earlier devices was costly as it had to be built of existing LUT and
adder resources, but in more recent FPGA families has been provided in the form of
dedicated DSP blocks. However, in some applications such as the DCT and FFT, there
is the need for a limited range of multipliers.

6.6.1 DCT Example

Equation (6.9) can be implemented with a circuit where a fully programmable multiplier
and adder combination are used to implement either a row or a column, or possibly the
whole circuit. However, this is inefficient as the multiplier uses only four separate values
at the multiplicand, as illustrated by the block diagram in Figure 6.13. This shows that
ideally a multiplier is needed which can cope with four separate values. Alternatively, a
DA approach could be used where 32 separate DA multipliers are used to implement the
matrix computation. In this case, eight DA multipliers could be used, thereby achieving
a reduction in hardware, but the dataflow would be complex in order to load the correct
data at the correct time. It would be much more attractive to have a multiplier of the
complexity of the DA multiplier which would multiply a limited range of multiplicands,
thereby trading hardware complexity off against computational requirements, which is
exactly what is achieved in the RCM multipliers (Turner and Woods 2004). The subject
is treated in more detail elsewhere (Kumm 2016).

6.6.2 RCM Design Procedure

The previous section on DA highlighted how the functionality could be mapped into
a LUT-based FPGA technology. In effect, if you view the multiplier as a structure that
generates the product terms and then uses an adder tree to sum the terms to produce a
final output, then the impact of having fixed coefficients and organizing the computation
as proposed in DA allows one to map a large level of functionality of the product term
generator and adder tree within the LUTs. In essence, this is where the main area gain
to be achieved.

The concept is illustrated in Figure 6.14, although it is a little bit of illusion as the actual
AND and adder operations are not actually generated in hardware, but will have been
pre-computed. However, this gives us an insight into how to map additional functional-
ity onto LUT-based FPGAs, which is the core part of the approach.
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Figure . DA-based multiplier block diagram. Source: Turner 2004. Reproduced with permission of
IEEE.

In the DA implementation, the focus was to map as much as possible of the adder tree
into the LUT. If we consider mapping a fixed-coefficient multiplication into the same
CLB capacity, then the main requirement is to map the EXOR function for the fast carry
logic into the LUT. This will not be as efficient as the DA implementation, but now the
spare inputs can be used to implement additional functionality, as shown by the various
structures of Figure 6.15. This is the starting point for the creation of the structures for
realizing a plethora of circuits.

Figure 6.15(a) implements the functionality of A + B or A + C, Figure 6.15(b) imple-
ments the functionality of A − B or A − C, and Figure 6.15(c) implements the func-
tionality of A + B or A − C. This leads to the concept of the generalized structure of
Figure 6.16, and Turner (2002) gives a detailed treatment of how to generate these
structures automatically, based on an input of desired coefficient values. However, here
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Figure . Possible implementations using multiplexer-based design technique. Source: Turner 2004.
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Figure . Multiplication by either 45 or 15

we use an illustrative approach to show how the functionality of the DCT example is
mapped using his technique, although it should be noted that this is not the technique
used in Turner (2002).

Some simple examples are used to demonstrate how the cells given in Figure 6.15 can
be connected together to build multipliers. The circuit in Figure 6.17 multiplies an input
by two coefficients, namely 45 and 15. The notation x × 2n represents a left-shifting by
n. The circuit is constructed from two 2n ± 1 cascaded multipliers taking advantage of
45 × x and 15 × x having the common factor of 5 × x. The first cell performs 5 × x and
then the second cell performs a further multiplication by 9 or 3, by adding a shifted
version by 2 (21) or by 8 (23), depending on the multiplexer control signal setting (labeled
15/45). The shifting operation does not require any hardware as it can be implemented
in the FPGA routing.

Figure 6.18 gives a circuit for multiplying by 45 or the prime number, 23. Here a com-
mon factor cannot be used, so a different factorization of 45 is applied, and a subtracter
is used to generate multiplication by 15 (i.e. 16 − 1), needing only one operation as
opposed to three. The second cell is set up to add a multiple of the output from the first
cell, or a shifted version of the input X. The resulting multipliers implement the two
required coefficients in the same area as a KCM for either coefficient, without the need
for reconfiguration. Furthermore, the examples give some indication that there are a
number of different ways of mapping the desired set of coefficients and arranging the
cells in order to obtain an efficient multiplier structure.

Turner and Woods (2004) have derived a methodology for achieving the best solution,
for the particular FPGA structure under consideration. The first step involves identifying
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the full range of cells of the type shown in Figure 6.15. Those shown only represent a
small sample for the Xilinx Virtex-II range. The full range of cells depends on the number
of LUT inputs and the dedicated hardware resource. The next stage is then to encode
the coefficients to allow the most efficient structure to be identified, which was shown
to be signed digit (SD) encoding. The coefficients are thus encoded and resulting shifted
signed digits (SSD) then grouped to develop the tree structure for the final RCM circuit.

6.6.3 FPGA Multiplier Summary

The DA technique has been shown to work well in applications where the coefficients
have fixed functionality in terms of fixed coefficients. As can be seen from Chapter 2,
this is not just limited to fixed-coefficient operations such as fixed-coefficient FIR and
IIR filtering, but can be applied in fixed transforms such as the FFT and DCT. However,
the latter RCM design technique provides a better solution as the main requirement is
to develop multipliers that multiply a limited range of coefficients, not just a single value.
It has been demonstrated for a DCT and a polyphase filter with a comparable quality in
terms of performance for implementations based on DA techniques rather than other
fixed DSP functions (Turner 2002; Turner and Woods 2004).

It must be stated that changes in FPGA architectures, primarily the development of
the DSP48E2 block in Xilinx technologies, and the DSP function blocks in the latest
Altera devices, have reduced the requirement to build fixed-coefficient or even limited-
coefficient-range structures as the provision of dedicated multiplier-based hardware
blocks results in much superior performance. However, there may still be instances
where FPGA resources are limited and these techniques, particularly if they are used
along with pipelining, can result in implementations of the same speed performance as
these dedicated blocks. Thus, it is useful to know that these techniques exist if the DSP
expert requires them.

. Conclusions

The chapter has aimed to cover some techniques that specifically look at mapping DSP
systems onto specific FPGA platforms. Many will argue that, in these days of improving
technology and the resulting design productivity gap, we should move away from this
aspect of the design approach altogether. Whilst the sentiment is well intentioned, there
are many occasions when the detailed implementation has been important in realizing
practical circuit implementations.

In image processing implementations, as the design example in Figure 6.6 indicated,
the derivation of a suitable hardware architecture is predicated on the understanding of
what the underlying resources are, both in terms of speed and size. Thus a clear under-
standing of the practical FPGA limitations is important in developing a suitable architec-
ture. Some of the other fixed-coefficient techniques may be useful in applications where
hardware is limited and users may wish to trade off the DSP resource against other parts
of the application.

Whilst it has not been specifically covered in this chapter, a key aspect of efficient
FPGA implementation is the development of efficient design styles. A good treatment of
this was given by Keating and Bricaud (1998). Their main aim was to highlight a number
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of good design styles that should be incorporated in the creation of efficient HDL code
for implementation on SoC platforms. In addition to indications for good HDL coding,
the text also offered some key advice on mixing clock edges, developing approaches for
reset and enabling circuitry and clock gating. These are essential, but it was felt that the
scope of this book was to concentrate on the generation of the circuit architecture from
a high level.
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

Synthesis Tools for FPGAs

. Introduction

In the 1980s, the VHSIC program was launched which was a major initiative to identify
the need for high-level tools for the next generation of integrated circuits. From this
the VHDL language and associated synthesis tools were developed; these were seen as a
step function for the design of integrated circuits and, until recently, represented the key
design entry mechanism for FPGAs. To avoid the high license costs which would act to
prevent FPGA users from using their technology, each of the main vendors developed
their own tools.

To a great extent, though, this has strengthened the view of FPGAs as a hardware tech-
nology, something that is viewed as difficult to program. For this reason, we have seen
a major interest in developing high-level synthesis (HLS) tools to make this a more eas-
ily programmable technology for software developers. Xilinx has launched the Vivado
tools which allow users to undertake C-based synthesis using Xilinx FPGA technology.
Altera have developed an approach based on OpenCL, called SDK for Open Computing
Language, which allows users to exploit the parallel version of C, developed for GPUs.

A number of other tools have been developed, including C-based synthesis tools both
in the commercial (Catapult® and Impulse-C) and academic (GAUT, CAL and LegUp)
domain with some focus on FPGA, and higher-level tools such as dataflow-based syn-
thesis tools. The tools that have been chosen and described in this chapter are the ones
specifically linked to FPGAs.

The purpose of the chapter is not to provide a detailed description of the tools as
these are described much better and in much more detail in their literature, but to give
some insight into the tools and their capabilities from a synthesis point of view and
also because they would appear to be closely linked to FPGAs. In particular, there is
an interest in how much of the architectural mapping outlined in Chapter 8 has now
been automated. In particular, the approaches that are of interest are those which allow
the algorithmic parallelism to be exploited and also those that permit pipelining to be
introduced.

Section 7.2 discusses HLS and describes the problems of using C to model hardware.
A C-based approach, specifically Xilinx Vivado HLS tools, is described in Sections 7.3

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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and 7.4, followed by an OpenCL alternative, Altera’s SDK for OpenCL, in Section 7.5.
Other HLS approaches are briefly reviewed in Section 7.5, including open source C-
based tools and those based on a dataflow approach.

. High-Level Synthesis

As the number of transistors on a chip increases, the level of abstraction should increase,
as should the design productivity, otherwise design time/effort will increase. The argu-
ment is that HLS tools will play an important role in raising productivity. Their main
role is to transform an algorithmic description of the behavior of an algorithm into a
desired digital hardware solution that implements that behavior. For FPGA designs, the
existence of logic synthesis tools from a register transfer level (RTL) description of the
design meant that this was a suitable output.

Gajski and Kuhn’s Y-chart (Gajski et al. 1992; Gajski and Kuhn 1983) describes the
HLS design flow (Figure 7.1) A design can be viewed from three perspectives:
� behavioral, which describes what the design does, expressed at levels such as transis-

tor functions, Boolean expressions, register transfers, flowcharts/algorithms;
� structural, which shows how the design is built using different levels of com-

ponents such as transistors, gates/flip-flops, registers/ALUs/muxes, processors/
memories/buses;

� physical, which outlines how the design is physically implemented using different
units such as transistor layouts, cells, chips, boards/MCMs

In traditional RTL design flow (Figure 7.1(a)), the behavioral system specifications of
the design down to RT level are handled manually by the designer. RTL synthesis and
place and route tools is automatically performed, whereas the verification within the
automated parts is necessary to match the design against the top-level specifications.

Martin and Smith (2009) provide an outline of the various stages of HLS and suggest
that we are now in the third generation after several previous attempts. The first gen-
eration was motivated by the observation over two decades ago that RTL-based design
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was becoming tedious, complicated, and inefficient as such designs exploded to tens
of thousands of lines. To solve this, “behavioral synthesis” was introduced where the
detailed description of the architecture was to be replaced with abstract code specifying
the design. This required research into sophisticated electronic design automation tools
and resulted in the production of multiple behavioral synthesis tools. However, this first
attempt failed as the tools were limited and only very small designs were synthesizable;
a key example was Synopsys’s “Behavioral Compiler.” For the second generation, behav-
ioral synthesis was again pursued by academia to fix its problems, and HLS was pursued
with improvements such as:
� synthesizing more complex and diverse architectures not just simple data paths;
� synthesizing design I/Os to realize units supporting interface standards and protocols;
� dividing the processing elements into multiple pipelines;
� changing the source language from VHDL or Verilog to the more popular C and C++

languages used by embedded systems designers;
� finding a way to show the trade-offs considered to the designer, namely, speed versus

area versus power consumption, latency versus throughput, and memory versus logic.

Since the design space to be explored was vast, thousands of solutions could be created
by the tool to find the best one, so it took a long time to develop appropriate HLS-based
tools.

While the HLS idea was being developed, another method of raising the abstraction
layer was introduced to the market: schematic design to create complicated systems
through inserting large reusable IPs, such as processor cores and memory structures,
comprising about 80–90% of the design, and 10–20% RTL design including differentiat-
ing features. Despite the wide adoption of IP reuse through schematic design, HLS tools
reached a level of quality to produce high-performance results for complex algorithms,
in particular DSP problems. HLS tools were used to design high-performance IP blocks
at high-level languages rather than create the whole system.

With the inclusion of fast processors on chips in SoCs, some designers started to code
the 10–20% differentiating part of their design, as software on the processors, hence
avoiding any RTL coding in the schematic method. Altera’s OpenCL was designed for
software engineers who needed software code running on large parallel processor archi-
tectures, and also FPGA hardware, as it requires little understanding of hardware.

Given that the previous attempts were viewed to have failed, Martin and Smith (2009)
suggest several reasons why this generation of tools would succeed:
� A focus on applications where the tools are being applied in domains where they are

expected to have a higher probability of success.
� Algorithm and system designers with the right input languages, allowing them to use

languages with which they are comfortable (e.g. C variants, MATLAB®), thus avoid-
ing the learning of special languages.

� Use of compiler-based optimizations which has enabled designers to achieve
improved design outputs.

� Performance requirements need significant amounts of signal and multimedia pro-
cessing and thus need hardware acceleration.

� With FPGAs, the measurement criteria are different than for ASIC as the design has
to “fit” into a discrete FPGA size and has to work fast enough, but within the FPGA
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speed and size capacity; thus HLS synthesis with FPGA targets is a perfect way of
quickly getting an algorithm into hardware.

Overall, the tools appear to be based on C, C++ or C-like tool entry which, as the authors
have outlined above, is a major advantage.

7.2.1 HLS from C-Based Languages

Thus there has always been a challenge in using C to model hardware. Given the sequen-
tial nature of C, a lot of C-based synthesis tools will translate the C description into some
internal data model and then use a series of functionalities to extract the processes, ports
and interconnections. This is central to a lot of the design approaches, and a lot of the
classical synthesis tools tend to lean on their major investment in classical synthesis
tools to achieve the mapping.

Of course, the alternative approach is to adopt C-based languages such as OpenCL,
which allows parallelism to be captured. In addition to the ability to capture algorith-
mic representation, OpenCL defines an application program interface (API) that allows
programs running on the host to launch kernels on the compute platform. The language
has been driven by the major developments in GPUs which initially developed for pro-
cessing graphics, but are now applied to a wide range of applications.

The next two sections describe these two varying approaches, one from Xilinx which
is based upon C-based synthesis called Vivado and the other from Altera called SDK for
OpenCL. While initially Xilinx and Altera created HLS tools which were complemen-
tary and created for different groups of users, they have started to add similar function-
ality to each other’s tools.

. Xilinx Vivado

The Xilinx Vivado HLS tool converts a C specification into an RTL implementation syn-
thesizable into a Xilinx FPGA (Feist 2012). C specifications can be written in C, C++,
SystemC, or as an OpenCL API C kernel. The company argues that it saves develop-
ment time, provides quick functional verification, and offers users controlled synthesis
and portability.

Figure 7.2 shows that the algorithm can be specified C, C++, or SystemC. These func-
tions are synthesized into RTL blocks and the top-level function arguments are syn-
thesized into RTL I/O ports. Each loop iteration is scheduled to be executed in pro-
grammable logic and loops can be unrolled using directives to allow for all iterations to
run in parallel. C code arrays are synthesized into block RAM.

Hardware optimized C libraries are available including arbitrary precision data types
(to allow optimization to FPGA libraries), HLS stream library, math functions, linear
algebra functions, DSP functions, video functions and an IP library. During the synthe-
sis process, a microarchitecture is explored. The tool allows IP system integration and
provides RTL generation in VHDL or Verilog.

Vivado creates the optimal implementation based on the default behavior constraints
and the user-specified directives. It uses the classical stages of scheduling (determin-
ing which operations occur when), binding (allocating the hardware resource for each
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scheduled operation) and control-logic extraction (which allows the creation of an FSM
that sequences the operations).

The user can change the default behavior and allow multiple implementations to be
created targeted at reduced area, high-speed, etc. The important performance metrics
reported by the HLS are area, latency, loop iteration latency (clock cycles to complete
one loop iteration) and loop latency (clock cycles to execute all loop iterations). Gener-
ally, the designer can make decisions on functionality, performance including pipeline
register allocation, interfaces, storage, design exploration and partitioning into modules.

. Control Logic Extraction Phase Example

The following example shows the control logic extraction and I/O port implementation
phase of Vivado. A data computation is placed inside a for loop and two of the function
arguments are arrays. The HLS extracts the control logic from the C code and creates
an FSM to sequence the operations. The control structure of the C code for loop and the
FSM are the same:

C0
C1, C2, C3
C1, C2, C3
C1, C2, C3

C0,…
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Figure . Control logic extraction and I/O port implementation example

This is much more easily seen in the timing diagram in Figure 7.3
FSM controls when the registers store data and controls the state of any I/O control

signals. Addition of b and c is moved outside the for loop and into state C0. The FSM
generates the address for an element in C1 and an adder increments to count how many
times that the design iterates around C1, C2, and C3. In C2, the block RAM returns the
data for in data and stores as x. By default, arrays are synthesized into block RAMs. In
C3, the calculations are performed and output is generated. Also the address and control
signals are generated to store the value outside the block.

void F (int in [3], char a, char b, char c, int out[3]){
int x, y;
for (int i = 0; i ¡ 3; i++) {
x = int [i];
y = a ∗ x + b + c;
out [i] = y;
}
}

. Altera SDK for OpenCL

Altera makes the case that the OpenCL standard inherently offers the ability to describe
parallel algorithms to be implemented on FPGAs at a much higher level of abstraction
than HDLs. The company argues that the OpenCL standard more naturally matches
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the highly parallel nature of FPGAs than do sequential C programs. OpenCL allows the
programmer to explicitly specify and control the thread-level parallelism, allowing it to
be exploited on FPGAs as the technology offers very high levels of parallelism.

OpenCL is a low-level programming language created by Apple derived from stan-
dard ANSI C. It has a lot of the functionality of C but does not have certain headers,
function pointers, recursion, variable-length arrays or bit fields. However, it has a num-
ber of extensions to extract parallelism and also includes an API which allows the host to
communicate with the FPGA-based hardware accelerators, either from one accelerator
to another or to the host over PCI Express. In addition, an I/O channel API is needed to
stream data into a kernel directly from a streaming I/O interface such as 10Gb Ethernet.

The Altera SDK for OpenCL tools provides the designer with a range of functional-
ity to implement OpenCL on heterogeneous platforms including an emulator to step
through the code on an x86, a detailed optimization report to highlight loop depen-
dencies, a profiler and a compiler capable of performing over 300 optimizations on the
kernel code and producing the entire FPGA image in one step.

In standard OpenCL, the OpenCL host program is a pure software routine written in
standard C/C++. The computationally expensive function which will benefit from accel-
eration on FPGA is referred to as an OpenCL kernel. Whilst these kernels are written in
standard C, they are annotated with constructs to specify parallelism and memory hier-
archy. Take, for example, a vector addition of two arrays, a and b, which produces an
output array. Parallel threads will operate on the each element of the vector. If this can
be accelerated with a dedicated processing block, then an FPGA offers massive amounts
of fine-grained parallelism. The host program has access to standard OpenCL APIs that
allow data to be transferred to the FPGA, invoking of the kernel on the FPGA and return
of the resulting data.

A pipelined circuit to implement this functionality is given in Figure 7.4. For simplicity,
assume the compiler has created three pipeline stages for the kernel. On the first clock
cycle, thread 0 is clocked into the two load units and indicates that the first elements of
data from arrays a and b should be fetched. On the second clock cycle, thread 1 is clocked
in at the same time that thread 0 has completed its read from memory and stored the
results in the registers following the load units. On cycle 3, thread 2 is clocked in, thread
1 captures its returned data, and thread 0 stores the sum of the two values that it loaded.
Eventually the pipeline will be filled and numerous computations will be carried out in
parallel (Altera 2013).
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Figure . Pipelined processor implementation
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In addition to the kernel pipeline, Altera’s OpenCL compiler creates interfaces to
external and internal memory. This can include the connections to external memory via
a global interconnect structure that arbitrates multiple requests to a group of external
DDR memories and also through a specialized interconnect structure to on-chip RAMs.
These specialized interconnect structures ensure high performance and best organiza-
tion of requests to memory.

Altera SDK for OpenCL is in full production release and supports a variety of host
CPUs, including the embedded ARM® Cortex®-A9 processor cores. It supports scalable
solutions on multiple FPGAs and multiple boards as well as a variety of memory targets,
such as DDR SDRAM, QDR SRAM and internal FPGA memory. Half-precision as well
as single- and double-precision floating-point is also supported.

. Other HLS Tools

Obviously, FPGA vendors have a key role in producing place and route tools as this is
an essential stage in implementing users’ designs in their technologies. More recently,
this has been extended to HLS tools particularly as the user base of their technology
expands to more general applications of computing. Whilst the previous two sections
have highlighted the two major FPGA vendors’ approach to HLS, there have also been
a number of other approaches, both commercial and academic. A sample of such tools
is included in this section in no particular order of importance or relevance.

7.6.1 Catapult

Mentor Graphics offers the Catapult® HLS platform which allows users to enter their
design in C, SystemC or C++ and produce RTL code to allow targeting to FPGA. The
key focus is the tool’s ability to produce correct-by-construction, error-free, power-
optimized RTL (Mentor Graphics 2014). The tool derives an optimal hardware microar-
chitecture and uses this to explore multiple options for optimal power, performance and
area. This allows design iteration and faster reuse.

Whilst the tool was initially aimed at a wide range of applications, it has now been
focused towards power optimization. In addition, the goal of reduction in design and
verification has been achieved by having a fixed architecture and optimizing on it.
Indeed, the presentation material indicates that the approach of mapping to a fixed
architecture has to be undertaken at the design capture stage. This is interesting, given
the recent trend of creating soft processors on FPGA as outlined in Chapter 12.

The PowerPro® product allows fast generation of fully verified, power-optimized RTL
for ASIC, SOC and FPGA designs. The company argues that this allows analysis of both
static and dynamic RTL power usage and allows the user to automatically or manually
create power-optimized RTL. From an FPGA perspective, there is clearly a route for
trading off parallelism and pipelining as outlined in Chapter 8 as this can be used to alter
the power profile as outlined in Chapter 13. Whilst the latter description talks about this
from a generated architecture, this approach uses a fixed architecture.

7.6.2 Impulse-C

Impulse-C is available from from Impulse Accelerated Technologies (see Impulse
Accelerated Technologies 2011) and provides a C-to-gates workflow. Algorithms are
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represented using using a communicating sequential process and a library of specific
functions, and then described in Impulse-C, which is a standard ANSI C language.
The communication between processes is performed mainly by data streams or shared
memories, which translates into physical wires or memory storage. Signals can also be
transferred to other processes as flags for non-continuous communication. The key is
that this allows capture of process parallelization and communication.

The code can be compiled using a standard C compiler and then translated into VHDL
or Verilog. As well as the code for the functional blocks, the tools can generate the
controller functionality from the communication channels and synchronization mech-
anisms. Pragma directives are used to control the hardware generation throughout the
C code, for example, and to allow loop unrolling, pipelining or primitive instantiation.
Also existing IP cores in the form of VHDL code can be incorporated.

Each defined processes is translated to a software thread allowing the algorithm to be
debugged and profiled using using standard tools. The co-design environment includes
tools for co-simulation and co-execution of the algorithms. The approach is targeted at
heterogeneous platforms allowing compilation onto processors and optimization onto a
programmable logic platform. Impulse-C code can be implemented in a growing num-
ber of hardware platforms and, specifically, Altera and Xilinx FPGA technologies.

The tools have been applied to core DSP functions, many of which were described in
Chapter 2, but also more complex systems, specifically, filters and many image process-
ing algorithms including edge enhancement, object recognition, video compression and
decompression and hyperspectral imaging. There have also been some financial appli-
cations, specifically to high-frequency trading.

7.6.3 GAUT

GAUT is an academic HLS tool (http://www.gaut.fr/) that has been targeted at DSP
applications (Coussy et al. 2008). It allows the user to start from a C/C++ description
of the algorithm and supports fixed-point representation to allow more efficient imple-
mentation on FPGAs. The user can set the throughput rate and the clock period as well
as other features such as memory mapping (Corre et al. 2004) and I/O timing diagrams
(Coussy et al. 2006). The tool synthesizes an architecture consisting of a processing unit,
a memory unit and a communication and interface block. The processing unit is com-
posed of logic and arithmetic operators, storage elements, steering logic and an FSM
controller.

The flow for the tool is given in Figure 7.5. It starts with the design of the architecture,
which involves selecting the arithmetic operators, then the memory registers and mem-
ory banks involving memory optimization, followed by the communication paths such
as memory address generators and the communication interfaces. It generates not only
VHDL models but also the testbenches and scripts necessary for the Modelsim simula-
tor. It has been applied to a Viterbi decoder and a number of FIR and LMS filters, giving
a reduction in code of around two orders of magnitude.

7.6.4 CAL

Sequential software programming depends mostly on HLS tools to automatically extract
the parallelism of the code. Other than the automatic detection, to cover the language
concurrency-support limitations, some libraries are also introduced or features such as
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Figure . GAUT synthesis flow

pragmas are included. These changes in a sequential language to make it executable on
hardware have led to different implementations of that language. Development of lan-
guages based on the computation model which reflects the hardware specifics and par-
allel programming seems a better approach than adapting sequential C-like languages
to support hardware design.

A language designed to support both parallel and sequential coding constructs and
expression of applications as network processes is CAL (Eker and Janneck 2003). The
CAL actor language was developed by Eker and Janneck in 2001 as part of the Ptolemy
project (Eker et al. 2003) at the University of California at Berkeley. CAL is a high-level
programming language of the form of a dataflow graph (DFG), for writing actors which
transform input streams into output streams. CAL is an ideal language for use as a single
behavioral description for software and hardware processing elements.

A subset of the CAL language which has been standardized by the ISO MPEG commit-
tee is reconfigurable video coding or RVC-CAL. The main reason for the introduction
of RVC is to provide reuse of commonalities among various MPEG standards, and their
extension through system-level specifications (Eker et al. 2003). This provides a more
flexible and faster path to introducing new MPEG standards. The RVC framework is
being developed by the MPEG to provide a unified high-level specification of current
and future MPEG video coding technologies using dataflow models. In this framework,
a decoder is generated by configuring video coding modules which are standard MPEG
toolbox libraries or propriety libraries. RVC-CAL is used to write the reference software
of library elements. A decoder configuration is defined in XML language by connecting
a set of RVC-CAL modules.
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The RVC-CAL language limits the advanced features of the CAL language. There are
some tools available for development of applications based on RVC-CAL language as
summarized in the following.

The Open RVC-CAL Compiler (ORCC) is an open source dataflow development envi-
ronment and compiler framework which uses RVC-CAL, allows the transcompilation
of actors and generates equivalent codes depending on the chosen back-ends (Eker et al.
2003). ORCC is developed within the Eclipse-based IDE as a plug-in with graphical
interfaces to ease the design of dataflow applications.

CAL2HDL (Janneck et al. 2008) was the first implementation of a direct hardware
code generation from CAL dataflow programs. A CAL actor language is first converted
into an XML language independent model from which Verilog code can be generated
using an open source tool. The tool supports a limited subset of CAL actor language such
that complex applications cannot be easily expressed or synthesized using this tool. In
addition, Xronos (Bezati et al. 2013) is an evolution of CAL2HDL and TURNUS (Brunei
et al. 2013) is a framework used for iterative design space exploration of RVC-CAL pro-
grams to find design solutions which satisfy performance constraints or optimize parts
of the system.

7.6.5 LegUp

LegUp is an open source HLS tool that allows a standard C source program to be syn-
thesized onto a hybrid FPGA-based hardware/software system (Canis et al. 2013). The
authors envisage implementing their designs onto an FPGA-based 32-bit MIPS soft pro-
cessor and synthesized FPGA accelerators. It has been created using modular C++ and
uses the state-of-the-art LLVM compiler framework for high-level language parsing and
its standard compiler optimizations (LLVM 2010). It also uses a set of benchmark C
programs that can be used to a combined hardware/software system and allows specific
functionality to be added (Hara et al. 2009).

. Conclusions

The chapter has briefly covered some of the tools used to perform HLS. The purpose of
the chapter has been to give a brief overview of some relevant tools which may in some
cases cover the types of optimizations covered in Chapter 8. In some cases the tools start
with a high-level description in C or C++ and can produce HDL output in the form of
VHDL or Verilog, allowing vendors’ tools to be used to produce the bit files.

C-based tools are particularly useful as many of the FPGA platforms are SoC platforms
comprising processors, memory and high-speed on-chip communications. The ability
to explore optimization across such platforms is vital and will become increasingly so
as future systems requirements evolve as heterogeneous FPGA platforms become ever
more complex. Such issues are addressed in the tools outlined in Chapter 10.
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

Architecture Derivation for FPGA-based DSP Systems

. Introduction

The technology review in Chapter 4 and the detailed circuit implementation material in
Chapter 5 clearly demonstrated the need to develop a circuit architecture when imple-
menting DSP algorithms in FPGA technology. The circuit architecture allows the perfor-
mance needs of the application to be captured effectively. One optimization is to imple-
ment the high levels of parallelism available in FIR filters directly in hardware, thereby
allowing a performance increase to be achieved by replicating the functionality in FPGA
hardware. In addition, it is possible to pipeline the SFG or DFG heavily to exploit the
plethora of available registers in FPGA; this assumes that the increased latency in terms
of clock cycles, incurred as a result of the pipelining (admittedly at a smaller clock
period), can be tolerated. It is clear that optimizations made at the hardware level can
have direct cost implications for the resulting design. Both of these aspects can be cap-
tured in the circuit architecture.

In Chapter 5 it was shown how this trade-off is much easier to explore in “fixed archi-
tectural” platforms such as microprocessors, DSP processors or even reconfigurable
processors, as appropriate tools can be or have been developed to map the algorith-
mic requirements efficiently onto the available hardware. As already discussed, the main
attraction of using FPGAs is that the available hardware can be developed to meet the
specific needs of the algorithm. However, this negates the use of efficient compiler tools
as, in effect, the architectural “goalposts” have moved as the architecture is created on
demand! This fact was highlighted in Chapter 7 which covered some of the high-level
tools that are being developed either commercially or in universities and research labs.
Thus, it is typical that a range of architecture solutions are explored with cost factors
that are computed at a high level of abstraction.

In this chapter, we will explore the direct mapping of simple DSP systems or, more
precisely, DSP components such as FIR or IIR filters, adaptive filters, etc. as these will
now form part of more complex systems such as beamformers and echo cancelers.
The key aim is to investigate how changes applied to SFG representations can impact
the FPGA realizations of such functions, allowing the reader to quickly work in the
SFG domain rather than in the circuit architecture domain. This trend will become

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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increasingly prevalent throughout the book as we attempt to move to a higher-level
representation. The later chapters demonstrate how higher levels of abstraction can be
employed to allow additional performance improvements by considering system-level
implications.

Section 8.2 looks at the DSP characteristics and gives some indication of how these
map to FPGA. The various representations of DSP systems are outlined in Section 8.3.
Given that a key aspect of FPGA architecture is distributed memory, efficient pipelining
is a key optimization and so is explored in detail in Section 8.4. The chapter then goes on
to explore how the levels of parallelism can be adjusted in the implementation in order to
achieve the necessary speed at both lower or higher area costs; duplicating the hardware
is formally known as “unfolding” and sharing the available hardware is called “folding,”
and both of these techniques are explored in Section 8.5. Throughout the chapter, the
techniques are applied to FIR, IIR and lattice filters and explored using the Xilinx Virtex-
5 FPGA family. This material relies heavily on the excellent text by Parhi (1999).

. DSP Algorithm Characteristics

By their very nature, DSP algorithms tend to be used in applications where there is a
demand to process high volumes of information. As highlighted in Chapter 2, the sam-
pling rates can range from kilohertz, as in speech environments, right through to mega-
hertz, as in the case of image processing applications. It is vital to clearly define a number
of parameters with regard to system implementation of DSP systems:

� Sampling rate can be defined as the rate at which we need to process the DSP signal
samples for the system or algorithm under consideration. For example, in a speech
application, the maximum bandwidth of speech is typically judged to be 4 kHz, and
the Nyquist rate indicates a sampling rate of 8 kHz.

� Throughout rate (TR) defines the rate at which data samples are processed. In some
cases, the aim of DSP system implementation is to match the throughput and sam-
pling rates, but in systems with lower sampling rates (speech and audio), this would
result in underutilization of the processing hardware. For example, speech sampling
rates are 8 kHz, but the speeds of many DSP processors are of the order of hundreds of
megahertz. In these cases there is usually a need to perform a large number of compu-
tations per second, which means that the throughput rate can be several times (say,
p) the sampling rate. In cases where the throughput is high and the computational
needs are moderate, there is the possibility of reusing the hardware, say p times. This
is a mapping that would need to be applied in FPGA implementation.

� Clock rate defines the operating speed of the system implementation. It used to be
a performance figure quoted by computing companies, although it is acknowledged
that memory size, organization and usage can be more critical in determining per-
formance. In DSP systems, a simple perusal of DSP and FPGA data sheets indicates
that clock rates of FPGA families are 550–600 MHz, whereas TI’s TMS320C6678 DSP
family can run up to 1.25 GHz. It would appear that the DSP processor is faster than
the FPGA, but it is the amount of computation that can be performed in a single cycle
that it is important (Altera 2014). This is a major factor in determining the through-
put rate, which is a much more accurate estimate of performance, but is of course
application-dependent.
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Figure . Latency and throughput rate relationship for system y(n) = ax(n)

Thus, it is clear that we need to design systems ultimately for throughput and therefore
sampling rate, as a first measure of performance. This relies heavily on how efficiently we
can develop the circuit architecture. As Chapter 5 clearly indicated, this comes from har-
nessing effectively the underlying hardware resources to meet the performance require-
ments. In ASIC applications the user can define the processing resources to achieve this,
but in FPGAs the processing resources are restrictive in terms of their number and type
(e.g. dedicated DSP blocks, scalable adder structures, LUT resources, memory resource
(distributed RAM, LUT RAM, registers)) and interconnection (e.g. high-speed Rocket
IO, various forms of programmable interconnect). The aim is to match these resources
to the computational needs, which we will do here based initially on performance and
then trading off area, if throughput is exceeded.

In DSP processors, the fixed nature of the architecture is such that efficient DSP com-
pilers have evolved to allow high-level or C language algorithmic descriptions to be com-
piled, assembled and implemented onto the platform. Thus, the implementation target
is to investigate if the processing resources will allow one iteration of the algorithm to
be computed at the required sampling rate. This is done by allocating the processing
to the available resources and scheduling the computation in such a way as to achieve
the required sampling rate. In effect, this involves reusing the available hardware, but
we intend not to think about the process in these terms. In a FPGA implementation, an
immediate design consideration is to consider how many times we can reuse the hard-
ware and whether this allows us to achieve the sampling rate. This change of emphasis
in creating the hardware resource to match the performance requirements is the reason
for a key focus of the chapter.

8.2.1 Further Characterization

Latency is the time required to produce the output, y(n) for the corresponding x(n)
input. At first glance, this would appear to equate to the throughput rate, but as the com-
putation of y(n) = ax(n) shown in Figure 8.2 clearly demonstrates, this is not the case,
particularly if pipelining is applied. In Figure 8.2, the circuit could have three pipeline
stages and thus will produce a first output after three clock cycles, hence known as the
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Figure . Latency and throughput rate relationship for system y(n) = ay(n − 1)

latency; thereafter, it will produce an output once every cycle which is the throughput
rate.

The situation is complicated further in systems with feedback loops. For example,
consider the simple recursion y(n) = ay(n − 1) shown in Figure 8.2. The present out-
put y(n) is dependent on the previous output y(n − 1), and thus the latency determines
the throughput rate. This means now that if it takes three clock cycles to produce the
first output, then we have to wait three clock cycles for the circuit to produce each out-
put and, for that matter, enter every input. Thus it is clear that any technique such as
pipelining that alters both the throughput and the latency must be considered carefully,
when deriving the circuit architectures for different algorithms.

There are a number of optimizations that can be carried out in FPGA implementa-
tions to perform the required computation, as listed below. Whilst it could be argued
that parallelism is naturally available in the algorithmic description and not an optimiza-
tion, the main definitions here focus on exploitation within FPGA realization; a serial
processor implementation does not necessarily exploit this level of parallelism.

Parallelism can either naturally exist in the algorithm description or can be introduced
by organizing the computation to allow a parallel implementation. In Figure 8.3, we can

P1
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P3

P1

P2

P3

P1

(a) Single source 

(c) Sequential algorithm

(b) Multiple sources

P2 P3

Figure . Algorithms realizations using three processes P1, P2 and P3
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realize processes P1, P2 and P3 as three separate processors, PE1, PE2 and PE3, in all three
cases. In Figure 8.3(a) the processes are driven from a single source, in Figure 8.3(b)
they are from separate sources and in Figure 8.3(c) they are organized sequentially. In
the latter case, the processing is inefficient as only one processor will be used at any one
time, but it is shown here for completeness.

Interleaving can be employed to speed up computation, by sharing a number of pro-
cessors to compute iterations of the algorithm in parallel, as illustrated in Figure 8.4 for
the sequential algorithm of Figure 8.3(c). In this case, the three processors PE1, PE2 and
PE3 perform three iterations of the algorithm in parallel and each row of the outlined
computation is mapped to an individual processor, PE1, PE2 and PE3.

Pipelining is effectively another form of concurrency where processes are carried out
on separate pieces of data, but at the same time, as illustrated in Figure 8.5. In this case,
the three processes PE1, PE2 and PE3 are performed at the same time, but on different

Figure . Example of pipelining



Architecture Derivation for FPGA-based DSP Systems 

a

(b) Pipelined version (clock rate, 4 fc, and throughput rate, f )

(a) Original recursive computation (clock rate, fc, and throughput rate, f )

y

a y

z–1

Figure . Pipelining of recursive computations y(n) = ay(n − 1)

iterations of the algorithm. Thus the throughput is now given as tPE1
or tPE2

or tPE3
rather

than tPE1
+ tPE2

+ tPE3
as for Figure 8.3(c). However, the application of pipelining is lim-

ited for some recursive functions such as the computation y(n) = ay(n − 1) given in Fig-
ure 8.6. As demonstrated in Figure 8.6(a), the original processor realization would have
resulted in an implementation with a clock rate fc and throughput rate f . Application
of four levels of pipelining, as illustrated in Figure 8.6(b), results in an implementation
that can be clocked four times faster, but since the next iteration depends on the present
output, it will have to wait four clock cycles. This gives a throughput rate of once every
four cycles, indicating a nil gain in performance. Indeed, the flip-flop setup and hold
times now form a much larger fraction of the critical path and the performance would
actually have been degraded in real terms.

It is clear then that these optimizations are not a straightforward application of one
technique. For example, it may be possible to employ parallel processing in the final
FPGA realization and then employ pipelining within each of the processors. In Figure
8.6(b), pipelining did not give a speed increase, but now four iterations of the algo-
rithm can be interleaved, thereby achieving a fourfold improvement. It is clear that there
are a number of choices available to the designer to achieve the required throughput
requirements with minimal area requirements such as sequential versus parallel, trade-
off between parallelism/pipelining and efficient use of hardware sharing. The focus of
this chapter is on demonstrating how the designer can start to explore these trade-offs
in an algorithmic representation, by starting with an SFG or DFG description and then
carrying out manipulations with the aim of achieving improved performance.

. DSP Algorithm Representations

There are a number of ways of representing DSP algorithms, ranging from mathematical
descriptions, to block diagrams, right through to HDL descriptions of implementations.
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Figure . Various representations of simple DSP recursion y(n) = ay(n − 1) + x(n)

In this chapter, we concentrate on an SFG and DFG representation as a starting point for
exploring some of the optimizations briefly outlined above. For this reason, it is impor-
tant to provide more detail on SFG and DFG representations.

8.3.1 SFG Descriptions

The classical description of a DSP system is typically achieved using an SFG represen-
tation which is a collection of nodes and directed edges, where a directed edge (j, k)
denotes a linear transform from the signal at node j to the signal at node k. Edges are
usually restricted to multiplier, adder or delay elements. The classical SFG of the expres-
sion y(n) = ay(n − 1) + x(n) is given in Figure 8.7(a), while the block diagram is given in
Figure 8.7(b). The DFG representation shown in Figure 8.7(c) is often a more useful rep-
resentation for the retiming optimizations applied later in the chapter.

8.3.2 DFG Descriptions

In DFGs, nodes represent computations or functions and directed edges represent data
paths with non-negative numbers associated with them. Dataflow captures the data-
driven property of DSP algorithms where the node can fire (perform its computation)
when all the input data are available; this creates precedence constraints (Parhi 1999).
There is an intra-iteration constraint if an edge has no delay; in other words, the order
of firing is dictated by DFG arrow direction. The inter-iteration constraint applies if the
edge has one or more delays and will be translated into a digital delay or register when
implemented.

A more practical implementation can be considered for a three-tap FIR filter con-
figuration. The SFG representation is given in Figure 8.8. One of the transformations
that can be applied to SFG representation is that of transposition. This is carried out by
reversing the directions in all edges, exchanging input and output nodes whilst keeping
edge gains or edge delays unchanged as shown in Figure 8.8(b). The reorganized ver-
sion is shown in Figure 8.8(c). The main difference is that the dataflow of the x(n) input
has been reversed without causing any functional change to the resulting SFG. It will be
seen later that the SFG of Figure 8.8(c) is a more appropriate structure to which to apply
pipelining.

The dataflow representation of the SFG of Figure 8.8(b) is shown in Figure 8.9. In
Figure 8.9 the multipliers labeled as a0, a1 and a2 represent pipelined multipliers with
two levels of pipeline stages. The adders labeled as A0 and A1 represent pipelined adders
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Figure . SFG representation of three-tap FIR filter

with a pipeline stage of 1. The D labels represent single registers with size equal to the
wordlength (not indicated on the DFG representation). In this way, the dataflow descrip-
tion gives a good indication of the hardware realization; it is clear that it is largely an
issue of developing the appropriate DFG representation for the performance require-
ments needed. In the case of pipelined architecture, this is largely a case of applying
suitable retiming methodologies to develop the correct level of pipelining, to achieve
the performance required. The next section is devoted to retiming because, as will be
shown, recursive structures, i.e. those involving feedback loops, can present particular
problems.

y(n)

a0 a1 a2(2) (2) (2)

A0 A1

(1) (1)

D    Dx(n)

Figure . Simple DFG
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Table . FIR filter timing

Address LUT contents
Clock Input Node  Node  Node  Output

0 x(0) a0x(0) a0x(0) a0x(0) y(0)
1 x(1) a0x(1) a0x(1) + a1x(0) a0x(1) + a1x(0) y(1)
2 x(2) a0x(2) a0x(2) + a1x(1) a0x(2) + a1x(1) + a2x(0) y(2)
3 x(3) a0x(3) a0x(3) + a1x(2) a0x(3) + a1x(2) + a2x(1) y(3)
4 x(4) a0x(4) a0x(4) + a1x(3) a0x(4) + a1x(3) + a2x(2) y(4)

. Pipelining DSP Systems

One of the main goals in attaining an FPGA realization is to determine the levels of
pipelining needed. The timing of the data through the three-tap FIR filter of Figure 8.8(a)
for the nodes labeled (1), (2) and (3) is given in Table 8.1. We can add a delay to each
multiplier output as shown in Figure 8.8(a), giving the change in data scheduling shown
in Table 8.2. Note that the latency has now increased, as the result is not available for
one cycle. However, adding another delay onto the outputs of the adders causes fail-
ure, as indicated by Table 8.3. This is because the process by which we are adding these
delays has to be carried out in a systematic fashion by the application of a technique
known as retiming. Obviously, retiming was applied correctly in the first instance as it
did not change the circuit functionality but incorrectly in the second case. Retiming can
be applied via the cut theorem as described in Kung (1988).

8.4.1 Retiming

Retiming is a transformation technique used to move delays in a circuit without affecting
the input/output characteristics (Leiserson and Saxe 1983). Retiming has been applied
in synchronous designs for clock period reduction (Leiserson and Saxe 1983), power
consumption reduction (Monteiro et al. 1993), and logical synthesis. The basic process
of retiming is given in Figure 8.10 (Parhi 1999). For a circuit with two edges U and V
and 𝜔 delays between them, as shown in Figure 8.10(a), a retimed circuit can be derived
with 𝜔r delays as shown in Figure 8.10(b), by computing the 𝜔r value as

𝜔r(e) = 𝜔(e) + r(U) − r(V ), (8.1)

where r(U) and r(V ) are the retimed values for nodes U and V , respectively.

Table . Revised FIR filter timing

Address LUT contents
Clock Input Node  Node  Node  Output

0 x(0) a0x(0)
1 x(1) a0x(1) a1x(0) a0x(0) y(0)
2 x(2) a0x(2) a1x(1) + a1x(0) a0x(1) + a1x(0) y(1)
3 x(3) a0x(3) a1x(2) + a2x(1) a0x(2) + a1x(1) + a2x(0) y(2)
4 x(4) a0x(4) a1x(3) + a2x(2) a0x(3) + a1x(2) + a2x(1) y(3)
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Table . Faulty application of retiming

Address LUT contents
Clock Input Node  Node  Node  Output

0 x(0) a0x(0)
1 x(1) a0x(1) a0x(0)
2 x(2) a0x(2) a0x(1) + a1x(0) a0x(0) y(0)
3 x(3) a0x(3) a0x(2) + a1x(1) a0x(1) + a1x(0) + a2x(0)
4 x(4) a0x(4) a0x(3) + a1x(2) a0x(2) + a1x(1) + a2x(1)

Retiming has a number of properties which can be summarized as follows:

1. The weight of any retimed path is given by Equation (8.1).
2. Retiming does not change the number of delays in a cycle.
3. Retiming does not alter the iteration bound (see later) in a DFG as the number of

delays in a cycle does not change.
4. Adding the constant value j to the retiming value of each node does not alter the

number of delays in the edges of the retimed graph.

Figure 8.11 gives a number of examples of how retiming can be applied to the FIR filter
DFG of Figure 8.11(a). For simplicity, we have replaced the labels a0, a1, a2, A0 and A1
of Figure 8.9 by 2, 3, 4, 5 and 6, respectively. We have also shown separate connections
between the x(n) data source and nodes 2, 3 and 4; the reasons for this will be shown
shortly. By applying equation (8.1) to each of the edges, we get the following relationships
for each edge:

𝜔r(1 → 2) = 𝜔(1 → 2) + r(2) − r(1),
𝜔r(1 → 3) = 𝜔(1 → 3) + r(3) − r(1),
𝜔r(1 → 4) = 𝜔(1 → 4) + r(4) − r(1),
𝜔r(2 → 5) = 𝜔(2 → 5) + r(5) − r(2),
𝜔r(3 → 5) = 𝜔(3 → 5) + r(5) − r(3),
𝜔r(4 → 6) = 𝜔(4 → 6) + r(6) − r(4),
𝜔r(5 → 6) = 𝜔(5 → 6) + r(6) − r(5).

U V
ωR

U V

 r(U) r(V)

(a) Original SFG

(b) Retimed SFG

ω
Figure . Retiming example
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r(l) = –2, r(2) = –2, r(3) = –2, r(4) = –1, r(5) = –1, r(6) = 0

Figure . Retimed FIR filter

Using a retiming vector r(1) = −1, r(2) = −1, r(3) = −1, r(4) = −1, r(5) = 0, r(6) = 0
above, we get the following values:

𝜔r(1 → 2) = 0 + (−1) − (−1) = 0,
𝜔r(1 → 3) = 1 + (−1) − (−1) = 1,
𝜔r(1 → 4) = 2 + (−1) − (−1) = 2,
𝜔r(2 → 5) = 0 + (0) − (−1) = 1,
𝜔r(3 → 5) = 0 + (0) − (−1) = 1,
𝜔r(4 → 6) = 0 + (0) − (−1) = 1,
𝜔r(5 → 6) = 0 + (0) − (0) = 0.

This gives the revised diagram shown in Figure 8.11 which gives a circuit where each
multiplier has two pipeline delays at the output edge. A retiming vector could have been
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applied which provides one delay at the multiplier output, but the reason for this retim-
ing will be seen later. Application of an alternative retiming vector,

𝜔r(1 → 2) = 0 + (−2) − (−2) = 0,
𝜔r(1 → 3) = 1 + (−2) − (−2) = 1,
𝜔r(1 → 4) = 2 + (−1) − (−2) = 3,
𝜔r(2 → 5) = 0 + (−1) − (−2) = 1,
𝜔r(3 → 5) = 0 + (−1) − (−2) = 1,
𝜔r(4 → 6) = 0 + (0) − (−1) = 1,
𝜔r(5 → 6) = 0 + (0) − (−1) = 1,

namely r(1) = −1, r(2) = −1, r(3) = −1, r(4) = −1, r(5) = −1, r(6) = 0, gives the circuit
of Figure 8.11(c) which gives a fully pipelined implementation. It can be seen from this
figure that the application of pipelining to the adder stage required an additional delay,
D, to be applied to the connection between 1 and 4. It is clear from these two examples
that a number of retiming operations can be applied to the FIR filter. A retiming solution
is feasible if w ≥ 0 holds for all edges.

It is clear from the two examples outlined that retiming can be used to introduce inter-
iteration constraints to the DFG, manifested as a pipeline delay in the final FPGA imple-
mentation (Parhi 1999). However, the major issue would appear to be the determination
of the retiming vector which must be such that it moves the delays to the edges needed
in the DFG whilst at the same time preserving the viable solution, i.e. w ≥ 0 holds for
all edges. One way of determining the retiming vector is to apply a graphical methodol-
ogy to the DFG which symbolizes applying retiming. This is known as the cut-set or cut
theorem (Kung 1988).

8.4.2 Cut-Set Theorem

A cut-set in an SFG (or DFG) is a minimal set of edges which partitions the SFG into
two parts. The procedure is based upon two simple rules.

Rule 1: Delay scaling. All delays D presented on the edges of an original SFG may be
scaled by D′, where D′ → 𝛼D; the single positive integer 𝛼 is also known as the pipelining
period of the SFG. Correspondingly, the input and output rates also have to be scaled
by a factor of 𝛼 (with respect to the new time unit D′). Time scaling does not alter the
overall timing of the SFG.

Rule 2: Delay transfer (Leiserson and Saxe 1983). Given any cut-set of the SFG, which
partitions the graph into two components, we can group the edges of the cut-set into
inbound and outbound, as shown in Figure 8.12, depending upon the direction assigned
to the edges. The delay transfer rule states that a number of delay registers, say k, may be
transferred from outbound to inbound edges, or vice versa, without affecting the global
system timing.

Let us consider the application of Rule 2 to the FIR filter DFG of Figure 8.11(a). The first
cut is applied in Figure 8.13(a) where the DFG graph is cut into two distinct regions or
sub-graphs: sub-graph #1 comprising nodes 1, 2, 3 and 4; and sub-graph #2 comprising 5
and 6. Since all edges between the regions are outbound from sub-graph #1 to sub-graph
#2, a delay can be added to each. This gives Figure 8.13(b). The second cut splits the DFG
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Processor
1

Processor 
2

Outbound     Edge

Outbound     Edge

Inbound     Edge 

Cut

Figure . Cut-set theorem application

into sub-graph #3, comprising nodes 1, 2, 3 and 5, and sub-graph #4, comprising nodes
4 and 6. The addition of a single delay to this edge leads to the final pipelined design, as
shown in Figure 8.11(c).

These rules provide a method of systematically adding, removing and distributing
delays in an SFG and therefore adding, removing and distributing registers through-
out a circuit, without changing the function. The cut-set retiming procedure is then
employed, to cause sufficient delays to appear on the appropriate SFG edges, so that a
number of delays can be removed from the graph edges and incorporated into the pro-
cessing blocks, in order to model pipelining within the processors; if the delays are left
on the edges, then this represents pipelining between the processors.

Of course, the selection of the original algorithmic representation can have a big
impact on the resulting performance. Take, for example, the alternative version of the
SFG shown initially in Figure 8.8(c) and represented as a DFG in Figure 8.14(a); apply-
ing an initial cut-set allows pipelining of the multipliers as before, but now applying the
cut-set between nodes 3 and 5, and nodes 4 and 6, allows the delay to be transferred,
resulting in a circuit architecture with fewer delay elements as shown in Figure 8.14(c).

8.4.3 Application of Delay Scaling

In order to investigate delay scaling, let us consider a recursive structure such as the
second-order IIR filter section given by

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + b1y(n − 1) + b2y(n − 2) (8.2)

1
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2DD
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Sub-graph 2
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4
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DD D 

2D
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# 3
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# 4

6

(a) First cut-set (b) Second cut-set

Figure . Cut-set timing applied to FIR filter
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Figure . Cut-set timing applied to FIR filter

The block diagram and the corresponding DFG is given in Figures 8.15(a) and 8.15(b),
respectively. The target is to apply pipelining at the processor level, thereby requir-
ing a delay D on each edge. The problem is that there is not sufficient delay in the
2 → 3 → 2 loop to apply retiming. For example, if the cut shown in the figure were
applied, this would end up moving the delay on edge 3 → 2 to edge 2 → 3. The issue is

ynun

b1b2       

z–1z–1
3

2D

D
4

21

(a) Block diagram (b) DFG

Figure . Second-order IIR filter
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Figure . Pipelining of a second-order IIR filter. Source: Parhi 1999. Reproduced with permission of
John Wiley & Sons.

resolved by applying time scaling, by working out the worse-case pipelining period, as
defined by

𝛼c =
Bc
Dc

, (8.3)

𝛼 = max 𝛼c. (8.4)

In equation (8.3), the value Bc refers to the delays required for processor pipelining
and the value Dc refers to the delays available in the original DFG. The optimal pipelining
period is computed using equation (8.4) and is then used as the scaling factor. There are
two loops as shown, giving a worst-case loop bound of 2. The loops are given in terms
of unit time (u.t.) steps:

1 → 2 → 4 → 1 (3u.t.)
2 → 3 → 2 (2u.t.)
Loopbound#1(3∕2 = 1.5u.t.)
Loopbound#2(2∕1 = 2u.t.).

The process of applying the scaling and retiming is given in Figure 8.16. Applying a
scaling of 2 gives the retimed DFG of Figure 8.16(a). Applying the cut shown in the figure
gives the modified DFG of Figure 8.16(b) which then has another cut applied, giving the
DFG of Figure 8.16(c). Mapping of the delays into the processor and adding the numbers
to show the pipelining level gives the final pipelined IIR recursion in Figure 8.16(d).
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Table . Retiming performance in the Xilinx Virtex-5

Area Throughput

Circuit DSP Flip-flops Clock (MHz) Data rate (MHz)

Figure 8.15(b) 2 20 176 176
Figure 8.16(d) 2 82 377 188

The final implementation has been synthesized using the Xilinx Virtex-5 FPGA and
the synthesis results can be viewed for the circuits of Figure 8.15(b) and Figure 8.16(d)
in Table 8.4.

8.4.4 Calculation of Pipelining Period

The previous sections have outlined a process for first determining the pipelining period
and then allowing scaling of this pipelining period to permit pipelining at the processor
level. This is the finest level of pipelining possible within FPGA technology, although, as
will be seen in Chapter 13, adding higher levels of pipelining can be beneficial for low-
power FPGA implementations. However, the computation of the pipelining period was
only carried out on a simple example of an IIR filter second-order section, and therefore
much more efficient means of computing the pipelining period are needed. A number of
different techniques exist, but the one considered here is the longest path matrix algo-
rithm (Parhi 1999).

8.4.5 Longest Path Matrix Algorithm

A series of matrices is constructed and the iteration bound is found by examining the
diagonal elements. If d is the number of delays in DFG, then create L(m) matrices, where
m = 1, 2,… , d, such that element l1

1,j is the longest path from delay element d which
passes through exactly m − 1 delays (not including di and dj); if no path exists, then
l1
i,j = −1. The longest path can be computed using the Bellman–Ford or Floyd–Warshall

algorithm (Parhi 1999).
Example 1. Consider the example given in Figure 8.17. Since the aim is to produce

a pipelined version of the circuit, we have started with the pipelined version indicated
by the (l) expression included in each processor. This can be varied by changing the
expression to (0) if the necessary pipelining is not required, or to a higher value, e.g.

(1)

1

3

(1) (1) (1)

2 4D D D
d3d2d1

Figure . Simple DFG example (Parhi 1999)
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(2) or (3), if additional pipelined delays are needed in the routing to aid placement and
routing or for low-power implementation.

The first stage is to compute the L(m) matrices, beginning with L(1). This is done by
generating each term, namely l1

i,j, which is given as the path from delay di through to dj.
For example, d1 to d1 passes through either 1 (d1 → d2 → 2 → 3 → 1 → d1) or 2 delays
(d1 → d2 → 2 → d4 → 1 → d1), therefore l1

( 1, 1) = −1. For l1
3,1, the path d3 to d1 passes

through nodes (4) and (1), giving a delay of 2; therefore, l1
3,1 = 2. For l1

2,1, the path d2 to
d1 passes through nodes (2), (3) and (1), therefore l1

2,1 = 3. This gives the matrix

⎛⎜⎜⎜⎝
−1 0 −1

7 −1 3
3 −1 −1

⎞⎟⎟⎟⎠ .
The higher-order matrices do not need to be derived from the DFG. They can be recur-

sively computed as

lm+1
i,j = max

k∈K
(−1, l1

i,j + lm
k,j),

where K is the set of integers k in the interval [1, d] such that neither l1
i,k = −1 nor

lm
i,k = −1 holds. Thus for l2

1,1 we can consider K = 1, 2, 3 but K = 1, 3 include −1, so only
K = 2 is valid. Thus

l2
1,1 = max

k∈3
(−1, 0 + 7).

The whole of L(2) is generated is this way as shown below:

⎛⎜⎜⎜⎝
−1 0 −1

7 −1 3
3 −1 −1

⎞⎟⎟⎟⎠
L(1)

⎛⎜⎜⎜⎝
−1 0 −1

7 −1 3
3 −1 −1

⎞⎟⎟⎟⎠
L(1)

=
⎛⎜⎜⎜⎝

7 −1 3
6 7 −1

−1 3 −1

⎞⎟⎟⎟⎠
L(2)

.

While L(2) was computed using only L(1), the matrix L(3), is computed using both L(1)

and L(2) as shown below, with the computation for each element given as

l3
i,j = max

k∈K
(−1, l1

i,j + l2
k,j)

as before. This gives the computation of L(3) as

⎛⎜⎜⎜⎝
−1 0 −1

7 −1 3
3 −1 −1

⎞⎟⎟⎟⎠
L(1)

⎛⎜⎜⎜⎝
7 −1 3
6 7 −1

−1 3 −1

⎞⎟⎟⎟⎠
L(2)

=
⎛⎜⎜⎜⎝

6 7 −1
14 6 10
10 −1 6

⎞⎟⎟⎟⎠
L(3)

.
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Once the matrix L(m) is created, then the iteration bound can be determined from the
equation

T∞ = max
i,m∈1,2,…,D

{
lm
1,l
m

}
. (8.5)

In this case, m = 3 as there are three delays, therefore L(3) represents the final iteration.
For this example, this gives

T∞ =
{7

2
, 7

2
, 6

3
, 6

3
, 6

3

}
.

Example 2. Consider the lattice filter DFG structure given in Figure 8.18(a). Once
again, a pipelined version has been chosen by selecting a single delay (1) for each pro-
cessor.
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Figure . Lattice filter



 FPGA-based Implementation of Signal Processing Systems

The four possible matrix values are determined as follows:

D1 → M3 → A3 → D1
D1 → A4 → D2 and D1 → M4 → A3 → M3 → A4 → D2
D2 → M2 → A1 → A3 → D1
D2 → M2 → A1 → A3 → M2 → A4 → D2,

thereby giving(2 4
3 5

)
.

The higher-order matrix L2 is then calculated as shown below:(
2 4
3 5

)
L(1)

(
2 4
3 5

)
L(1)

=
(

7 9
8 10

)
L(2)

This gives the iteration bound

T∞ = max
i,m∈1,2

{
lm
1,l
m

}
. (8.6)

For this example, this gives

T∞ =
{2

1
, 5

1
, 7

2
, 10

2

}
= 5.

Applying this scaling factor to the lattice filter DFG structure of Figure 8.18(b) gives
the final structure of Figure 8.18(c), which has pipelined processors as indicated by the
(1) expression added to each processor. This final circuit was created by applying delays
across the various cuts and applying retiming at the processor level to transfer delays
from input to output.

. Parallel Operation

The previous section has highlighted methods to allow levels of pipelining to be applied
to an existing DFG representation, mostly based on applying processor-level pipelining
as this represents the greatest level applicable in FPGA realizations. This works on the
principle that increased speed is required, as demonstrated by the results in Table 8.4,
and more clearly speed improvements with FIR filter implementations. Another way
to improve performance is to parallelize up the hardware (Figure 8.19). This is done by
converting the SISO system such as that in Figure 8.19(a) into a MIMO system such as
that illustrated in Figure 8.19(b).

This is considered for the simple FIR filter given earlier. Consider the four-tap delay
line filter given by

y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + a3x(n − 3). (8.7)
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xk yk
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(a) SISO (b) MIMO

Figure . Manipulation of parallelism

Assuming blocks of two samples per clock cycle, we get the following iterations per-
formed on one cycle:

y(k) = a0x(k) + a1x(k − 1) + a2x(k − 2) + a3x(k − 3),
y(k + 1) = a0x(k + 1) + a1x(k) + a2x(k − 1) + a3x(k − 2).

In these expressions, two inputs, x(k) and x(k + 1), are processed and corresponding
outputs, y(k) and y(k + 1), produced at the same rate. The data are effectively being pro-
cessed in blocks and so the process is known as block processing, where k is given as the
block size. Block diagrams for the two cycles are given in Figure 8.20. Note that in these
structures any delay is interpreted as being k delays as the data are fed at twice the clock
rate. As the same data are required at different parts of the filter at the same time, this
can be exploited to reduce some of the delay elements, resulting in the circuit of Figure
8.20(b).

The FIR filter has a critical path of TM + (N − 1)TA where N is the number of filter taps
which determines the clock cycle. In the revised implementation, however, two samples
are being produced per cycle, thus the throughput rate is 2/TM + (N − 1)TA. In this way,
block size can be varied as required, but this results in increased hardware cost.

Parhi (1999) introduced a technique where the computation could be reduced by
reordering the computation as

y(k) = a0x(k) + a2x(k − 2) + z−1(a1x(k + 1) + a3x(k − 1)).

By creating two tap filters, given as y(1k) = a0x(k) + a2x(k − 2) and y(2k) = a1x(k + 1) +
a3x(k − 1), we recast the expressions for y(k) and y(k + 1) as

y(k) = y(1k) + z−1(y(2(k + 1))),

y(k + 1) = (a0 + a1)(x(k + 1) + x(k)) + (a2 + a3)(x(k − 1) + x(k − 2))
− a0x(k) − a1x(k + 1) − a2x(k − 2) − a3x(k − 1).

This results in a single two-tap filter given in Figure 8.21, comprising a structure with
coefficients a0 + a1 and a2 + a3, thereby reducing the complexity of the original four-
tap filter. It does involve the subtraction of two terms, namely y(k) and y(2k + 1), but
these were created earlier for the computation of y(k). The impact is to reduce the over-
all multiplications by two at the expense of one addition/subtraction. This is probably
not as important for an FPGA implementation where multiplication cost is comparable
to addition for typical wordlengths. More importantly, though, the top and bottom fil-
ters are reduced in length by 2(N∕2) taps and an extra 2 − (N∕2)-tap filter is created to
realize the first line in each expression. In general terms, filters have been halved, thus



 FPGA-based Implementation of Signal Processing Systems

a3

yk

a2a0 a1

xk  xk–1 xk–2 xk–3

a3

yk+1

a2a0 a1

xk+1 xk xk–1 xk–2

(a) Two iterations

a3

yk

a2

a3

         xk+1 xk–1

         xk xk–2

yk+1

a2

Not needed 
but shown for
completeness

a0 a1

a0 a1

(b) Combined operation

Figure . Block FIR filter

the critical path is given as TM + (N∕2)TA + 3TA with three adders, one to compute
x(k) + x(k + 1), one to subtract y(1k) and one to subtract y(2(k + 1)):

y(k + 1) = (a0 + a1)(x(k + 1) + x(k)) + (a2 + a3)(x(k − 1) + x(k − 2))
−y(1k) − y(2(k + 1)).
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Figure . Reduced block-based FIR filter

8.5.1 Unfolding

The previous section indicated how we could perform parallel computations in blocks.
Strictly speaking, this is known as a transformation technique called unfolding, which
is applied to a DSP program to create a new program that performs more than one
iteration of the original program. It is typically described using an unfolding factor J
which describes the number of iterations by which it is unfolded. For example, consider
unfolding the first-order IIR filter section, y(n) = x(n) + by(n − 1) by three, giving the
expressions below:

y(k) = x(k) + by(k − 1),
y(k + 1) = x(k + 1) + by(k),
y(k + 2) = x(k + 2) + by(k + 1).

The SFG and DFG representation is given in Figure 8.22(a), where the adder is replaced
by processor A and the multiplier by B. The unfolded version is given in Figure 8.22(b),
where A0, A1 and A2 represent the hardware for computing the three additions and B0,
B1 and B2 that for computing the three multiplications. With unlooped expressions, each
delay is now equivalent to three clock cycles. For example, the previous value needed at
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Figure . Unfolded first-order recursion

processor B0 is y(n − 1) which is generated by delaying the output of A0, namely y(n +
2), by an effective delay of 3. When compared with the original SFG, the delays would
appear to have been redistributed between the various arcs for A0 − B0, A1 − B1 and
A2 − B2.

An algorithm for automatically performing unfolding is based on the fact that the kth
iteration of the node U(i) in the J-unfolded DFG executes the J(k + i)th iteration of the
node U in the original DFG (Parhi 1999):

1. For each node U in the original DFG, draw the J nodes U(0), U(1),… , U(J − 1).
2. For each edge U → V with 𝜔 delays in the original DFG, draw the J edges U(i) →

V (i + 𝜔)∕J with (i + w%J) delays for i = 0, 1,… , J − 1, where % is the remainder.

Consider the FIR filter DFG, a DFG representation of the FIR filter block diagram of
Figure 8.23(a). Computations of the new edges in the transformed graphs, along with
the computation of the various delays, are given below for each edge:

X0 → A(0 + 0)%2 = A(0), Delay = ⌊0∕2⌋ = 0
X1 → A(1 + 0)%2 = A(1), Delay = ⌊1∕2⌋ = 0
X0 → B(0 + 1)%2 = B(1), Delay = ⌊1∕2⌋ = 0
X1 → B(1 + 1)%2 = A(2), Delay = ⌊2∕2⌋ = 1
X0 → C(0 + 2)%2 = C(0), Delay = ⌊2∕2⌋ = 1
X1 → C(1 + 2)%2 = C(1), Delay = ⌊3∕2⌋ = 1
X0 → D(0 + 3)%2 = D(1), Delay = ⌊3∕2⌋ = 1
X1 → D(1 + 3)%2 = D(0), Delay = ⌊4∕2.⌋ = 2

This gives the unfolded DFG of Figure 8.23(b) which equates to the folded circuit given
in Figure 8.23(a).

8.5.2 Folding

The previous section outlined a technique for a parallel implementation of the FIR filter
structure. However, in some cases, there is a desire to perform hardware sharing, i.e.
folding, to reduce the amount of hardware by a factor, say k, and thus also reduce the
sampling rate. Consider the FIR filter block diagram of Figure 8.24(a). By collapsing the
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filter structure onto itself four times, i.e. folding by four, the circuit of Figure 8.24(b) is
derived. In the revised circuit, the hardware requirements have been reduced by four
with the operation scheduled onto the single hardware units, as illustrated in Table 8.5.

The timing of the data in terms of the cycle number number is given by 0, 1, 2 and 3,
respectively, which repeats every four cycles (strictly, this should by k, k + 1, k + 2 and

(a) Folded FIR filter section (b) Folded circuit
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Figure . Folded FIR filter section
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Table . Scheduling for Figure 8.24(b)

Cycle Adder Adder Adder System
clock input input output output

0 a3 0 a3x(0) y(3)′′′
1 a2 0 a2x(0) y(2)′′
2 a1 0 a1x(0) y(1)′
3 a0 0 a0x(0) y(0)
4 a3 0 a3x(1) y(4)′′′
5 a2 a2x(1) a2x(1) + a3x(0) y(3)′′
6 a1 a1x(1) a1x(1) + a2x(0) y(2)′
7 a0 a0x(1) a1x(1) + a2x(0) y(1)
8 a3 0 a3x(2) y(5)′′′
9 a2 a2x(1) + a3x(0) a2x(1) + a2x(1) + a3x(0) y(4)′′

k + 3). It is clear from the table that a result is only generated once every four cycles, in
this case on the 4th, 8th, ..., cycle. The partial results are shown in brackets as they are
not generated as an output. The expression y(3)′′′ signifies the generation of the third
part of y(3), y(3)′′ means the second part of y(3), etc.

This folding equation is given by

DF (U
e
→ V ) = Nw(e) − Pu + v − u, (8.8)

where all inputs of a simplex component arrive at the same time and the pipelining levels
from each input to an output are the same (Parhi 1999). In equation (8.8), w(e) is the
number of delays in the edge U

e
→ V , N is the pipelining period, Pu is the pipelining

stages of the Hu output pin, and u and v are folding orders of the nodes U and V that
satisfy 0 ≤ u, v ≤ N − 1. Consider the edge e connecting the nodes U and V with w(e)
delays shown in Figure 8.25(a), where the nodes U and V may be hierarchical blocks.
Let the executions of the ith iteration of the nodes U and V be scheduled at time units
NL + u and NL + v respectively, where u and v are folding orders of the nodes U and V
that satisfy 0 ≤ u, v ≤ N − 1.

The folding order of a node is the time partition to which the node is scheduled to exe-
cute in hardware (Parhi 1999). Hu and Hv are the functional units that execute the nodes
U and V , respectively. N is the folding factor and is defined as the number of operations
folded onto a single functional unit. Consider the lth iteration of the node U . If the Hu
output pin is pipelined by Pu stages, then the result of the node U is available at the
time unit Nl + u + Pu, and is used by the (l + w(e))th iteration of the node V . If the min-
imum value of the data time format of Hu input pin is Av, this input pin of the node V is
executed at N(l + w(e)) + v + Av. Therefore, the result must be stored for DF (U

e
→ V ) =

[N(l + w(e)) + v + Av]−[Nl + Pu + Av + u] time units. The path from Hu to Hv needs

U w(e)D V HU PUD HV
DF(U? V) ..Nl+v+Av

(a) An edge U → U with w(e) delays (b) Corresponding folded data path

Figure . Folding transformation
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D′

F (U
e
→ V ) delays, and data on this path are inputs Hv at Nl + v + Av, as illustrated in

Figure 8.25(b). Therefore, the folding equation for hierarchical complexity component
is given by

DF (U
e
→ V ) = Nw(e) − Pu + Av + v − u. (8.9)

This expression can be systematically applied to the block diagram of Figure 8.25(a) to
derive the circuit of Figure 8.25(b). For ease of demonstration, the DFG of Figure 8.26(a)
is used. In the figure, an additional adder, H has been added for simplicity of folding. In
Figure 8.26(a), we have used a number of brackets to indicate the desired ordering of
the processing elements. Thus, the goal indicated is that we want to use one adder to
implement the computations a3x(n), a2x(n), a1x(n) and a0x(n) in the order listed. Thus,
these timings indicate the schedule order values u and v. The following computations
are created as below, giving the delays and timings required as shown in Figure 8.26(a):

DF(A→H) = 4(0) − 0 + 0 − 0 = 0
DF(B→E) = 4(0) − 0 + 1 − 1 = 0
DF(C→F) = 4(0) − 0 + 3 − 3 = 0
DF(D→G) = 4(0) − 0 + 4 − 4 = 0
DF(H→E) = 4(1) − 0 + 1 − 2 = 3
DF(E→F) = 4(1) − 0 + 2 − 3 = 3
DF(F→G) = 4(1) − 0 + 3 − 4 = 3.

Figure 8.27(a) shows how a reverse in the timing ordering leads to a slightly different
folded circuit in Figure 8.27(b) where the delays on the feedback loop have been changed
and the timings on the multiplexers have also been altered accordingly. This example
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demonstrates the impact of changing the time ordering on the computation. The various
timing calculations are shown below:

DF(A→H = 4(0) − 0 + 0 − 0 = 0
DF(B→E = 4(0) − 0 + 2 − 2 = 0
DF(C→F = 4(0) − 0 + 1 − 1 = 0
DF(D→G = 4(0) − 0 + 3 − 3 = 0
DF(H→E = 4(0) − 0 + 0 − 2 = 2
DF(E→F = 4(0) − 0 + 2 − 1 = 5
DF(F→G = 4(0) − 0 + 1 − 3 = 2.

The example works on a set of order operations given as (1), (3), (2) and (4), respectively,
and requires two different connections between adder output and input with different
delays, namely 3 and 6.

The application of the technique becomes more complex in recursive computations,
as demonstrated using the second-order IIR filter example given in Parhi (1999). In this
example, the author demonstrates how the natural redundancy involved when a recur-
sive computation is pipelined, can be exploited to allow hardware sharing to improve
efficiency.

. Conclusions

The chapter has briefly covered some techniques for mapping algorithmic descriptions,
in the form of DFGs, into circuit architectures. The initial material demonstrates how
we could apply delay scaling to first introduce enough delays into the DFGs to allow
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retiming to be applied. This translates to FPGA implementations where the number of
registers can be varied as required.

In the design examples presented, a pipelining of 1 was chosen as this represents the
level of pipelining possible in FPGAs at the processor level. However, if you consider
the Xilinx DSP48E2 or the Altera DSP block as a single processing unit, these will allow
a number of layers of pipelining as outlined in Chapter 5. Mapping to these types of
processor can then be achieved by altering the levels of pipelining accordingly, i.e. by
ensuring inter-iteration constraints on the edges which can then be mapped into the
nodes to represent pipelining. The delays remaining on the edges then represent the
registers needed to ensure correct retiming of the DFGs.

The chapter also reviews how to incorporate parallelism into the DFG representation,
which again is a realistic optimization to apply to FPGAs, given the hardware resources
available. In reality, a mixture of parallelism and pipelining is usually employed in order
to allow the best implementation in terms of area and power that meets the throughput
requirement.

These techniques are particularly suitable in generating IP core functionality for spe-
cific DSP functionality. As Chapter 11 illustrates, these techniques are now becoming
mature, and the focus is moving to creating efficient system implementations from high-
level descriptions where the node functionality may already have been captured in the
form of IP cores. Thus, the rest of the book concentrates on this higher-level problem.
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Complex DSP Core Design for FPGA

. Introduction

It is feasible to incorporate many billions of gates on a single chip, permitting extremely
complex functions to be built as a complete SoC. This offers advantages of lower power,
greater reliability and reduced cost of manufacture and has enabled an expansion of
FPGA capabilities with devices such as Altera’s Stratix® 10 and Xilinx’s UltraScaleTM

FPGA families. With their vast expanse of usable logic comes the problem of imple-
menting increasingly complex systems on these devices.

This problem has been coined the “design productivity gap” (ITRS 1999) and has
increasingly become of major concern within the electronics industry. Whilst Moore’s
law predicts that the number of available transistors will grow at a 58% annual growth
rate, there will only be a 21% annual growth rate in design productivity. This highlights
a divergence that will not be closed by incremental improvements in design productiv-
ity. Instead a complete shift in the methodology of designing and implementing multi-
million-gate chips is needed that will allow designers to concentrate on higher levels of
abstraction within the designs.

As the silicon density increases, the design complexity increases at a far greater rate
since silicon systems are now composed of more facets of the full system design and
may combine components from a range of technological disciplines. Working more
at the system level, designers become more heavily involved with integrating the key
components without the freedom to delve deeply into the design functionality. Existing
design and verification methodologies have not progressed at the same pace, conse-
quently adding to the widening gap between design productivity and silicon fabrication
capacity.

Testing and verification have become a major aspect of electronic design. Verification
of such complex systems has now become the bottleneck in system-level design as the
difficulties scale exponentially with the chip complexity. Design teams may often spend
as much as 90% of their development effort on block or system-level verification (Rowen
2002). Verification engineers now often outnumber design engineers. There are many
design and test strategies being investigated to develop systems to accelerate chip testing
and verification. With the increasing level of components on a single piece of silicon
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there is an increasing risk involved in the verification of the device. Added to this is the
increased difficulty in testing design components integrated from a third party. So much
more is at stake, with both time and monetary implications. The industry consensus on
the subject is well encapsulated by Rowen (2002): “Analysts widely view earlier and faster
hardware and software validation as a critical risk-reducer for new product development
projects.”

This chapter will cover the evolution of reusable design processes, concentrating on
FPGA-based IP core generation. Section 9.2 discusses design for reuse, and Section 9.3
goes on to to talk about reusable IP cores. Section 9.4 discusses the evolution of IP cores,
and Section 9.5 goes on to talk about parameterizable IP cores. Section 9.6 describes
IP core integration and Section 9.7 covers current FPGA-based IP cores. Section 9.8
presents watermarking. Concluding comments are made in Section 9.9.

. Motivation for Design for Reuse

There is a need to develop design and verification methodologies that will accelerate the
current design process so that the design productivity gap will be narrowed (Bricaud
2002). To enable such an achievement, a great effort is needed to research the mechanics
of the design, testing and verification processes, an area that to date has so often has
been neglected. Design for reuse is heralded to be one of the key drivers in enhancing
productivity, particularly aiding system-level design.

In addition to exponentially increased transistor counts, the systems themselves have
become increasingly complex due to the combination of complete systems on a single
device, with component heterogeneity bringing with it a host of issues regarding logic
design and, in particular, testing and verification. Involving full system design means
that designers need to know how to combine all the different components building up
to a full system-level design. The sheer complexity of the full system design impacts the
design productivity and creates ever more demanding time-to-market deadlines. It is
a multidimensional problem trying to balance productivity with design issues such as
power management and manufacturability.

Design productivity can be enhanced by employing design-for-reuse strategies
throughout the entire span of the project development from initial design through to
functional testing and final verification. By increasing the level of abstraction, the design
team can focus on pulling together the key components of the system-level design, using
a hierarchical design approach.

The 2005 International Technology Roadmap for Semiconductors report covers the
need for design for reuse in great depth (ITRS 2005). To increase overall productiv-
ity and keep pace with each technology generation, the amount of reuse within a system
design must increase at the same rate, and the level of abstraction must rise. A summary
of one of the tables is given in Table 9.1. Productivity gains by employing reuse strate-
gies for high-level functional blocks are estimated to exceed 200% (ITRS 2005). These
reusable components need to be pre-verified with their own independent test harness
that can be incorporated into the higher-level test environment. This can be achieved
by incorporating IP cores from legacy designs or third-party vendors. The need for such
cores has driven the growth of an IP core market, with ever greater percentages of chip
components coming from IP cores.
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Table . SoC design productivity trends (normalized to 2005)

    

Design needed to be reused (%) 58 66 74 82 90
Trend SoC total logic size 5.5 8.5 13.8 20.6 34.2
Required productivity for new designs 4.6 6.7 10.2 14.3 22.1
Required productivity for reused designs 9.2 13.5 20.4 28.6 44.2

In 2006, the ITRS reported that the percentage of logic from reused blocks was at 33%,
and this figure is expected to reach 90% by 2020. It is hard to determine if this ambitious
target will be achieved, but in 2016 the Design & Reuse website (http://www.design-
reuse.com/) boasted 16,000 IP cores from 450 vendors. Thus there seems to be an active
community involved in producing IP cores but, of course, this does not translate into
reuse activity.

The discussion to date regarding design for reuse has focused on ASIC design. How-
ever, some of the key concerns are becoming increasingly relevant with FPGA design.
With the onset of microprocessors and other additional auxiliary components on an
FPGA, the drive is now for system-level design on a single device. With this advance
comes the need to drive design reuse methodologies for FPGA technologies and to close
the design productivity gap.

. Intellectual Property Cores

One of the most favorable solutions for enhancing productivity is the strategy of using
pre-designed functional blocks known as silicon IP cores. The term “IP core” applies
to a range of implementations ranging from hard cores, which are given in the form of
circuit layout, through to soft cores, which can be in the form of efficient code targeted
at programmable DSP or RISC processors, or dedicated cores captured in an HDL.

The flexibility inherent in DSP processor solutions has often been cited as a key rea-
son for their widespread use within industry, despite the obvious reduction in overall
performance criteria such as speed, area and power. At the other end of the spectrum
application-specific hardware designs provide unrivaled performance capabilities at the
cost of design flexibility.

Design-for-reuse methodologies provide the flexibility allowing designs targeted to
one project to be regenerated for another; the key is how to develop the initial design so
that high performance can be obtained meeting the changing needs of the project spec-
ifications. Within the realms of ASIC and FPGA implementations, IP cores are often
partitioned into three categories: hard, firm and soft. Hard IP refers to designs repre-
sented as mask layouts, whereas firm IP refers to synthesized netlists for a particular
technology. Soft IP refers to the HDL version of the core that will have scalability and
parameterization built in. For the latter, the term that has evolved is parameterizable IP.
They can be designed so that they may be synthesized in hardware for a range of spec-
ifications and processes. For DSP applications parameters such as filter tap size, DCT
point size, and wordlength may be made flexible (Ding et al. 1999). Parameters con-
trolling these features would be fed into the code during the synthesis, resulting in the
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desired hardware for the application. There are advantages and disadvantages with each
type of IP core, as shown in Figure 9.1.

Some flexibility can still be included from the outset in firm and hard IP devices. In
these cases, the IP parameters that define the core are termed static IP (Junchao et al.
2001), whereby registers internal to the final design can be set to allow a multiplexing of
internal circuits so as to reconfigure the functionality of the design. Reconfiguration has
been a subject of great interest for FPGAs, particularly with their increasing capabilities
(see Alaraje and DeGroat 2005).

In contrast, the IP parameters within soft IP cores are termed dynamic IP parameters.
They are often local or global parameters such as data widths, memory sizes and timing
delays. Control circuitry may also be parameterized, allowing scalability of the design.
Parameters may be set to allow the same primary code to optimize for different target
technologies from ASIC libraries to different FPGA implementations.

Many companies offer IP products based around DSP solutions, that is, where the IP
code is embedded onto DSP processors. This offers full flexibility, but with the obvious
reduction in performance in terms of area, power and speed. Texas Instruments and
particularly ARMTM are two examples of successful companies supplying chipsets with
supporting libraries of embedded components.

In a similar manner, there are now many companies delivering firm and soft IP cores.
Several FPGA companies not only sell the chips on which the user’s designs can be
implemented, but can also provide many of the fundamental building blocks needed
to create these designs. The availability of such varied libraries of functions and the
blank canvas of the FPGA brings great power to even the smallest design team. They
no longer have to rely on internal experts in certain areas, allowing them to concentrate
on the overall design, with the confidence that the cores provided by the FPGA vendors
have been tested through use by previous companies. The following list of current IP
vendors (Davis 2006) shows the diversity of IP products:

CEVA: The CEVA families of silicon IP cores are fully programmable low-power archi-
tectures for signal processing and communications (http://www.ceva-dsp.com/).

Barco-Silex: IP cores in RTL HDL form or netlist for cryptography functions including
AES, Data Encryption Standard (DES) and hashing, public key and video products
including JPEG 2000, JPEG, MPEG-2 and VC-2 LD (http://www.barco-silex.com).

OpenCores: OpenCores is the world’s largest site for development of hardware IP cores
as open source (www.opencores.org).
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Digital Blocks: VHDL and Verilog core for various network functionality includ-
ing UDP, IPv4, IPv6 and Transmission Control Protocol (TCP) (http://www.
digitalblocks.com/).

Within hard IP cores, components can be further defined (Chiang 2001), although
arguably the definitions could be applied across all variations of IP cores, with the pre-
silicon stage relating more to the soft IP core and the production stage relating to a
pre-implemented fixed design hard IP core:

Pre-silicon: Given a one-star rating if design verified through simulation.
Foundry verified: Given a three-star rating if verified on a particular process.
Production: Given a five-star rating if the core is production proven.

When developing IP, vendors often offer low-cost deals so as to attract system design-
ers to use their new product and prove its success. Once silicon proven, the product
offers a market edge over competing products.

. Evolution of IP cores

As technology advances, the complexity of the granularity of the cores blocks increases.
This section gives a summary of the evolution of IP cores.

Within the realms of ASICs, families of libraries evolved bringing a high level of
granularity to synthesis. At the lowest level the libraries define gated functions and
registers. With increased granularity, qualified functional blocks were available within
the libraries for functions such as UARTs, Ethernet and USBs. Meanwhile, within the
domain of DSP processors, companies such as TI were successfully producing software
solutions for implementation on their own devices.

The development of families of arithmetic functions is where the role of IP cores in
design for reuse for ASIC and FPGA designs came to play. It was a natural progression
from the basic building blocks that supported ASIC synthesis. The wealth of dedicated
research into complex and efficient ways of performing some of the most fundamental
arithmetic operations lent itself to the design of highly sophisticated IP cores operating
with appealing performance criteria.

Figure 9.2 illustrates the evolution of IP cores and how they have increased in complex-
ity, with lower-level blocks forming key components for the higher levels of abstraction.
The arithmetic components block shows a number of key mathematical operations, such
as addition, multiplication and division, solved and implemented using the techniques
described in Chapter 3. The list is far from conclusive.

With greater chip complexity on the horizon, arithmetic components became the
building blocks for the next level in the complexity hierarchy, for designs such as fil-
ter banks consisting of a large array of multiply and accumulate blocks. This led to the
development of fundamental DSP functions such as FFT and DCT. These examples are
matrix-based operations consisting of a large number of repetitive calculations that are
performed poorly in software. They may be built up from a number of key building
blocks based on multiply and accumulate operations.

The structured nature of the algorithms lends itself to scalability, allowing a number
of parameters to control the resulting architecture for the design. Obvious examples
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of parameters are wordlength and truncation. Other examples would be based on the
dimensions of the matrix operations, relating, for example, to the number of taps on a
filter. The work devoted to a single application could be expanded to meet the needs of
a range of applications.

Other more complicated foundation blocks were developed from the basic arithmetic
functions. More complicated filter-based examples followed such as adaptive filters
implemented by the rudimentary LMS algorithm or the more extravagant QR-RLS algo-
rithm (see Chapter 11). Highly mathematical operations lend themselves well to IP core
design. Other examples, such as FEC chains and encryption, whereby there is a highly
convoluted manipulation of values have also been immensely successful.

IP cores have now matured to the level of full functions that might previously have
been implemented on independent devices. Again there is an increased level of com-
plexity. Within image processing, the DCT is a key algorithm for JPEG and MPEG func-
tions. Each of these will be covered in more detail below.

9.4.1 Arithmetic Libraries

Figure 9.2 lists a number of basic mathematical operations, namely addition, multiplica-
tion, division and square root. The efficient hardware implementation of even the most
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basic of these, addition, has driven an area of research, breaking down the operations
to their lowest bit level of abstraction and cleverly manipulating these operations to
enhance the overall performance in terms of area, clock speed and output latency (Koren
1993). This subsection gives some detail on the choice of arithmetic components and
how parameters could be included within the code.

Fixed-Point and Floating-Point Arithmetic
The arithmetic operations may be performed using fixed-point or floating-point arith-
metic. With fixed-point arithmetic, the bit width is divided into a fixed-width magnitude
component and a fixed-width fractional component. Due to the fixed bit widths, over-
flow and underflow detection are vital to ensuring that the resulting values are accurate.
Truncation or rounding would be needed to protect against such problems.

With floating-point arithmetic, the numbers are stored in a sign–magnitude format.
The most significant bit represents the sign. The next component represents an expo-
nential value. Biasing is used to enable the exponent to represent very small and very
large number. The remaining data width is the mantissa, which represents the fractional
component of the number and is given the boundaries of greater than or equal to 1 but
less than 2. The greater flexibility of floating-point enables a wider range of achievable
values.

Although number representation within the data width differs for fixed-point and
floating-point design, there is overlap in how the main functionality of the operation
is performed, as illustrated for multiplication in Figure 9.3; there has been research into
automating the conversion from fixed-point to floating-point.

Addition, Multiplication, Division and Square Root
There has been an extensive body of work devoted to high-performance implementa-
tions of arithmetic components as indicated in Chapter 3. At was clear from the descrip-
tion given in Chapter 5, dedicated hardware functionality has been included in many

Operation Mantissa
operation 

Exponent
operation 

Fixed point Floating point

Similar operation 

Figure . Fixed- and floating-point operations
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FPGA families to support fixed-point addition/subtraction and multiplication and is
supported in high- level synthesis tools. Division and square root are more complex
techniques, and procedures for their implementation were described in Chapter 3. Most
FPGA vendors supply IP libraries to support such functions.

9.4.2 Complex DSP Functions

More complex DSP cores can be created from lower-level arithmetic modules as
illustrated in Figure 9.2, leading to the creation of systems for audio and video. For
example, FFT cores can be used to create OFDMA systems and a power modulation/
demodulation scheme for communications applications such as wireless (802.11a/g)
or broadcasting (DVB-T/H). DCT and wavelet cores are used for a wide range of
image processing cores, and LMS and RLS filtering cores applied to a range of adaptive
beamformers and echo cancelation systems.

9.4.3 Future of IP Cores

As the level of abstraction within the core building blocks in designs increases, the role
of the designer moves toward that of a system integrator, particularly with development
using current FPGA devices enabling full system functionality on a single device. For
the growth in IP core usage to continue, other aspects of the design flow will need to be
addressed. This has driven developments in higher-level languages along with associated
synthesis tools.

. Parameterizable (Soft) IP Cores

This section covers the development of parameterizable IP cores for DSP functions. The
starting point for the hardware design of a mathematical component may be the SFG
representation of the algorithm. Here, a graphical depiction of the algorithm shows the
components required within the design and their interdependence. The representation
could be at different levels, from the bit-level arithmetic operations through to the cell-
level functions.

Figure 9.4 shows the conventional design flow for a DSP-based circuit design, starting
from the SFG representation of the algorithm. If a certain aspect of the specification
were to be changed, such as wordlength, then the traditional full design flow would need
to be repeated. The development of the IP core where the HDL is parameterized allows
this flow to be dramatically altered, as shown in Figure 9.5.

The IP core design process needs to encompass the initial studies on data performance
on the effects of wordlength and truncation, etc. Effort is needed to ensure that opera-
tion scheduling would still be accurate if additional, pipeline stages are included. The aim
is for the parameterization of the core to lead seamlessly to a library of accurate cores
targeted to a range of specifications, without the need to alter the internal workings of
the code.

The system should effectively allow a number of parameters to be fed into the top level
of the code. These would then be passed down through the different levels of abstraction
of the code to the lowest levels. Obviously, considerable effort is needed at the archi-
tecture level to develop this parameterizable circuit architecture. This initial expense in
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terms of time and effort undoubtedly hinders the expanded use of design-for-reuse prin-
ciples. However, with this initial outlay great savings in company resources of time and
money may be obtained. The choice of design components on which to base further
designs and develop as IP is vitally important for this success. The initial expenditure
must, in the long run, result in a saving of resources.

Future design engineers need to be taught how to encompass a full design-for-reuse
methodology from the project outset to its close. The design process needs to consider
issues such as wordlength effects, hardware mapping, latency and other timing issues
before the HDL model of the circuit can be generated. The aspects that need to be con-
sidered create a whole new dimension to the design process, and designers need to keep
in mind reusability of whatever they produce whether for development or test purposes.

If a design is developed in a parameterized fashion then initial analysis stages can be
eliminated from the design flow, as illustrated in Figure 9.5, allowing additional circuits
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to be developed and floorplanned extremely quickly, typically in days as opposed to
months. This activity represents a clear market for IP core developers (Howes 1998) as
it can considerably accelerate the design flow for their customers. However, it requires
a different design approach on behalf of the IP core companies to develop designs that
are parameterizable and will deliver a quality solution across a range of applications.

9.5.1 Identifying Design Components Suitable for Development as IP

Within a company structure, it is vital that the roadmap is considered within the devel-
opment of IP libraries as there is a greater initial overhead when introducing design-for-
reuse concepts. Greater success can be achieved by taking an objective look at possible
future applications so that a pipeline of developments can evolve from the initial ground
work. If design for reuse is incorporated from the outset then there can be immense
benefits in the development of a library of functions from the initial design.

It is often possible to develop a family of products from the same seed design by includ-
ing parameterization in terms of wordlength and level of pipelining, and by allowing
scalability of memory resources and inputs.

Larger designs may need to be broken down into manageable sections that will form
the reusable components. This is particularly true for large design such as MPEG video
compression whereby a range of different applications would require slightly differ-
ent implementations and capabilities. By picking out the key components that remain
unchanged throughout the different MPEG profiles and using these as the key hard-
ware accelerators for all of the designs, vast improvements in time to market can be
made. Furthermore, existing blocks from previous implementations have the advantage
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of having been fully tested, particularly if they have gone to fabrication or deployment
on FPGA. Reusing such blocks adds confidence to the overall design. Existing IP cores
may also form the key building blocks for higher-level IP design, creating a hierarchical
design. These key points are illustrated in Figure 9.6.

9.5.2 Identifying Parameters for IP Cores

Identifying the key parameters when developing an IP core requires a detailed under-
standing of the range of implementations in which the core may be used. It is important
to isolate what variables exist within possible specifications. The aim is to create as much
flexibility in the design as possible, but only to the extent that the additional work will be
of benefit in the long run. Overparameterization of a design affects not only the develop-
ment but also the verification and testing time needed to ensure that all permutations
of the core have been considered. In other words, consider the impact on the design
time and design performance by adding an additional variable and weigh this up with
thoughts on how the added flexibility will broaden the scope of the IP core.

Figure 9.7 lists some of example parameters: modules/architecture, wordlength, mem-
ory, pipelining, control circuitry, and test environment. Aspects such as wordlength or
truncation can be parameterized. Other features can be used to allow full scalability,
such as scaling the number of taps in an FIR filter. The diagram highlights the flexibil-
ity of allowing different modules depending on the application, or enabling the level of
pipelining to be varied. Scalable parameters such as wordlength and level of pipelining
affect the timing and the operations of the IP core and therefore need to be accounted
for within initial development, so that the code can rapidly be re-synthesized for a new
architecture. This a key factor for the success of an IP core.

It is crucial that the resulting core has performance figures (in terms of area, power
and speed) comparable to a handcrafted design. As usual, the process comes down to
a balance between time and money resources and the performance criteria of the core.
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With time to market being a critical aspect to a product’s success, the continuing use of
IP components within the electronics industry has major benefits.

With further parameterization, cores can be developed to support a range of different
technologies enabling the same design to be re-targeted from ASIC to FPGA, as high-
lighted in Figure 9.7. Allowing the same code to be altered between the two technologies
has the obvious advantage of code reuse; however, it also allows for a verification frame-
work whereby cores are prototyped on FPGA and then the same code is re-targeted to
ASIC. There is obviously no guarantee that the code conversion from FPGA to ASIC
implementations will not in itself incur errors. However, the ability to verify the code on
a real-time FPGA platform brings great confidence to the design process and enables
even the functional design to be enhanced to better meet the needs of the specification.

Consideration must be given to the level of parameterization as it makes the design
more flexible and widens the market potential for the IP core. Gajski et al. (2000) high-
light the issue of overparameterization, as increasing the number of variables compli-
cates the task of verifying the full functionality of each permutation of the design. There
is also the aspect that designs have been made so generic that they may not match the
performance requirements for a specific application. Gajski et al. argue that increas-
ing the number of parameters decreases the quality and characterizability of the design,
that is to say, how well the design meets the needs of the user. There are also the added
complications with verification and testing. These points are highlighted in Figure 9.8.

An obvious parameter is wordlength, which ultimately represents the trade-off
between SNR and performance criteria such as area and critical path. Figure 9.9 gives
an illustration of such analysis by plotting SNR against a range of wordlengths. It can
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be seen that increasing the wordlength does not significantly improve the overall per-
formance. For addition an increase of one bit will linearly scale the area of the resulting
design, whereas it has an exponential effect for multiplication and division. As with area,
additional bits will affect critical path, possibly resulting in the need to introduce further
pipeline stages.

Existing designs may have relied on carefully crafted libraries of arithmetic functions
that were scalable in terms of bit width and level of pipelining, providing optimum per-
formance in terms of area and speed. However, the impact of introducing processing
blocks has a granular impact on area and performance when adjusting wordlengths.
Obviously, there will be a need to add parameters to allow the wordlengths to be varied
from the module boundary without having to manually edit the code.

Memory will also need to be scalable to account for the different wordlengths, but also
for variations in the number of inputs or stored values. In addition, flexibility will need
to be included within the code to allow different types of memory blocks to be employed
in accordance with the choice of target technology.

In Verilog, one of two solutions can be used. Either instantiations of BRAMs for the
target device can be scripted with DEFINEs at the top level of the code pointing to the
memory of choice. Alternatively, the code can be written in such a way as to “imply”
the application of a memory, which will be picked up during synthesis and will instanti-
ate the memories accordingly. However, slight improvements may be still be obtained if
the memory instantiations are hand-crafted but this will result in more complex code.

Signal to 
noise ratio 

(SNR)

Wordlength 

Negligible improvement 
in SNR 

Figure . Wordlength analysis
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Allowing flexibility in the data rate and associated clock rate performance for an appli-
cation requires the ability to vary the level of pipelining to meet critical path require-
ments. This may tie in to changes in the wordlength and often a variation in the number
if pipeline stages are to be part of the reusable arithmetic cores. Obviously, an increase
or decrease in the number of pipeline cuts in one module will have a knock-on effect
on timing for the associated modules and the higher level of hierarchy as discussed in
Chapters 8 and 10.

Thus, control over the pipeline cuts within the lower-level components must be acces-
sible from the higher level of the module design, so that lower-level code will not need
to be edited manually. Control circuitry is coupled strongly with the level of pipelining
and therefore must include some level of scalability to ensure that the design is totally
parameterizable.

An alternative method of developing parameterizable cores can be used to develop a
software code to automate the scripting of the HDL version of the module. This is par-
ticularly useful with Verilog as it does not have the same flexibility in producing scalable
designs as VHDL does.

Parameterized Design and Test Environment
All associated code accompanying the IP core should be designed with scalability in
mind. Bit-accurate C-models used for functional verification should have the capability
to vary bit widths to match the IP core. For cycle accurate testing, the timing must also
be considered. Testbenches and test data derivation are also required to be parameter-
izable, allowing for a fully automation generation of an IP core and it associated test
hardness. The use of software such as a C-model to generate the test hardness and test
data files may be advantageous in the development of the IP core. This is illustrated in
Figure 9.10.

9.5.3 Development of Parameterizable Features

Many of the IP designs applied for ASIC design can be expanded for FPGA implementa-
tions. Each family of devices has its own memory components and methods for instan-
tiating the built-in modules. The principle would be to design the code so as to allow
the core to be re-targeted at the top level to the family FPGA devices of choice. This
is particularly important as FPGAs are rapidly progressing, thus legacy code needs to
accommodate additions for future devices and packages.

Arithmetic Block Instantiation
One example of the variations between FPGA devices is memory blocks. Each family
has its own architecture for these blocks as outlined in Chapter 5. They can either be
instantiated directly, or the memories can be inferred by synthesis tools. The latter allows
the synthesis tool to pick up the memory blocks directly from the library and map the
register values to this memory or even to ROM blocks. This has obvious benefits in that
the code does not become FPGA family-specific.

There may still be a benefit in manually instantiating the memory blocks as a slight
improvement in usage of the blocks can sometimes be achieved. However, the code is
specified for the target device.
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Arithmetic Block Instantiation
Different target FPGAs may have variants of arithmetic operations available for the user.
Typically the FPGA will contain a number of high-performance DSP blocks for instan-
tiation. If the code is to be employed over a range of FPGA families and even between
FPGA and ASIC, then there needs to be a facility to define the operator choice at the top
level. Within Verilog, this would be done through the use of DEFINEs held in a top-level
file, allowing the user to tailor the design to their current requirements.

9.5.4 Parameterizable Control Circuitry

For complex modules, there may be a need to allow for scalable control circuitry, i.e. a
framework that will allow for the changes in parameters, such as the knock-on effect
from additional pipelining delays. Any increase in the number of inputs or wordlength
may have an effect on the scheduling and timing of the module. It may be possible to
develop the control circuitry to cope with these variations.

9.5.5 Application to Simple FIR Filter

This section concludes with an example of parametric design applied to a simple FIR
filter. The key parameters for the design will be highlighted and suggestions made
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concerning how they can be incorporated into the code. Recall the difference equation
for an FIR filter (equation (4.2)).

In this example, the FIR filter has three levels of hierarchy as depicted in Figure 9.11:
� Level 1: This is the top level of the filter structure with input x() and output y(n).
� Level 2: The top level of the FIR filter can be composed of a single DSP processing

block to compute a0x(n) followed by an addition.
� Level 3: This is the arithmetic operation level, consisting of a single multiply, add and

delay modules.

Another dimension of the design may be the folding of the FIR operations onto a
reduced architecture as described in Chapter 8 where the hardware modules (shown
as level 2 in Figure 9.11) are reused for different operations within the filter. Of course,
multiplexers and programmable register blocks need to be added, and in this example
all the MAC operations are performed on one set of multiplier and adder modules. The
multiplexers are used to control the flow of data from the output of the MAC opera-
tions and back into the arithmetic blocks. The choice of level of hardware reduction will
depend on the performance requirements for the application.

. IP Core Integration

One of the key challenges of successful design reuse is with the integration of the IP cores
within a user’s system design. This can often be a stumbling block within a development.
Investigations have been carried out to highlight these issues (Gajski et al. 2000), and
guidelines have been set out to try to standardize this process (Birnbaum 2001; Coussy
et al. 2001).

For the successful integration of an IP core into a current design project, certain design
strategies must be employed to make the process as smooth as possible. This section
highlights some of the pitfalls that might be met and provides some guidance when
dealing with IP core sources externally to the design team, whether within or outside
the company.
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One of the considerations that may need to be addressed is whether to outsource IP
components externally, or even source the IP from within a company or organization
but from different departments. Successful intra-company use of IP requires adequate
libraries and code management structures. Incorporating IP components from other
design teams can often be the main barrier slowing down the employment of design-
for-reuse strategies in system-level design.

9.6.1 Design Issues

Greater success can be obtained by taking an objective look at possible future appli-
cations so that a pipeline of developments can evolve from the initial ground work. If
design for reuse is incorporated from the outset then there can be immense benefits in
the development of a library of functions from the initial design.
� Need to determine the parts of the design that will be useful in future developments.
� What are possible future applications?
� Study the roadmap for the product.
� Is there a possibility of development of a family of products from the same seed

design?
� How can a larger design be partitioned into manageable re-usable sections?
� Find existing level of granularity, i.e. is there any previous IP available that could pro-

vide a starting level for development?

Outsourcing IP
One of the limiting factors of using outsourced IP is the lack of confidence in the IP. The
IP can be thought of as having different grades, with one star relating to a core verified by
simulation, and three stars relating to a core that has been verified through simulation
on the technology (i.e. a gate-level simulation). A five-star IP core provides the most
confidence as it has been verified through implementation (Chiang 2001).

FPGA vendors have collaborated with the IP design houses to provide a library of
functions for implementation on their devices. The backing of the FPGA vendors brings
a level of confidence to the user. The aspect of core reliability is not as crucial for FPGA
as it is for ASIC. However, it is still important. Time wasted on issues of IP integration
into the user’s product may be critical to the success of the project.

Certain questions could be answered to help determine the reliability of an IP vendor:
� Has the core been in previous implementations for other users?
� Do the company supply user guide and data book documentation?
� Does the core come supplied with its own testbench and some test data?
� Will the company supply support with the integration, and will this incur an added

cost?

In-house IP
For a small company within the same location, it would be a much easier task to share
and distribute internal IP. However, this task is logistically difficult for larger companies
spanning a number of locations, some of which may be affected by time zones as well as
physical distance.

It would be wise for the company to introduce a structure for IP core design and give
guidelines on the top-level design format. Stipulating a standard format for the IP cores
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could be worthwhile and create greater ease of integration. Forming a central repository
for the cores once they have been verified to an acceptable level would be necessary to
enable the company’s full access to the IP. Most companies already employ some method
of code management to protect their products.

Interface Standardization
IP integration is a key issue as it ensures IP reuse and core configurability. IP cores are
becoming more complex and configurable and can have numerous ports and hundreds
of different configurations. Thus the provision of standardized interfaces is vital and the
IP-XACT standard provides a mechanism for standardizing IP interfaces. It is now an
IEEE standard (IEEE 2014) and is a mechanism to express and exchange information
about design IP and its required configuration.

IP-XACT was developed by the Spirit consortium to enable sharing of standard com-
ponent descriptions from multiple component vendors (Murray and Rance 2015). It
defines an XML schema that is very easy to process and has the ability to make IP more
“integration-ready” through interface standardization. It is argued that it can result in a
30% improvement in the time and cost of SoC integration.

It allows the creation of an interface on the component that contains a well- known set
of ports called a bus interface; it can generally have high- level transactional or dataflow
characteristics and behave as master or slave and also have different variants like direc-
tion and size. Once defined, these bus definitions can be used in conjunction with IP-
XACT component descriptions to describe hardware interfaces which define the phys-
ical ports and allow mapping of these ports to the standardized definition.

Once this mapping has been defined, it is a case of checking that all of the required
ports in a bus definition have been mapped, all directions are correct, all port widths are
consistent with the bus definition, and there is no illegal mapping of ports.

. Current FPGA-based IP cores

There are a number of cores available, both open source and commercial offerings. The
open source cores tend to be available from the OpenCores website (opencores.org) and
commercial offerings are available from a range of sites (see www.design-reuse.com/).
The FPGA vendors also have their own IP repositories.
� Xilinx through LogiCore and their partner offer IP cores for DSP and math, embedded

communications, memory interfaces and controllers and video and imaging.
� Altera’s MegaCore® outlines cores for some FIR filters, FFTs, DRAM and SRAM con-

trollers and their third-party providers offer a wide range of cores for communica-
tions, interfaces, DSP and video processing.

� Microsemi CompanionCore’s portfolio offers a comprehensive collection of data
security, image and vision processing, communications and processors, bus interfaces
and memory controller cores.

� Lattice Semiconductor’s IP portfolio comprises cores for DSP, Ethernet, PCI Express
and video processing and display.

The FPGA companies aim to develop IP core technology to ensure a better relation-
ship with their customer base and may look to provide this IP to ensure FPGA sales.
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Thus in many cases, the IP requirements tend to be driven by the customer base. Also,
FPGA companies will sometimes provide IP through their university programmes to
stimulate technical interest in this areas.

. Watermarking IP

Protecting FPGA IP has become a key research area both in terms of protecting the
investment that the IP vendors have made but also as a reassurance to their customers
that their investment was indeed worthwhile and has not been tampered with. For these
reasons, an increasing amount of attention has been paid to developing techniques for
ensuring this protection (Teich and Ziener 2011).

One solution is to hide a unique signature in the core, essentially termed watermark-
ing, although there are also techniques for validating the core with no additional sig-
nature (Teich and Ziener 2011). Identification methods are based on the extraction of
unique characteristics of the IP core, e.g. LUT contents for FPGA IP cores allowing the
core author to be identified.

The concept of digital watermarking FPGA was first proposed by Lach et al. (1998).
The owner’s digital signature is embedded into an unused LUT located in a constrained
area of unused slices in the FPGA at the place and route level of the implementation.
This area is then obfuscated in the design using unused interconnect and “don’t care”
inputs of neighboring LUTs. The approach uses additional area and may impact timing
and be vulnerable to attacks that look to remove the signature.

An alternative approach in Jain et al. (2003) embeds the watermark at the place and
route stage by modifying the non-critical path delay between non-synchronous regis-
ters. It does not need additional hardware resources but can impact the path delay, and
thus the performance of the design. The DesignTag is a novel, patented, security tag by
Kean et al. (2008) which is used to verify the authenticity of a semiconductor device.
It comprises a small, digital circuit which communicates through the package with an
external sensor.

. Summary

This chapter began by highlighting the need for design for reuse to address the challenges
of building increasingly complex SoC devices. The increasing levels of silicon technology
have stressed the need to reuse good designs from previous projects.

Design for reuse has been achieved by the creation of IP cores either in the form
of pre-designed functional layout such as the ARM cores which present the user with
a hardware platform on which they can develop software to implement the required
functionality, or parameterized HDL code which can produce highly efficient code for
programmable logic implementation. The aim of the HDL code is to capture the good
design practice and procedures in such a way that HDL code is provided with a series
of parameters which can be set and produce efficient implementation across a range of
performance needs.

The process requires the creation of a base design from which a range of implemen-
tations can be derived where the area and speed will scale with change in parameters,
otherwise it is frustrating for the designer to optimize the parameters for the best design.
This process is demonstrated in detail in Chapter 11 for a QR-based RLS filter.
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Advanced Model-Based FPGA Accelerator Design

. Introduction

As described in Chapter 8, architectural synthesis of SFG models is a powerful approach
to the design of high-throughput custom circuit accelerators for FPGA. This approach
is one particular case of a wider trend toward design of high-performance embedded
systems via the use of a model of computation (MoC), where a domain-specific mod-
eling language is used to express the behavior or a system such that it is semantically
precise, well suited to the application at hand and which emphasizes characteristics of
its behavior such as timeliness (how the system deals with the concept of time), concur-
rency, liveness, heterogeneity, interfacing and reactivity in a manner that may be readily
exploited for efficient implementation.

A plethora of MoCs have been proposed for modeling of different types of system
(Lee and Sangiovanni-Vincentelli 1998), and determining the appropriate MoC for cer-
tain types of system should be based on the specific characteristics of that system. For
instance, a general characterization of DSP systems could describe systems of repeti-
tive intensive computation on streams of input data. Given this characterization, the
dataflow MoC (Najjar et al. 1999) has been widely adopted and is a key enabling fea-
ture of a range of industry-leading design environments, such as National Instruments’
LabVIEW and Keysight Technologies’ SystemVUE.

This chapter addresses dataflow modeling and synthesis approaches for advanced
accelerator architectures which fall into either of two classes. The first is that of multidi-
mensional accelerators: those which operate on complex multidimensional data objects,
or multiple channels of data. The second focuses on accelerators with an issue largely
ignored by the SFG synthesis techniques of Chapter 8, where it is a heavy demand for
high- capacity memory resource which must be accessed at a high rate.

The dataflow modeling of DSP systems is the subject of Section 10.2. The synthesis of
custom accelerators is covered in Section 10.3, and this is extended to multidimensional
versions in Section 10.4. Memory-intensive accelerators are covered in Section 10.5. A
summary is given in Section 10.6.

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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. Dataflow Modeling of DSP Systems

10.2.1 Process Networks

The roots of the most popular current dataflow languages lie in the Kahn process net-
work (KPN) model (Kahn 1974). The KPN model describes a set of parallel processes
(or “computing stations”) communicating via unidirectional FIFO queues – the general
structure of a KPN is shown in Figure 10.1. A computing station maps streams of data
tokens impinging along its input lines, using localized memory, onto streams on its out-
put lines.

In DSP systems, the tokens are usually digitized input data values. Continuous input
to the system generates streams of input data, prompting the computing stations to pro-
duce streams of data on the system outputs. The semantics of mapping between streams
of data in KPN makes this modeling approach a good match with the behavior of DSP
systems. A KPN structure can be described as a graph G = (V , E), where V is a set of
vertices (the computing stations) and E a set of directed edges connecting the vertices.
An edge connecting source and sink computing stations a and b respectively is uniquely
identified using the tuple (a, b).

Lee and Parks (1995) developed this modeling framework further into the dataflow
process network (DPN) domain. DPN models augment KPN computing stations with
semantics which define how and under what conditions mapping between streams
occurs. Specifically, a stream is said to be composed of a series of data tokens by invo-
cation or firing of a dataflow actor; tokens input to an actor are translated to tokens
output. Firing only occurs when one of a series of rules is satisfied. Each rule defines a
pattern, such as the available number of tokens at the head of an edge FIFO, and when
the pre-specified pattern for each input edge is satisfied, the actor may fire. When it
does so, tokens are consumed from incoming edge FIFOs and resulting tokens produced
on outgoing edges. Via repeated firing, each actor maps a succession, or a stream, of
tokens on its input edges to streams on its output edges. Combined, the KPN and DPN
models provide a functional modeling foundation with important properties, such as
determinism (Lee and Parks 1995), a foundation upon which a series of more refined
dataflow dialects have been devised. Three refinements of specific importance in this
section are synchronous dataflow (SDF), cyclo-static dataflow (CSDF) and multidimen-
sional synchronous dataflow (MSDF).

Actor/Computing 
Station FIFO Queue

Input 
Port

Output
Port

Input Data
Stream

Output Data 
Stream

Figure . Simple KPN structure
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Figure . Simple SDF graph

10.2.2 Synchronous Dataflow

An SDF model is a DPN with highly restricted semantics. It specifies, for each actor,
a single firing rule which states as a condition for actor firing a fixed, integer number
of tokens required on its incoming edges (Lee and Parks 1995). Hence SDF is a domain
where “we can specify a priori the number of input samples consumed on each input and
the number of output samples produced on each output each time the block is invoked”
(Lee and Messerschmitt 1987a). This restriction permits compile-time graph analysis
with three powerful capabilities:

1. Consistency: It can be determined whether a graph is consistent, i.e. whether a pro-
gram realizing the graph can be constructed which operates on infinite input streams
of data within bounded memory.

2. Deadlock Detection: It may be determined whether a program realizing the graph
operates without deadlock .

3. Compile-Time Optimization: Not only can a program implementing the graph be
constructed in compile time, the schedule can be analyzed and optimized as regards,
for example, buffer and code memory costs or communications costs (Bhattacharyya
et al. 1999; Sriram and Bhattacharyya 2000).

These capabilities allow compile-time derivation of very low-overhead, efficient pro-
grams realizing the SDF model whose buffer memory cost may be highly tuned to the
target platform. This capability has pioneered a large body of research into dataflow
system modeling, analysis and implementation techniques (Bhattacharyya et al. 1999;
Sriram and Bhattacharyya 2000). However, this advantage is gained at the expense of
expressive power since the SDF forbids data-dependent dataflow behavior.

Each SDF actor exhibits a set of ports, via which it connects to and exchanges tokens
with an edge. The number of tokens consumed or produced at a port for each firing
of the actor is known as that port’s rate, r. This value is quoted adjacent to the port,
as illustrated in Figure10.2.1 When all ports in the graph are equi-rate, the graph is
known as a single-rate or homogeneous or single-rate dataflow graph (SR-DFG). Other-
wise, the DFG is known as a multi-rate dataflow graph (MR-DFG). A simple SDF model
is shown in Figure 10.2. Note the black dot on the edge (b, c); this denotes a delay, which
in dataflow terms represents an initial token, i.e. a token resident in the inferred FIFO
before any has been produced by the source actor.

If, for actor j connected to edge i, xi
j (yi

j) is the rate of the connecting port, an SDF
graph can be characterized by a topology matrix Γ, given by

Γij =
⎧⎪⎨⎪⎩

xi
j if task j produces on edge i
−yi

j if task j consumes from edge i
0 otherwise.

(10.1)

1 By convention, this annotation is omitted in cases where the rate is 1.
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This topology matrix permits compile-time verification of consistency, specifically by
determining a number of firings of each actor so that a program schedule may be derived
which is balanced, i.e. it may repeat an infinite number of times within bounded memory.
It does so by ensuring that the net gain in the number of tokens on each edge, as a
result of executing an iteration of the schedule, is zero (Lee 1991). This is achieved by
balancing the relative number of firings of each actor according to the rates of the ports
via which they are connected. Specifically, for every actor a, which fires proportionally
qa times in an iteration of the schedule and produces ra tokens per firing, connected to
actor b, which fires proportionally qb times and consumes rb tokens per firing, since for
operation in bounded memory an iteration of the schedule must see all FIFO queues
return to their initial state (Lee and Messerschmitt 1987b), the equation

qara = qbrb (10.2)

holds. Collecting such an equation for each edge in the graph, a system of balance equa-
tions is constructed, which is written compactly as

Γq = 0, (10.3)

where the repetitions vector, q, describes the number of firings of each actor in an itera-
tion of the execution schedule of the graph and where qi is the number of firings of actor
i in the schedule.

10.2.3 Cyclo-static Dataflow

The CSDF model (Bilsen et al. 1996) notes the limitation of SDF actors to a single fir-
ing rule pre-specifying the availability of an integer number of tokens on each input
edge. Due to this restriction, SDF actors can only perform one fixed behavior on each
firing. CSDF attempts to broaden this capability to allow an actor to perform a mul-
titude of predefined behaviors whilst maintaining the powerful compile-time analysis
features of SDF. In CSDF, actors have cyclically changing actor behavior, whereby an
actor j defines a firing sequence 𝛾 = {fj(1), fj(2),… , fj(Pj)}. Given this sequence, it is then
said that the actor operates in one of Pj phases with the behavior of 𝛾i invoked during
firing i(mod j).

In addition, the restriction imposed by SDF that the rate of each port be a scalar integer
is similarly extended in CSDF to permit rates to be sequences of integer scalars. A simple
example in shown in Figure 10.3. In this case, whilst b and c are SDF actors (or, more
generally, CSDF actors with single-phase firing and rate sequences), a in this case is
cyclic, operating a three-phase schedule, with the rate of its output port iterating over
the sequence {1, 0, 0}.

3

{1,0,0}a b

c

Figure . Simple CSDF graph
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(m,n)

(p,q)
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Figure . Simple MSDF graph

In general, for CSDF actor j connected to edge i, if Xi
j (n) is the total number of tokens

produced and Y i
j (n) the total number consumed during the first n firings of the actor, a

CSDF topology matrix Γ is defined by

Γij =
⎧⎪⎨⎪⎩

Xi
j (Pj) if task j produces on edge i

−Y i
j (Pj) if task j consumes from edge i

0 otherwise.
(10.4)

10.2.4 Multidimensional Synchronous Dataflow

Both SDF and CSDF operate on the assumption that tokens are atomic: a firing of an
actor cannot consume anything other than an integer number of tokens traversing along
an edge. This restriction is alleviated in MSDF, a domain at its most beneficial for com-
plex multidimensional tokens, first via work which elaborates a single MSDF graph into
equivalent SDF structures based on rectangular lattice-shaped problems, such as matri-
ces (Lee 1993a,b), but later further to arbitrary shaped lattices (Murthy and Lee 2002).
In MSDF, rates are specified as M-tuples of integers and the number of balance equa-
tions per edge increased from 1 to M. An example MSDF graph is shown in Figure 10.4.
Note that the form of a multidimensional token is expressed using braces. The balance
equations for this graph are given by

qa,1m = qb,1p,
qa,2n = qb,2q. (10.5)

The generalization to multiple dimensions inherent in the MSDF model has a similar
effect on the mathematical representations of rates and repetitions structures, both of
which are generalized to matrices. MSDF provides an elegant solution to multidimen-
sional scheduling problems in SDF graphs, and exposes additional intra-token paral-
lelism for higher order dimension tokens (Lee 1993a).

. Architectural Synthesis of Custom Circuit
Accelerators from DFGs

Previous chapters have described how the register-rich programmable logic present in
FPGAs makes them ideal for hosting pipelined custom circuit accelerator architectures
for high-throughput DSP functions. Furthermore, the substantial body of research into
automatically deriving and optimizing these structures from SFGs (SR-DFGs where all
ports have a rate of 1) presents a perfect opportunity to enable automatic accelerator
synthesis for DFG-based design approaches. A typical architectural synthesis approach
deriving such accelerators from generalized MR-DFG models is outlined in Figure10.5.

As this shows, the MR-DFG is first converted to a single-rate equivalent, before
undergoing architectural synthesis. This initial conversion is important. SFGs are more
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Figure . MR-DFG accelerator architectural synthesis

restricted than general MR-DFG models, including SDF, CSDF and MSDF. There are
three key restrictions of note:

1. The port rates of all ports in the DFG are fixed at unity.
2. The each actor fires only once in an iteration of the schedule.
3. Port tokens are atomic.

Since MR-DFG models are semantically more expressive than SFGs, on conversion
to variations in port rates, actor repetitions or token dimensions are manifest explicitly
in the structure of the SFG and hence any accelerator derived from it. This means that
an SFG accelerator can only realize one configuration of MR-DFG actor and that the
designer does not have explicit control over the structure of their accelerator from the
MR-DFG structure. In complex FPGA system designs, it is often desired to reuse compo-
nents in multiple designs; but if an accelerator derived via the SFG route can only realize
one MR-DFG actor configuration, how can such reuse be enabled and controlled? Given
traditional SFG architectural synthesis techniques, it cannot.

. Model-Based Development of Multi-Channel
Dataflow Accelerators

Changing the MR-DFG operating context for an SFG accelerator, e.g. altering token
dimensions or port rates, requires re-generation of the accelerator. In many cases, this
is unavoidable, but in many others there may be an opportunity, given an augmented
synthesis approach, to derive components which are reusable in numerous contexts.
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Figure . Beamformer architecture

Consider one such example. Beamformers are versatile array-processing compo-
nents for spatial filtering for radar, sonar, biomedical and communications applica-
tions (Haykin 2013). A beamformer is typically used with an array of sensors which are
positioned at different locations so that they are able to “listen” for a received signal by
taking spatial samples of the received propagating wave fields. A block diagram repre-
sentation of a beamformer structure is shown in Figure 10.6.

As shown, the signals emanating from each antenna element are filtered by a digital
receiver (DRx) and scaled before being summed to produce the output signal. The upper
portion, consisting of the DRx, scaling and sum components is known as a fixed beam-
former (FBF), with the addition of an adaptive weight generation engine producing an
adaptive beamformer system.

Consider the case where a custom circuit accelerator is created to realize the DRx
component in an FBF. FBF systems can be of different scales and have differing through-
put and latency constraints; for example, the number of antenna elements, n, may vary.
In order to make sure these requirements are met with minimum cost, it is desirable to
use m DRx accelerators, with the same DRx required to process multiple channels of
data in the case where m < n. But since the original DRx is created to service only one
channel, there is no guarantee that it can be reused for multiple channels.

A similar situation may arise in, for example, matrix multiplication. To demon-
strate, consider multiplication of two matrices, M1 and M2 (of dimensions (m,n)
and (n,p), respectively). In this case, assuming that an accelerator has been created
to form the product of 3 × 3 matrices, how may that accelerator be used to mul-
tiply M1 and M2 when (m, n, p) = (3, 3, 12)? One possible approach is illustrated in
Figure 10.7.

As this shows, by interpreting M2 as a sequence of parallel column vectors, groups of
columns of arbitrary size can be formed and individually multiplied by M1 to derive M3
by concurrent multiplication of M1 by an array of y matrices {M0

2, M1
2 ⋯My−1

2 } where
Mi

2 is composed of the p column vectors {i × p
y ,… , ((i + 1) × p

y ) − 1}. The subdivision of
M2 into parallel submatrices for p = 4 is given in Figure 10.7. Note the regular relation-
ship between the number of multipliers and the size of submatrix consumed by each.
This kind of relationship could be exploited to regularly change the structure of the DFG,
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Figure . Parallel matrix multiplication

trading off the number of actors and the token dimensions processed at the ports of each;
given an appropriate one-to-one correspondence between actors and FPGA accelera-
tors, this would then permit explicit control of the number of accelerators and the token
dimensions processed by each. It demands, however, accelerators which are sufficiently
flexible to process multiple streams of data, trading resource usage with performance
without accelerator redesign.

This capability is dependent on two enabling features:

1. Expressing a dataflow application in such a way that the number of actors and the
channels processed by each are under designer control without variation affecting
the behavior of the application.

2. Synthesizing accelerators which can support varying multi-channel configurations.

10.4.1 Multidimensional Arrayed Dataflow

The key issue with lack of explicit designer control on the structure of the implemen-
tation is the lack of structural flexibility in the MR-DFG itself. A single actor in stan-
dard dataflow languages like SDF or MSDF can represent any number of tasks in the
implementation, rather than employing a close relationship between the number of DFG
actors and number of accelerators in the solution. To overcome this structural inflexi-
bility, the multidimensional arrayed dataflow (MADF) domain may be used (McAllister
et al. 2006).

To demonstrate the semantics of the domain, consider the same matrix multiplication
problem described at the beginning of this section. The MADF graph of this problem is
given in Figure 10.8. In this formulation, M1 and M2 are sources for the operand matri-
ces, whilst mm is the matrix multiply actor and M3 is a sink for the product. In MADF,
the notions of DFG actors and edges are extended to arrays. Hence an MADF graph

(m,n)

(n,p/y)

M1

M2

M3mm
(m,p/y)

[y]

[y] [y]

Figure . Matrix multiplication MADF
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Figure . Matrix decomposition for fixed token size processing

G = {Va, Ea} describes arrays of actors connected by arrays of edges. Actor arrays are
gray, as opposed to single actors (or actor arrays of size 1) which are white. Edge arrays
are solid, as opposed to single edges (or edge arrays of size 1) which are dashed. The size
of an actor array is quoted in brackets above the actor array.

In such a graph, the system designer controls parameters such as y in Figure 10.8.
This is used to define the size of the M1, M2, mm and M3 actor arrays, as well as the
dimensions of the tokens produced/consumed by M2, mm and M3. Under a one-to-one
translation between the number of, for example, mm actors and the number of accel-
erators, this enables direct graph-level control of the number of accelerators and token
dimensions for each. However, as outlined, accelerators derived from SFGs have fixed
port token dimensions and a mechanism must be established to allow processing of
higher-order tokens.

Consider the case of the array of submatrices of M2 input to mm in the matrix multi-
plication example of Figure 10.8. How may a single accelerator be made flexible enough
to implement any size of input matrix on this input, given that the pipelined accelerator
produced from an SFG description has fixed token dimensions?

As outlined at the beginning of this section, each of the y submatrices can be inter-
preted as a series of p column vectors, with the ith submatrix composed of the column
vectors {i × p

y ,… , ((i + 1) × p
y ) − 1} of M2. As such, for the case where y = 4, the sub-

matrix can be interpreted in two ways, as illustrated in Figure 10.9. As this shows, the
matrix can be interpreted as an aggregation of base tokens. If the actor to process the
submatrix can only process the base tokens, then the aggregate may be processed by
using multiple firings of the actor, each of which processes a different component base
token. In a sense, then, the actor is treating the aggregate as an array of base tokens over
which it iterates.

To support this concept, MADF support variable-sized arrays of actor ports, each of
which consumes identical base tokens, with the resulting accelerator derived to process
the base token. To enable multiple iterations of the actor to process the multiple base
tokens in the actual token, MADF actors may be cyclic (Section 10.2.3), with individual
firings consuming one or more base tokens through each port in the array in turn.

Using this formulation, Figure 10.10 illustrates the full, fixed token processing version
of the MADF matrix multiplication problem. Note the presence of differentiated arrays

(3,3)

[n](3,1)

M1

M2

M3mm
[y]

[y] [y]

[n](3,1)

Figure . Full MADF matrix multiplication
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Figure . Block processing matrix multiplication

of ports (gray) and individual ports (white). In the case of an array of ports, note that the
size of the array is annotated on the port using brackets; for instance, the array of ports
on M3 is of size dimension [n].

10.4.2 Block and Interleaved Processing in MADF

Having exposed intra-token parallelism by separating the actual token processed across
multiple streams transporting base tokens, further implementation exploration may
be enabled. In the case where the port array is used to process a single token, inter-
leaved processing of each port in the array is required, i.e. a single base token is con-
sumed through each port in turn to form the full token. In this case, the rate of each
port array element is 1. However, having opened up the token processing into a multi-
stream processing problem, the generalized multi-rate nature of dataflow languages can
be exploited to enable block processing via rates greater than 1 at each element of the
port array.

At a port array, the ith element has a production/consumption vector of length psize
(the size of the port array) with all entries zero except the ith. These vectors exhibit a
diagonal relationship (i.e. for the port array a, all entries in the consumption vector of a0
are zero except the zeroth, all entries in the consumption vector for a1 are zero except the
first, and so forth. A generalized version of this pattern, for a port array with n elements
with thresholds z is denoted by [n]z, as illustrated in Figure 10.11 for mm when y = 3.
The value of z, the rate of each port array element, indicates whether interleaved or block
processing is used (z = 1 for interleaved, z > 1 for block processing).

Given a one-to-one correspondence between the number of actors in an MADF graph,
the designer then has the capability to control the number of accelerators in the realiza-
tion. However, the number of accelerators and the characteristics of each are interlinked.
For instance, in the case of the matrix multiplication arrangement in Figure 10.10, if the
MADF model is to form the product of M1 and M2 when (m, n, p) = (3, 3, 12) and mm
has a (3, 3) base token, then depending on the number of mm accelerators, y, the char-
acteristics of each will change; in particular, n will vary as 12

y . Similarly, the behavior will
change with the rate of each port. As such, the traditional SFG architectural synthesis
approach in Figure 10.5 needs to be augmented to produce accelerators which can pro-
cess a variable number of streams at each port, and operate on the variable number of
streams in either an interleaved or block-processed manner.

10.4.3 MADF Accelerators

When realized on FPGA, an array of MADF actors translates to an equi-sized array
of dataflow accelerators (DFAs). The general structure of a DFA is illustrated in
Figure 10.12.
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Figure . Dataflow accelerator architecture

The dataflow accelerator object is composed of three main elements:

1. Functional engine (FE): The FE implements the functionality of the actor and is
the accelerator portion of the unit. It can take any architecture, but here is a high-
throughput pipelined accelerator. It is created to realize a specific MR-DFG actor,
but is capable of performing that functionality on multiple streams of data in either
an interleaved or block-processed manner.

2. Control and communications wrapper (CCW): This implements a cyclic schedule
to realize multi-stream operation and handles the arbitration of multiple data streams
through the FE, in either an interleaved or block processed manner depending on the
MADF actor port configuration. The read unit here also implements the necessary
edge FIFO buffering for the MADF network.

3. Parameter bank (PB): The PB provides local data storage for run-time constants for
the accelerator, e.g. FIR filter tap weights. It is not an active part of the streaming
application (i.e. the data stored here can be created and inserted off-line) and so it is
not discussed further.

The pipelined FE accelerator part is flexible for reuse across multiple applications and
MADF actor configurations, and as such may only require creation and reuse in an
accelerator-based design strategy. Efficient generation of FIFO buffers and controllers
for automatic generation of dedicated dataflow hardware is a well-researched area
(Dalcolmo et al. 1998; Harriss et al. 2002; Jung and Ha 2004; Williamson and Lee, 1996).
The remainder of this section addresses realization of the FE.

10.4.4 Pipelined FE Derivation for MADF Accelerators

The FE part of a dataflow accelerator is a pipelined accelerator, designed as a white box
component (WBC) (Yi and Woods 2006). It is one whose structure is parameterized
such that it may be reused in various forms in various systems. In the case of MADF
accelerators, these parameterized factors are summarized in Table 10.1.

The WBC is derived via architectural synthesis of an SFG representing a specific multi-
rate actor instance. To understand how this structure may be reused for multi-stream
operation, consider an example two-stage FIR filter WBC, as illustrated in Figure 10.13.
The WBC is composed of a computational portion, composed of all of the arithmetic
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Table . WBC parameterization

Parameter Significance

Streams Number of streams realized by accelerator is to be shared
Blocking Factor Blocking (factor > 1) or interleaved (factor = 1) modes.

3D DD 3D D

WBC State

WBC Compute

‘0’ White Box 
Component

Figure . Two-stage FIR WBC

operators, and a state space including any delay elements, shift registers or memories.2
A standard SFG synthesis process such as that in Yi and Woods (2006) will create both,
but it is only the state space which restricts the result to a specific MADF actor con-
figuration. The key to designing reusable, configurable accelerators lies in the proper
arbitration of the state space and appropriate design of the circuitry such that the data
relevant to multiple streams may be stored and properly arbitrated onto the computa-
tion portion to enable block or interleaved processing.

To create WBC structures, SFG architectural synthesis is undertaken to create com-
pute and state-space portions for the base configuration, which is then augmented to
give the WBC a flexible internal structure which may be regularly changed without
redesign to achieve regular changes in MADF actor configuration.

The pipelined WBC architecture resulting from SFG architectural synthesis is merely
a retimed version of the original SFG algorithm. The computational resource of the
resource must effectively be time-multiplexed between each of the elements of the input
stream array, with the entire computation resource of the SFG dedicated to a single
stream for a single cycle in the case of interleaved processing, and for multiple cycles in
the case of block processing.

To enable interleaved processing, the first stage in the WBC state space augmentation
process requires k-slowing (Parhi 1999), where the delay length on every edge resulting
from SFG architectural synthesis is scaled by a factor k, and in the case of interleaved
processing of n input streams, k = n. This type of manipulation is known as vertical.

In the case where block processing is required, base tokens are consumed/produced
from a single-port array element for a sustained number of cycles. Accordingly, the
dataflow accelerator state space should have enough state capacity for all s streams,

2 Henceforth only delay elements are considered.
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activating the state space associated with a single stream in turn, processing for an arbi-
trary number of tokens, before loading the state space for the next stream. This kind of
load–compute–store behavior is most suited to implementation as a distributed mem-
ory component, with the active memory locations determined by controller schedule.
This is known here as lateral delay scaling, where each SFG delay is scaled into an s-
element disRAM.

Given the two general themes of lateral and vertical delay scalability, an architectural
synthesis process for reusable WBC accelerators to allow multi-stream actor and accel-
erator reuse involves four steps:

1. Perform MADF actor SFG architectural synthesis. For a chosen MADF actor, C
is fixed and defined as the base configuration Cb. This is converted to SFG for archi-
tectural synthesis. The MADF actor Cb is the minimum possible set of configura-
tion values for which the resulting pipelined architecture, the base processor Pb, may
be used, but by regular alteration of the parameterized structure the processor can
implement integer supersets of the configuration. The lower the configuration values
in the base, the greater the range of higher-order configurations that the component
can implement. To more efficiently implement higher-order configurations, Cb can
be raised to a higher value. For a two-stage FIR, Cb = {1, 1, 1}, the WBC of the Pb is
shown in Figure 10.13.

2. Vertical delay scalability for interleaved processing. To implement k-slowing for
variable interleaved operation, the length of all delays must be scaled by a constant
factor m. All the lowest-level components (adder/multipliers) are built from pre-
designed accelerators which have fixed pipelined depths (in the case of Figure 10.13
these are all 1) which cannot be altered by the designer. To enable the scaling of these
delays, these are augmented with delays on their outputs to complete the scaling of
the single pipeline stages to that of length m. The resulting FIR circuit architecture
for the pipelined FIR of Figure 10.13 is shown in Figure 10.14(a). The notation (m)
D refers to an array of delays with dimensions (1, m). Note that all delay lengths are
now a factor of m, the vertical scaling factor, and note the presence of the added delay
chains on the outputs of the lowest-level components. This type of manipulation is
ideally suited to FPGA where long delays are efficiently implemented as shift registers
(Xilinx 2005).

3. Lateral delay scalability for block processing. For block processing the circuit
delays are scaled by a vertical scaling factor n post lateral scaling to allow combined
interleaved/block processing if required. This results in arrays of delays with dimen-
sions (m, n). The resulting FIR circuit architecture when this is applied to the cir-
cuit of Figure 10.14(a) is shown in Figure 10.14(b). Note the presence of the verti-
cal scaling factor on all delay arrays. This kind of miniature embedded-RAM-based
behavior is ideally suited to FPGA implementation, since these can implement small
disRAM in programmable logic. These disRAMs have the same timing profile as
a simple delay (Xilinx 2005), and as such do not upset edge weights in the circuit
architecture.

4. Retime structure to minimize lateral delay scalability. When Pb is configured to
implement a much higher-order MADF actor configuration than Cb, very large delay
lengths can result. To minimize these, retiming is applied to the augmented processor
architecture.



Advanced Model-Based FPGA Accelerator Design 

D D

(n
–1

) D

(n
–1

) D3n D

2n  D

0

D D

(n
–1

) D

(n
–1

) D

0

(m
,n

–1
) 

D
 

(m
,n

–1
) 

D
 

(m,2n) D

(m
,1

) 
D

(m
,1

) 
D

(m
,n

–1
) 

D
 

(m
,n

–1
) 

D
 

(m
,1

) 
D

(m
,1

) 
D

(m,3n) D

(b) Laterally scaled two-stage FIR WBC

(a) Vertically scaled two-stage FIR WBC

Figure . Scaled variants of two-stage FIR WBC

10.4.5 WBC Configuration

After creation of the WBC architecture Pb, it must be configured for use for specific
MADF actor configuration. Consider a base processor created via SFG architectural
synthesis Pb realizing a MADF actor with configuration Cb = (rb, xb, sb), where rb, xb, sb
respectively represent the rates, token dimensions and number of streams processed by
the actor in question, with pipeline period 𝛼c created using SFG architectural synthesis
(Parhi 1999). To realize an MADF actor P, where X is an n-dimensional token of size
x(i) in the ith dimension, the following procedure is used:

1. Determine the vertical scaling factor m, given by

m =

⌈
1
𝛼c

n−1∏
i=0

x (i)
xb (i)

⌉
. (10.6)

2. k-slow Pb by the factor m.
3. Scale primitive output delays to length (m − 1) × l, where l is the number of pipeline

stages in the primitive.
4. Scale all delays laterally by the scaling factor n, given by

n = s
sb
. (10.7)
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10.4.6 Design Example: Normalized Lattice Filter

In order to demonstrate the effectiveness of this kind of architectural synthesis and
exploration approach, it is applied to an eight-channel filter bank design problem, where
each filter takes the form of a normalized lattice filter (NLF) (Parhi 1999). The MADF
graph is shown in Figure 10.15, with accelerators realizing the nlf actors to be created.

As Figure 10.15 shows, in and out arrays generate an array of eight scalar tokens which
are processed by the nlf array. The designer controls the size of the nlf actor array by
manipulating the variable y on the graph canvas. This in turn determines n, the size
of the port array of each element of the nlf actor array. To test the efficiency of this
MADF synthesis and exploration approach the SFG architectural synthesis capability
for Pb synthesis is limited to retiming (i.e. advanced architectural explorations such as
folding/unfolding are not performed), placing the emphasis for implementation opti-
mization entirely on the MADF design and exploration capabilities. The base processor
Pb operates on scalar tokens with Cb = (1, 1, 1) to maximize flexibility by maximizing the
number of achievable configurations. The target device is the smallest possible member
of the Virtex-II ProTM family which can support the implementation. This enables two
target-device-specific design rules for efficient synthesis:

Dtype =
⎧⎪⎨⎪⎩

FDE if (P, Q) = (1, 1)
LUT RAM if P > 1
SRL16+FDE otherwise.

(10.8)

The SFG of the base NLF actor is shown in Figure 10.16(a), with the SFG of the NLF
stage shown in Figure 10.17(a). If the lowest-level components (adders and multipli-
ers) from which the structure is to be constructed are implemented using single-stage
pipelined black box components (a common occurrence in modern FPGA), then a par-
ticular feature of the NLF structure is the presence of 36 recursive loops in the structure,
with the critical loop (Parhi 1999) occurring when two pipelined stages are connected.
For single-stage pipelined adders and multipliers, this has a pipeline period, 𝛼, of 4 clock
cycles. Hence, by equation (10.7), n = xi

4xb
.

The base processor Pb is created via hierarchical SFG architectural synthesis (Yi and
Woods 2006), and produces the pipelined architecture of Figure 10.16(b), with the archi-
tecture of each stage as in Figure 10.17(b). After lateral and vertical delay scaling and
retiming, the NLF and stage WBC architectures are as shown in Figure 10.16(c) and
Figure 10.17(c), respectively.

Synthesis of the given architecture for three different values of y has been performed.
8
1BS-NLF, 2

4BS-NLF and 1
8BS-NLF are the structures generated when y is 1, 2 and 8 respec-

tively, and each dataflow accelerator performs interleaved sharing over the impinging
data streams, whilst results for a single dataflow accelerator processing a 68-element
vector (68

1 BS-NLF) are also quoted to illustrate the flexibility of the WBC architectures.
A block-processing illustration of 16 streams of four-element vector tokens (1

4BS-NLF16)
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Table . NLF post place and route synthesis results on Virtex-II Pro FPGA

Logic

LUTs SRL DisRAM mult
Throughput

(MSamples/s)

8
1BS-NLF 1472 – – 312 397.4
2
4BS-NLF 368 – – 78 377.9
1
8BS-NLF 186 207 – 39 208.6
68
1 BS-NLF 186 207 – 39 208.6
1
4BS-NLF16 188 7 576 39 135.8

is also quoted in Table 10.2. These illustrate the effectiveness of this approach for acceler-
ator generation and high-level architecture exploration. Transforming the MADF spec-
ification by trading off number of actors in the family, token size per actor, and number
of functions in the MADF actor cyclic schedule has enabled an effective optimization
approach without redesign.

The initial implementation (y = 8, 1
8BS-NLF) created an right-element dataflow accel-

erator array. Given the large number of multipliers (mult18 in Xilinx Virtex-II) required
for implementation, the smallest device on which this architecture can be implemented
is an XCV2DA70. However, given the pipeline period inefficiency in the original WBC
architecture, reducing y to 2 produces two four-element vector processors (2

4BS-NLF)
with almost identical throughput, and enables a significant reduction in required hard-
ware resource with little effect on throughput rate. This amounts to a throughput
increase by a factor of 3.9 for each dataflow accelerator with no extra hardware required
in the WBC. The large reduction in required number of embedded multipliers also
allows implementation on a much smaller XC2DA20 device. Decreasing y still further
to 1 produces a single eight-element vector processor (1

8BS-NLF). Whilst the throughput
has decreased, a significant hardware saving has been made. The NLF array can now be
implemented on a smaller XC2DA7 device.

This example shows that the MADF synthesis approach can achieve impressive imple-
mentation results via simple system-level design space exploration. Using a single
pipelined accelerator, this approach has enabled highly efficient architectures (3.9 times
more efficient than one-to-one mappings) to be easily generated, in a much simpler and
more coherent manner than in SFG architectural synthesis. Furthermore, by manipulat-
ing a single DFG-level parameter, this design example can automatically generate imple-
mentations with wildly varying implementation requirements, offering an order-of-
magnitude reduction in device complexity required to implement the design is desired.
This illustrates the power of this approach as a system-level, accelerator-based design
approach with highly efficient implementation results and rapid design space explo-
ration capabilities.

10.4.7 Design Example: Fixed Beamformer System

The structure of the FBF is highly regular and can be represented in a very compact
fashion using MADF, as shown in Figure 10.18. The structure of a beamformer is also
included in Figure 10.19 for comparison.
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The MADF graph consists of an array of n inputs, one for each sensor in the array. This
is tightly correlated with the number of members in the DRx and gain actor families, as
well as the size of the port array i on the sum actor (again a port array is denoted in
grey). Hence by altering the value of n, parameterized control of the algorithm structure
is harnessed for a variable number of sensors. By coupling the implementation structure
tightly to the algorithm structure, this gives close control of the number of DRx and gain
accelerators in the implementation.

For the purposes of this design example, n = 128 and the design process targets a
Xilinx Virtex-II ProTM 100 FPGA (Xilinx 2005). The accelerator library consists only of
complex multiplication, addition and sum accelerators, and hence the entire system is
to be composed from these. The length of the DRx filters is taken as 32 taps. Given that
this structure then requires 16,896 multipliers, and it is desirable to utilize the provided
18-bit multipliers on the target device (of which only 444 are available) this presents a
highly resource-constrained design problem.

To enable the exploration of the number of channels processed by each accelerator in
the implementation, each actor must be able to process multiple channels in the MADF
algorithm. This is enabled using the MADF structure of Figure 10.20. Here, a second
parameter, m, has been introduced to denote the number of actors used to process the n
channels of data. Note that the ports on the DRx and multK actors are now both families
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Figure . Fixed beamformer overview
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Table . FBF post place and route synthesis results on Virtex-II Pro FPGA

Logic

m(i) LUTs SRL DisRAM mult
Throughput

(MSamples/s)

1(i) 3493 (8%) 16128 (37%) 8448 (8%) 99 (22%) 1.45
2(i) 4813 (11%) 16128 (37%) 8448 (19%) 198 (45%) 3.18
4(i) 8544 (19%) 16128 (37%) 8448 (19%) 396 (89%) 6.19
1(b) 3490 (8%) 0 (0%) 24576 (56%) 99 (22%) 1.45
2(b) 4812 (11%) 0 (0%) 24576 (56%) 198 (45%) 3.51
4(b) 8554 (19%) 0 (0%) 24576 (56%) 396 (89%) 1.45

of size m to denote the sharing of the actor amongst n
m data streams processed in a cyclic

fashion (McAllister et al. 2006). On synthesis, a wide range of synthesis options are avail-
able for the FBF custom circuit system on a chosen device, with an accompanying wide
range of real-time performance capabilities and resource requirements, and these are
summarized in Table 10.3. The breakdown of the proportion of the programmable logic
(LUT/FDE) by dataflow accelerator function (WBC, PB or CCW) is given in Table 10.4.

From an initial implementation consisting of a single accelerator process a 128-
element vector (i.e. interleave shared across the 128 input streams), increasing the value
of m by 2 and 4 has produced corresponding increases in throughput by factors of 2.2
and 4.3 respectively, and it should be noted that the architectures used for accelerator
sharing amongst multiple streams exhibit minimal resource differences. This is a direct
result of the abstraction of the accelerator architectures for target portability. Whilst the
overheads in terms of LUTs (which may be configured as 16-bit SRL or disRAMs) for
the WBC wrapping in the dataflow accelerator are high (up to 35%), the major part of
this is required entirely for storage of on-chip filter tap and multiplier weights in the SFO
parameter banks. This storage penalty is unavoidable without exploiting on-chip embed-
ded BRAMs. In addition, the overhead levels decrease with increasing values of m since
the number of tap weights remains constant independent of m. The CCW incurs little
LUT overhead, instead exploiting the embedded muxF5/muxF6/muxF7/muxF8 fabric
of the FPGA (Xilinx 2005) to implement the switching. These are not used at all any-
where else in the design and hence are plentiful. Finally, it should be noted that all the
accelerators in the system are 100% utilized depending on input data.

Table . FBF implementation resource breakdown

LUT FDE

m(i) %WBC %CCW %PB %WBC %CCW %PB

1(i) 3.7 31.3 6.5 1.3 0 98.7
2(i) 3.6 28.7 69.5 0.9 0 99.1
4(i) 3.2 25.5 71.3 0.3 0 99.7
1(b) 3.7 31.3 6.5 1.3 0 98.7
2(b) 3.6 28.7 69.5 1.0 0 99.0
4(b) 3.2 25.5 71.3 0.3 99.7
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Table . Memory resources available on Virtex-6

Number Off-chip  Pixel BRAM 

Capacity 2 GB 8 K
Access rate (pixels/s) 600 MHz 230 MB/s 600 Mpixel/s

200 MHz 230 MB/s 200 Mpixel/s

. Model-Based Development for
Memory-Intensive Accelerators

The previous section addressed techniques for representing, deriving and optimizing
FPGA accelerators for pipelined streaming operators. It is notable, though, that these
operations are all performed on scalar data elements, which imposes a small overhead
for storage of memory; for the most part memory can be realized using registers, SRLs
or disRAMs. However, in a great many cases the demands for buffer memory are high,
particularly in applications such as image and video processing where large frames of
data are to be handled. In these situations, how are large quantities of buffer memory
realized, handled and optimized?

Consider the memory resources on a Xilinx Virtex-6 FPGA in the context of a typ-
ical memory-intensive operation for video processing: full search motion estimation
(FSME) on CIF 352 × 288 video frames at 30 frames per second. The resources at
the designer’s disposal with which this operation may be realized are summarized in
Table 10.5.3 When gauging the anticipated access rate of an on-chip BRAM, it is nec-
essary to take into account the anticipated clock rate of the final synthesize accelerator
and the entire system in which it resides; hence, whilst peak clock rates may reach 600
MHz, operation at around 200 MHz is much more reasonable. The designer’s challenge
is to collect these resources in such a fashion that: data are hosted off-chip where possi-
ble to minimize the on-chip buffering cost, and the final accelerator architecture meets
real-time performance requirements.

10.5.1 Synchronous Dataflow Representation of FSME

A block diagram of the FSME operation is shown in Figure 10.21(a), and an SDF repre-
sentation of the FSME operation is shown in, is shown in Figure 10.21(b).

Consider the behavior of the SDF model in Figure 10.21(b). The actors C and R are
source actors to represent the stream of current and reference frames incident on the
FSME operator. The dimensions of the output tokens indicate the size of the respective
video frames. The current frame C is decomposed into 396 (16, 16) non-overlapping CBs
via cb, with R decomposed into corresponding (48, 48) SWs, each of which is centered
around the same center pixel as the corresponding CB. From each SW are extracted
1089 (16, 16) sub-blocks, with each compared with the cb in turn via a minimum abso-
lute difference (MAD) operation, with the lowest of these 1089 metrics selected for

3 Assuming BRAM configuration as 8K × 4-bit BRAM, six of which are used to construct a three-byte “pixel
BRAM”.
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computation of motion vectors. Accordingly, in order to ensure balanced dataflow, each
CB is replicated 1089 times by up.

Consider now the memory costs of naive implementation of a model such as this on
FPGA, where the FIFO buffering associated with each edge is realized using the available
memory resource. The capacity and access rate requirements for the buffer relating to
each edge are described in Table 10.6.

As Table 10.6 shows, the capacity and access requirements of each of e1,… , e4 are
such that each could be hosted in off-chip RAM, or indeed on-chip BRAM. However,
in the case of e5 and e6 there is a major issue: whilst the access rate of these buffers
can be realized using 17-pixel BRAM (102 BRAMs in total), many more BRAMs would
be required to satisfy its capacity requirements than are available on the device. Simi-
larly, the access rate requirements are such that these buffers cannot be realized using
off-chip DRAM. Hence, an architecture such as this could not be realized using the
Virtex-6 FPGA, necessitating refinement to overcome the capacity issues on (up, mad)
and (sb, mad).

Table . SDF FSME memory requirements

Capacity Rate

Edge pixels BRAM pixels/s BRAM

e1 : (C, cb) 101.4 K 13 3.04 M 1
e2 : (R, sw) 122.9 K 16 3.96 M 1
e3 : (cb, up) 101.4 K 13 3.04 M 1
e4 : (sw, sb) 912.4 K 115 27.37 M 1
e5 : (up, mad) 110.4 M 13,800 3.3 G 17
e6 : (sb, mad) 110.4 M 13,800 3.3 G 17
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Table . CSDF FSME memory requirements

Capacity Rate

Edge pixels BRAM pixels/s BRAM

e1 : (C, cb) 101.4 K 13 3.04 M 1
e2 : (R, sw) 122.9 K 16 3.96 M 1
e3 : (cb, cb) 101.4 K 13 1.3 T 6500
e4 : (sw, sw) 122.9 K 115 1.59 T 8000
e5 : (cb, mad) 256 1 3.3 G 17
e6 : (sw, mad) 256 1 3.3 G 17

10.5.2 Cyclo-static Representation of FSME

Despite being concise, a major issue in the SDF model in Figure 10.21 is duplication of
information; in particular, the excessive capacity requirements of the edges (up, mad)
and (sb, mad) mask the fact that the former houses 1089 copies of the same (16, 16) CB,
whilst the latter contains successive SBs containing substantial amounts of duplicated
pixels. In order to address this issue of duplication of pixels, consider the use of CSDF
for modeling. A CSDF representation of FSME is shown in Figure 10.22.4

Note that cb and sw are now cyclic actors, each of which operates over 431,244 phases.
During the first firing of each, the respective frames are consumed, with the appropriate
sequences of CBs for mad producing over 431,244 firings. In order to satisfy the need to
have access to the entire current and reference frames during each phase for extraction
of the relevant CB and SW, these are “recycled” using the self-loops on each of cb and
sw. Consider the capacities and access rates of the buffers associated with each edge in
Figure 10.22, as detailed in Table 10.7.

As Table 10.7 shows, the capacity and access rates of e1 and e2 are such that these
can be realized either off-chip or on-chip, whilst the access rate demands of e5 and e6
demand BRAM storage. In addition, the issue of very large-capacity buffers encountered
in the SDF model has been avoided by exploiting the multi-phase production capabilities
of CSDF – the edges impinging on mad now require sufficient capacity for only a single

4 Note that, henceforth, the notation mn, as seen in Figure 10.22, represents a length-n sequence of elements,
each of which takes the value m.
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CB/SB: very large-capacity savings. Whilst this has come at the cost of an extra buffer
for each of the self-loops on cb and sw, it still represents a very substantial capacity
reduction.

However, it has also come at the cost of very high access rate requirements for the
buffers representing e3 and e4. Indeed, these access rates cannot be realized either off-
chip or on-chip and as such a capacity constraint encountered for the SDF network
has been replaced by an access rate constraint in this CSDF formulation. Consider the
alternative CSDF formulation, shown in Figure 10.23.

In this graph, cb and sw have both been subdivided into a sequence of two actors.
cb1 is a 396-phase CSDF actor which consumes C during the first phase and recycles
it via a self-loop during the remaining 395 phases allowing it to produce a single CB
per phase. Subsequently, cb2 operates over 1089 phases, with a CB consumed during
the first phase and recycled via a self-loop during the remaining 1088, allowing a single
copy to be produced during each phase. The combination of sw1 and sw2 performs a
single function on R, except that sw2 extracts the distinct SBs from each SW rather than
simply duplicating the input, as is the case in cb2. Consider the memory costs for this
CSDF formulation, detailed in Table 10.8.

As described, this approach has had a profound impact on the buffer structure for
FSME. In this case, all buffers can be hosted off-chip, up to and including e6 can be

Table . CSDF (2) full search motion estimation memory requirements

Capacity Rate

Edge pixels BRAM pixels/s BRAM

e1 : (C, cb1) 101.4 K 13 3.04 M 1
e2 : (R, sw1) 122.9 K 16 3.96 M 1
e3 : (cb1, cb1) 101.4 K 13 1.2 G 6
e4 : (sw1, sw1) 122.9 K 115 1.5 G 8
e5 : (cb1, cb2) 256 1 3.04 M 1
e6 : (sw1, sw2) 2304 1 27.37 M 1
e7 : (cb2, cb2) 256 1 3.3 G 17
e8 : (sw2, cw2) 2304 1 29.8 G 149
e9 : (cb2, mad) 256 1 3.3 G 17
e10 : (sw2, mad) 256 1 3.3 G 17
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hosted off-chip, with the access rates of e7,… , e10 dictating on-chip realization. Whilst
the access rate of e8 in particular is quite high and imposes a high BRAM cost, the situ-
ation is now that a realization of this form is at least feasible; this was not previously the
case. In addition, the use of more advanced dataflow modeling approaches exploiting
non-destructive read capabilities can be used to reduce the on-chip cost even further
(Fischaber et al. 2010; Denolf et al. 2007).

. Summary

This section has described techniques to enable system-level design and optimization
of custom circuit accelerators for FPGA using dataflow application models.

The use of MADF as a modeling approach for DSP systems helps encapsulate the
required aspects of system flexibility for DSP systems, in particular the ability to exploit
data-level parallelism, and control how this influences the implementation. This has
been shown to be an effective approach; for an NLF filter design example, impressive
gains in the productivity of the design approach were achieved. In this example, this
included an almost fourfold increase in the efficiency of the implementation via sim-
ple transformations at the DFG level, negating the need for complex SFG architectural
manipulations.

Otherwise, this approach has proven effective at rapid design space exploration, pro-
ducing NLF implementations of varying throughput and drastically different physical
resource requirements (on order-of-magnitude variation in device complexity) simply
by manipulating a single parameter at the graph level. Further, in an FBF design exam-
ple the effectiveness of this approach was demonstrated by enabling rapid design space
exploration, producing a variety of implementations for a specific device via manipula-
tion of a single DFG parameter.

Similarly, the use of CSDF modeling has been shown to make feasible realization of
FPGA accelerators which otherwise could not have been achieved. In particular, for
memory-intensive accelerators which access large amounts of memory at high access
rates, careful design is required to ensure that both the capacity and access rate require-
ments are met, whilst reducing cost if possible. Frequently, this means devising combi-
nations of on-chip BRAM and off-chip DRAM in multi-level memory structures cus-
tomized to the application and performance requirements. The design of an FSME accel-
erator has highlighted both capacity and access rate issues which have been overcome by
intuitive employment of CSDF modeling, allowing an otherwise infeasible accelerator
to be realized on the Virtex-6 FPGA.
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Adaptive Beamformer Example

The material in Chapter 9 highlighted the importance of IP in the design of complex
FPGA-based systems. In particular, the use of soft IP has had a major impact in creat-
ing such systems. This has created a new market, as witnessed by the Design & Reuse
website (http://www.design-reuse.com/) which has 16,000 IP cores from 450 vendors,
and the open source cores available from the OpenCores website (opencores.org). This,
along with the major FPGA vendors’ cores (LogiCore from Xilinx and MegaCore® from
Altera) as well as their partners’ programs, represents a core body of work.

A lot of companies and FPGA developers will have invested a lot of effort into cre-
ating designs which well match their specific application. It may then seem relatively
straightforward to extend this effort to create soft IP for a range of application domains
for this function. However, the designer may have undertaken a number of optimiza-
tions specific to a FPGA family which will not transfer well to other vendors. Moreover,
the design may not necessarily scale well to the functional parameters.

The ability to create an IP core requires a number of key stages. Firstly, the designer
needs to generate the list of parameters to which the core design should scale. The archi-
tecture should then be designed such that it scales effectively across these parameters;
to be done effectively, this requires a detailed design process. The description is con-
sidered in this chapter for a QR-based IP core for adaptive beamforming. It is shown
how an original architecture developed for the design can then be mapped and folded
to achieve an efficient scalable implementation based on the system requirements.

Section 11.1 provides an introduction to the topic of adaptive beamforming. Section
11.2 outlines the generic process and then how it is applied to adaptive beamforming.
Section 11.3 discusses how the algorithm is mapped to the architecture and shows how
it is applied to the squared Givens rotations for RLS filtering. The efficient architecture
design is then outlined in Section 11.4 and applied to the QR design example. Section
11.5 outlines the design of a generic QR architecture. A key aspect of the operation is the
retiming the generic architecture which is covered in Section 11.6. Section 11.7 covers
the parameterizable QR architecture, and the generic control is then covered in Section
11.8. The application to the beamformer design is then addressed in Section 11.9, with
final comments given in Section 11.10.

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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Figure . Diagram of an adaptive beamformer for interference canceling

. Introduction to Adaptive Beamforming

Adaptive beamforming is a form of filtering whereby input signals are received from a
number of spatially separated antennae, referred to as an antenna array. Typically, its
function is to suppress signals from every direction other than the desired “look direc-
tion” by introducing deep nulls in the beam pattern in the direction of the interfer-
ence. The beamformer output is a weighted linear combination of input signals from
the antenna array represented by complex numbers, therefore allowing an optimization
both in amplitude and phase due to the spatial element of the incoming data.

Figure 11.1 shows an example with one primary antenna and a number of auxiliary
antennae. The primary signal constitutes the input from the main antennae, which has
high directivity. The auxiliary signals contain samples of interference threatening to
swamp the desired signal. The filter eliminates this interference by removing any sig-
nals in common with the primary input signal. The input data from the auxiliary and
primary antennae are fed into the adaptive filter, from which the weights are calculated.
These weights are then applied on the delayed input data to produce the output beam.

There are a range of applications for adaptive beamforming, from military radar appli-
cations to communications and medical applications (Athanasiadis et al. 2005; Baxter
and McWhirter 2003; Choi and Shim 2000; de Lathauwer et al. 2000; Hudson 1981;
Shan and Kailath 1985; Wiltgen 2007). Due to the possible applications for such a core,
this chapter investigates the development of an IP core to perform the key computation
found in a number of such adaptive beamforming applications.

. Generic Design Process

Figure 11.2 gives a summary of a typical design process followed in the development
of a single use implementation. It also gives the additional considerations required in
generic IP core design. In both cases, the process begins with a detailed specification
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Figure . Generic design process

of the problem. At this point, consideration may be given to employing a design-for-
reuse strategy to develop a generic product. This is based on a number of factors, the
most prevalent being whether such a generic core would be worthwhile to have. Would
it be applicable over a range of applications, or is it a one-off requirement? There is an
initial extra cost in terms of money and time in the development of a generic core, so
it is essential that this cost will be more than recouped if the IP core is used in future
designs.

Once defined, an analysis is performed to determine the most suitable algorithm.
Once chosen, the method for implementation of this algorithm is key as, even with sim-
ple addition, there are a number of different arithmetic techniques; these impact on the
overall performance of a circuit, in terms, for example, of area compactness, critical
path, and power dissipation.

Within a design, there may only be a number of key components that will be suit-
able to implement as IP cores. These are the parts of the design that will have a level of
consistency from application to application. It is imperative to determine expected vari-
ations for future specifications. Are all these variables definable with parameters within
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the generic design, or would other techniques be required to create the flexibility of the
design? An example of this could be hardware and software co-design. Here, the fixed
components could be implemented as IP cores driven by a software harness adding the
needed flexibility for further developments.

The choice of fixed-point or floating-point arithmetic is also vital. From the data
rate and performance analysis, a decision can be made regarding certain issues for the
architecture design. A desired clock rate may be required to meet certain data rate
requirements. Again this will relate to the target technology or specific FPGA device.
Clock rate and area criteria will also influence the choice of submodules within the
design and the level at which they may need to be pipelined so as to meet circuit
speeds.

What we have is an interlinked loop, as depicted in Figure 11.2, with each factor influ-
encing a number of others. With additional pipeline cuts there will be effects on circuit
timing and area as well as the desired improvement in clock rate. All these factors influ-
ence the final architecture design. It is a multidimensional optimization with no one
parameter operating in isolation.

Within a generic design, different allowable ranges may be set on the parameters
defining the generated architectures. Different wordlength parameters will then have
a knock-on effect on the level of pipelining required to meet certain performance crite-
ria. The choice of submodules will also be an important factor. The target technology will
determine the maximum achievable data rates and also the physical cost of the imple-
mentation.

Again, for a generic design, choices could be made available for a range of target
implementations. Parameters could be set to switch between ASIC-specific and FPGA-
specific code. Even within a certain implementation platform, there should be param-
eters in place to support a range of target technologies or devices, so as to make the
most of their capabilities and the availability of on board processors or arithmetic
units.

There may also be a need for a refined architecture solution meeting the performance
criteria but at a reduced area cost. This is the case when the algorithm functionality is
mapped down onto a reduced number of processors, the idea being that the level of
hardware for the design could be scaled to meet the performance criteria of the applica-
tion. With scalable designs comes the need for scalable control circuitry and scheduling
and retiming of operations. These factors form the key mechanics of a successful generic
design. Generating an architecture to meet the performance criteria of a larger design
is one thing, but developing the generic scheduling and control of such a design is of a
different level of complexity.

Software modeling of the algorithm is essential in the design development. Initially,
the model is used to functionally verify the design and to analyze finite precision effects.
It then forms the basis for further development, allowing test data to be generated and
used within a testbench to validate the design. For the generic IP core, the software
modeling is an important part of the design-for-reuse process. A core may be available
to meet the needs of a range of applications; however, analysis is still required from the
outset to determine the desired criteria for the implementation, such as SNR and data
wordlengths. The software model is used to determine the needs for the system, and
from this analysis a set of parameters should be derived and used to generate a suitable
implementation using the IP core.
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11.2.1 Adaptive Beamforming Specification

Adaptive beamforming is a general algorithm applicable in a range of applications, from
medical separation of signals to military radar applications. The key factor for develop-
ment of a generic design is to determine the key component within a range of adaptive
beamforming applications that would be consistent to some degree and could therefore
be suitable to develop as an IP core. To widen the potential of the core, it will need to be
able to support a varied range of specifications dealing with issues such as the following:

Number of inputs: A varying number of auxiliary and primary inputs need to be sup-
ported (Figure 11.3). The weights are calculated for a block of the input data coming
from N antennae and then applied to the same input data to generate the beamformer
output for that block. For the final design, a more efficient post-processor is developed
to extract the weights such as that described in Shepherd and McWhirter (1993).

Supporting a range of FPGA/ASIC technologies: By including some additional code
and parameters the same core design can be re-targeted to a different technology.
Doing this could enable a design to be prototyped on FPGA before targeting to ASIC.

Support for performance criteria: The variation in adaptive beamformer applications
creates a wide span of desired features. For example, mobile communications power
considerations and chip area could be the driving criteria, while for others a high data
rate system could be the primary objective.

Scalable architecture: May need to be created to support a range of design criteria.
Some key points driving the scalable architecture are desired data rate, area con-
straints, clock rate constraints and power constraints.

Clock rate performance: Depends on the architecture design and target technology
chosen. Specifying the system requirements enables the designer to make a choice
regarding the target technology and helps reach a compromise with other perfor-
mance criteria such as power and area.
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Wordlength: As different applications require different wordlengths, a range of
wordlengths should be supported.

Level of pipelining: The desired clock rate may rely on pipelining within the design to
reduce the critical path. Giving a choice of pipelining within the submodules of the
design will greatly influence performance.

These values will form the basis from which to develop the adaptive beamformer solu-
tion from the generic architecture. The surrounding software models and testbenches
should include the same level of scalability so as to complete the parameterization
process.

11.2.2 Algorithm Development

The function of a typical adaptive beamformer is to suppress signals from every
direction other than the desired “look direction” by introducing deep nulls in the beam
pattern in the direction of the interference. The beamformer output is a weighted
combination of signals received by a set of spatially separated antennae. An adaptive
filtering algorithm calculating the filter weights is a central process of the adaptive
beamforming application.

The aim of an adaptive filter is to continually optimize itself according to the envi-
ronment in which it is operating. A number of mathematically and highly complex
algorithms exist to calculate the filter weights according to an optimization criterion.
Typically the target is to minimize an error function, which is the difference between a
desired performance and the actual performance. Figure 11.4 highlights this process.

A great deal of research has been carried out into different methods for calculating
the filter weights (Haykin 2002). The algorithms range in complexity and capability, and
detailed analysis is required in order to determine a suitable algorithm. However there
is no distinct technique for determining the optimum adaptive algorithm for a specific
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application. The choice comes down to a balance of the range of characteristics defining
the algorithms, such as:

� rate of convergence, i.e. the rate at which the adaptive algorithm reaches an optimum
solution;

� steady-state error, i.e. the proximity to an optimum solution;
� ability to track statistical variations in the input data;
� computational complexity;
� ability to operate with ill-conditioned input data;
� sensitivity to variations in the wordlengths used in the implementation.

As was discussed in Chapter 2, two methods for deriving recursive algorithms for
adaptive filters use Wiener filter theory and the method of least squares, resulting in the
LMS and the RLS algorithms, respectively. Whilst the LMS algorithm is simpler, its lim-
itations lie in its sensitivity to the condition number of the input data matrix as well as
slow convergence rates. In contrast, the RLS algorithm is more elaborate, offering supe-
rior convergence rates and reduced sensitivity to ill-conditioned data. On the negative
side, the RLS algorithm is substantially more computationally intensive than the LMS
equivalent, although it is preferred here.

In particular, the QR-RLS decomposition is seen as the algorithm for adaptively cal-
culating the filter weights (Gentleman and Kung 1982; Kung 1988; McWhirter 1983). It
reduces the computation order of the calculations and removes the need for a matrix
inversion, giving a more stable implementation.

. Algorithm to Architecture

A key aspect of achieving a high-performance implementation is to ensure an efficient
mapping of the algorithm into hardware. This involves developing a hardware archi-
tecture in which independent operations are performed in parallel so as to increase the
throughput rate. In addition, pipelining may be employed within the processor blocks to
achieve faster throughput rates. One architecture that uses both parallelism and pipelin-
ing is the systolic array (Kung 1988). As well as processing speed, Chapter 13 highlights
its impact on power consumption. The triangular systolic array (Figure 11.5), first intro-
duced in Chapter 2, consists of two types of cells, referred to as BCs and ICs. Figure 11.6
illustrates the process from algorithm to architecture for this implementation.

It starts with the RLS algorithm solved by QR decomposition, shown as equations.
The next stage depicts the RLS algorithm solved through QR decomposition using a
sequential algorithm; at each iteration a new set of values are input to the equations, thus
continuously progressing towards a solution. The new data are represented by xT (n) and
y(n), where x is the input data (auxiliary) matrix and y is the desired (primary) data. The
term n represents the iteration of the algorithm. The QR operation can be depicted as
a triangular array of operations. The data matrix is input at the top of the triangle and
with each row another term is eliminated, eventually resulting in an upper triangular
matrix.

The dependence graph (DG) in Figure 11.6 depicts this triangularization process. The
cascaded triangular arrays within the diagram represent the iterations through time, i.e.
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each one represents a new iteration. The arrows between the cascaded arrays highlight
the dependency through time.

11.3.1 Dependence Graph

The dependencies between data can be identified in a DG. This allows the maximum
level of concurrency to be identified by breaking the algorithm into nodes and arrows.
The nodes outline the computations and the direction of the arrows shows the depen-
dence of the operations. This is shown for the QR algorithm by the three-dimensional
DG in Figure 11.7. The diagram shows three successive QR iterations, with arcs
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connecting the dependent operations. Some of the variable labels have been omitted
for clarity.

In summary, the QR array performs the rotation of the input xT (n) vector with R values
held within the memory of the QR cells so that each input x value into the BCs is rotated
to zero. The same rotation is continued along the line of ICs via the horizontal arrows
between QR cells. From this DG, it is possible to derive a number of SFG representations.
The most obvious projection, which is used here, is to project the DG along the time
(i.e. R) arrows.

11.3.2 Signal Flow Graph

The transition from DG to SFG is clearly depicted in Figure 11.8. To derive the SFG
from the DG, the nodes of the DG are assigned to processors, and then their operations
are scheduled on these processors. One common technique for processor assignment
is linear projection of all identical nodes along one straight line onto a single processor,
as indicated by the projection vector d in Figure 11.8. Linear scheduling is then used to
determine the order in which the operations are performed on the processors.
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The schedule lines in Figure 11.8 indicate the operations that are performed in parallel
at each cycle. Mathematically they are represented by a schedule vector s normal to the
schedule lines, which points in the direction of dependence of the operations. That is, it
shows the order in which each line of operations is performed.

There are two basic rules that govern the projection and scheduling, and ensure that
the sequence of operations is retained. Given a DG and a projection vector d, the sched-
ule is permissible if and only if:
� all the dependence arcs flow in the same direction across the schedule lines;
� the schedule lines are not parallel with the projection vector d.

In the QR example in Figure 11.8, each triangular array of cells within the DG repre-
sents one QR update. When cascaded, the DG represents a sequence of QR updates. By
projecting along the time axis, all the QR updates may be assigned onto a triangular SFG
as depicted in Figure 11.8(b). In the DG, the R values are passed through time from one
QR update to another, represented by the cascaded triangular arrays. This transition is
more concisely represented by the loops in Figure 11.8(b), which feed the R values back
into the cells via an algorithmic delay needed to hold the values for use in the next QR
update. This is referred to as a recursive loop.

The power of the SFG is that it assumes that all operations performed within the nodes
take one cycle, as with the algorithmic delays, represented by small black nodes, which
are a necessary part of the algorithm. The result is a more concise representation of the
algorithm than the DG.

The rest of this chapter gives a detailed account of the processes involved in deriving
an efficient architecture and hence hardware implementation of the SFG representation
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Figure . Simple linear array mapping

of the algorithm. In particular, the emphasis is on creating an intuitive design that will
be parameterizable, therefore enabling a fast development for future implementations.

. Efficient Architecture Design

With the complexity of the SGR QR-RLS algorithm, coupled with the number of proces-
sors increasing quadratically with the number of inputs, it is vital to generate efficient
QR array architectures tailored to the applications that meet desired performance with
the lowest area cost. This is achievable by mapping the triangular functionality down
onto a smaller array of processors. Deriving an efficient architecture for this QR array
is complicated by its triangular shape and the position of the BCs along the diagonal. A
simple projection of operations from left to right onto a column of N processors leads to
an architecture where the processors are required to perform both the IC and BC oper-
ations (which were described in Chapter 2). In addition, while the first processor is used
100% efficiently, this rate usage decreases down the column of processors such that the
Nth processor is only used once in every N cycles. This results in an overall efficiency
of about 60% as shown in Figure 11.9.

Rader (1992 1996) solved the issue of low processor usage by mirroring part B in the x-
axis (see Figure 11.10) and then folding it back onto the rest of the QR array. Then, all the

y

N inputs

x

(a)

BA

(b) (d)

N/2 processors

(c)

projection

Figure . Radar mapping (Rader 1992, 1996)
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Figure . Projecting the QR array onto a linear architecture

operations were mapped down onto a linear architecture of N∕2 processors. This works
quite effectively but the BC and IC operations still need to be performed on the same
processor, involving the design of a generic cell architecture or an implementation based
on the CORDIC algorithm, see Hamill (1995). Another solution (Tamer and Ozkurt
2007) used a tile structure on which to map the QR cells.

Figure 11.11 gives an example of how the QR operations need to be scheduled. It shows
a simplified QR array with just three auxiliary (x) inputs and one primary (y) input. The
schedule lines show the sequence in which the QR operations need to be performed
due to the dependence on variables passing between the cells. On each schedule line,
there are a number of operations that can be performed at the same time. The normal
schedule vector, s, then depicts the order of the operations, that is, the order of the
schedule lines. Two examples are given for the projection vector, d. There is a horizontal
projection of the QR operations onto a column of three processors. Likewise, a vertical
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projection is possible down to four processors. As with the example above, the resulting
architectures require that both the BC and IC operations are performed on the same
processor.

Another mapping (Walke 1997) solves this issue of requiring QR cells that perform
both operations. The mapping assigns the triangular array of 2m2 + 3m + 1 cells (i.e.
N = 2m + 1 inputs) onto a linear architecture consisting of one BC processor and m IC
processors. It folds and rotates the triangular array so that all the BC operations may
be assigned to one processor, while all the IC operations are implemented on a row of
separate processors. All processors in the resulting linear architecture are locally inter-
connected and used with 100% efficiency, thus displaying the characteristics of a systolic
array and hence offering all the advantages associated with these structures. This pro-
cedure is depicted in Figure 11.12 for a seven-input triangular array (for a more detailed
description, see Lightbody 1999; Lightbody et al. 2003; Walke 1997).

For clarity, each QR operation is assigned a coordinate originating from the R (or U)
term calculated by that operation, i.e. the operation R1,2 is denoted by the coordinate 1, 2,
and U1,7 is denoted by 1, 7. To simplify the explanation, the multiplier at the bottom of
the array is treated as a BC, denoted by 7, 7.

The initial aim of mapping a triangular array of cells down onto a smaller architecture
is to maneuver the cells so that they form a locally interconnected regular rectangular
array. This can then be partitioned evenly into sections, each to be assigned to an indi-
vidual processor. This should be done in such a way as to achieve 100% cell usage and a
nearest neighbor connected array. Obtaining the rectangular array is achieved through
the following four stages. The initial triangular array is divided into two smaller trian-
gles, A and B. A cut is then made after the (m + 1)th BC at right angles to the diagonal
line of BCs (Figure 11.12(a)). Triangle A forms the bottom part of a rectangular array,
with m + 1 columns and m + 1 rows.

Triangle B now needs to be manipulated so that it can form the top part of the rect-
angular array. This is done in two stages. By mirroring triangle B first in the x-axis, the
BCs are aligned in such a way that they are parallel to the BCs in the triangle A, form-
ing a parallelogram, as shown in Figure 11.12(b). The mirrored triangle B is then moved
up along the y-axis and left along the x-axis to above A forming the rectangular array
(Figure 11.12(c)). As depicted, the BC operations are aligned down two columns and
so the rectangular array is still not in a suitable format for assigning operations onto a
linear architecture.

The next stage aims to fold the large rectangular array in half so that the two columns
of BC operations are aligned along one column. This fold interleaves the cells so that a
compact rectangular processor array (Figure 11.12(d)) is produced. From this rectan-
gular processor array, a reduced architecture can be produced by projection down the
diagonal onto a linear array, with all the BC operations assigned to one BC processor
and all the IC operations assigned to a row of m IC processors (Figure 11.12(e)). The
resulting linear architecture is shown in more detail in Figure 11.13.

The lines drawn through each row of processors in Figure 11.12(e) (labeled 1,… , 7),
represent the set of QR operations that are performed on each cycle of the linear array.
They are used to derive the schedule for architecture, as denoted more compactly by
a schedule vector s, normal to the schedule lines. In Figure 11.13, it is assumed that
registers are present on all processor outputs to maintain the data between the cycles of
the schedule. Multiplexers are present at the top of the array so that system inputs to the
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QR array can be supplied to the cells at the right instance in time. The linear array has
only local interconnections, so all the cell inputs come from adjacent cells. The bottom
multiplexers govern the different directions of dataflow that occur between rows of the
original array.

The folding of the triangular QR array onto an architecture with reduced number of
processors means that the R values need to be stored for more than one clock cycle.
They are held locally within the recursive data paths of the QR cells, rather than external
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Figure . Linear architecture for a seven-input QR array

memory (i.e. the values are pipelined locally to delay them until they are needed). Some
of the required delays are met by the latency of existing operations within the loop and
the remainder are achieved by inserting additional registers.

11.4.1 Scheduling the QR Operations

The derivation of the architecture is only a part of the necessary development as a valid
schedule needs to be determined to ensure that the data required by each set of opera-
tions are available at the time of execution. This implies that the data must flow across the
schedule lines in the direction of the schedule vector. The rectangular processor array
in Figure 11.12(d) contains all the operations required by the QR algorithm, showing
the sequence in which they are to be implemented on the linear architecture. Therefore,
this diagram can be used to show the schedule of the operations to be performed on the
linear architecture.

An analysis of the scheduling and timing issues can now be refined. Looking at the
first schedule line, it can be seen that operations from two different QR updates have
been interleaved. The shaded cells represent the current QR update at time n and the
unshaded cells represent the previous unfinished update at time n − 1. Effectively the QR
updates have been interleaved. This is shown in more clarity in Figure 11.14. The first QR
operation begins at cycle 1, then after 2m + 1 cycles of the linear architecture the next
QR operation begins. Likewise, after a further 2m + 1 cycles the third QR operation is
started. In total, it takes 4m + 1 cycles of the linear architecture to complete one specific
QR update.

From Figure 11.14, it can be seen that the x inputs into the QR cells come from either
external system data, i.e. from the snapshots of data forming the input x(n) matrix and
y(n) vector, or internally from the outputs of other processors. The external inputs are
fed into the linear architecture every 2m + 1 clock cycles.

If each QR cell takes a single clock cycle to produce an output, then there will be
no violation of the schedule shown in Figure 11.12. However, additional timing issues
must be taken into account as processing units in each QR cell have detailed timing
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requirements. The retiming of the operations is discussed in more detail later on in this
chapter.

Note that the processor array highlighted in Figure 11.14 is equivalent to the processor
array given in Figure 11.12(d). This processor array is the key starting point from which
to develop a generic QR architecture.

. Generic QR Architecture

The technique shown so far was applied to a QR array with only one primary input. More
generally, the QR array would consist of a triangular part and a rectangular part (Figure
11.15(a)), the sizes of which are determined by the number of auxiliary and primary
inputs, respectively. Typically, the number of inputs to the triangular part is at least a
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Figure . Generic QR array. (Source: Lightbody 2003. Reproduced with permission of IEEE.)

factor greater than the number of inputs to the rectangular part, with example numbers
for radar being 40 inputs for the triangular part and only 2 for the rectangular part.

The mapping procedure presented in this section implements both the triangular and
rectangular components of the QR array in a single architecture. As before, the BC and
IC operations are kept to two distinct processors. The additional factor presented by
the generic mapping technique is that a choice of linear or rectangular architectures is
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available. The number of IC processors may be reduced further, allowing more flexibil-
ity in the level of hardware reduction. However, at least one BC processor is required,
even if the number of ICs is reduced below one row. Note that the connections have
been removed from Figure 11.15 and in later following diagrams in order to reduce the
complexity of the diagram and aid clarity.

11.5.1 Processor Array

In the previous section, the triangular structure of the QR array was manipulated into
a rectangular processor array of locally interconnected processors, as shown in Figure
11.12(d). From this starting point, the operations can be mapped onto a reduced archi-
tecture. A simplified method for creating the processor array is demonstrated in the
following example.

The processor array is obtained through two steps. Firstly, a fold is made by folding
over the corner of the array after the mth cell from the right-hand side, as depicted in
Figure 11.15. The cells from the fold are interleaved between the rows of unfolded cells
as shown. The next stage is to remove the gaps within the structure by interleaving suc-
cessive QR updates in the same manner as shown in Figure 11.14. The choice of position
of the fold and the size of the triangular part of the array are important. By placing the
fold after the mth cell from the right-hand side, a regular rectangular array of operations
can be produced.

This is shown in greater detail in the Figure 11.16, which shows that there is a sec-
tion which repeats over time and contains each of all the required QR operations. This
section is referred to as the processor array. It is more clearly depicted in Figure 11.17,
which shows just the repetitive section from Figure 11.16.
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In this example, the processor array contains QR operations built up from three suc-
cessive QR updates, represented by the differently shaded cells. The interconnections
are included within this diagram, showing that all cells are locally connected. The size
of the processor array is determined by the original size of the triangular QR array,
which in turn is governed by the number of auxiliary and primary inputs, 2m + 1 and
p, respectively. The resulting processor array has 2m + 1 rows and m + p + 1 columns.
As expected, the product of these two values gives the number of operations within the
original QR array. From the processor array, a range of architectures with reduced num-
ber of processors can be obtained by dividing the array into partitions and then assigning
each of the partitions to an individual processor. There are several possible variants of
QR architecture:

Linear architecture: The rectangular array is projected down onto a linear architecture
with one BC and m + p ICs.

Rectangular architecture: The rectangular array is projected down onto a number of
linear rows of cells. The architecture will have r rows (where 1 < r ≤ 2m + 1), and
each row will have one BC and m + p ICs.

Sparse linear architecture: The rectangular array is projected down onto a linear archi-
tecture with one BC and less than m + p ICs.

Sparse rectangular architecture: The rectangular array is projected down onto a num-
ber of linear rows of cells. The architecture will have r rows (where 1 < r ≤ 2m + 1),
and each row will have one BC and less than m + p ICs.

Linear Array
The linear array is derived by assigning each column of operations to an individual pro-
cessor, as shown in Figure 11.18. In total, it takes 4m + p + 1 = 16 cycles of the linear
array to complete each QR operation. In addition, there are 2m + 1 = 7 cycles between
the start of successive QR updates. This value is labeled as TQR. Note that so far the
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latency of the QR cells is considered to be one clock cycle, i.e. on each clock cycle one
row of QR operations is performed on the linear architecture. Later sections will exam-
ine the effect of a multi-cycle latency, which occurs when cell processing elements with
detailed timings are used in the development of the generic QR architecture.

Sparse Linear Array
A further level of hardware reduction is given in Figure 11.19, resulting in a sparse linear
array. Here the number of IC processors has been halved. When multiple columns (i.e.
NIC columns) of IC operations are assigned to each processor then the number of itera-
tions of the architecture is increased by this factor. Hence, for the sparse linear array, TQR
is expressed as the product of 2m + 1 (used in the linear array) and NIC. The schedule
for the sparse linear array example is illustrated in Figure 11.20.

Rectangular Array
The processor array can be partitioned by row rather than by column so that a number
of rows of QR operations are assigned to a linear array of processors. The example below
shows the processor array mapped down on an array architecture. As the processor array
consisted of 7 rows, 4 are assigned to one row and 3 are assigned to the other. To balance
the number of rows for each linear array, a dummy row of operations is needed and is
represented by the cells marked by the letter D.

On each clock cycle, the rectangular array processor executes two rows of the origi-
nal processor array. Each QR iteration takes 18 cycles to be completed, two more clock
cycles than for the linear array due to the dummy row of operations. However, the QR
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Figure . Sparse linear array

updates are started more frequently. In this case TQR is 4, compared to the linear array
which took 7 cycles. For the array architecture, TQR is determined by

TQR =
(2m + 1) + ND

Nrows
,

where Nrows is the number of lines of processors in the rectangular architecture, and
ND is the number of rows of dummy operations needed to balance the schedule. The
resulting value relates to the number of cycles of the architecture required to perform
all the operations within the processor array.

Sparse Rectangular Array
The sparse rectangular array assigns the operations to multiple rows of sparse linear
arrays. A number of rows of the processor array are assigned to each linear array. The
columns are also partitioned so that multiple columns of operations are assigned to each
IC processor, as shown in Figure 11.22.

The QR update takes 34 cycles for completion and each update starts every 7 cycles,
i.e. TQR = 7. Including the term NIC, the equation for TQR becomes

TQR =
((2m + 1) + ND)NIC

Nrows
.

For example, TQR = ((2 × 3 + 1 + 0) × 2)∕2 = 7 cycles.
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Figure . One QR update scheduled on the sparse linear array. (Source: Lightbody 2003.
Reproduced with permission of IEEE.)

The discussion to date has concentrated on mapping QR arrays that have an odd num-
ber of auxiliary inputs. The technique can be applied to an array with an even number
with a slight reduction in overall efficiency.

. Retiming the Generic Architecture

The QR architectures discussed so far have assumed that the QR cells have a latency of
one clock cycle. The mapping of the architectures is based on this factor; hence there
will be no conflicts of the data inputs. However, the inclusion of actual timing details
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within the QR cells will affect this guarantee of a valid data schedule. The arithmetic
IP processors (McCanny et al. 1997; Northeastern University 2007), used to implement
the key arithmetic functions such as multiplication, addition and division involve timing
details which will impact the overall circuit timing. Embedding processor blocks with
specific timing information, coupled with the impact of truncation and internal word
growth, means that detailed retiming of the original SFGs of the QR cells must be per-
formed before the processors can be used to implement the QR architecture (Trainor
et al. 1997). The overall effect of retiming is to incur variable latencies in the output
data paths of the QR cells. The effect of real timing information within the QR cells is
discussed in this section.

The choice for the QR array was to use floating-point arithmetic to support the
dynamic range of the variables within the algorithm. The floating-point library used
supported variable wordlengths and levels of pipelining, as depicted in Figure 11.23.

In adaptive beamforming, as with many signal processing applications, complex arith-
metic representations are needed as incoming signals contain a magnitude and phase
component. This is implemented using one signal for the real part and another for the
imaginary part, and gives the BC and IC operations shown in the SFGs depicted in
Figure 11.24.
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The floating-point complex multiplication is built up from four real multiplications
and two real additions: (a + jb)(c + jd) = (ac − bd) + j(ad + bc). An optimization is
available to implement the complex multiplication using three multiplications and fives
additions/subtractions as illustrated in Section 6.2.2. However, given that an addition
is of a similar area to multiplication within floating-point arithmetic due to the costly
exponent calculation, this is not beneficial. For this reason, the four-multiplication ver-
sion is used. The detail of the complex arithmetic operations is given in Figure 11.25.

The SFGs for the BCs and ICs are given in Figures 11.26 and 11.27, respectively. These
diagrams show the interconnections of the arithmetic modules within the cell archi-
tectures. Most functions are self-explanatory, except for the shift-subtracter. For small
values of x, the operation

√
1 − x can be approximated by 1 − x2 which may be imple-

mented by a series of shifts denoted by D = A − Shift(A, N). This operation is used to
implement the forgetting factor, 𝛽, within the feedback paths of the QR cells. This value,
𝛽, is close to 1, therefore x is set to 1 − 𝛽 for the function application.
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There are a number of feedback loops within the QR cells, as shown in Figures 11.26
and 11.27. These store the R values from one RLS iteration to the next. These loops will
be a fundamental limitation to achieving a throughput rate that is close to the clock rate
and, more importantly, could lead to considerable inefficiency in the circuit utilization.
In other words, even when using a full QR array, the delay in calculating the new R values
will limit the throughput rate.

Figures 11.26 and 11.27 show the QR cell descriptions with generic delays placed
within the data paths. These are there to allow for the re-synchronization of operations
due to the variable latencies within the arithmetic operators, i.e. to ensure correct tim-
ing. The generic expressions for the programmable delays are listed in Tables 11.1 and
11.2 for the BC and IC, respectively.

Secondly, to maintain a regular data schedule, the latencies of the QR cells are adjusted
so that the x values and rotation parameters are output from the QR cells at the same
time. The latency of the IC in producing these outputs can be expressed generically using
a term LIC. The latencies of the BC in producing the rotation parameters, a and b, are also
set to LIC to keep outputs synchronized. However, the latency of the BC in producing
the 𝛿out is set to double this value, 2LIC, as this relates back to the original scheduling
of the full QR array, which showed that no two successive BC operations are performed
on successive cycles. By keeping the structure of the data schedule, the retiming process
comes down to a simple relationship.

11.6.1 Retiming QR Architectures

This subsection continues with the discussion of retiming issues and how to include
them in a generic architecture.
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Retiming of the Linear Array Architecture
The latency has the effect of stretching out the schedule of operations for each QR
update. This means that iteration n = 2 begins 2m + 1 clock cycles after the start of iter-
ation n = 1. However, the introduction of processor latency stretches out the scheduling
diagram such that iteration n = 2 begins after (2m + 1)LIC clock cycles. This is obviously
not an optimum use of the linear architecture as it would only be used every LICth clock
cycle. A factor, TQR, was introduced in the previous section as the number of cycles
between the start of successive QR updates, as determined by the level of hardware
reduction.

It can be shown that a valid schedule which results in a 100% utilization can be
achieved by setting the latency LIC to a value that is relatively prime to TQR. That is,
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if the two values do not share a common factor other than 1 then their lowest common
multiple will be their product. Otherwise there will be data collisions at the products of
LIC and TQR with their common multiplies. Thus if TQR = mod c and LIC = mod c then
TQR = d × c and LIC = e × c, giving c = TQR∕d = LIC∕e, where c is a common multiple
of TQR and LIC and a positive integer other than 1, and d and e are factors of TQR and

Table . BC generic timing

BC Delay Value

BRL 2PA + 2PM + PR + PS − TQR
PB1 PM
PB2 TQR − PA − PB
PB2a If BRL < 0, then −BRL, otherwise, 0
PB2b If BRL < 0, then PB2 − PB2a, otherwise PB2
PB3 If BRL > 0, then BRL, otherwise, 0
PB4 2PA + PM + PR + PD − PB3
PB5 2PA + 2PM + PR + PD − TQR
PB5a If PB5 < 0, then PB5, otherwise, 0
PB5b If PB5 > 0, then PB5, otherwise, 0
PB6 LIC − L𝛿
PB7 LIC − La
PB8 LIC − Lb
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Table . IC generic timing

IC Delay Value

IRL 2PA + PM + PR − TQR
PI1 TQR − PA − PS
PI1a If IRL < 0, −IRL, otherwise, 0
PI1b If IRL < 0, PI1 − PI1a, otherwise, PI1
PI2 If IRL > 0, IRL, otherwise, PI1
PI3 PI2 + PA + PM
PI4 LIC − Lx
PI5 LIC
PI6 LIC − PI2

Table . Generic expressions for the latencies of the BC and IC

Latency Value

La PM
Lb PM + PB5
L𝛿 PB3 + PB4 + 2PM
LX PI3 + PA

LIC respectively. Hence, there would be a collision at TQR × e = LIC × d. This means that
the products of both TQR × e and LIC × d must be less than TQR × LIC. Therefore, there
is a collision of data. Conversely, to obtain a collision free set of values, c is set to 1.

The time instance TQR × LIC does not represent a data collision as the value of TQR is
equal to 2m + 1, as the QR operation that was in line to collide with a new QR operation
will have just been completed. The other important factor in choosing an optimum value
of TQR and LIC is to ensure that the processors are 100% efficient.

The simple relationship between TQR and LIC is a key factor in achieving a high uti-
lization for each of the types of structure. More importantly, the relationship gives a
concise mathematical expression that is needed in the automatic generation of a generic
QR architecture complete with scheduling and retiming issues solved.

Figure 11.28 shows an example schedule for the seven-input linear array that was orig-
inally shown in Figure 11.12 where LIC is 3 and TQR is 7. The shaded cells represent the
QR operations from different updates that are interleaved with each other and fill the
gaps left by the highlighted QR update. The schedule is assured to be filled by the com-
pletion of the first QR update; hence, this is dependent on the latency, LIC.

. Parameterizable QR Architecture

The main areas of parameterization include the wordlength, the latency of arithmetic
functions, and the value of TQR. Different specifications may require different finite pre-
cision, therefore the wordlength is an important parameter. The QR cells have been built
up using a hierarchical library of arithmetic functions, which are parameterized in terms
of wordlength, with an option to include pipelining to increase the operation speed as
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Figure . Schedule for a linear array with an IC latency
of 3

required. These parameters are passed down through the hierarchy of the HDL descrip-
tion of the QR cells to these arithmetic functions. Another consideration is the value of
TQR, which determines the length of the memory needed within the recursive loops of
the QR cells which hold the R and u values from one QR update to the next. Both TQR
and the level of pipelining within the arithmetic functions are incorporated in generic
timing expressions of the SGR QR cells.

11.7.1 Choice of Architecture

Table 11.4 demonstrates the process for designing a QR architecture when given a spe-
cific sample rate and QR array size. The examples below are for a large QR array with 45
auxiliary inputs and 4 primary inputs, i.e. m = 22 and p = 12. The resulting processor
array is 2m + 1 = 45 rows by m + p + 1 = 35 columns. For a given sample throughput
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Table . Other example architectures (clock speed = 100 MHz)

Number of processors
Data rate

Arch. Details BC IC total TQR MSPS

Full QR Processor for each QR
cell

45 1170 1215 4 25

Rectangular 1 Processor array assigned
onto 12 linear arrays,
each responsible for
4 rows

12 312 324 4 25

Rectangular 2 Processor array assigned
onto 3 linear arrays,
each responsible for
45∕3 = 15 rows

3 78 81 (2m + 1)∕3
(15)

6.67

Rectangular 3 Processor array assigned
onto 15 linear arrays
(13 ICs), each
responsible for
45∕3 = 15 rows
2 columns of ICs to
each

15 195 210 (2m + 1)∕15 16.67

Sparse
rectangular

2 columns of ICs to each
IC processor of
3 linear arrays

3 39 42 2(2m + 1)∕3
(30)

3.33

Linear 1 BC and 26 ICs 1 26 27 2m + 1
(45)

2.22

Sparse linear 2 columns of ICs
assigned to each IC
processor of a linear
array

1 13 14 2(2m + 1)
(90)

1.11

rate and clock rate, we can determine the value for TQR, as depicted in the table. Note
that the resulting value for TQR and LIC must be relatively prime, but for these examples
we can leave this relationship at present.

The general description for TQR, as shown above, can be rearranged to give the fol-
lowing relationship:

NIC
Nrows

=
TQR

2m + 1
.

This result is rounded down to the nearest integer. There are three possibilities:

� If TQR
2m+1 > 1 then a sparse linear array is needed.

� If TQR
2m+1 = 1 then a linear array is needed.

� If TQR
2m+1 < 1 then a rectangular array is needed.

Depending on the dimensions of the resulting architecture, the designer may decide to
opt for a sparse rectangular architecture.

Note that the maximum throughput that the full triangular array can meet is limited
to 25 MSamples/s due to the four-cycle latency within the QR cell recursive path for the
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specific implementation listed in Lightbody et al. The first rectangular array solution is
meeting the same throughput performance as the full QR array using only 408 ICs and
12 BCs, instead of the full array which requires 1530 ICs and 45 BCs.

11.7.2 Parameterizable Control

A key aspect of the design of the various architectures is the determination of the control
data needed to drive the multiplexers in these structures. Due to the various mappings
that have been applied, it is more relevant of think of the IC operation as having four
different modes of operation: input, mirrored input, unmirrored cell and mirrored cell
(Figure 11.29). The mirrored ICs are the result of the fold used to derive the rectangular
processor array from the QR array and simply reflect a different dataflow. The cell orien-
tation is governed by the multiplexers and control, and is therefore an issue concerning
control signal generation.

The four modes of operation can be controlled using two control signals, C, which
determines whether the x input is from the array (I) or from external data (E), and F,
which distinguishes between a folded (M) and an unfolded operation (U). The latter
determines the source direction of the inputs. The outputs are then from the opposite
side of the cell. A mechanism for determining the control of each architecture is given
next.

11.7.3 Linear Architecture

The control signals for the linear architecture were derived directly from its data sched-
ule. The modes of operation of the cells were determined for each cycle of the sched-
ule, as shown in Table 11.5. Figure 11.30 shows the QR cells with the applied control
and multiplexers, and the control signals for a full QR operation for this example are
given in Table 11.6. The control and timing of the architectures for the other vari-
ants become more complex – in particular, the effect that latency has on the control
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Table . Modes of operation of the QR cells for the linear array

Cycle BC IC IC IC IC IC IC

1 IC UC UC UC UC UC MIC
2 UC IC UC UC UC MIC UM
3 UC UC IC UC MIC UC MIC
4 UC UC UC IC UM MIC UM
5 UC UC UC UC IC UM MIC
6 UC UC UC UC UM IC UM
7 UC UC UC UC UM UM IC
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(a) Boundary cell
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XExt
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Xout
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Figure . QR cells for the linear architecture

Table . Linear array control for the x-inputs and for mirrored/not mirrored cells

Cyc. C C C C C C C F F F F F F

1 E I I I I I E U U U U U M
2 I E I I I E I U U U U M U
3 I I E I E I I U U U M U M
4 I I I E I I I U U U U M U
5 I I I I E I I U U U U U M
6 I I I I I E I U U U U U U
7 I I I I I I E U U U U U U
8 E I I I I I E U U U U U M
9 I E I I I E I U U U U M U

10 I I E I E I I U U U M U M
11 I I I E I I I U U U U M U
12 I I I I E I I U U U U U M
13 I I I I I E I U U U U U U
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sequences. In the sparse variants, extra delays need to be placed within the cells to orga-
nize the schedule, and in the rectangular variants, the cells need to be able to take x and
𝜃 inputs from the cells above and below as well as from adjacent cells. Each of these
variants shall be looked at in turn.

11.7.4 Sparse Linear Architecture

Figure 11.31(a) shows two columns of operations being assigned onto each IC. From the
partial schedule shown in Figure 11.31(b), it can be seen that the transition of a value
from left to right within the array requires a number of delays. The transfer of 𝜃1 from
BC(1, 1), to the adjacent IC(1, 2) takes three cycles. However, the transfer of X12 from
the IC to the BC only takes one cycle.

The example in Figure 11.32 shows the partitioning of three columns of ICs. Schedul-
ing them onto a single processor requires their sequential order to be maintained. The
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Example: NIC = 3

Schedule:
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lines

Projection onto 1

internal cellIC

NIC = 3

Figure . Example partitioning of three columns onto one processor. (Source: Lightbody 2003.
Reproduced with permission of IEEE.)

IC operations have been numbered 1, 2, 3 for the first row, and 1′, 2′, 3′ for the sec-
ond row. The outputs generated from operation 2 are required for operations 1′ and 3′.
Because all the operations are being performed on the same processor, delays are needed
to hold these values until they are required by operations 1′ and 3′. Operation 3 is per-
formed before operation 1′, and operations 3, 1′ and 2′ are performed before operation
3′, which relates to 2 and 4 clock cycle delays, respectively. This has been generically
defined according to the number of columns of operations within the processor array
assigned to each IC, NIC, as shown in Figure 11.33.

Two output values, x and 𝜃, are transferred from operation c + 1 to c and c + 2. The
value that is fed to a specific operation depends on whether the cells perform the folded
or unfolded modes of operation as summarized in Table 11.5. If the data is transferred

Figure . Generic partitioning of NIC columns onto one processor
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Table . Required delays for sparse linear array (U, not mirrored; M, mirrored)

Data transfer
Direction in terms
of QR operation

Dataflow
direction Delays Label

U → U (i, j) → (i, j + 1), 𝜃 → NIC + 1 D1
(i, j) → (i + 1, j), x ← NIC − 1 D2

M → M (i, j) → (i + 1, j), 𝜃 ← NIC − 1 D2
(i, j) → (i, j + 1), x → NIC + 1 D1

U → M(end cell) (i, j) → (i, j + 1), 𝜃 ↓ NIC D3
M → U(end cell) (i, j) → (i + 1, j), x ↓ NIC D3

between the same type of cell (i.e. U → U , or M → M) then the delay will be either
NIC − 1 or NIC + 1, according toTable 11.7. However, if the data transfer is between dif-
ferent types of cell (i.e. U → M, or M → U, as in the case of the end processor), then the
number of delays will be NIC. This is summarized in Table 11.7.

These delays are then used within the sparse linear architecture to keep the desired
schedule as given in Figure 11.34. The three levels of delays are denoted by the square
blocks labeled D1, D2 and D3. These delays can be redistributed to form a more efficient
QR cell architectures as shown in Figure 11.35. The extra L and R control signals indicate
the direction source of the inputs, with E and I control values determining whether the
inputs come from an adjacent cell or from the same cell. EC refers to the end IC that
differs slightly in that there are two modes of operation when the cell needs to accept
inputs from its output. The control sequences for this example are given in Figure 11.36.

From Figure 11.36, it can be seen that EC is the same as R and is the inverse of L. In
addition, the states alternate between E and I with every cycle, therefore, one control

Figure . Sparse linear array cells
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Figure . Redistributed delays for sparse linear array cells

sequence could be used to determine the control of the internal inputs. This control
value has been labeled D. The control signals shall be categorized as external input con-
trol, Ci, fold control, Fi, array control, Li and internal input control, Di The subscripts
are coordinates representing the cells to which the control signals are being fed.

One of the key issues with the sparse linear array is the effect of the latencies in the
QR cells on the schedule (which previously assumed a one-cycle delay). With the lin-
ear architecture, the schedule was scaled by the latency. However, with the sparse linear
array, there was a concern that the delays NIC − 1, NIC, NIC + 1 would also need to be
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Figure . Control sequence for sparse linear array
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Example: NIC =3
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Figure . Possible effect of latency on sparse linear array schedule

scaled in order to keep the structure of the original schedule, which would cause inef-
ficiency. This is depicted in Figure 11.37 for a latency of 8. This is not the case, as the
delays NIC − 1, NIC, NIC + 1 can be applied using the existing latency within the QR
cells. The minimum allowed number of clock cycles between successive operations is
the latency. By setting NIC − 1 to this minimum value, and then setting NIC to be one
clock cycle more and NIC + 1 to be two clock cycles more, a valid and efficient schedule
can be achieved. This is depicted in Figure 11.38.

In the example given in Figure 11.39, the latency of the IC is 3, so this gives the mini-
mum value for NIC as 4. NIC + 1 is therefore 5 and NIC − 1 is 3 clock cycles. The shaded
cells in Figure 11.39 show one complete QR update with interconnection included. The
rest of the QR operations are shown but with limited detail to aid clarity. Since it is
most probable that the latency of the IC will exceed the number of columns assigned to
each processor, it figures that the delays within the linear sparse array will depend on
LIC, i.e. the NIC − 1 delay will not be needed and the schedule realignment will be per-
formed by the single- and double-cycle delays shown in Figure 11.35. The highlighted
cells represent a full QR update, while the other numbered cells represent interleaved
QR operations. The faded gray BCs with no numbers represent unused positions within
the schedule.

11.7.5 Rectangular Architecture

The rectangular architecture consists of multiple linear array architectures that are con-
catenated. Therefore, the QR cells need to be configured so that they can accept inputs

Schedule:

2 1′ 3′

… t+8 … t+16 … t+18

NIC = 3

10
8

Cycle:

Latency = 8

… … …

Figure . Merging the delays into the latency
of the QR cells
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Figure . Effect of latency on schedule for the sparse
linear array (NIC = 3)
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Figure . QR cells for the rectangular array

from the above linear array. In addition, the top linear array needs to be able to accept
values from the bottom linear array. The QR cells are depicted in Figure 11.40. The con-
trol signals, E and I, decide on whether the X inputs are external (i.e. system inputs)
or internal. The control value, T , refers to inputs from the above array and A refers to
inputs from adjacent cells. When used as subscripts, TR and TL refer to values coming
from the left and right cells of the array above. AR and AL refer to the values coming
from the right and left adjacent cells within the same linear array.

11.7.6 Sparse Rectangular Architecture

The QR cells for the sparse rectangular array need to be able to feed inputs back to
themselves, in addition to the variations already discussed with the linear and rectan-
gular architectures. The extra control circuitry is included in the QR diagrams shown
in Figure 11.41. The control and the delays required by the sparse arrays to realign the
schedule are brought together into LMR multiplexer cells (Figure 11.42) that include
delays needed take account of the retiming analysis demonstrated in this section.

It was discussed with the sparse linear array how certain transfer in data values
required the insertion of specific delays to align the schedule. This also applies to the
rectangular array and the same rules can be used.

The starting point for determining the schedule for the sparse rectangular array is the
schedule for the sparse linear array. From this, the rows of operations are divided into
sections, each to be performed on a specific sparse linear array. The control, therefore,
is derived from the control for the linear sparse version. The next section deals with
parametric ways of generating the control for the various QR architectures. In addition
to the control shown so far, the next section analyzes how latency may be accounted for
within the control generation.

11.7.7 Generic QR Cells

The sparse rectangular array QR cells, shown in Figure 11.41, can be used for all of
the QR architecture variants, by altering the control signals and timing parameters.
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Figure . QR cells for the sparse rectangular array
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Figure . LMR control circuitry for sparse arrays
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However, in the sparse variants, there are added delays embedded within the LMR con-
trol cells. These can be removed for the full linear and rectangular array versions, by
allowing them to be programmable so that they may be set to zero for the non-sparse
versions. The key to the flexibility in the parameterizable QR core design is the generic
generation of control signals. This is discussed in the following section.

. Generic Control

The previous section detailed the various architectures derived from the QR array. Some
detail was given of the control signals needed to operate the circuits. This section looks
at generic techniques for generating the control signals that may be applied to all the QR
architecture variants. It is suggested that a software interface is used to calculate each
control sequence as a bit-vector seed (of length TQR) that may be fed through a linear
feedback register which will allow this value to be cyclically output bit by bit to the QR
cells.

The first stage in developing the control for the QR array is to look at the generic
processor array which gives the control needed for the linear array. From this, the control
signals may be folded and manipulated into the required sequence for the sparse linear
arrays. The control for the rectangular versions may be generated quite simply from the
control for the linear architectures.

11.8.1 Generic Input Control for Linear and Sparse Linear Arrays

A new external x-input is fed into a cell of the linear array on each clock cycle, start-
ing from the leftmost cell, reaching the leftmost cell and then folding back until all the
2m + p + 1 inputs are fed into the array for that specific QR update. This is highlighted
for one set of QR inputs in Figure 11.43. The next set of inputs follow the same pattern
but start after TQR cycles. The result is a segment of control signals that repeat every
TQR cycles (which is 7 for the linear array example and 14 for the sparse linear array
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Figure . Control for the external inputs for the linear QR arrays
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Figure . External inputs

example). The aim is to automatically generate vectors, containing TQR bits, which rep-
resent the repeating sections for each of the control signals, C1 to C7. The key point
is to determine when the next set of QR inputs starts in relation to the previous set.
This can be determined mathematically from the dimensions of the original QR array
and the resulting processor array from which the QR architectures are derived, i.e. a QR
array with 2m + 1 auxiliary inputs and p primary inputs leads to a processor array with
2m + 1 rows and m + p + 1 columns. This relationship is depicted by Figure 11.44. The
heavy lines indicate the series of inputs for one QR update, and relate to the highlighted
control for the external inputs for the linear array example in Figure 11.43.

Software code can be written to generate the control signals for the external inputs
for the linear and sparse linear array. The inputs are broken down into two series (see
Figure 11.44), one dealing with the inputs going from left to right, and the other dealing
with the inputs from right to left (the change in direction being caused by the fold).

The code generates the position of the control signals within the control vector for
each input into each processor. If the vector number is larger than the vector, then the
vector size is subtracted from this value, leaving the modulus as the position. However,
after initializing the operation of the QR array, it is necessary to delay this control signal
by an appropriate value.

11.8.2 Generic Input Control for Rectangular and Sparse Rectangular Arrays

The control from the rectangular versions is then derived from these control vectors
by dividing the signals vectors into parts relating to the partitions within the processor
array. For example, if the control seed vectors for the linear array are eight bits wide and
the rectangular array for the same system consists of two rows, then each control vector
seeds would be divided into two vectors each four bits wide, one for the first rectangular
array and the other for the second. The control seed for the sparse rectangular array is
derived in the same manner from the control of the sparse linear array with the same
value of NIC. The same code may be edited to include the dummy operations that may
be required for the sparse versions. Figure 11.45(a) shows an example sparse linear array
mapping with m = 4, p = 3 and NIC = 2. The control in Figure 11.45(b) can be divided
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Figure . Partitioning of control seed

into two sections for implementing a sparse rectangular array consisting of two rows of
the sparse linear array.

11.8.3 Effect of Latency on the Control Seeds

The next stage is to determine the effect that latency has on the control vectors. As
discussed in this section, the sparse array needs delay values D1, D2 and D3, to account
for assigning multiple columns, NIC, of operations to each IC processor. For a system
with a single cycle latency, D1 = NIC − 1, D2 = NIC and D3 = NIC + 1. However, in the
real system the processors have multiple latency. It is assumed that the latency of the
IC, LIC, will be greater than these delays, so the delays are added onto the latency such
that the appropriate delays become D1 = LIC, D2 = LIC + 1 and D3 = LIC + 2. For the
linear array the values D1, D2 and D3 are all set to LIC. Then the code may be used to
generate the control vectors. The only difference is when the position of the control value
exceeds the width of the vector. With the single latency version, this was accounted for
by subtracting the value TQR from the value (where the width of the vector seed is TQR).

When latency is included within the calculations, it is not sufficient to reduce the value
to within the bounds of the vector width. Alternatively, the position of the control value
within the vector is found by taking the modulus of TQR. An analysis of the effect of
latency on the control vectors is shown through an example linear array where m = 3,
p = 5 and TQR = 2m + 1 = 7.

One point to highlight is the fact that there may be several cycles of the control vector
before the required input is present. For example, the vector in the above example for C4
is [I I E I I I I ], but the first required input is at time 10, not 3. Therefore it is necessary
to delay the start of this control signal by 7 cycles. The technique relies on the use of
initialization control signals to start the cycling of the more complicated control vectors
for the processors. However, the method discussed offers a parametric way of dealing
with control and allows the majority of the control to be localized. In addition, the same
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Figure . Example QR architecture derivation, m = 22, p = 4

principles used to develop the control signals for the timing of the external inputs may
be applied for the rest of the control signals, i.e. the fold, internal input, and row control.

. Beamformer Design Example

For a typical beamforming application in radar, the values of m would range from 20
to over 100. The number of primary inputs, p, would typically be from 1 to 5 for the
same application. An example specification is given in Figure 11.46. One approach is to
use the QR array. Assuming the fastest possible clock rate, fCLK, the fundamental loop
will dictate the performance and result in a design with 25% utilization. Thus the major
challenge is now to select the best architecture, mostly closely matching the throughput
rate with the best use of hardware. For the example here, a desired input sample rate of
15 MSPS with a maximum possible clock rate of 100 MHz is assumed.

The value for TQR can be calculated using the desired sample rate, SQR, and the max-
imum clock rate, fCLK:

TQR =
fCLK
SQR

= 100 × 106

15 × 106 = 6.67.

This value is the maximum number of cycles allowed between the start of successive
QR updates, therefore, it needs to be rounded down to the nearest integer. The ratio
Nrows∕NIC can be obtained by substituting for the known parameters into the relation-
ship below:

Nrows
NIC

= 2m + 1
TQR

= 45
6

= 7.5,

where 1 ≤ Nrows ≤ 2m + 1 (i.e. 45) and 1 ≤ NIC ≤ m + p (i.e. 26). Using these guidelines,
an efficient architecture can be derived by setting NIC = 2, and hence Nrows = 15. The
operations are distributed over 15 sparse linear architectures, each with 1 BC and 13
ICs, as shown in Figure 11.47.

Also note that the circuit critical path within the circuit must be considered to ensure
that the core can be clocked fast enough to support the desired QR operation. Here,
additional pipeline stages may be added to reduce the critical path and therefore improve
the clock rate. However, this has the effect of increasing the latencies and these must
then be included in the architecture analysis.
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Figure . Example architecture

Each row of processors is responsible for three rows of operations within the processor
array, therefore, TQR = 6, resulting in an input sample rate of 16.67 MSPS, which exceeds
the required performance. The details of some example architectures for the same QR
array are given in Table 11.8.

The value for TQR for the full QR array implementation is determined by the latency
in the recursive loop of the QR cells (consisting of a floating- point addition and a shift
subtract function). For the example shown, the QR array needs to wait four clock cycles
for the calculation of the value in the recursive loop, which therefore determines the
sample rate of the system. This example emphasizes the poor return of performance of
the full QR implementation at such a high cost of hardware. The same performance can
be achieved by using the first rectangular array example with only about one quarter the
number of processors.

Table . Selected architectures (clock speed = 100 MHz)

Number of processors
Data rate

Arch. Details BC IC total TQR MSPS

Full QR Processor for each QR
cell

45 1530 1575 4 25

Rectangular 1 Processor array assigned
onto 12 linear arrays,
each responsible for
4 rows

12 408 420 4 25

Rectangular 2 Processor array assigned
onto 3 linear arrays,
each responsible for
45∕3 = 15 rows

3 102 105 (2m + 1)∕3
(15)

6.67

Sparse
rectangular

3 columns of ICs to each
IC processor of
3 linear arrays

3 51 54 2(2m + 1)∕3
(30)

3.33

Linear 1 BC and 34 ICs 1 34 35 2m + 1
(45)

2.22

Sparse linear 2 columns of ICs
assigned to each IC
processor of a linear
array

1 17 18 2(2m + 1)
(90)

1.11
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. Summary

The goal of this chapter was to document each of the stages of development for an IP
core for adaptive beamforming. The main aspects covered were the design choices made
with regard to:
� the decision to use design-for-reuse strategies to develop an IP core;
� determination of the algorithm;
� determination of a suitable component to design as an IP core;
� specifying the generic parameters;
� algorithm to architecture development;
� scalable architectures;
� scalable scheduling of operations and control.

Each stage listed above was detailed for the adaptive beamforming example. Background
information was supplied regarding the RLS choice of algorithm decided upon for the
adaptive weight calculations. The key issue with the algorithm used is its computational
complexity. Techniques and background research were summarized showing the deriva-
tion of the simplified QR-RLS algorithm suitable for implementation on a triangular sys-
tolic array. Even with such reduction in the complexity there may still be a need to map
the full QR array down onto a reduced architecture set.

This formed a key component of the chapter, giving a step-by-step overview of how
such a process can be achieved while maintaining a generic design. Consideration was
given to architecture scalability and the effects of this on operation scheduling. Further
detail was given of the effects of processor latency and retiming on the overall scheduling
problem, showing how such factors could be accounted for upfront. Finally, examples
were given on how control circuitry could be developed so as to scale with the architec-
ture, while maintaining performance criteria. It is envisaged that the principles covered
by this chapter should be expandable to other IP core developments.
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

FPGA Solutions for Big Data Applications

. Introduction

We live in an increasingly digitized world where the amount of data being generated has
grown exponentially – a world of Big Data (Manyika et al. 2011). The creation of large
data sets has emerged as a hot topic in recent years. The availability of this valuable
information presents the possibility of analyzing these large data sets to give a competi-
tive and productivity advantage. The data come from a variety of sources, including the
collection of productivity data from manufacturing shop floors, delivery times, detailed
information on company sales or indeed the enormous amount of information currently
being created by social media sites. It is argued that by analyzing social media trends, it
should be possible to create potentially greater revenue generating products.

Big Data analytics (Zikopoulos et al. 2012) is the process by which value is created from
these data and involves the loading, processing and analysis of large data sets. Whilst
database analytics is a well-established area, the increase in data size has driven interest
in using multiple distributed resources to undertake computations, commonly known as
scaling out. This is achieved using a process known as MapReduce (Dean and Ghemawat
2004) which helps the user to distribute or map data across many distributed computing
resources to allow the computation to be performed, and then bringing all of these com-
puted outputs together, or reducing, to produce the result. ApacheTM Hadoop® (Apache
2015) is an open source resource for achieving this.

Given this distributed nature of processing, the authors could therefore be accused of
being opportunistic in including this hot topic in a book dedicated to implementation
of DSP systems using FPGA technology, but there is sound reasoning for doing so.
Data analytics comprises the implementation of computationally complex algorithms,
and for classes of algorithms that cannot be scaled out there is a need to improve
processing within the single computing unit. This is known as scaling up and requires
the realization of efficient, scalable hardware to achieve this functionality. As will be
demonstrated in this chapter, the process is similar to many of those applied to signal
processing examples.

There is certainly a strong case, increasingly targeted at FPGA, for developing scaled-
up solutions for a number of key data mining tasks, specifically classification, regression

FPGA-based Implementation of Signal Processing Systems,
Second Edition. Roger Woods, John McAllister, Gaye Lightbody and Ying Yi.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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and clustering. Such algorithms specifically include decision tree classification (DTC),
artificial neural networks (ANNs) and support vector machines (SVMs). There is a
strong case for developing FPGA-based solutions to achieve scaling up as performance
and especially power will become increasingly important. This chapter considers the
implementation of such algorithms and, in particular, the k-means clustering algorithm.

Big data concepts are introduced in Section 12.2. Details are given on Big Data ana-
lytics and various forms of data mining are introduced in Section 12.3. In Section 12.4,
the acceleration of Big Data analytics is discussed and the concepts of scaling up and
scaling out are introduced. The case for using FPGAs to provide acceleration is made
and a number of FPGA implementations reviewed, including the acceleration of the
Heston model for determining share options. The computation of k-means clustering is
then described in Section 12.5. The idea of using processors to make the heterogeneous
FPGA-based computing platform more programmable is introduced in Section 12.6
and then applied to k-means clustering in Section 12.7. Some conclusions are given in
Section 12.8.

. Big Data

The number of digital information sources continues to grow as we look to digitize
all sorts of information. These sources range from output from social media, storage
of text information from mobile phones, personal digitized information (e.g. medical
records), and information from the increasing number of security cameras. This growth
of information as been labeled Big Data and is recorded in terms of exabytes (1018) and
zettabytes (1021).

Of course, not only has the term “Big Data” emerged to define this new type of infor-
mation, but marketing forces have pushed for the definition of its various forms. Big
Data has been classified in terms of a number of characteristics namely, volume, veloc-
ity, variety, veracity and value, the so-called “five Vs.” Some of the key features of these
are outlined below.

� Volume, of course, refers to the amounts of data being generated. Whether this is
social media data from emails, tweets etc. or data generated from sensor data (e.g.
security cameras, telemetric sources), there is now a need to store these zettabytes
or even brontobytes (1027) of information. On Facebook alone, 10 billion messages
are sent per day! Such data sets are too large to store and analyze using traditional
structured database technology, and so there is a push to store them in unstructured
form using distributed systems.

� Velocity refers to the rate at which these new data sets are generated and distributed.
In our new era of instant financial transactions and smartphone connectivity, there
is a need for immediate response (within seconds). This has major consequences for
not only the computing infrastructure but also the communications technology to
ensure fast low- latency connectivity. Lewis (2014) relates the major activity and cost
involved in creating a fiber link between Chicago and New York just to shave several
milliseconds off the latency for financial markets!

� Variety refers to the different flavors of data, whether it be social media data which
may be incomplete, transitory data or even financial data which have to be secure.
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Whilst structured data databases would have been used in the past for storing infor-
mation, it is estimated that 80% of the world’s data is now unstructured, and therefore
cannot be put easily into conventional databases.

� Veracity refers to the trustworthiness of the data. Social media data are transitory
and less reliable as they may be incorrect (and possibly deliberately so) and of poor
quality, whereas security camera information is inaccurate but possibly of low quality
or low information content. The challenge is then to develop algorithms to cope with
the quality of data and possibly use volume as a means of improving the information
content.

� Value is probably the most relevant data characteristic as it represents the inherent
worth of the information. There is no doubt that it represents the most important
aspect of Big Data as it allows us to make sense of it. However, a major challenge is to
be able to extract the value from the data which is central aspect of Big Data analytics.

These are the challenges for Big Data analytics: it may be useful to have a high volume
of valuable information that has strong veracity, but this is only useful if we can make
sense of the information. Thus whilst Hadoop may provide an infrastructure for storing
and passing information for processing, it is the implementation of very complex analyt-
ics that is critical. Note that McNulty (2014) talks about Big Data in terms of the “seven
Vs,” adding variability and visualization to our list above.

. Big Data Analytics

The availability of such a rich form of data now presents the possibility of identifying
important value. For example, insurance companies currently employ statistical mod-
els on the multiple sources of information available, including previous premium prices
and even on-media and spending habits, to work out appropriate and acceptable insur-
ance premiums! Of course, considerable potential also exists for analyzing Big Data for
marketing reasons, and this represents a key driver for many of the data analytics algo-
rithms. With 1.2 billion people using apps, blogs and forums to post, share and view
content, there is a considerable body of available information.

Another very relevant area is security. With terrorism being a regular issue in our
world today, new forms of technology are increasingly being used by terrorists to com-
municate with each other; these range from using mobile phones to entering informa-
tion on social media sites. Extremist and terrorist groups use the internet for a wide
variety of purposes, including dissemination of propaganda, recruitment, and develop-
ment and execution of operational objectives.

As the volume and velocity of social media data rise exponentially, cyber threats are
increasing in complexity, scale and diversity. Social media intelligence (SOCMINT) is
an emerging science that aims to address this challenge through enhanced analytics
that can present a step-change in a defense intelligence community’s ability to instan-
taneously classify and interpret social media data, identify anomalies and threats, and
prevent future attacks (Omand et al. 2012).

It is therefore clear that Big Data analytics is a growing field of study and seems to
involve applying existing and new algorithms to make sense of data. It is argued that
this is not simply statistics or the result of applying data mining algorithms and that the
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challenges of Big Data require the development of new forms of algorithms. To this end,
the term “Big Data scientist” has been used to describe a specialist who is able to develop
new forms of the most suitable statistical and data mining techniques to data analysis.
The key is to create value from Big Data, and this presents a new computing problem as
it involves analysis of data sets that are at least of the order of terabytes.

With the increase in data size, the concept of using multiple distributed resources to
undertake Big Data computations is now becoming commonplace. A key development
was the creation of MapReduce, which is a programming model to allow algorithms and
large data sets to be distributed on a parallel, distributed computing platform and then
brought back together to produce the result. The open source manifestation of MapRe-
duce has been through ApacheTM Hadoop® (Apache 2015). This is one of the earliest
open source software resources for reliable, scalable, distributed computing. A number
of evolutions have occurred including a structured query language (SQL) engine, Impala
(Cloudera 2016), a generic scheduler, Yarn, and API file formats, namely Crunch.

A lot of hype surrounds Big Data, but there are also a number of major technical chal-
lenges in terms of acquiring, storing, processing and visualizing the data. From an FPGA
perspective, there is a clear need to implement complex data processing algorithms in a
highly parallel and pipelined manner.

12.3.1 Inductive Learning

The key aspect in many Big Data applications is that the user has to learn from data in
cases where no analytical solutions exist but the data are used to construct an empirical
solution (Abu-Mostafa et al. 2012). This is typically known as inductive learning and is a
core area of machine learning. It involves the user spotting patterns in the information
and generalizing them, hoping that they are correct but providing no guarantee that the
solution will be valid. It is the source of many data mining algorithms and probably is
the area where machine learning and data mining intersect. A query can then be applied
to deduce a possible answer from the data (see Figure 12.1).

The key focus is to create chunks of knowledge by applying specific algorithms about
some domain of interest which is presented by the data to be analyzed; this will usually
be capable of providing an answer by transcending the data in such a way that the answer
cannot just be provided by extracting and aggregating value from the data, i.e. creating a
model that represents the data. These predictive models are the core of data mining and
usually involve the application of techniques to transform the data to create the model;
the model is then easier to apply as only the attributes most useful for model creation
need be used and links combined to create new models to provide a better prediction.

Usually the process involves looking at a domain of the data (e.g., financial trans-
actions, hospital bed occupancy rates) which may in many cases be incomplete and
described by a set of features (Marshall et al. 2014). A data set is typically a subset of
the domain described by a set of features; the goal is to apply a set of data mining algo-
rithms to create one or more models from the data.

Training data knowledge
Inductive inference

knowledge query
Deductive inference

+ answer

Figure . Inference of data. Source: Cichosz
2015. Reproduced with permission of John
Wiley & Sons.
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12.3.2 Data Mining Algorithms

The three most widely used data mining tasks, classification, regression and clustering,
can be considered as inductive learning tasks (Cichosz 2015). These aim to make sense
of the data:
� Classification. Prediction of a discrete target attribute by the assignment of the par-

ticular instance to a fixed possible set of classes, which could, for example, involve
detecting odd behavior in credit card fraud.

� Regression. Prediction of a numerical target attributes based on some quantity of inter-
est, for example, working out the length of stay distribution of geriatric patients admit-
ted to one of six key acute hospitals (Marshall et al. 2014).

� Clustering. Prediction of the assignment of the instances to a set of similarly based
clusters to determine the best cluster organization, i.e. similarity of data in a cluster.

12.3.3 Classification

Classification involves assigning instances X from a specific domain and is defined by a
set of features which have been into a set of classes i.e. C. A simplified process is illus-
trated in Figure 12.2, and shows how classifier H1 maximally separates the classes, while
H2 does not separate them. This classification process is known as a concept c and is
defined by X → C. A classification model or classifier h : X → C then produces class
predictions for all instances x ∈ X and is supposed to be a good approximation of the
target concept c on the whole domain.

One way of looking at data for classification purposes is to create contingency tables or
effectively histograms of the data. This is done by picking k attributes from the data set,
namely a1, a2,… , ak and then for every possible combinations of values, a1 = x1, a2 =
x2,… , ak = xk , recording how frequently that combination occurs. Table 12.1 shows
how we can compare the school age of children against their choice of subject for a
group aged between 14 and 18. Typically, on-line analytical processing (OLAP) tools
can be used to view slices and aggregates of these contingency tables. Of course, these
tables will have many more parameters and will comprise many more dimensions.

Classification algorithms comprise DTC, ANNs, Bayesian classifiers and SVM. DTC
is carried out in two steps: a decision tree model is built up using records for which
the category is known beforehand, then it is applied to other records to predict their
class affiliation. They are attractive as they provide high accuracy even when the size of

X2

X1

H1

H2

HSVM
Figure . Simple example of classification
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Table . Age of school children versus most popular subject

Age Maths English Science Language (𝜶)

14 14 6 7 9
15 9 7 10 9
16 11 4 8 11
17 12 8 8 5
18 7 9 5 11

the data set increases (Narayanan et al. 2007). They are used for detecting spam e-mail
messages and categorizing cells in MRI scans. They yield comparable or better accuracy
when compared to ANNs.

ANNs comprise parallel and distributed networks of simple processing units intercon-
nected in a layered arrangement, typically of three layers. They are based on the neural
operation of the brain and are trained using some initial data. There was a lot of interest
in the 1980s and 1990s in this approach, but it fell short of its potential. However, there
has now been a resurgence of interest in a form of ANNs called convolutional neural net-
works (CNNs) (Krizevsky 2014). CNNs comprise layers of alternative local translation-
invariant features, followed by switchable task-specific loss functions which are trained
with stochastic gradient descent. The parameters are very large and represent a signifi-
cant training challenge, but they show considerable potential. They are highly amenable
to FPGA implementation due to the considerable routing resources that FPGAs offer.

Bayesian classifiers are a family of simple probabilistic classifiers based on applying
Bayes’ theorem which relates current probability to the prior probability. They tend to be
useful in applications where the underlying probability has independent parameters. For
example, clementine oranges may be characterized by being orange in color, squishy and
5 cm in diameter, but these features are considered to be independent of each other. So
even if these parameters are interdependent, a naive Bayes classifier considers all of these
properties to independently contribute to the probability that this fruit is a clementine
orange!

An SVM formally constructs a hyperplane or set of hyperplanes in a high- or infinite-
dimensional space, which can be used for classification, regression, or other tasks. Intu-
itively, a good separation is achieved by the hyperplane that has the largest distance to
the nearest training data point of any class. This would be given as the hyperplane HSVM
in Figure 12.2 which would seem to best split the two groups by providing the best dis-
tance as well.

12.3.4 Regression

Regression is also an inductive learning task that can be thought of as classification with
continuous classes, which means that the regression model predicts numerical values
rather than discrete class labels (Cichosz 2015). It tends to be thought of in the classical
statistical approach where we are trying to fit a regression model to a set of data, but if we
view it as an algorithm applied in a data mining context, then we can think of regression
as being able to provide numerical prediction. This leads to the development of a series
of algorithms which can be used to predict the future demand for a product, volume of
sales, or occupancy of beds in a hospital ward (Marshall et al. 2014).
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In mathematical terms, for a target function f , X → ℜ represents the true assignment
of numerical values to all instances from the domain. This can be determined using
a training set T ⊆ D ⊂ X for regression which will contain some or all of the labeled
instances for which the target set is available. The key is to find the relationship between
the dependent and independent variables. The value of dependent variable is of most
importance to researchers and depends on the value of other variables. Independent
variables are used to explain the variation in the dependent variable.

Regression is classified into two types: simple regression, with one independent vari-
able; and multiple regression, which has several independent variables. In simple regres-
sion, the aim is to create a regression equation involving several regression coefficients
and then determine a best fit using the data; this involves determining the best linear
relationship between the dependent and the independent variables. In multiple regres-
sion analysis, the coefficients indicate the change in dependent variables assuming the
values of the other variables are constant. A number of tests of statistical significance
are then applied, one of which is the F-test.

12.3.5 Clustering

A cluster is a group of objects that belong to the same class, so clustering is the pro-
cess of making a group of abstract objects into classes of similar objects. It is applied to
a broad range of applications such as market research, pattern recognition and image
processing. Its main advantage over classification is that it is adaptable to changes and
helps single out useful features that distinguish different groups.

Clustering methods can be classified as partitioning, hierarchical, density-based, grid-
based, model-based and constraint-based. For a database of n objects, the partitioning
method constructs k ≤ n partitions of the data, each of which will represent a cluster
and where each group must contain an object and each object must belong to one group
only. A well-known method is called k-means clustering (see Section 12.5).

12.3.6 The Right Approach

Whilst this section has highlighted a number of machine learning algorithms, it is
important to identify the right estimator for the job. The key observation is that different
estimators are better suited to different types of data and different problems. The scikit
website (http://scikit-learn.org/stable/tutorial/machine learning map/index.html) pro-
vides a useful indication of how to progress from a data perspective with Python open
source files.

The first stage is to determine if the user is looking to predict a category. If so, then
classification or clustering will be applied; otherwise the user will look to apply regres-
sion and/or dimension reduction. If the categories and labels are known, then the user
will apply classification; if the labels are not known, then the user will apply clustering
to determine the organization.

If applying classification to a small data set (i.e. less than 100,000 samples), then a
stochastic gradient descent learning routine is recommended; otherwise other classifiers
such as SVMs are recommended (Bazi and Melgani 2006). If the data are labeled, then
the choice of clustering will depend on the number samples. If the categories are known
then various forms of k-means clustering are applied, otherwise it is best to apply a form
of a Bayesian classifier.
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Of course, this does not represent an expert view for choosing the right approach, and
the main purpose of this section is just to provide an overview. We highlight some of the
algorithmic characteristics which best match FPGAs; in particular, we are interested in
the highly parallel computation but also the high level of interconnection of ANNs as
these match well the numerous routing capabilities of modern FPGAs. This is a partic-
ularly attractive feature as this algorithmic interconnect would have to be mapped as
multiple memory accesses in processors.

. Acceleration

MapReduce involves scaling out the computation across multiple computers. Thus, it is
possible to use resources temporarily for this purpose, and vendors such as Amazon now
allow you to hire resources, with a higher premium being charged for more powerful
computers in November 2016, Amazon announced a new resource called EC2 which
allows access to FPGA resources (Amazon 2016). Figure 12.3 illustrates the process.
For an original computation as illustrated in Figure 12.3(a), Figure 12.3(c) shows how
it is possible to use Hadoop® to scale out the computation to improve performance.
This works well for problems that can be easily parallelized and distributed, such as
performing multiple searches on a distributed search engine.

12.4.1 Scaling Up or Scaling Out

It is also possible, however, to scale up computation as shown in Figure 12.3(b). For
example, you may be performing multiple, highly complex operations on a single data
set, in which case it makes more sense to scale up the resource as you then avoid the
long communications delay involved in communicating between distributed comput-
ers. This is particularly relevant for highly computationally complex algorithms and also
problems which cannot be easily parallelized invoking high volumes of communications
which act to slow down computation. The issue of whether to scale out or scale up is a
detailed decision (Appuswamy et al. 2013).

App

(a) Original (b) Scale up (c) Scale out

App App

Figure . Scaling computing resources
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12.4.2 FPGA-based System Developments

A number of major system developments have occurred which strongly indicate the
potential of FPGA technology in new forms of computing architectures and there-
fore Big Data applications. These include the heterogeneous platform developments by
Microsoft, Intel and IBM. To date, these have largely been driven by FPGA companies
or academia, but there is interest among large computing companies driven mainly by
the energy problems as indicated in Chapter 1 with the increased computing demand.
Intel’s purchase of Altera (Clark 2015) clearly indicates the emergence of FPGAs as a
core component in future data centers.

Microsoft has developed flexible acceleration using FPGAs called the Catapult fabric
which was used to implement a significant fraction of Bing’s ranking engine. It showed
an increased ranking throughput in a production search infrastructure by 95% at com-
parable latency to a software-only solution (Putnam et al. 2014). The Catapult fabric
comprises a high-end Altera Stratix V D5 FPGA along with 8 GB of DRAM embed-
ded into each server in a half-rack of 48 servers. The FPGAs are directly wired to each
other in a 6 × 8 two-dimensional torus, allowing services to allocate scaling of the FPGA
resources.

The authors implement a query and document request by getting the server to retrieve
the document and its metadata and form several metastreams. A “hit vector” is gener-
ated which describes the locations of query words in each metastream; a tuple is also
created for each word in the metastream that matches a query and describes the relative
offset from the previous tuple, the matching query term, and a number of other prop-
erties. The frequency of use can then be computed, along with free-form expressions
(FFEs) which are computed by arithmetically combining computed features. These are
then used in a machine learning model which determines the document’s position in
the overall ranked list of documents returned to the user.

IBM and Xilinx have worked closely together to develop Memcache2, a general-
purpose distributed memory caching system used to speed up dynamic database-driven
searches (Blott and Vissers 2014). By developing a solution that allows tight integration
between network, computer and memory and by implementing a completely separate
TCP/IP stack, they are able to achieve an order-of-magnitude speed improvement over
an Intel Xeon® solution. This improvement is even greater when considering power,
which is a key issue in data centers.

12.4.3 FPGA Implementations

There have been a number of classification and regression implementations on FPGAs.
Among these are a number of ANNs, including work implementing a general regres-
sion neural network (GRNN) used for iris plant and thyroid disease classification (Polat
and Yıldırım 2009). They have developed an FPGA implementation using VHDL-based
tools; it comprises summation, exponential, multiplication and division operations.
However, the inability to realize the Taylor series efficiently in FPGA has meant that
the implementation would not run much faster than the MATLAB model running in
software on a P4 3 GHz, 256 MB RAM personal computer compared to a fixed-point
Xilinx Spartan3 xc3s2000.
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An FPGA-based coprocessor for SVMs (Cadambi et al. 2009) implemented on an off-
the-shelf PCI-based FPGA card with a Xilinx Virtex-5 FPGA and 1 GB DDR2 memory
gave an improvement of 20 times over a dual Opteron 2.2 GHz processor CPU with
lower power dissipation. For training, it achieved end-to-end computation speeds of
over 9 GMACs, rising to 14 GMACs for SVM classification using data packing. This
was achieved by exploiting the low precision and highly parallel processing of FPGA
technology by customizing the algorithm for low-precision arithmetic. This allowed the
efficient reuse of the underlying hardware and reduction in off-chip memory accesses
by packing multiple data words on the FPGA memory bus.

A number of implementations have been explored for implementing k-means clus-
tering on FPGA. Lin et al. (2012) implemented an eight-cluster XC6VLX550T design
with a clock frequency of 400 MHz; the design utilized 112 DSP blocks, 16 BRAMs,
2110 slices, 5337 LUTs and 8011 slice registers. A number of blocks were implemented
for performing the distance calculations in parallel, one for each cluster. In Winterstein
et al. (2013), k-means clustering was performed in FPGA without having to involve
off-chip memory. A Xilinx XC4VFX12 with 5107/5549 slices, 10,216 LUTs and a maxi-
mum clock frequency of 63.07 MHz was achieved. It gave a speedup of 200 times over a
MATLAB realization on a GPP Intel core 2 DUO E8400 and 3 GB RAM, and 18 times
over GPU Nvidia GeForce 9600m GT graphics.

12.4.4 Heston Model Acceleration Using FPGA

The Heston model is a well-known model used in option determination in finance
applications which involves calculating the risk for cases where volatility is stochastic
(Heston 1993). The volatility of the underlying asset follows a Brownian motion, which
in turn gives rise to a system of two stochastic differential equations:

dSt = 𝜇Stdt +
√

VtStdWt , (12.1)
dVt = 𝜅(𝜃 − Vt)dt + 𝜉

√
VtdWt . (12.2)

In these equations, St is the price variation, Vt is the volatility process, Wt is the corre-
lated Brownian motion process and 𝜉 is referred to as the volatility of the volatility. Vt
is a square root mean-reverting process with a long-run mean of 𝜃 and a rate of mean
reversion of 𝜅. The mean reversion of the volatility means that the volatility is bound
to revert to a certain value; so when Vt < 𝜃, the drift of the volatility encourages Vt to
grow again, and conversely when Vt > 𝜃, the drift becomes negative and thus the volatil-
ity decreases.

The Heston model works well in many financial applications as the asset’s log-return
distribution is non-Gaussian and is characterized by big tails and peaks. It is argued
that equity returns and the implied volatility are negatively correlated, which presents
problems for models such as the Black–Scholes model (Black and Scholes 1973), which
do not consider volatility, hence the interest in the Heston model.

A useful metric for measuring the performance of different implementations of the
Heston model is the number of steps per second achieved by each technology. In this
model, the cores implement a Monte Carlo simulator and the output of these is aggre-
gated to form the final Heston output (Figure 12.4). The performance is dictated by the
number of cores that can be implemented in the FPGA fabric; the achievable clock speed
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Figure . Core configuration where Monte Carlo simulations can be programmed

will vary depending on the number of cores that can be effectively placed and routed in
the FPGA. A number of possible FPGA configurations have been implemented and are
displayed in Table12.2. Performance is given as the throughput rate (TR) which is cal-
culated in billions of steps per second (BSteps/s).

. k-Means Clustering FPGA Implementation

Clustering is a process used in many machine learning and data mining applications
(Jain 2010). It is an unsupervised partitioning technique which groups data sets into
subsets by grouping each new data into groups with the have data points with similar
features (e.g. same age groups, same image features). A flow diagram for the algorithm
is shown in Figure 12.5. It is used in a range of image processing and target tracking
applications (Clark and Bell 2007), when it is necessary to initially partition data before
performing more detailed analytics.

The k-means algorithm requires the partitioning of a D-dimensional point set X =
{xj}, j = 1,… , N , into clusters Si, i = 1,… , k, where k is provided as a parameter, usually

Table . 32-bit Heston model implemented as both fixed- and floating-point

Performance

Data type MCs LUTs Flip-flops DSPE Clock (MHz) TR (BSteps/s)

Fixed
64 57,757 (13%) 65,210 (8%) 320 (9%) 250 16.0
128 64,865 (15%) 79,676 (9%) 640 (18%) 238 30.5
256 78,061 (18%) 91,573 (11%) 640 (18%) 172 44

Floating 32 240,801 (56%) 366,642 (42%) 1280 (36%) 112 3.6

Note. MCs = Monte Carlo simulations. Percentages give the utilization of Xilinx Virtex-7 VC709 device.
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the number of required data sets, and is usually set by the user (Winterstein et al. 2013).
The goal is to find the optimal partitioning which minimizes the objective function

J({Si}) =
k∑

i=1

∑
xj∈Si

‖xj − 𝜇i‖2, (12.3)

where 𝜇i is the geometric center (centroid) of Si.
The ideal scenario for data organization is to group data of similar attributes closer

together and farther away from data of dissimilar attributes. The k-means algorithm
is one of the main unsupervised data mining techniques used to achieve this for large
data sets (Hussain et al. 2011). In the k-means algorithm, a data set is classified into k
centroids based on the measure of distances between each data set and the k centroid
values (see Figure 12.6).

At the beginning, the number of centroids and their centers are chosen; each data item
then belongs to the centroid with the minimum distance to it. There are many metrics
for calculating distance values in the k-means algorithm, but the most commonly used
ones are the Euclidean and Manhattan distance metrics. The Euclidean distance, DE , is
given by

DE =

√√√√ d∑
i=1

(X − C)2 (12.4)
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Centroid Data point

Figure . Distance calculation

where X is the data point, C is the cluster center and d is the number of dimensions of
each data set. The Manhattan distance DM is given by

DM =
d∑

i=1
|X − C|. (12.5)

Whilst the Euclidean distance metric is more accurate (Estlick et al. 2001), the Manhat-
tan distance metric is preferred as it is twice as fast as the Euclidean distance calculation
and consumes less resources (Leeser et al. 2002).

12.5.1 Computational Complexity Analysis of k-Means Algorithm

The stages involved in k-means algorithm are: distance calculation, comparison and
averaging, as shown in Figure 12.7. The centroid values are chosen from among the exist-
ing data points/pixels or by generating random values and can be viewed as negligible
from a computational analysis point of view. In the distance stage, the distances from
each data point to the centroids are calculated. For each data point of an RGB image,
the Manhattan distance metric is given by

D = |Xr − Cr| + |Xg − Cg| + |Xb − Cb|. (12.6)

This involves 3 absolute values, 2 additions and 3 subtractions, giving rise to 8 opera-
tions. For n data points and k centroids, the number of operations involved in the dis-
tance calculation, kD, is given by kD = 8nk.

In the comparison module, the inputs are k distance values generated by each pixel.
It takes k − 1 comparison steps to get the minimum distance. So for n data, the number
of operations involved in the comparison block is given by kC = n(k − 1).

In the averaging block, data pixels in the dimension are added up and divided by the
number in their dimensions in that cluster, giving an updated centroid value for the
following frame. For a data pixel there are d additions, so for n data there are nd additions

Distance
Calculation

1980 ×1080
24-b
pixels 96b

Comparison
308 Mb

Averaging
50 Mb

Figure . Bits of data in and out of each block
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and kd divisions. Hence the number of operations involved in the averaging block, KA,
is given by

KA = nd + kd = d(n + k) = 3(n + k) (12.7)

(d = 3 for an RGB image).
The total number of operations, Ktotal, in the k-means algorithm is thus given by

Ktotal = 8nk + n(k − 1) + 3(n + k). (12.8)

Figure 12.7 shows the number of operations and bits in and out of each block for
8 clusters. The number of operations in the distance calculation block is the highest and
increases as the number of clusters increases. The operations in the distance calculation
block are independent and as such can be put in parallel to speed up execution.

. FPGA-Based Soft Processors

As some of the examples earlier in this book and even those reviewed in this chapter
have indicated, FPGAs give a performance advantage when the user can develop an
architecture to best match the computational requirements of the algorithm. The major
problem with this approach is that generating the architecture takes a lot of design effort,
as was illustrated in Chapter 8. Moreover, any simple change to the design can result in
the creation of a new architecture which then incurs the full HDL-based design cycle
which can be time-consuming. For this reason, there has been a lot of interest in FPGA-
based software processors.

A number of FPGA-based image processors have been developed over the years,
including the Xilinx MicroBlaze (Xilinx 2009) and the Altera Nios II processor (Altera
2015), both of which have used extensively. These processors can be customized to
match the required applications by adding dedicated hardware for application-specific
functions. The approach is supported by the FPGA company’s software compilers. How-
ever, attempts to make the processor more programmable compromises the perfor-
mance and have not taken advantage of recent technological FPGA developments.

A number of other processor realizations have been reported, including a vector pro-
cessing approach (Russell 1978) which uses fixed, pipelined functional units (FUs) that
can be interconnected; this takes advantage of the plethora of registers available in
FPGAs. A soft vector processor VESPA architecture (Yiannacouras et al. 2012) employs
vector chaining, control flow execution support and a banked register file to reduce exe-
cution time. Both approaches are limited to a clock rate of less than 200 MHz which
is much less than the 500–700 MHz that is possible in implementing FPGA designs
directly.

VENICE (Severance and Lemieux 2012) is a processor-based solution that provides
support for operations on unaligned vectors, and FlexGrip (Andryc et al. 2013) is an
FPGA-based multicore architecture that allows mapping of pre-compiled CUDA ker-
nels which is scalable, programmable and flexible. However, both solutions only operate
at 100 MHz. They offer flexibility, but the low frequency will result in relatively poorer
implementations when compared to dedicated implementations.
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Chu and McAllister (2010) have created a programmable, heterogeneous parallel soft-
core processor architecture which is focused on telecommunications applications. Sim-
ilarly, iDEA (Cheah et al. 2012) is a nine-stage, pipelined, soft-core processor which
is based around the DSP48E1 and supports basic arithmetic and logical instructions
by utilizing limited FPGA resources. The design runs at 407 MHz which is 1.93 times
faster than Xilinx MicroBlaze and significantly faster than previous work. This improved
performance provides a better proposition for achieving a soft-core-based approach for
data applications. In this book, we concentrate on a processor that has been developed
for image processing.

12.6.1 IPPro FPGA-Based Processor

A custom-designed DSP48-based RISC architecture, called IPPro (Siddiqui et al. 2014)
has been developed; it uses the Xilinx DSP48E2 primitive as the ALU for faster pro-
cessing and supports a wide range of instructions and various memory accesses. The
following design decisions were made to optimize FPGA performance and image pro-
cessing needs:

� High processing capability is required to handle the large amount of data (30–
40 MB/s) needed for real-time video streaming. This is achieved by explicitly mapping
the operations and logic to the underlying FPGA resource primitives and ensuring a
good match. This allowed a 350–450 MIPS performance per processor to be achieved.

� Efficient memory utilization by distributing memory to hide data transfer overheads
between main and local memory to keep IPPro busy in processing data. This matches
the distributed nature of memory in FPGA resources. Dedicated kernel memory
accelerates the linear filter operations and also reduces the code size by avoiding
excessive load/store instructions and maximizing memory reusability.

� Optimized instructions/addressing modes and reduced branch penalty by decreas-
ing the number of pipeline stages as unpredicted branches degrade performance.
The creation of special instruction sets allows the acceleration of image processing
operations; addressing modes to give flexibility to the programmer; and conditional
execution in the form of a customizable and flexible branch controller to support
mask-based conditional execution out-of-box without need of significant architec-
tural changes.

Memory
IPPro is capable of processing 16-bit operations, and uses distributed memory to build
a memory hierarchy, with register file, data memory, and kernel memory. The IPPro
architecture uses a five-stage balanced, pipelined architecture as shown in Figure 12.8.

IPPro is capable of running at 337 MHz on a Xilinx SoC, in particular XC7Z020-3,
using one DSP48E, one BRAM and 330 slice registers per processor. The main idea of
the processor was to keep it compact, reprogrammable and scalable as much as possible
to achieve high throughput rates compared to custom-made HDL designs. It contains
small, fast and efficient memory to locally store data and keep ALU busy in processing
data. This helps to hide data transfer overheads between the main and local memories.

It supports various instructions and memory accesses and is capable of processing
signed 16-bit operations. The IPPro processor architecture uses five-stage balanced
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Figure . IPPro architecture

pipelining and supports streaming mode operation where the input and output data
are read and written back to FIFO structures, as shown in Figure 12.8.

IPPro strikes a balance between programmability and the need to maintain FPGA
performance. Overall it has the following addressing modes: from local memory to
local memory; from local memory to FIFO (LM–FIFO); from kernel memory to FIFO.
The local memory is composed of general-purpose registers used mainly for storing
operands of instructions or pixels. This memory currently contains 32 sixteen-bit reg-
isters. A FIFO is a single internal register of IPPro where the input and output streams
from/to an external FIFO are stored. Kernel memory is a specialized location for coef-
ficient storage in windowing and filtering operations with 32 sixteen-bit registers.
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Data Path
The complete IPPro data path is shown in Figure 12.8. It has a loadstore five-stage bal-
anced pipelined architecture giving a fixed latency of five clock cycles. It exploits the fea-
tures of the Xilinx DSP48E1 to implement all of the supported instructions and provides
a balance between hardware resource utilization, performance, throughput, latency and
branch penalty. A balanced pipeline simplifies the compiler tool chain development
compared to variable pipeline architecture. The deep pipeline comes at the cost of larger
latency and branch penalty which adversely affects the overall performance. Various
techniques predict branches, but none of them was deemed to give a shorter latency.
The five pipeline stages are as follows:

1. Fetch (IF)
2. Decode (ID)
3. Execute 1 (EXE1)
4. Execute 2 (EXE2)
5. Write Back (WB).

Instruction Set
An example of the supported instructions can be seen in Table 12.3. This table shows
the IPPro LM–FIFO addressing mode instructions and some miscellaneous others. The
IPPro instruction set is capable of processing basic arithmetic and logical operations
for different addressing modes. In addition to the unary and binary instructions, it has
support for trinary expressions such as MULADD, MULSUB, MULACC.

Given the limited instruction support and requirements from the application domain,
it is envisaged that coprocessor(s) could be added to provide better support for more
complex processes such as division and square root. Ongoing research is being under-
taken to design such a coprocessor (Kelly et al. 2016).

Flags and Branches
Flags are important status indicators in processors and used to handle exceptions
encountered during data computation. IPPro currently supports the following data flags

Table . Instruction set

LM–FIFO Misc

ADD LOR JMP GET
SUB LNOR BNEQ PUSH
MUL LNOT BEQ NOP
MULADD LNAND BZ BYPASS
MULSUB LAND BNZ DIV
MULACC LSL BS
LXOR LSR BNS
LXNR MIN BNGT

MAX BGT
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but is flexible enough to allow new flags to be defined by modifying the branch controller
shown in Figure 12.8:

1. Greater than (GTF)
2. Equal (EQF)
3. Zero (ZF)
4. Sign Flag (SF).

The flags are generated using the pattern detector function which is embedded inside
the DSP48E1 block as dedicated functionality. It compares the two operands available at
the input of DSP48E1 and sets the pattern detect (PD) bit in the very same clock cycle if
both operands are equal. Therefore no additional clock cycle is needed to compute the
flag bit which is important in the case of conditional/data dependent instructions being
executed in the multicore architecture. The branch controller is flexible and scalable as
it is created using combinational logic. A dataflow-based programming route has also
been created (see Amiri et al. 2016)

. System Hardware

An example of a typical system architecture is given in Figure 12.9. This gives details
of the front-end processor architecture, prototyped on a Zedboard platform which
comprises a Xilinx Zynq SoC which comprises on-chip dual-core ARM processors
and programmable logic. The SIMD-IPPro is comprised of a number of IPPro cores
connected together.

Figure . Proposed system architecture
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Figure . Proposed architecture for k-means image clustering algorithm on FPGA

The main aim from a design perspective for the k-means algorithm is to allocate the
processing requirements (distance calculation, comparison and averaging) to the FPGA
resources. The averaging is a feedback block responsible for recalculation of new cen-
troids for new iteration. The image data is stored in off-chip memory, while the centroid
values are stored in the kernel memory of the IPPro-based FPGA. Figure 12.10 shows
our architecture for the k-means algorithm.

An example of IPPro code is shown in Table 12.4 for the computation of the equation

M10 =
3∑

i=0
(Mi ∗ M(i + 1)) (12.9)

12.7.1 Distance Calculation Block

The distance calculation block is the most computationally intensive block in the k-
means algorithm. Since the distances between each data point and the centroids are
independent, the computation was organized across a number of clusters. One IPPro
is dedicated to each cluster for the distance calculation, which calculates the distance

Table . Example of IPPro code representation

S/N IPPro code Description

1 LD, R1, M Load from data memory M1 to register R1
2 LD, R2, M2 Load from data memory M2 to register R2
3 LD, R3, M3 Load from data memory M3 to register R3
4 LD, R4, M4 Load from data memory M4 to register R4
5 MUL R10, R1, R2 Multiply R1 and R2 and store in register
6 MULACC R10, R3, R4 Multiply R3 and R4 and accumulate in R10
7 ST R10, M10 Store from register to data memory
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between the data pixels and each centroid based on their dimensions, finds their abso-
lute values and sums them. The outputs of the distance block are the distances and the
corresponding centroid values. The distance computation takes 58 cycles and the out-
puts are then stored in the FIFO for use by the next block of the k-means algorithm.

12.7.2 Comparison Block

The comparison block receives the distance and the associated centroid values from
the distance calculation block serially. It compares the distance values and selects the
minimum value, along with the centroid value that stands for the minimum value. These
outputs are part of the inputs to the next comparison block. The last comparison block
produces one centroid output which replaces the image data that it represents, in order
to give a clustered image in the final iteration. The centroid values as an output of the
comparison stage are fed into the averaging block. It takes 81 cycles to compare eight
distance values representing eight clusters.

12.7.3 Averaging

This block receives the centroid values from the comparison block and uses them to
group the image data according to their order. For instance, when it receives centroid
1, and then image pixel D1, it puts D1 under the cluster 1 group. In our architecture,
the averaging block avoids performing the division operation at the end of the iteration,
by averaging each group’s value each time there is an addition; this is done by performing
a binary shift to the right by one position. This is an approximation to doing division at
the end of the pixel count. The outputs of the averaging block are the new centroid values
for the next iteration. It takes 76 cycles to process a pixel for eight clusters.

12.7.4 Optimizations

Some of the ways that we used to achieve the optimization are: data parallelism, cluster
parallelism and code reduction. The focus of the design is to reduce the IPPro assembly
code to the best possible by ensuring that the most suitable and shortest codes are used
to represent the algorithmic decomposition.

The computation was profiled for different multicore arrangements and the result-
ing realizations then compared in terms of execution time. After a number of map-
pings of cores per function, it was decided that one core would be used for the dis-
tance calculation, three cores for the comparison block and one core for the averaging
block. Table 12.5 shows the results for 4, 8 and 9 centroids in terms of number of cycles,

Table . Results for 4, 8 and 9 centroids image clustering

Dist. Comp. Aver.

No. of clusters 4 8 9 4 8 9 4 8 9
No. of cycles 106 106 106 52 78 104 39 75 84
Execution time (s) 0.41 0.41 0.41 0.20 0.30 0.41 0.15 0.29 0.32
Latency (μs) 0.2 0.2 0.2 0.10 0.15 0.20 0.07 0.14 0.15
Throughput (MP/s) 5 5 5 10.0 6.7 5 14 7.2 6.5
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execution time, latency and throughput profiled for a high-definition image of 1920 ×
1080 in a single iteration using color images when the clock frequency is 530 MHz.

. Conclusions

The purpose of the chapter was to acknowledge the major developments in the area
of Big Data applications. This area and the need to develop data centers to meet the
increasing needs of the Big Data analytics have done more than any recent developments
to see FPGAs being used in modern computing systems. The interest by Intel, IBM and
Microsoft has been substantial, ranging from major joint projects with the two main
FPGA companies to the purchase of Altera by Intel.

In some cases, FPGAs offer computing gains over processor-based alternatives such
as CPUs, DSP microprocessors and GPUs, particularly if power consumption is taken
into consideration. Indeed, this is seen as a major advantage of FPGA technologies, so
if they can offer a performance advantage for even a small range of functionality, then
this would be seen as beneficial. Given that some of the data mining algorithms have
characteristics similar to those seen in DSP algorithms, then it would appear that FPGAs
have a major role to play in future computing systems. For this reason, the authors were
motivated to include a chapter in this revised edition of the book.

Certainly the abolition of high-level programming languages described in Chapter 7,
and processor architectures such as the IPPro system described in this chapter, will have
a major impact on how these systems will be built and programmed. In any case, the
length of time need to compile high-level languages onto FPGA hardware will need to
be addressed.
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

Low-Power FPGA Implementation

. Introduction

A key trend in the introduction was technology scaling and how increasing power con-
sumption has become a worrying aspect of modern computing design. As was high-
lighted in Chapter 1, this has led to serious interest by major computing companies such
as Intel, IBM and Microsoft in exploiting FPGA technology. Whilst in some cases FPGA
implementations may offer only moderate computational improvement over CPU/GPU
implementations, the equivalent designs tend to operate at much lower clock rates and
power is directly proportional to this factor.

Power consumption scales down with technology evolution, and so for much of the
1980s and 1990s the new technology evolution offered an increased number of tran-
sistors operating not only at increased speed, but also at reduced power consumption.
As scaling increased, though, leakage power, caused by the increasingly imperfect per-
formance of the gate oxide thickness, increased. As the gate leakage is inversely pro-
portional to the gate oxide thickness, this became and continues to be an increasingly
important problem.

Even though some would argue to the contrary, the switch to FPGAs could be con-
sidered to be the low-power solution for high-performance computing companies, and
there are a number of important reasons to reducing FPGA power consumption. As
power consumption is directly related to increased temperature, improved FPGA imple-
mentations have immediate benefits for the design of the power supply to the complete
system; this can result in cheaper systems and fewer components, giving a reduction in
PCB area and a reduction in thermal management costs.

System reliability is related to the issue of heat dissipation, and low values result in
improved chip lifetimes. Xilinx indicates that “a decrease of 10◦ in device operating
temperature can translate to a 2X increase in component life” (Curd 2007), thus
reducing the power consumption of the FPGA implementation has clear cost and
reliability implications.

Section 13.2 looks at the various sources of power and introduces the concepts of
static and dynamic power consumption. Section 13.3 outlines some of the approaches
applied by FPGA vendors in reducing power consumption. An introduction to power
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consumption minimization techniques is given in Section 13.4, and the concepts of
dynamic voltage scaling and switched capacitance are introduced. The rest of the chap-
ter is dedicated to two core topics, namely dynamic voltage scaling in Section 13.5 and
switched capacitance in Section 13.6. Section 13.7 makes some final comments with
regard to power consumption in FPGAs.

. Sources of Power Consumption

CMOS technology comprises static power consumption which is that consumed when
the circuit is switched on but not processing data, and dynamic power consumption
which is when the chip is actively processing data. The static form comprises a number
of components as shown in Figure 13.1: gate leakage is the current that flows from gate
to substrate; source-to-drain leakage, also known as the sub-threshold current, is the
current that flows in the channel from the drain to source even though the device is
deemed to be off (i.e. the gate-to-source voltage, VGS, is less than the threshold voltage
of the transistor Vt); and reverse biased BTBT current is the current that flows through
the source–substrate and drain–substrate junctions of the transistors when the source
and drain are at higher potential than the substrate. The static power consumption is
important for battery life in standby mode, and dynamic power is particularly relevant
for battery life when operating.

13.2.1 Dynamic Power Consumption

For dynamic power consumption, we consider the leakage through a simple inverter as
given in Figure 13.2. Assume that a pulse of data is fed into the transistor, charging up

IP
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IN OUT 
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Figure . Simple CMOS inverter
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and charging down the device. Power is consumed when the gates drive their output to
a new value and is dependent on the resistance values of the p and n transistors in the
CMOS inverter.

Thus the current through the capacitor, iC(t), is given by (Wolf 2004)

iC(t) =
VDD − VSS

Rp
e(−t∕RpCL), (13.1)

where VDD represents the supply voltage, VSS represents the ground voltage, Rp is the
resistance of the p-type transistor, and CL is the load capacitance. The voltage, vC(t), is
given by

vC(t) = VDD − VSS
[
1 − e(−t∕RpCL)], (13.2)

and so the energy required to charge the capacitor, EC , is

EC = ∫ iCL
(t)VCL

(t))dt,

= CL(VDD − VSS)2
(

e−t∕RpCL − 1
2

e−2t∕RpCL
)||||∞0 , (13.3)

= 1
2

CL(VDD − VSS)2,

where VCL
and iCL

is the voltage and current, respectively, needed to charge the load
capacitance.

The same charge will then be dissipated through the n-type transistor when the capac-
itance is discharging; therefore, in a cycle of operation of the transistor, the total energy
consumption of the capacitance will be 1

2 CL(VDD − VSS)2. When this is factored in
with the normal operation of the design, which can be assumed to synchronous and
operating at a clock frequency of f, this will define the total power consumed, namely
1
2 CL(VDD − VSS)2f . However, this assumes that every transistor is charging and dis-
charging at the rate of the clock frequency, which will never happen. Therefore, a quan-
tity denoting what proportion of transistors are changing, namely 𝛼, is introduced. For
different applications, the value of 𝛼 will vary as shown in Table 13.1.

This gives the expression for the dynamic power consumption of a circuit,

Pdyn = 1
2

CL(VDD − VSS)2f 𝛼 (13.4)

which when VSS is assumed to be 0, reduces to the more recognized expression

Pdyn = 1
2

CLV 2
DDf 𝛼. (13.5)

Table . Typical switching activity levels

Signal Activity (𝜶)

Clock 0.5
Random data signal 0.5
Simple logic circuits driven by random data 0.4–0.5
Finite state machines 0.08–0.18
Video signals 0.1(msb)–0.5(lsb)
Conclusion 0.05–0.5
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In addition, short-circuit current can be classified as dynamic power consumption.
Short-circuit currents occur when the rise/fall time at the gate input is larger than the
output rise/fall time, causing imbalance and meaning that the supply voltage, VDD, is
short-circuited for a very short time. This will happen in particular when the transistor
is driving a heavy capacitative load which, it could be argued, can be avoided in good
design. To some extent, therefore, short-circuit power consumption is manageable.

13.2.2 Static Power Consumption

Technology scaling has provided the impetus for many product evolutions as it means
that transistor dimensions will be adjusted as illustrated in Figure 13.3. Simply speaking,
scaling by k means that the new dimensions shown in Figure 13.3(b) are given by L′ =
1∕k(L), W ′ = 1∕k(W ) and t′ox = 1∕k(tox). It is clear that this translates to a k2 increase
in the number of transistors, an increase in transistor speed and an expected decrease
in transistor power as currents will also be reduced.

The expected decrease in power consumption, however, does not transpire. In order
to avoid excessively high electric fields, it is necessary to scale the supply voltage, VDD,
which in turn requires a scaling in the threshold voltage Vt, otherwise the transistors will
not turn off properly. As well as a reduction in system voltage, VDD, there is a reduction
in Vt which results in an increase in sub-threshold current. In order to cope with short
channel effects, the oxide thickness is scaled, resulting in high tunneling through the
gate insulator leading to the gate leakage. Thus, this gate leakage is inversely proportional
to the gate oxide which will continue to decrease for improving technologies therefore
exacerbating the problem.

W

L tox

Channel

Source                                    Drain 

(a) Original technology

W′
L′ t′ox

Channel

Source Drain 

(b) Multiple sources

Figure . Impact of transistor scaling
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Figure . Impact of static versus dynamic power consumption with technology evolution (ITRS,
2003; Kim et al. 2003)

Scaled devices also require high substrate doping densities to be used near the source–
substrate and drain–substrate junctions in order to reduce the depletion region. How-
ever, under high reversed bias, this results in significantly large BTBT currents through
these junctions (Roy et al. 2003). The result is that scaling results in a dramatic increase
in each of these components of leakage and with increasing junction temperatures, the
impact is worsened as the leakage impact is increased (Curd 2007).

The main issue with increasing numbers of transistors is that their contribution to
static power consumption is also growing. This is illustrated by the graph in Figure 13.4
which shows that a cross-over point has occurred for 90 nm and smaller technology
nodes where static power began to eclipse dynamic power for many applications.

This graph has a major impact for many technologies as it now means that unlike
power consumption in the previous decade where the problem was largely impacted by
the operation of the device, allowing designers to reduce the impact of dynamic power
consumption, it will be predicated on the normal standby mode of operation. This will
have an impact on system design for fixed – but particularly for wireless – applications.
A number of approaches have been actively pursued by FPGA vendors to address this.

. FPGA Power Consumption

Xilinx has addressed the impact of high static power in its Virtex-5 and subsequent
devices by employing a triple oxide (Curd 2007). Triple oxide is used to represent
the three levels of oxide thickness used in FPGAs. A thin oxide is used for the small,
fast transistors in the FPGA core, a thick oxide is used for the higher-voltage swing
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transistors in the I/O which do not have to be fast, and a third or middle-level oxide
called a midox oxide is used for the configuration memory cells and interconnect pass
transistors.

The midox slightly thicker gate oxide dramatically reduces leakage current when com-
pared to the thin oxide equivalent, as the Vt reduces both the source-to-drain leakage
and gate leakage. The midox transistor is used in non-critical areas in the FPGA, such
as in the configuration memory used to store the user design, which do not need to
be updated during device operation. In addition, it is used for the routing transistors,
once again as the speed of operation is not critical. The impact is to reduce the leakage
current of millions of transistors in the FPGA, thus dramatically reducing the power
consumption.

In addition to the triple-oxide innovation, some architectural trends have acted to
also reduce the power. This has been based largely around the shift to the six-input LUT
in Virtex-5 which the company argues gives a 50% increase in logic capacity per LUT,
and the shift to the larger eight-input LUT for Altera. The key effect is that more logic
is mapped locally within the LUT where smaller transistors are used. Since transistor
leakage is measured in current per unit width, smaller transistors will have less leakage
and fewer large transistors are needed.

The Xilinx 7 series was characterized by a shift to TSMC’s high-performance, low-
power 28 nm process called 28HPL. It was the first to use a high-K metal gate (HKMG)
process. The company argues that the shift to 20 nm in UltraScaleTM should result in 40%
overall device-level power savings over Xilinx 7 series FPGAs and up to 60% savings at
16 nm. This then gives an indicative reduction in static power consumption as indicated
by the estimated power figures for mobile backhaul in Artix-7 (Figure 13.5).

Altera takes advantage of Intel’s 14 nm Tri-Gate process. It comprises 3D tri-gate tran-
sistors and provides good dimensional scaling from the 22 nm process. The transistor
“fins” are taller, thinner, and more closely spaced; this gives improved density and lower
capacitance, resulting in an SRAM cell size that is almost half that for 22 nm.

With Arria 10 devices, a programmable power technology (PPT) is employed which
is the company’s patented approach for tuning the switching speed of logic elements in
the speed-critical paths of a user design. This tuning allows the transistor’s threshold
voltage in a higher-speed path to be set to a lower value, increasing its switching speed.
Transistors in a lower-speed path can be tuned to a higher threshold voltage, thereby
reducing the static power consumption by up to 20%.

Other features include using transistors with a lower voltage threshold and small min-
imal channel length for high-speed operation in the DSP blocks and logic elements; a

Transceiver

I/O

Dynamic

Static

Figure . Estimated power consumption for
mobile backhaul on Artix-7
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low-power transistor is then used in the less demanding areas, namely configuration
RAM and memory blocks.

Whilst addressing static power consumption is therefore vital in developing a low-
power FPGA solution, it is somewhat predetermined by the underlying application of
many of the above technologies at fabrication; with a fixed architecture, there is little
scope available to the FPGA designer. There are, however, some techniques that can
act to reduce the power consumption from a dynamic power consumption designer
perspective.

13.3.1 Clock Tree Isolation

One of the main contributors to static power consumption is the clock signal through
its distribution network, namely a clock tree and the circuits connected to it which it
will act to toggle on a regular basis, particularly if the design is synchronous. As the
description in Chapter 5 indicated, most FPGAs have a number of clock signals with
PPLs and individual dedicated clock tree networks which can be turned off and on as
required. Static power consumption reduction is achieved by turning off parts of the
clock networks on the FPGA using, for example, multiplexing and then employing clever
placement and routing techniques to ensure this can be achieved effectively (Huda et al.
2009).

Xilinx has provided an automated capability, in its Vivado® Design Suite v2013.1 and
onwards, to its standard place and route flow. It performs an analysis on all portions of
the design, detecting sourcing registers that do not contribute to the result for each clock
cycle. It then utilizes the abundant supply of clock enables (CEs) available in the logic
to create fine-grained clock-gating. This is successful as each CE typically drives only
eight registers, providing a good level of granularity to match most bus sizes. Intelligent
clock-gating optimization can also be used for dedicated BRAM in simple or dual-port
mode by using additional logic to control the array and avoiding unnecessary memory
accesses.

. Power Consumption Reduction Techniques

It is clear from equation (13.5) that a number of factors impact dynamic power con-
sumption. The voltage, VDD, will have been predetermined by the FPGA vendor (and
optimized to provide low-power operation), and any scope to reduce this voltage will
be made available to the user via the design software. The process for achieving this has
been outlined by the vendors (Chapman and Hussein 2012).

This only leaves scope for adjusting the other parameters, namely the toggling rate
presumed to be the clock frequency, f times the switching activity 𝛼 and the load
capacitance, CL. However, any technique that acts to adjust the clock frequency f and/or
switching activity 𝛼 should be developed on the understanding that the overall clock
rate for the system will generally have been determined by the application and that the
switching activity will be governed again by the application domain, meaning that levels
shown in Table 13.1 should be given consideration.

Generally speaking, power reduction techniques (Chandrakasan and Brodersen 1996)
either act to minimize the switched capacitance (Cf ) or employ techniques to increase
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performance by reducing the supply voltage, thereby achieving a squared reduction in
power at the expense of a linear increase in area, i.e. CL or frequency, f . In voltage min-
imization techniques, transformations are used to speed up the system’s throughput
beyond that necessary; the voltage is then reduced, slowing up performance until the
required throughput rate is met but at a lower power consumption budget. This has
considerable scope for SoC systems where the system can be developed knowing that
the circuit will be implemented using a range of voltage values. It is a little more diffi-
cult in FPGAs, but work by Chow et al. (2005) and Nunez-Yanez (2015) suggests viable
techniques which are described later.

There is also some scope to reduce the capacitance and switching activity, but rather
than consider this separately, it is useful to think about reducing the switched capac-
itance of a circuit, i.e. the sum of all of toggling activity of each node multiplied by
the capacitance of that node. This is an important measure of power consumption as
opposed to just circuit capacitance alone, as a circuit can either have a large capacitative
net with a low switching activity which will not contribute greatly to power consump-
tion, or a number of low-capacitance nets with a lot of switching activity which can make
a not insubstantial contribution to power consumption. The same argument applies to
switching activity levels as some nets can have high switching activity but low capaci-
tance, and so on. A large proportion of the techniques fall into this domain and so more
of the discussion is centered upon this aspect.

. Dynamic Voltage Scaling in FPGAs

As the name indicates, dynamic voltage scaling involves reducing the supply voltage of
the circuit in such a way that it can still operate correctly. Typically, the designer will
have exploited any voltage capacity by applying design techniques to slow down the
circuit operation, presumably by achieving an area reduction or some other gain. Thus
reducing the voltage may cause a circuit failure as the critical path timing may not be
met. This is because scaling the voltage causes as impact of circuit delay, td, as given by
the expression (Bowman et al. 1999)

td =
kVDD

(VDD − Vt)2 , (13.6)

where k and 𝛼 are constants with 1 < 𝛼 < 2. As VDD is scaled, the circuit delay increases.
Voltage scaling should be only applied to the FPGA core as it is important that the I/O

pins operate to the specifications to which they have been designed. Whilst the circuit
delay increases, only parts of the circuit need to operate at the shortest circuit delay,
which means that there is scope for reducing the voltage for a large portion of the circuit
without impacting performance. Of course, the design has to be reliable across a range
of devices, and there can be a variation in delay times as well as operating temperature.

The approach shown in Figure 13.6 outlines how a transformation can be applied to
reduce power consumption. Parallelism and voltage scaling can be employed to reduce
the power consumption of a circuit. If the performance is met with the functional units
shown in Figure 13.6(a), then parallelism can be used to give the circuit shown in Fig-
ure 13.6(b); as this circuit can now operate much faster than the original, there is scope to
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(a) Original implementation (b) Parallel implementation

Operation Operation Operation 

Figure . Use of parallelism (and voltage scaling) to lower power consumption

reduce power by scaling the voltage to the resulting circuit. This may seem counterpro-
ductive as the circuit has a larger area, resulting in increased capacitance and switching
activity, but the power reduction due to the V 2

DD scaling in addition to the scaling in
frequency will more than outweigh any increase.

The impact of adaptive voltage scaling can be addressed in a number of ways, adding
circuitry to detect exactly when this happens with a specific FPGA implementation and
detecting the correct voltage threshold to achieve lower power operation (Chow et al.
2005; Ryan and Calhoun 2010) or applying design techniques to speed up circuit oper-
ation. Chow et al. (2005) work on the first principle of assuming the original circuit,
scaling down the internal voltage supply and then checking for any possible errors on
correct operation. Of course, the approach can be used for parallelization as shown in
Figure 13.6.

The authors argue that on the basis that the designer can observe any two types of
design errors as a result of the voltage scaling in normal operation, it is just a case of
trying to work out two other types of error, namely I/O errors (due to the lower-voltage
core circuit having to interface with the I/O which is operating at the original voltage)
and delay errors (occurring as a result of the critical path now possibly not meeting the
timing). In the case of I/O errors, the danger is that a high output signal from the core
will be too small for the threshold voltage of the I/O buffer to correctly detect its value.

The lowest supply voltage is estimated at runtime and adjusted accordingly. A logic
delay measurement circuit (LDCM) (Gonzalez et al. 1997) is used with an external mon-
itor to adjust the FPGA internal voltage at 200 ms intervals. Typical power savings of
20–30% were achieved with a Xilinx Virtex 300E-8 device in a number of experiments.
Nunez-Yanez et al. (2007) present a similar approach that applies dynamic voltage scal-
ing (DVS) by adjusting first the voltage, then searching for a suitable operating frequency
using the LDCM. Energy savings of up to 60% on an XC4VSX35-FF668-10C FPGA, were
achieved by scaling down from 1.2 V to 0.9 V.

Nunez-Yanez (2015) extends this work by proposing adaptive voltage scaling (AVS)
which uses voltage scaling together with dynamic reconfiguration and clock manage-
ment. By exploiting the available application-dependent timing margins, a power reduc-
tion up to 85% from operating at 0.58 V (compared to a nominal 1 V) is achieved. He
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argues that the energy requirements at 0.58 V are approximately five times lower com-
pared to the nominal voltage. This is achieved through the development of an AVS unit
which monitors the delay properties and adjusts the voltage to operate at the lowest-
energy point for a given frequency.

These techniques are very design-specific and involve implementation of dedicated
circuitry to achieve the power reduction. They are probably relevant for designs where
strict power consumption needs to be achieved and the design is less likely to change.
Moreover, they may have to be checked for every FPGA component used as chip per-
formance tends to vary.

. Reduction in Switched Capacitance

The previous techniques require that the voltage is scaled (typically only the internal
voltage) but do not deal with the results of the application of this scaling. However, as
suggested earlier, it is also possible to reduce the switched capacitance of the circuit. A
number of techniques are considered which are well understood in the literature even
though, in some cases, some have not been directly applied to FPGAs.

13.6.1 Data Reordering

In DSP processor implementations described in Chapter 4, the architecture is typically
composed of data and program memory connected to the processor via data buses; this
is also the case in the increasing number of FPGA-based processors such as the one
described in detail in Chapter 12. In these architectures, therefore, the capacitance of
the buses will be fixed, but in some cases it may be possible to reorder the data com-
putation in order to minimize the Hamming difference and thereby achieve a reduction
in the switching activity on large capacitative buses. Consider the trivial example of a
four-tap filter given by y(n) = a0x(n) + a1x(n − 1) + a2x(n − 2) + a3x(n − 3) where the
coefficient are as follows:

a0 1011 a0 1011|3 |1
a1 0110 a2 1001|4 |3
a2 1001 a3 0100|3 |1
a3 0100 a1 0110|4 |3
a0 1011 a0 1011

14 transitions 8 transitions

It can be seen that if the coefficients are loaded in the normal numerical order, namely
a0, a1, a2, a3 and back to a0, then this will require 14 transitions which will involve charg-
ing and discharging of the line capacitance of the interconnect, which could be consid-
erable. By changing the order of loading, the number of transitions can be reduced as
shown above. The main issue is then to resolve the out-of-order operation of the filter.
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In Erdogan and Arslan (2002), the authors show how this can be applied to the
design of FIR filters to achieve a reported 62% reduction in power consumption. The
architecture reproduced from their earlier paper (Erdogan and Arslan 2000) presents
a MAC structure comprising a multiplier and adder which are fed by program and
coefficient data from the memory. This type of structure is shown in Figure 13.7. The
structure can be made cascadable by feeding the output of the previous section into the
current block.

This structure thus allows an out-of-order operation to be performed on the data accu-
mulating in the structure, resulting in a reduction of the switching data from the coeffi-
cient memory via the large-coefficient data bus. By exploiting the direct-form FIR filter
implementation rather than possibly the transposed form, this also reduces the switch-
ing on the data bus as one data word is loaded and then reused.

13.6.2 Pipelining

An effective method to reduce power consumption is by using pipelining coupled with
power-aware component placement. Pipelining, as illustrated in Figure 13.8, breaks the
processing of the original circuit (Figure 13.8(a)) into short stages as illustrated in Fig-
ure 13.8(b), thereby providing a speedup but with an increase in the latency in terms of
the number of clock cycles, although this does not necessarily mean a large increase in
time (as the clock period has been shortened). The increase in processing speed can be
used in a similar way to the use of parallelism in Figure 13.6, to allow the voltage to be
reduced, thereby achieving a power reduction (Chandrakasan and Brodersen 1996).

In addition to providing the speedup, though, pipelining provides a highly useful
mechanism to reduce power consumption (Keane et al. 1999; Raghunathan et al. 1999).
Work by Wilton et al. (2004) has outlined in detail the application of pipelining to FPGA
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Figure . Application of pipelining

and the impact that can be achieved. Whilst this works well for SoC, it has greater poten-
tial in FPGAs, as the registers were previously available and would have been contribut-
ing to power even if unused, as they are in the FPGA in any case.

Glitches can contribute to dynamic power consumption and occur when logic signals
do not arrive at time at the LUTs as they traverse different levels of logic and perhaps
different routing paths. They contribute significantly to dynamic power consumption
(from 20% to 70%) through the unplanned switching activity of signals (Shen et al. 1992).
It is argued that pipelining acts to reduce the logic depth of combinatorial paths and
thus decrease the probability of glitches and prevent them being propagated from one
pipeline stage to the next (Boemo et al. 2013). Moreover, there is a reduction in the
net lengths and an overall reduction in the switching activity of longer net activity; by
reducing a high contributor to power and shortening high-frequency nets, the dynamic
power dissipated can be significantly reduced.

This technique is particularly effective in FPGA technology because the increasing
flexibility comes at a power budget cost due to the long routing tracks and programmable
switches. These features provide the programmability but are laden with parasitic capac-
itance (Chen et al. 1997) as illustrated by Figure 13.9, which shows a model of a typi-
cal FPGA route. Another benefit of implementing pipelining in a FPGA is that it may
be using an underutilized resource, namely the flip-flop at the output of the logic cell,
thereby only providing a small area increase (Wilton et al. 2004).

There are also other advantages to applying pipelining in FPGA designs. The aim of
the place and route tools is to achieve the best placement in order to achieve the required
speed. By applying pipelining, this provides a more rigorous structure to the design and
allows faster placement of the logic (McKeown and Woods 2008). It also acts to reduce
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Figure . Typical FPGA interconnection route

the number of longer nets that result in the design, allowing speed targets to be more
easily met.

Pipelining Examples
Work by Boemo et al. (2013) reports a set of experimental measurements on the impact
of applying pipelining on a range of FPGA technologies for a range of integer multipliers.
Some of the results are presented in Table 13.2. The power consumption was obtained by
measuring the actual current from an internal core power supply on the FPGA board.
The power reduction factor is expressed by the ratio between the power consumption
of the best pipeline version and the power consumption of the original combinatorial
circuit.

In the paper, they review a range of publications reporting the use of pipelining across
a number of applications. They indicate that power reductions around 50% tend to be
obtained. In addition, higher values of the power reduction factor tend to be achieved
with larger wordlengths.

Consider the application of pipelining to the FIR filter shown in Figure 13.10. A num-
ber of filter realizations and designs were investigated, namely a 4-, 8-, 16-, and 32-tap
FIR filter implemented on a Virtex-II XC-2V3000bf 957-6 FPGA. The filter was initial-
ized by loading coefficients using an address bus, data bus and enable signal so that this
was consistent for all implementations. No truncation was employed and the output
word length is 24 and 27 bits for the 4-tap and 32-tap filters, respectively. Expansion
is handled by including a word growth variable which is defined for each filter size to
prevent truncation.

Xilinx ISETM Project Navigator (version 6.2) was used to translate, map, place and route
the designs, and sub-programs of the ISETM design suite were used to compile compo-
nent libraries, manually place and route and generate post place and route VHDL files
for XPower. Xpower was then used to generate simulation results for Table 13.3.

Table . Pipelined, 54-bit multiplier running at 50 MHz in Spartan-6 FPGA

Pipeline stages mA Flip-flops Power reduction factor

1 67.2 216 1.00
3 34.9 666 0.52
5 27.9 2346 0.42
7 — — —
9 23.1 3206 0.34
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Figure . Pipelined FIR filter implementation for low power

The unpipelined version (PL0) was used to benchmark the results, with the only
change being the latency imposed by pipelining stages. A speech data file was used to
simulate the designs, the filter clock speed was 20 MHz and the simulation time was
200 μs. Two levels of pipelining were investigated; a layer of pipelining after the multi-
pliers as shown by Cut2 and given as PL1 in Table 13.3; another pipeline cut in the adder
(and delay) chain, Cut1, in addition to the first level of pipelining was then applied and
defined as PL2 in Table 13.3, i.e. PL2 encompasses Cut1 and Cut2.

The results show power reductions of 59–63% for single-stage pipelined versions and
82–98% for two-stage pipelined versions, depending on filter size. Whilst this is quite
dramatic and only based on simulation, it gives some idea of the power reduction pos-
sible. It is clear that pipelining becomes more effective as filter size and thus design
area and interconnection lengths increase, giving greater opportunity for power-aware
placement. Net lengths are shortened by placing interconnected components closely
together.

This acts to reduce power consumption in two ways: firstly by decreasing the net
capacitance, and secondly by reducing toggling. Partitioning the design into pipelined
stages further reduces power consumption by diminishing the ripple effect of prop-
agation delays. This can be seen in Figure 13.11, which shows post place and route
capacitance in pF rounded to the nearest integer plotted against the summation of the
toggling activity on nets with equivalent capacitance. These values are plotted for PL0,
PL1 and PL2, showing that not only is toggle activity reduced on high-capacity nets
but overall there are fewer toggles in the design when power reduction techniques are
implemented.

Table . Internal signal/logic power consumption of various filters

FIR filter tap size

Technique    

PL0 8.4 89.7 272.0 964.2
PL1 3.1 (−63%) 29.1 (−68%) 89.7 (−67%) 391.7 (−59%)
PL2 1.5 (−82%) 6.7 (−93%) 8.1 (−97%) 16.4 (−98%)
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Figure . Tap signal capacitance and toggle activity

The results presented in Wilton et al. (2004) are equally impressive but more thor-
ough; they are based on data from a real board setup. Results are presented for a 64-bit
unsigned integer array multiplier, a triple-DES encryption circuit, an eight-tap floating-
point FIR filter and a CORDIC circuit to compute the sine and cosine of an angle. Power
results just for the FIR filter and the CORDIC circuit are given in the Table 13.4. They
were taken from the circuits implemented on an Altera Nios Development Kit (Stratix
Professional Edition) which contains a 0.13 μm CMOS Stratix EP1S40F780C5 device
which gave the original FPGA power results, and the estimated power was taken from
a Quartus simulator and power estimator.

The results show the impact of applying of different levels of pipelining. The authors
quote savings overall of 40–82% and indicate, when they factor out quiescent power
from the results, that the savings on the dynamic logic block energy can be as high as
98%. They indicate that lower-level physical design optimizations presented in the work
in Lamoureux and Wilton (2003) can achieve energy savings of up 23%, highlighting
the importance of applying system-level optimizations and highlighting the impact of
pipelining generally.

Table . Pipelining results for 0.13 μm FPGA

Benchmark circuit Pipeline stages Estimated power Original FPGA power

8-tap floating point FIR filter
2 4,420 7,866
4 2,468 5,580

Max. 776 3,834

CORDIC circuit to compute
sine and cosine of angle

4 971 5,139
8 611 4,437

16 565 4,716
Max. 567 4,140
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13.6.3 Locality

It is clear from the discussion on switched capacitance and indeed from Figure 13.11 that
the length of interconnection can have a major impact on power consumption. Thus,
locality can be a highly attractive feature in circuit architectures for signal and data pro-
cessing architectures. One class that features localized interconnection is systolic arrays
(Kung and Leiserson 1979; Kung 1988); they were initially introduced to address issues
of design complexity and the increasing problem of long interconnect in VLSI designs
(Mead and Conway 1979).

In addition to locality, systolic array architectures also employ pipelining which makes
them attractive for implementing regular computations such as matrix–matrix multi-
plication and LU decomposition. They benefit immensely from the highly regular nature
of DSP computations and offer huge performance potential. The concept was extended
to the bit level, resulting in bit-level systolic arrays (Woods et al. 2008).

The key challenge is to be able to map algorithms into these structures (Choi and
Prasanna 2003; Woods et al. 2008). Kung (1988) classified DSP algorithms as “locally
recursive,” for example as with matrix multiplication, and “globally recursive.” In locally
recursive algorithms, data dependency is limited to adjacent elements, whereas in glob-
ally recursive algorithms inherently complex communication networks are required as
some cells need to communicate with numerous others.

In McKeown and Woods (2011), some attempt is made to define the locality in terms
of a parameter called the index space separation. Index space is defined as a lattice of
points in an n-dimensional discrete space (Parashar and Browne 2000). Strictly, then,
index space separation is defined as a measure of total distance values between indices.
Defining the hierarchical space where each position in the lattice vector space is a Carte-
sian coordinate allows the index space to be defined in Euclidean geometry: the index
space separation is the Euclidean distance between indices. The index space separation,
𝜂, between the two indices A = (a1, a2,… , an) and B = (b1, b2,… , bn) is thus defined as

𝜂 =
√

(a1 + b1)2 + (a2 + b2)2 +…+ (an + bn)2 =
√∑

(an + bn)2. (13.7)

McKeown and Woods (2011) argue that data dependency can be measured using the
index space separation as the relative distances over which data must be passed between
consecutive operations. This is not particularly important for power consumption in
processor-style implementations, but in FPGA designs it relates directly to the separate
individual interconnections created as a result of the FPGA place and route process.
This directly relates to the FPGA dynamic power consumption.

Application to FFT Implementation
The Cooley–Tukey algorithm (Cooley and Tukey 1965) is commonly used to compute
the FFT (see Section 2.3.2). The problem is that its globally recursive nature manifests
itself in the irregular routing where data are routinely passed to non-adjacent global PEs
as shown in Figure 2.5.

By removing the in-place restriction of the Cooley–Tukey algorithm, matrix decom-
position can be used to increase data locality, thereby minimizing the index space sep-
aration. By identifying periodicity and symmetry in the structured transform matrix
along which the algorithm can be factorized, a decomposition is achieved with a smaller
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Figure . Eight-point radix-2 modified flow graph

radix which requires only N∕rm radix-rm elements at stage m, with the elementary radix
operations mapped as a small locally interconnected array.

This gives the modified version shown in Figure 13.12, where the index space sepa-
ration is reduced by 28.6% from 56 to 40 for the eight-point version. The numbers on
the figure represent the index space separation and sum to 40; examination of Figure 2.5
reveals that it is 56 there. It is shown that this can be generalized to a reduction from
O(N(N − 1)) to O(N(N + log2 N − 1)∕2) in radix-2 for all N , representing a reduction
of 40% or more for point sizes greater than 32. The range of values is given in Table 13.5.

Table . Radix-2 FFT index space separation

N Figure . Figure . Reduction (%)

2 2 2 0
4 12 10 16.7
8 56 40 28.6
16 240 152 36.7
32 992 576 41.9
64 4032 2208 45.2
128 16,256 8,576 47.2
256 65,280 33,664 48.4
512 261,632 133,120 49.1
1024 1,047,552 528,896 49.5
2048 4,192,256 2,107,392 49.7
4096 16,773,120 8,411,136 49.9
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Figure . Interconnect capacitance versus point size for FFT designs in Xilinx Virtex-7 FPGA
technology

The index schedule, where n1, n2, n3 = 0, 1 and k1, k2, k3 = 0, 1 for iterations
I1, I2, I3, I4, for the in-place mapping schedule, is given by

x(n) = I1(n1 + 2n2 + 4n3)
X(k) = I4(4k3 + 2k2 + 1k1),

(13.8)

and the out-of-place mapping schedule, given by

x(n) = I1(n1 + 2n2 + 4n3)
X(k) = I4(1k1 + 2k2 + 4k3),

(13.9)

is shown in Figure 13.12.
Validation of the research is given in McKeown and Woods (2008). The TFFT design

was described in Figure 2.5, and Figure 13.12 represents the QFFT design. The designs
were synthesized using Version 11 of the Xilinx ISE tools, giving the results in Fig-
ure 13.13. The chart shows the saving in accumulated routing capacitance for QFFT
design as the FFT point sizes increases. In addition, Figure 13.14 gives the detailed distri-
bution of the number of capacitance values against sizes for a specific point size, namely
a 64-point FFT. It clearly shows how the lower index space separation results in placed
and routed designs with lower capacitance. Power savings of 36–37% were achieved.

13.6.4 Data Mapping

FPGA vendors have developed optimized dedicated processing elements such as the
DSP48E blocks in the Xilinx FPGA families and DSP blocks in the Altera family. The
data size has been predetermined to be 9–18 bits in most cases, and so it is a case of
FPGA vendors trying to predetermine the largest finite word size that will work well
for a range of applications. Their aim is to provide sufficient dynamic range to meet all
operating conditions.
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There are some applications, however, such as in radar applications that do not even
require this dynamic range but require the processing of data at multi-GSPS. One exam-
ple is in electronic warfare (EW), where radar is used to detect and classify airborne,
naval and land-based threats; flexibility is needed to meet changeable tactical and mis-
sion requirements to ensure high intercept probability. Power is critical and systems
typically limit the maximum functionality, resulting in a narrow and inflexible design
space (McKeown and Woods 2013).

In these cases, there is an opportunity to process more than one data stream in the
dedicated resources in the dynamic range, typically 18 bits in Altera and Xilinx FPGA
technology. For example, the Altera DSP block supports numerous wordlengths (9 bits,
etc.). It would seem a little contrived but, as the next section indicates, there is a low-
precision mode which operates on the large portion of the data and a high-precision
mode when an event is detected.

FFT-Based Digital Receiver
The EW receiver demonstrator (Figure 13.15) contains four distinct functions, includ-
ing ADCs, conversion into the frequency domain using the FFT and frequency domain
analysis with selection and detection of signals of interest. For this application, power
consumption is the dominating factor and FFT is the key factor to such an extent that
system functionality is designed around the power requirements of the FFT cores.

It is critical in EW environments to entirely encapsulate a pulse in as short a window
as possible for time of arrival (TOA) and sensitivity reasons. This creates a clear need

ADC FFT Selection Detectionx(n) Y(k)

Figure . Digital receiver architecture for radar system
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Figure . Pulse width instances: mixture of nautical and airborne radars

to run lots of FFTs of different point sizes and also to run overlapping FFT functions
in real time. The time spent at each point size depends on the precise mission criteria
and operating environment and ultimately determines the FPGA resources. The pulse
width shown in Figure 13.16 gives the aggregated number of measured instances for
various pulse widths in a typical extremely active radar environment. The majority of
pulse widths are relatively short, suggesting high numbers of shorter- length FFTs with
a need to perform overlapping FFTs.

To be effective, pulse envelopes must be captured in a high-resolution digital repre-
sentation which requires a large dynamic range to encapsulate pulse envelope peaks
during worst-case operating conditions, leading to underutilization during significant
time periods. Figure 13.17 outlines the typical dynamic range of aggregated instances
and shows that only 8% of samples exceed half of the dynamic range, meaning that there
is 50% underutilization for 92% of the time. This is typical of this application domain as,
although the radar environment is extremely active, the vast majority of peak pulses are
in the sub-microsecond range.

There is a conflict between making the window large enough to minimize the probabil-
ity of a pulse being split across two windows, and yet still small enough to ensure that the
TOA is contained in the window. This is overcome by using the processing resources in a
much more dynamic fashion for variable-length algorithms. This is achieved by exploit-
ing the commonality in the fundamental operations of DSP algorithmic variations, map-
ping them to a static architecture of underlying processing elements, and using a flexible
routing structure to implement the required functionality.
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Figure . DR instances: nautical and airborne radars
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Figure . Combining data streams

Depending on the exact correlation of the standard deviation between worst-case and
normal operation dynamic ranges, two or more data streams can be computed by incor-
porating them into a single word stream. This is shown for three input streams (DS1, DS2
and DS3) in Figure 13.18(a) and two internal streams which allows for word growth (Fig-
ure 13.18(b)). This is done by dynamically grouping processing threads to meet real-time
operating requirements.

The difficulty is that while multiple data streams can be routed through some ele-
ments such as delays and multiplexers directly, others like adders and multipliers require
special consideration to prevent overflow due to word growth during operations. Fixed
hardware in the FPGA fabric means carry-chain modification is not possible, but an
alternative approach is presented which overcomes these limitations by cleverly exploit-
ing the existing hardware at the bit level to achieve computational separation as outlined
in McKeown and Woods (2013).

. Final Comments

Since the first edition of this book, power consumption has become an even more critical
aspect of FPGAs. The lower power consumption of FPGA has made them highly attrac-
tive compared to their computing alternatives such as CPUs and GPUs and has largely
been instrumental in the interest of such organizations such as IBM, Intel, Amazon and
Microsoft in adopting the technology. Of course, FPGAs have not been immune to the
problems that have driven this interest and have had to address particularly static power
consumption by adopting technology, circuit and architectural solutions as covered in
this chapter.

Unlike many computing alternatives, it is possible to derive the FPGA architecture
to best match the algorithmic requirements and thus optimize the dynamic power con-
sumption. This can be achieved to some extent by employing approaches to speed up the
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throughput rate and then reducing the voltage to achieve reduction in power consump-
tion, but this has limited potential as the FPGA technology has already been optimized
for low-voltage operation.

A number of other approaches exist for reducing the switch capacitance. One of the
most natural is to employ pipelining, as the availability of registers in the FPGA fabric
makes this an obvious approach. Introducing pipeline registers has a number of attrac-
tive attributes from a power consumption perspective; it acts to reduce glitching and
also the interconnection capacitance. The increase in throughput rate also enables a
reduction in the amount of computation needed to provide the solution and employ
hardware sharing. The chapter has also outlined some DSP-specific optimizations which
have been applied in a real FFT-based application.
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

Conclusions

. Introduction

The aim of this book has been to cover many of the techniques needed to create FPGA
solutions for signal and data processing systems. Interest in FPGAs for such systems has
grown since the first edition as vendors have targeted this market and introduced inno-
vations into their technology offerings to make them more attractive. This has included
dedicated DSP blocks typically comprising 18-bit MAC blocks and increased memory
units but also increased parallelism in terms of resources and the ability to employ
pipelining to improve speed of operation. To support this activity, FPGA companies
have created a range of IP cores (for customers to use in their designs) and design tools
to create such implementations.

The main attraction of using FPGAs is that the resulting designs provide a very high
quality of performance, particularly if MSPS/mm2/W is considered. This is possible as
the designer is able to create an architecture which is a good match to the algorith-
mic needs, rather than striving to map the requirements onto a fixed architecture as
is the case in microcontrollers, DSP microprocessors or GPUs, even though vendors
increasingly offer multicore platforms. The main design challenge is to create a suitable
architecture for the algorithmic requirements.

The creation of this suitable FPGA architecture comes from employing the right
level of parallelism and pipelining to match initially the throughput rate and then area
and power consumption requirements. The key approach taken in this book has been
to derive an efficient circuit architecture which successfully utilizes the underlying
resources of the FPGA to best match the computational and communication require-
ments of the applications. This was demonstrated using simple design examples such as
FIR, IIR and lattice filer structures in Chapter 8 as well as more complex examples such
as the fixed beamformer in Chapter 10 and the adaptive beamformer in Chapter 11.

The purpose of this chapter is to give some attention to emerging issues and provide
some insight into future challenges for FPGAs. In Section 14.2, attention is given to
the changes in design methods as FPGA architectures have emerged. The rest of the
chapter considers a range of issues likely to be important in the future. Firstly, more
consideration is given in Section 14.3 to the use of FPGAs in Big Data applications and
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the implications for FPGAs in high-performance computing. Connected to this is the
need to allow FPGAs to be more effectively integrated in future computing systems, and
this is considered in Section 14.4. In Sections 14.5 and 14.6, the key issues of floating-
point arithmetic and memory architectures are then covered.

. Evolution in FPGA Design Approaches

The emergence of a dedicated DSP block as outlined in Chapter 5 has now simplified the
mapping of design functions. This is particularly relevant for fixed-point DSP systems
with wordlengths from 8 to 12 bits (a core target market for FPGAs) as these designs
readily map into the 18-bit DSP blocks if wordlength growth has been addressed. The
use of pipelining is easily achievable through use of programmable pipeline registers in
the DSP blocks and the plethora of scalable resisters in the main programmable logic
fabric.

Moreover, since the first edition of this book, there have been a number of innovations
in FPGA design, primarily focused around design tools. The ability to trade off levels of
parallelism and pipelining has been encapsulated to some extent within FPGA vendor
synthesis tools such as the Xilinx Vivado, where the starting position is a C description;
this is clearly aimed at engineering companies as C is key design language. The Altera
perspective has been to start with an OpenCL description and then use the conventional
FPGA place and route implementation tools to produce the final bit files for program-
ming the FPGA.

There has been a major growth in the availability of soft IP cores such as parameterized
HDL cores for a range of telecommunications, signal and image processing applications,
as well as dedicated memory interface circuitry and soft processor cores. The avail-
ability of commercial cores through the Design & Reuse website (http://www.design-
reuse.com/), which has 16,000 IP from 450 vendors, and open source cores from the
OpenCores website (opencores.org) provides a strong “plug-and-play” design ethos to
system design; this will be an increasingly important aspect as system complexities grow.

The evolution of FPGAs to SoC platforms has transformed the design problem from
one only concerned with HDL-based implementation to a highly parallel, programmable
logic fabric to a hardware/software system design challenge involving the incorpora-
tion of IP cores. Of course, the shift toward hardware/software FPGAs is not new, as in
the early 2000s the Xilinx Virtex-II incorporated a PowerPC processor into the FPGA
die, but this was not truly supported as a hardware/software environment. This has
now meant an explosion in requirements for design teams with skills in embedded sys-
tem programming, memory partitioning and incorporation of system components and
accompanying system timing issues.

. Big Data and the Shift toward Computing

An interesting development highlighted in Chapters 1 and 12 is the interest taken by
major computing companies such as Microsoft, Intel and IBM in FPGAs. Whilst FPGAs
have been around for many decades, it has only been in the last couple of years that these
major companies have shown an interest in employing this technology. This has been
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driven by energy concerns and this computing infrastructure driven by the emergence
of data science and accompanying data centers to provide the infrastructure for under-
taking such data inquiries.

The new computing infrastructures are challenging as they need to access large and
varied sources of data distributed across websites and then create in-memory databases
in a dynamic fashion to create microservers that will perform both transactional and
analytical processing. The former is being undertaken on general- purpose comput-
ers using dedicated hardware to undertake the latter form of processing. One exam-
ple is the Nanostreams project (www.nanostreams.eu) which is looking to create an
application-specific heterogeneous analytics-on-chip (AoC) engine to perform such
processing. It includes an AoC accelerator being developed by Analytics Engines Ltd.
that is based on FPGAs in the form of a programmable, customizable processing core
called Nanocore which acts to give improvements in performance and energy-efficiency
over GPUs.

Microsoft has undertaken research into novel, FPGA-based data center architec-
tures and created a reconfigurable fabric called Catapult. They argue that “datacenter
providers are faced with a conundrum: they need continued improvements in perfor-
mance and efficiency, but cannot obtain those improvements from general-purpose
systems” (Putnam et al. 2014). The system comprises a bed of 1632 servers equipped
with FPGAs giving gains in search throughput and latency for Bing, giving 95% greater
ranking throughput in a production search infrastructure at comparable latency to a
software-only solution (Putnam et al. 2014).

The IBM work with Xilinx has focused on accelerating Memcache2, a general-purpose
distributed memory caching system used to speed up dynamic database-driven searches
(Blott and Vissers 2014). Intel’s purchase of Altera (Clark 2015) clearly indicates a clear
aim of employing FPGAs in heterogeneous computing for data centers.

Unlike processors, FPGAs offer the capability of turning off and on resources, thus
allowing scaling. This provides a more direct relationship between power consumed
and the processing employed. Therefore, we can create an implementation where the
dynamic power can be adjusted to match the processing granularity needed by the user.
This can be further refined by adjusting the voltage and employing clock gating to reduce
the overall static power consumed. As outlined in Chapter 13, this further improvement
may be possible but at the cost of increased design effort.

. Programming Flow for FPGAs

A topic closely associated with the further adoption of FPGAs in computing applications
is the design flow. Whilst progress has been made in increasing the level of abstrac-
tion, thus removing the need to get software designers to learn specialized HDLs for
programming FPGAs and allowing them to employ C descriptions in Vivado and even
OpenCL, the compile times will still seem strangely long to programmers.

These tools now allow developers to write their programs in high-level languages (well,
high-level for an engineer!) and then use aspects of the tools to gauge speed require-
ments against FPGA resources. However, compile times of typically hours will seem
alien to programmers and will be prohibitive to further adoption of the technology.
Considerable efforts are being made to overcome this limitation (including efforts by
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this book’s authors) by building multi-processors which can then be programmed in
software.

This seems counterproductive for several reasons. Firstly, the FPGA vendors have
already introduced the MicroBlaze (Xilinx) and NIOS (Altera) processors. Secondly, the
advantage of the FPGA is in creating application- specific implementations, thus over-
coming the fixed multi-processor architecture which is exactly what is being proposed
here. So this is the conundrum: how to gain the advantages of FPGA performance with-
out having to undertake much of the work highlighted in this book.

. Support for Floating-Point Arithmetic

A conscious decision to first introduce scalable adder structures in early FPGAs and then
dedicated multiplicative complexity in latter versions, such as the Stratix® III family
from Altera and the VirtexTM-5 FPGA family from Xilinx, has greatly influenced the
use of FPGAs for DSP systems. Along with the availability of distributed memory, this
has driven further interest in using FPGAs for computing due to the extremely high
computation rates required.

If FPGAs are to be applied to computing or even supercomputing applications, then
support for floating-point is needed. Chapter 5 outlined the progress that FPGA ven-
dors have made in incorporating floating-point arithmetic in FPGAs, particularly in the
Altera Arria® 10 family. This FPGA contains multiple IEEE 754 single-precision multi-
pliers and IEEE 754 single-precision adders in each DSP block. This provides support
for a variety of addition, multiplication and MAC floating-point operations, useful for a
variety of vector operations.

The Arria® 10 FPGA family gives a peak performance of 3340 GMACs and 1366
GFLOPS. The technology has been incorporated into the new 510T from Nallatech
which is termed an “extreme compute acceleration” technology targeted at data centers.
It is an FPGA PCIe Gen3 card comprising two Altera Arria 10 1150 GX FPGAs providing
up to 3 TFLOPS with 4 GB DDR3 per FPGA. The card offers hybrid memory cube mem-
ory architectures using a high-speed process technology through-silicon via bonded
memory die. Altera offers a single Arria FPGA card called a DK-SOC-10AS066S-ES
development kit. Other FPGA-based platform vendors include Alphadata, Accelize and
Picocomputing (now Micron).

. Memory Architectures

The support for parallel and pipelining operations was highlighted as the major attrac-
tion of FPGAs when considered for implementing DSP systems. However, one factor
that has received some attention throughout this book is the availability of a wide range
of different sizes of parallel memory, whether in the form of distributed RAM blocks,
simple LUTs or a single register.

As highlighted by Wulf and McKee (1995), the memory wall gives a depressing view
for fixed computer architectures as the ratio of the memory access time to the proces-
sor cycle time increases. Whilst some approaches try to address this via technology and
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increased use of multi-level caches (Baer and Wang 1988), FPGAs get around the prob-
lem by naturally developing a highly parallel solution with a distributed memory archi-
tecture. This happens through deliberate derivation of a distributed memory architec-
ture or as a result of an algorithmic optimization, as for example in the application of
pipelining which, in effect, results in the creation of distributed memory. This approach
is particularly suited to many signal and data systems due to data independence and high
computation rates.

This means that there needs to be a focus on ensuring memory utilization rather than
computation. This was seen in the Imagine processor (Kapasi et al. 2002) where the
memory architecture was developed for the class of algorithms needed, and in some of
the FPGA examples in Chapters 6, where different memory, i.e. LUTs in the forms of
SRLs, was selected in preference to flip-flops to provide more efficient implementation
delay chains, either because of lack of flip-flop resources or more relevant selection of
resources. However, this has tended to be a good design decision or optimization using
the routines available in design tools, rather than a conscious need to develop memory-
orientated architectures. Work by Fischaber et al. (2010) has suggested how design of
memory can be directed from the dataflow level.
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