
This book introduces Zynq UltraScale+ RFSoC, a technology that brings real, single-chip, software 
defi ned radio (SDR) to the marketplace. RFSoC devices are the fi rst adaptive SoCs (Systems-on-Chip) to 
monolithically integrate multiple RF signal chains along with Arm application and real-time, multi-core 
processors and programmable logic. By eliminating the need for dozens of discrete devices, RFSoC chips
offer unprecedented fl exibility and reduced power consumption when compared to alternative, multi-
component solutions. RFSoC is not so much a radio on a chip, but almost an entire base station on a chip! 
Moreover, besides widespread application in current 5G mobile communication networks, RFSoC devices
also enable the design and development of emerging 6G systems and are now being used in many other 
domains including high-speed radar, advanced instrumentation, radio astronomy and quantum computing.

We anticipate that the book will be of interest and use across a number of technical areas. It serves as an 
introduction to the family of RFSoC devices and its key features and programmability. Special attention is 
paid to the RF signal chains including the high-resolution, direct RF data converters, the digital up-converters 
and digital down-converters, and the quadrature mixers. Further sections explore the forward error 
correction (FEC) units and the interfaces between the RF, programmable and the processor subsystems. 
The book explores software defi ned radio concepts and architecture and key DSP algorithms such as multi-
Nyquist zone operation, frequency planning, multi-rate FIR fi lters and FFTs. By integrating high-bandwidth, 
high-resolution, direct-RF, analogue-to-digital and digital-to-analogue converters, RFSoC devices can 
access more of the electromagnetic spectrum than any previous SoC. Whatever signal bands are of interest
to you, RFSoC technology provides a programmable platform for innovative research and design!

A selection of hands-on exercises via Jupyter Lab notebooks accompany the book and are available from 
the book’s companion GitHub repository. There are also design examples (including SDR designs) to build 
and implement real systems based on PYNQ (Python open-source, design framework) and supported 
boards, such as the RFSoC4x2. Wherever you are in your career, whether you are a student, a researcher, 
an educator, a professional engineer or manager, we hope that you fi nd this book a useful and pragmatic
reference on the incredible RFSoC technology.

www.RFSoCbook.com

Zynq® UltraScale+ RFSoC
Software Defined Radio

with

Zynq
® UltraScale+ RFSoC

Softw
are Defined Radio w

ith
Edited by:
Louise Crockett
David Northcote
Robert W

. Stew
art

Edited by: Louise Crockett David Northcote Robert W. Stewart

Printed Book Front Cover Downloaded from www.RFSoCbook.com



This book introduces Zynq UltraScale+ RFSoC, a technology that brings real, single-chip, software 
defi ned radio (SDR) to the marketplace. RFSoC devices are the fi rst adaptive SoCs (Systems-on-Chip) to 
monolithically integrate multiple RF signal chains along with Arm application and real-time, multi-core 
processors and programmable logic. By eliminating the need for dozens of discrete devices, RFSoC chips 
offer unprecedented fl exibility and reduced power consumption when compared to alternative, multi-
component solutions. RFSoC is not so much a radio on a chip, but almost an entire base station on a chip! 
Moreover, besides widespread application in current 5G mobile communication networks, RFSoC devices 
also enable the design and development of emerging 6G systems and are now being used in many other 
domains including high-speed radar, advanced instrumentation, radio astronomy and quantum computing.

We anticipate that the book will be of interest and use across a number of technical areas. It serves as an 
introduction to the family of RFSoC devices and its key features and programmability. Special attention is 
paid to the RF signal chains including the high-resolution, direct RF data converters, the digital up-converters 
and digital down-converters, and the quadrature mixers. Further sections explore the forward error 
correction (FEC) units and the interfaces between the RF, programmable and the processor subsystems. 
The book explores software defi ned radio concepts and architecture and key DSP algorithms such as multi-
Nyquist zone operation, frequency planning, multi-rate FIR fi lters and FFTs. By integrating high-bandwidth, 
high-resolution, direct-RF, analogue-to-digital and digital-to-analogue converters, RFSoC devices can 
access more of the electromagnetic spectrum than any previous SoC. Whatever signal bands are of interest 
to you, RFSoC technology provides a programmable platform for innovative research and design!

A selection of hands-on exercises via Jupyter Lab notebooks accompany the book and are available from 
the book’s companion GitHub repository. There are also design examples (including SDR designs) to build 
and implement real systems based on PYNQ (Python open-source, design framework) and supported 
boards, such as the RFSoC4x2. Wherever you are in your career, whether you are a student, a researcher, 
an educator, a professional engineer or manager, we hope that you fi nd this book a useful and pragmatic 
reference on the incredible RFSoC technology.

www.RFSoCbook.com

Zynq® UltraScale+ RFSoC
Software Defined Radio

with

Zynq
® UltraScale+ RFSoC

Softw
are Defined Radio w

ith
Edited by:
Louise Crockett
David Northcote
Robert W

. Stew
art

Edited by: Louise Crockett David Northcote Robert W. Stewart

Printed Book Back Cover Downloaded from www.RFSoCbook.com



Software Defined Radio 
with

Zynq® UltraScale+™ RFSoC

With 19 Chapters, 9 Jupyter Notebooks, and 717 pages 
the printed version of this pdf book is available from

 Amazon and other on-line book-sellers.

More information on printed books at:
 https://www/RFSoCbook.com

Downloaded from www.RFSoCbook.comWeb Version v.20230123

https://www.amazon.com/Software-Defined-Radio-Ultrascale-RFSoC/dp/1739588606?keywords=zynq+rfsoc&qid=1673452844&sprefix=%2Caps%2C137&sr=8-1&linkCode=ll1&tag=thzybo-20&linkId=0bf245a543fd4af4625086df4c190928&language=en_US&ref_=as_li_ss_tl
https://www.RFSoCbook.com


Open Source Licence to Use and Reproduce
Text and diagrams from this PDF book can be reproduced in their entirety and used 
for non-profit academic teaching and research purposes, provided that a clear 
reference to the original source is made in all derivative documents and/or 
publications. This reference should be of the following form:

L.H. Crockett, D. Northcote, R. W. Stewart (Editors), Software Defined 
Radio with Zynq UltraScale+ RFSoC, First Edition, Strathclyde Academic 
Media, 2023.  https;//www.RFSoCbook.com.

Requests to use content from this book for other than non-profit academic purposes 
should be directed to the publisher at info@RFSoCbook.com.

Available PDF Book Downloads
This PDF book is available for free download only from the book website at: 

https://www.RFSoCbook.com

It is also available in published and printed book form from on-line booksellers.

This book must not be reproduced by any third parties in its original form for the 
purposes of selling in printed or electronic form. It must also not be electronically 
distributed by any unauthorised third party, and it cannot be hosted on any third 
party websites. 

Anyone requiring a PDF copy can get one freely from the book website. Or to point 
others to the book, please make a direct hyperlink to the book website link above 
where free and unrestricted downloads are available.

Downloaded from www.RFSoCbook.com

https://www.RFSoCbook.com


Software Defined Radio 
with 

Zynq UltraScale+ RFSoC

Louise H. Crockett

David Northcote

Robert W. Stewart

(editors)

Department of Electronic & Electrical Engineering

University of Strathclyde

Glasgow, Scotland, UK.

January 2023

www.RFSoCbook.com
Downloaded from www.RFSoCbook.com



First published January 2023 by Strathclyde Academic Media.

© Strathclyde Academic Media.

Cover design by Mario Stomboli, Scribble Design. Photography by Kenneth Barlee. 

Open Source Licence to Use and Reproduce

This book is available in print and as an electronic book (in PDF format) from https://www.RFSoCbook.com. 

Text and diagrams from this book may be reproduced in their entirety and used for non-profit academic purposes, provided that a clear 
reference to the original source is made in all derivative documents. This reference should be of the following form:

L.H. Crockett, D. Northcote, R. W. Stewart (Editors), Software Defined Radio with Zynq UltraScale+ RFSoC, First Edition, 
Strathclyde Academic Media, 2023.  https;//www.RFSoCbook.com.

Requests to use content from this book for other than non-profit academic purposes should be directed to the publisher, contactable via 
the book webpages at https://www.RFSoCbook.com.

This book may not be reproduced in its original form and may not be sold or electronically distributed by any unauthorised third party.

Warning and Disclaimer

The best efforts of the authors and publisher have been used to ensure that accurate and current information is presented in this book. 
This includes researching the topics covered, and developing examples. The material included is provided on an “as-is” basis in the best 
of faith, and neither the authors nor publishers make any warranty of any kind, expressed or implied, with regard to the documentation 
contained in this book. The authors and publisher shall not be held liable for any loss or damage resulting directly or indirectly from 
any information contained herein. 

Trademarks

AMD, the AMD logo, LogiCORE, MicroBlaze, Spartan, UltraScale, UltraScale+, Versal, Vitis, Vivado, Xilinx, the Xilinx logo and Zynq, 
are all trademarks or registered trademarks of Advanced Micro Devices, Inc. 

MATLAB and Simulink are registered trademarks of MathWorks, Inc.

Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

Arm, Cortex, AMBA, Mali, Neon, and TrustZone are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or 
elsewhere. All rights reserved. This publication is independent and it is not affiliated with, or endorsed, sponsored or authorised by 
Arm Limited.

Dell is a trademark of Dell Inc. or its subsidiaries.

Intel and Xeon are trademarks of Intel Corporation or its subsidiaries.

Wi-Fi® is a registered trademark of the Wi-Fi Alliance®.

Android is a trademark of Google LLC.

Ettus Research and USRP are trademarks of National Instruments. Neither Strathclyde Academic Media, nor any software programs or 
other goods or services offered by Strathclyde Academic Media, are affiliated with, endorsed by, or sponsored by National Instruments.

All other trademarks used in this book are acknowledged as belonging to their respective companies. The use of trademarks in this 
book does not imply any affiliation with, or endorsement of, this book by trademark owners.
Downloaded from www.RFSoCbook.com



Table of Contents

Foreword  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

 Introducing the Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1) Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1) The Coming of SDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2) SDR with Zynq UltraScale+ RFSoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3) Design Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4) How to Use this Book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5) Related Work and Resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6) Chapter Organisation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Notebook Set A) Introduction to Jupyter Notebooks and PYNQ . . . . . . . . . . . . . . . . . . . . .7
A.1) Getting Started with Jupyter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
A.2) Visualisation and Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
A.3) The PYNQ Framework and RFSoC-PYNQ  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
A.4) Overlays and Hardware Interfacing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2) Software Defined Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
2.1) Radio Fundamentals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2) What is Software Defined Radio (SDR)?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3) Motivations for SDR: Then and Now  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4) The Radio Frequency Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5) Spectrum Policy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6) Wireless Communications Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.7) SDR Radio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8) Key Radio Terminology and Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9) SDR Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
i

Downloaded from www.RFSoCbook.com



Table of Contents
3) Introduction to Zynq UltraScale+ RFSoC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1) RFSoC as an SDR Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2) A System on Chip for RF Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3) Zynq UltraScale+ RFSoC Architecture Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4) RFSoC Development Boards  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.5) Key Features and Capabilities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.6) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4) DSP Fundamentals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.1) Sampling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2) Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3) Time and Frequency Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4) Fixed Point Arithmetic  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5) Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.6) The Analogue-Digital Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7) Multirate Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.8) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Notebook Set B) DSP Fundamentals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.1) Sampling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
B.2) Quantisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
B.3) ADCs and DACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
B.4) Filtering and Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5) Spectral Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.1) Fourier Theorem  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2) Understanding The Fourier Transform  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3) The Discrete Fourier Transform  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.4) The Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.5) Short-Time Fourier Transform  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.6) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Notebook Set C) Exploring the Spectrum with the RFSoC  . . . . . . . . . . . . . . . . . . . . . . . 183
C.1) Exploring the Spectrum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
C.2) The RFSoC Spectrum Analyser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
C.3) Additional Spectral Analysis Notebooks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6) Wireless Communications Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
6.1) Layered Models for Communications Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
ii

Downloaded from www.RFSoCbook.com



Table of Contents
6.2) The Wireless Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
6.3) Baseband Modulation (Bits to Symbols) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.4) Baseband Demodulation (Symbols to Bits)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.5) The Radio Channel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.6) Pulse Shaping and Matched Filtering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
6.7) Bit Error Rate (BER) Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
6.8) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Notebook Set D) Wireless Communications Fundamentals . . . . . . . . . . . . . . . . . . . . . . .229
D.1) Baseband Modulation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
D.2) Noise and Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
D.3) Pulse Shaping and Matched Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

7) Quadrature Modulation & Complex Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . . .233
7.1) Signal Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
7.2) Amplitude Modulation and Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
7.3) Quadrature Amplitude Modulation and Demodulation  . . . . . . . . . . . . . . . . . . . . . . . . 251
7.4) Quadrature Modulation and Demodulation with Complex Notation . . . . . . . . . . . . . 256
7.5) Spectral Representation of Complex Exponential Demodulation  . . . . . . . . . . . . . . . . 260
7.6) Receiver Frequency Offset Error and Correction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
7.7) Equivalence of Quadrature and Complex Modulator  . . . . . . . . . . . . . . . . . . . . . . . . . . 267
7.8) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Notebook Set E) Complex Frequency Domain  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271
E.1) Amplitude Modulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
E.2) Quadrature Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
E.3) Complex Quadrature Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

8) SDR Architectures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
8.1) SDR Architectures Through the Ages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.2) Multiple Input, Multiple Output (MIMO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
8.3) The Digital Baseband Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.4) Digital Up- and Downconversion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.5) Front End Analogue Signal Conditioning, and Antennae . . . . . . . . . . . . . . . . . . . . . . . 297
8.6) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

9) RF Data Converters: Analogue to Digital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301
9.1) Analogue to Digital Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
9.2) ADCs for RF Frequencies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
9.3) RF-ADCs on RFSoC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
iii

Downloaded from www.RFSoCbook.com



Table of Contents
9.4) RF-ADC Processing Stages: The Digital Complex Mixer  . . . . . . . . . . . . . . . . . . . . . . . 313
9.5) RF-ADC Processing Stages: the Programmable Decimator  . . . . . . . . . . . . . . . . . . . . . 316
9.6) Principles of RF-ADC Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
9.7) Design Tool Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
9.8) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

10) RF Data Converters: Example Receiver Architectures  . . . . . . . . . . . . . . . . . . . . . . . 337
10.1) Example 1: Nyquist Zone 1, Direct-RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
10.2) Example 2: Nyquist Zone 2, Direct-RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
10.3) Example 3: Nyquist Zone 1, Analogue IF Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
10.4) Example 4: I/Q Mixer to Analogue Baseband and Sampling  . . . . . . . . . . . . . . . . . . . . 348
10.5) Example 5: Custom Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
10.6) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

11) RF Data Converters: Digital to Analogue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
11.1) Digital to Analogue Conversion Recap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
11.2) DACs for RF Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
11.3) RF-DACs on RFSoC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362
11.4) RF-DAC Processing Stages: The Programmable Interpolator  . . . . . . . . . . . . . . . . . . . 367
11.5) RF-DAC Processing Stages: The Digital Complex Mixer  . . . . . . . . . . . . . . . . . . . . . . . 370
11.6) RF-DAC Processing Stages: The Image Rejection (IMR) Filter  . . . . . . . . . . . . . . . . . . 372
11.7) Principles of RF-DAC Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
11.8) Design Tool Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
11.9) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

12) RF Data Converters: Figures of Merit and Frequency Planning  . . . . . . . . . . . . . . . 383
12.1) Noise and Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
12.2) Traditional Data Converter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
12.3) Frequency Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
12.4) RF-Sampling Data Converter Characteristics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
12.5) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409

Notebook Set F) Frequency Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
F.1) Introduction to Frequency Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
F.2) RFSoC Frequency Planner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

13) Design Tools and Workflows for RFSoC SDR  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
13.1) High Level Design Process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415
13.2) Programmable Logic (PL) Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
13.3) Processing System (PS) Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
iv

Downloaded from www.RFSoCbook.com



Table of Contents
13.4) Hardware-Software Co-Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
13.5) Dynamic Function eXchange (DFX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
13.6) Clocks, Timing, and Sample Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
13.7) Antennas, Filters, and Amplifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
13.8) SDR Design Flow for PYNQ on RFSoC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
13.9) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

Notebook Set G) RFSoC Radio Demonstrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .457
G.1) The Radio System  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
G.2) Observing the Radio Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
G.3) Transmit and Receive: “Hello World!” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

14) Forward Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .461
14.1) Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
14.2) Principles of Forward Error Correction (FEC)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
14.3) Hamming Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
14.4) Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
14.5) Viterbi Decoder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
14.6) The BCJR, Log MAP and Max Log MAP Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . . . 478
14.7) Performance of Convolutional Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
14.8) FEC for Fading Channels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
14.9) Turbo Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
14.10) LDPC Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
14.11) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

15)  Practical SD-FEC Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .505
15.1) SD-FEC Blocks and IP Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
15.2) Hardware Design  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
15.3) Run-Time PYNQ Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
15.4) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

Notebook Set H) Forward Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .533
H.1) First Principles FEC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
H.2) Using the Hardened SD-FEC Block for Encoding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534
H.3) Communications Channel Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
H.4) Using the Hardened FEC Block for Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
H.5)  Bit Error Rate and Analysis  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

16) OFDM: Orthogonal Frequency Division Multiplexing  . . . . . . . . . . . . . . . . . . . . . . .537
16.1) Motivation for OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539
v

Downloaded from www.RFSoCbook.com



Table of Contents
16.2) Multi-Carrier Modulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
16.3) OFDM Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
16.4) OFDM Transmitter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554
16.5) Impairments in OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
16.6) OFDM Receiver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
16.7) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

Notebook Set I) Practical OFDM Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
I.1) OFDM Fundamentals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
I.2) Channel Estimation and Equalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
I.3) RFSoC OFDM Transceiver  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

17) RFSoC Applications in  Cellular Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
17.1) Introduction to 4G/5G Radio Access Networks (RANs) . . . . . . . . . . . . . . . . . . . . . . . . 573
17.2) Evolution to 4G/5G OpenRAN Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
17.3) RFSoC Products for Applications in Cellular Networks  . . . . . . . . . . . . . . . . . . . . . . . . 582
17.4) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591

18) MIMO and Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
18.1) Introduction to MIMO Systems  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
18.2) Spatial Multiplexing and Spatial Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
18.3) MIMO Channel Representation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596
18.4) Receiver Processing Techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
18.5) Transmitter Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
18.6) MIMO Performance Metrics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
18.7) MIMO Communications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
18.8) Phased Array Beamformers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 605
18.9) Beamforming Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
18.10) Beamforming Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 615
18.11) RFSoC Support for MIMO and Beamforming  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
18.12) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

19) Dynamic Spectrum Access and Cognitive Radio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629
19.1) Spectrum Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
19.2) Dynamic Spectrum Access (DSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
19.3) DSA Frameworks in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638
19.4) Deployment of Fully Dynamic Spectrum Access  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
19.5) Advancing DSA Networks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657
19.6) Chapter Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
vi

Downloaded from www.RFSoCbook.com



Table of Contents
List of References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .669

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .689

List of Equations and Trigonometric Identities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .703

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .705
vii

Downloaded from www.RFSoCbook.com



Blank Page
viii

Downloaded from www.RFSoCbook.com



Foreword 
In 2019, Xilinx announced its Zynq UltraScale+ RF System on Chip (RFSoC) product portfolio, manufactured 
using advanced FinFET transistor technology. A confluence of compelling factors motivated the development 
of the RFSoC: the emergence of wideband, digitally assisted, RF data converters; the superior analog perfor-
mance of FinFET transistors; the demand for large arrays of digitized RF channels in emerging 5G Massive-
MIMO radios; the imperative to maximise bandwidth at low power though monolithic integration of RF and 
digital signal processing functions; and the success and widespread adoption of the Zynq SoC and MPSoC 
product families. The software adaptability, small form factor and low power operation of the RFSoC has 
resulted in its widespread deployment not only in 5G networks and proprietary software defined radio (SDR) 
implementations but also in radar systems, test and measurement equipment, and cabled networks. For some 
of the world’s evolving RF sampling rate enabled research, design and development programmes, the RFSoC 
will also provide a platform for the rapidly advancing 6G communications domain, and provide capability for 
the high speed control and implementation requirements of quantum computing.

Building on the success of The Zynq Book and Exploring Zynq MPSoC, we were delighted to collaborate with 
the University of Strathclyde in this latest book 'Software Defined Radio with Zynq UltraScale+ RFSoC'. The 
book introduces the reader to important fundamental theory and architectures in advanced digital communi-
cations system, which can then be explored for implementation on the RFSoC platform. While the RFSoC 
incorporates all the features of the Zynq MPSoC including the multi-core ARM processor, complex and 
software programmable hardware fabric, it additionally supplies up to 16 high performance transmit and 
receive RF-subsystems which can synthesize and digitise wideband, RF signals all the way to-6 GHz. Tradi-
tional RF functions such as oscillators, mixers and filters are now integrated digitally as part of each RF-
subsystem. Throughout the book, practical examples are provided in the form of Jupyter Notebooks on the 
PYNQ development platform. 

Given that the RFSoC enables developers to architect a software-programmable RF radio in a single device, it 
is entirely appropriate that the Software Defined Radio (SDR) concept is introduced at the outset. This is 
followed by an overview of the RFSoC architecture, features, and available hardware development platforms. 
DSP and Wireless Communications fundamentals are then covered followed by an examination of SDR archi-
ix
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tectures. Digital modulation schemes in modern communications systems are explored followed by a detailed 
overview of typical RF subsystem architectures, all of which are supported by the RFSoC device. Later chapters 
deal with the more advanced aspects of communication systems including Forward Error Correction, MIMO 
and Beamforming, and Cognitive Radio. 

Whether the reader is a professional in Communication engineering, an academic or University researcher, a 
first-time user or an expert seeking more insight, Software Defined Radio with Zynq UltraScale+ RFSoC makes 
the RFSoC platform easily accessible, supplying the fundamental theory, the architectures, and the practical 
implementation in the form of examples throughout. 

The longstanding AMD collaboration in wireless technological research and innovation with the StrathSDR 
team at the University of Strathclyde goes from strength to strength and I would like to thank and congratulate 
all of the authors who have contributed to this book. 

Brendan Farley,

Corporate Vice President, Wireless Engineering, AMD.
x
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 Introducing the Team 
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About StrathSDR 

The University of Strathclyde Software Defined Radio team (StrathSDR) is a research, 
development and design team with more than 20 staff, researchers and PhD students 
and is supported by research funding grants and industry partnerships. Our heritage 
and evolution dates from the late 1990s when the then Digital Signal Processing (DSP) 
Enabled Communications group (DSPeC) was a very active part of the University’s Department of Electronic 
and Electrical Engineering.  In the late 90s it was ‘all about the baseband’ with DSP providing the acceleration 
for digital mobile and wireless networks via baseband speech coders, MPEG audio coders, video encoding, low 
frequency numerically controlled oscillators (NCOs), pulse shaping and channelisation, leading to the imple-
mentation of the first digital mobile standard, GSM and emerging early Wi-Fi® / wireless implementations. 
However from baseband sampling rates of the orders of 10 kHz to 100 kHz in the late 80s and early 90s, and 
the success of oversampling converters (sigma-delta), the early 2000s saw MHz sample rate converters arrive 
and the first IF (intermediate frequency) digital radios in operation. In these systems signals at the RF carrier 
frequencies (800 MHz+ typically), could be mixed down and centred at low MHz values and then directly 
sampled with a few MHz sample rate ADC (analogue to digital converter). Similarly, IF-centred outputs 
created by MHz sampling DACs (digital to analogue converters) were available for mixing up to RF trans-
mission bands. Tracking the increase in ADC and DAC sampling rates (not quite Moore’s law growth, but 
perhaps doubling every 3 to 4 years since 1985), 2022 sees SDR being a fundamental core technology and 
methodology for the implementation of mobile and wireless networks, from 5G to 6G and other bespoke and 
custom implementations.

Since 2011 the StrathSDR team has been building private shared spectrum mobile and wireless networks. 
Early networks used TV white space (TVWS) UHF spectrum, and more recently private 5G standalone (SA) 
networks were implemented on shared spectrum bands from 3.4 to 4.2 GHz (n78 and n77 bands).  Recent 
industry/academic research partnership projects using AMD FPGA and RFSoC technology for 5G SA radio 
networks includes UK government DCMS funded partnership projects, 5GRuralFirst, 5GNewThinking, and 
as a founding partner of the Scotland 5G Centre. These projects have led to the deployment of real radio 
networks working with a host of key partners to build both the low PHY and high PHY for 5G and other 
standards using AMD technology at both the remote radio head (RRH) and the baseband units (BBU).  In 
addition to AMD, our team has collaborated recently with many tier 1 suppliers and mobile network operators. 
Part of our endeavour in this changing market is also around the rise of the ‘tier 2s’ and SMEs (small medium 
sized enterprises) in providing RAN (radio access networks and O-RAN), particularly for private networks. 

About the University of Strathclyde

The University of Strathclyde is a public research university located in Glasgow, 
Scotland. Founded in 1796 as the Andersonian Institute, it is Glasgow's second-oldest 
university, having received its Royal Charter in 1964 as the first technological 
university in the United Kingdom. The name is derived from the historic Kingdom of 
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Strathclyde, with ‘Strath’ referring to valley and ‘Clyde’ to the river running through Glasgow. It is Scotland's 
third largest university by number of students, with students and staff from over 100 countries. The University 
operates with four main Faculties: (i) Engineering, (ii) Science, (iii) Business and (iv) Humanities and Social 
Sciences. The institution was named UK University of the Year 2012 by Times Higher Education and again in 
2019, becoming the first university to receive this award twice.   The StrathSDR team is part of the Department 
of Electronic and Electrical Engineering in the Faculty of Engineering. This Department has more than 80 full 
time faculty, 200 PhD and research students, and 600+ undergraduates and 100+ taught masters students.

AMD and University of Strathclyde Engagement

The AMD and University of Strathclyde engagement and partnership dates back to 
2002 with our first joint projects with Xilinx (who were acquired by AMD in 2021) to 
create educational courses using the Virtex® FPGA devices. In 2006 University of 
Strathclyde and Xilinx, via the Xilinx University Program (XUP) team, partnered to 
create university and professional teaching materials for the latest generation of FPGAs (Virtex and Spartan® 
generations) and jointly presented XUP DSP workshops in USA, Europe and Asia from 2008 to 2014. With the 
advent of the Zynq SoC in 2011, the activities extended to this device, and as well as teaching and training 
materials, the first text book from the partnership was published in 2014 — ‘The Zynq Book: Embedded 
Processing with the Arm Cortex-A9 on the Xilinx Zynq-7000 All Programmable SoC’ [130] in 2014. The book 
was (and still is!) available as a free download as well as in traditional print form. In 2019, a second book was 
published ‘Exploring Zynq MPSoC: With PYNQ and Machine Learning Applications’, [131] and again a free 
download version was made available alongside the print version. Across all of the joint book publications 
there has been more than 160,000 book downloads to date. 

In the last three years, work with AMD has moved to the RFSoC, with projects focusing first on the RFSoC2x2 
board, and more recently on the RFSoC4x2 board, which features in this book. With the publication of this 
book and the open-sourcing of the supporting hands-on notebooks and other materials, we look forward to 
continuing to work with AMD in this most exciting of technologies.

About the Editors

Louise H. Crockett — Louise was awarded MEng (distinction) and PhD degrees in Electronic and Electrical 
Engineering, both from the University of Strathclyde, in 2003 and 2008, respectively. She is currently a Senior 
Teaching Fellow and senior member of the StrathSDR research team where she supervises and manages 
researchers and key sponsored projects. Her core research interests are in the implementation of DSP systems, 
FPGAs and SoCs, wireless communications, and SDR. Louise has previously co-authored two books on AMD 
technology: The Zynq Book (2014), and Exploring Zynq MPSoC (2019). Her teaching focuses on digital systems 
design targeting FPGA and SoC technology, and builds practical skills to equip graduates for roles in industry.
xv

Downloaded from www.RFSoCbook.com



Introducing the Team
David Northcote — Received the BEng (Hons) degree in Electronic and Electrical Engineering in 2015. He is 
currently a Researcher with the Department of Electronic and Electrical Engineering (EEE), University of 
Strathclyde, supported by AMD. His PhD research was on the efficient implementation of the Hough 
Transform for embedded vision systems using Zynq MPSoC. David is a co-author of the technical book 
Exploring Zynq MPSoC [43]. His research interests include efficient implementation of wireless communi-
cation and computer vision applications on Zynq, and he has published in IEEE, and at various international 
conferences over the last 6 years.

Robert (Bob) Stewart — Bob graduated in 1985 with a BSc (Hons) in Electronic Eng., followed by a PhD in 
Parallel Signal Processing in 1990. He has been an academic at Strathclyde since 1991, where he is currently a 
Professor, and from 2014-17 was the Department Chair. In his early career he was Design Engineer at Wolfson 
Microelectronics Ltd, and spent time at USC, University of Minnesota, and as a Visiting Professor at UCLA 
Extension (until 2017). He was co-founder and CEO of digital communications company, Steepest Ascent Ltd, 
which was acquired by MathWorks.  Bob is head of the StrathSDR team, director of the StrathSDR spin-out 
company, and has published extensively and led a number of collaborative R&D projects with industry.

Chapter Authors

Douglas Allan — Douglas received his BEng (Hons) and PhD degrees from the University of Strathclyde in 
2013 and 2019 respectively. His PhD and post-doctoral research involved development of novel algorithms for 
detection of OFDM signals in cognitive radio receivers. He has been involved in development of PHY 
hardware for FPGA and SoC platforms and configuration and deployment of private 5G network solutions for 
the broadcasting industry. Douglas is a principal SDR design engineer with Neutral Wireless Ltd in Glasgow, 
and also a research engineer with the StrathSDR team.

Ehinomen Atimati — Atimati is a PhD researcher with the StrathSDR team at the University of Strathclyde. 
Her current work, supported by Schlumberger Faculty for the Future (FFTF), is focused on exploring 
reinforcement learning techniques in improving coexistence management within Dynamic Spectrum Access 
networks. Her interests are in exploring artificial intelligence-driven shared spectrum wireless communication 
systems for inclusive connectivity. She has several years of international teaching experience in Electrical/
Electronic Engineering and is passionate about increased participation of females in STEM.

Kenneth W. Barlee — Kenny Received BEng (Hons) and a PhD degrees from the University of Strathclyde in 
2014 and 2020 respectively. His PhD research presented FBMC-based real-time cognitive SDR transceivers 
that targeted vacant spectrum implemented on Zynq devices.  He has worked on 5G NSA/SA network design, 
on the UK Government funded 5GRuralFirst and 5G NewThinking projects, where he led on RF network 
design and implementation of vRAN and distributed cloud + edge core networks. Kenny is a research engineer 
with the StrathSDR team and is also a principal 5G RAN design engineer with Neutral Wireless Ltd.
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Lewis J. Brown — Lewis was awarded the MEng (Distinction) in Electronic and Electrical Engineering from 
the University of Strathclyde in 2020.  Since 2020 he has been working on his PhD with the StrathSDR research 
group. In 2021, he completed an internship with AMD, where he developed embedded hardware systems and 
performed initial bring-up for RFSoC evaluation boards with the PYNQ team. Previously he was also an intern 
at Xilinx in Edinburgh.  His core research interests involve reconfigurable, hardware-based implementations of 
5G New Radio (5G NR) standards, focusing on RFSoC design. 

James Craig — James received the MEng (Distinction) in Electronic and Electrical Engineering with Interna-
tional Study from the University of Strathclyde in 2021. Since then, he has been working as a PhD researcher 
with the StrathSDR research group.  He has completed two internships at MathWorks Ltd in 2021 and 2022 
with the Wireless HDL and Wireless Testbench teams. His research involves investigating 5G New Radio (NR) 
standard algorithms and how these can be effectively implemented on FPGAs and SoCs, with a focus on 
Multiple-Input Multiple-Output (MIMO) techniques.

Graeme Fitzpatrick — Graeme received the MEng (Distinction) in Electronic and Electrical Engineering 
from the University of Strathclyde in 2020. He is currently a PhD researcher with the StrathSDR research 
group. Graeme has core research interests in radio spectrum regulation and the hardware solutions that make 
up Dynamic Spectrum Access (DSA) techniques. The focus of his research is investigating the potential of the 
dynamic partial reconfiguration of FPGAs for SDR systems. Mainly, this involves using Dynamic Function 
eXchange (DFX) controlled via PYNQ Composable Overlays for communications solutions on the RFSoC.

Joshua Goldsmith — Josh received his BEng (Hons) degree from the University of Strathclyde in 2017, where 
he is currently completing his PhD degree. Integrated with his academic research, Josh completed two intern-
ships in 2019 and 2021 at Xilinx (now AMD) developing hardware systems and training material for the 
RFSoC. He is also a contributing author of the Exploring Zynq MPSoC book and has published a number of 
journal papers. His research is focused on run-time reconfigurable hardware, specifically for FPGA radio 
applications, and he has related interests in signal processing and embedded systems.

Andrew Maclellan — Andrew was awarded the MEng (Distinction) in Electronic and Electrical Engineering 
at the University of Strathclyde in 2018. He joined the StrathSDR research group in 2018 to pursue a PhD and 
has progressed three internships at MathWorks in 2017, 2018, and 2019 working with the Wireless HDL team. 
In 2020/21, he also interned at AMD in the PYNQ research team, working on the bring-up of the RFSoC 2x2 
board, and experimental PYNQ features. His core research interests are in Deep Learning for Physical Layer 
Wireless Communications and developing FPGA Deep Learning architectures for communications SoCs.

Lewis D. McLaughlin — Lewis was awarded MEng (Distinction) in Electronic and Electrical Engineering 
from the University of Strathclyde in 2018. Since graduating, he has been pursuing his PhD within the 
StrathSDR research group. Between 2019 and 2020 Lewis completed an internship with AMD in Colorado, 
developing embedded hardware systems, performing development board bring-up and investigating design 
toolflows within the PYNQ team. His research interests include abstracted hardware design automation, 
communications channel emulation and short-wordlength architectures for FPGAs including RFSoC.
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Blair McTaggart — Blair was awarded his MEng degree in Electronic and Electrical Engineering from the 
University of Strathclyde in 2018. He is currently working on his PhD with the StrathSDR research group and 
his research is supported by UK government funding and contracts on SDR systems.  Specifically his work has 
focussed on the design a configurable, real-time FPGA implementation of a multi-element adaptive 
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in the Department of Electronic and Electrical Engineering, University of Strathclyde and is supported and 
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“In the new era, thought itself 
will be transmitted by radio.”

GUGLIELMO MARCONI
(1874 - 1937)
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Chapter 1
Introduction
For many people, businesses, and organisations around the world, radio communication is a vital component 
of everyday life. It enables everything from national radio and television broadcasts, to mobile cellular 
networks, private data networks; to emergency services communications, air traffic control, navigation 
systems, and many other technologies. While some uses have changed little over decades (such as listening to 
local radio stations), the bigger picture shows continuing innovations in the world of wireless communica-
tions. Cellular and private data networks are at the forefront of innovation in this field — driving towards 
higher data rates, more robust security and reliability, greater mobility, lower latency, and with provision for 
increasing densities of subscribers. 

The rapid evolution of radio standards to achieve these various performance improvements, as well as evolving 
use-cases, and new paradigms for dynamically accessing the radio spectrum, mean that radio equipment must 
increasingly be upgradeable in the field, and flexible in its operation. Collectively, these requirements make 
Software Defined Radio (SDR) the natural solution. 

In this book, we address the design and implementation of SDR systems using the AMD Zynq UltraScale+ 
Radio Frequency System on Chip (RFSoC) device. We review the underpinning concepts of digital signal 
processing and wireless communications, consider the features and capabilities of the RFSoC architecture, and 
demonstrate how to implement SDR systems on this exciting platform. 

1.1.  The Coming of SDR

Software Defined Radio (SDR) is not a new concept — the term was first introduced in the 1990s, with its 
origins extending back to the 1980s [264], [265]. The fundamental idea behind SDR is that one or more aspects 
of a radio’s functionality can be controlled via software. Originally, this was a challenging aspiration, when 
radios were traditionally fixed-function hardware devices; however, in the decades since, developments in 
technology have increasingly provided platforms that enable SDR. To give a simple example, front-end SDR 
processing platforms are available that can be software-programmed with a local oscillator frequency for 
1
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modulation and demodulation. SDR concepts are introduced further in Chapter 2; more detail on architec-
tures follows in Chapter 8. 

In the current day, it might be argued that almost all radios are SDRs, because software-based control is usually 
embedded somewhere within the radio architecture. Only the simplest, least expensive radios do not require 
any software elements — for instance, you can still buy analogue radio sets for the Amplitude Modulation 
(AM) and Frequency Modulation (FM) bands, tuned manually by the user rotating a dial, and watching an 
indicator bar shift along the frequency scale. These are not, however, the radio systems that provide the fast, 
reliable and secure data communications that underpin modern economy and society. Instead, think of 
standards such as Wi-Fi, Bluetooth, 4G, 5G — all sophisticated and complex systems that are orchestrated 
using software. In many cases, core processing functions are also implemented in software. As we discuss in 
Chapter 19, it can be argued that even more flexible and responsive radios will be needed in the future, for 
instance to realise Dynamic Spectrum Access (DSA), a disruptive new model of radio spectrum management.  

At the time we release this book, the design and development of 6G has now commenced at pace. This will be 
the first generation and set of standards that is virtually all SDR at the RF (radio frequency) front end 
(certainly for the low and mid-band RF frequencies up to 10 GHz) and the true power and flexibility of RF 
sampling will be to the digital communications market in the late 2020s, as the first digital audio format of the 
CD was to the audio marketplace in the mid 1980s. Another digital communications revolution beckons with 
6G!

Therefore, what modern communications engineers require are platforms that empower SDR, as they seek to 
deploy better solutions for today’s radio standards, and to develop the new radio systems of the future.

1.2.  SDR with Zynq UltraScale+ RFSoC

The focus of this book is SDR system implementation using the Zynq UltraScale+ RFSoC platform (hereafter 
referred to simply as ‘RFSoC’). As the name suggests, the device is a System on Chip (SoC) that is targeted 
specifically towards Radio Frequency (RF) applications. 

RFSoC is the third major Zynq SoC developed by AMD (formerly as Xilinx, which was acquired by AMD in 
2022), the first being the Zynq-7000 SoC in the early 2010’s. The Zynq UltraScale+ Multi-Processor SoC 
(MPSoC) preceded the RFSoC and, aside from radio-specific features, the two have much in common. All 
three SoC types are composed of a Processing System (PS) for running software system components, coupled 
with Programmable Logic (PL) equivalent to a Field Programmable Gate Array (FPGA), and high speed inter-
connections between the two parts. The hardware features of the three SoC types are compared in Chapter 3, 
but for now, we focus only on the RFSoC. 

A high level view of the RFSoC device architecture is shown in Figure 1.1. Note the PS and PL sections, and in 
particular that the PL includes some highlighted features that are particularly important for SDR applications. 
2
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These features are hardened, meaning that they are implemented in dedicated silicon on the device, rather than 
programmable logic (bringing performance benefits, but still providing programmability). 

The highlighted features of the RFSoC can be summarised as follows: 

• RF Data Converter (RFDC) blocks — Integrated Analogue to Digital Converters (ADCs) and Digital 
to Analogue Converters (DACs) that are capable of operating at very high sampling rates (multiple giga-
samples per second, GSps, or GHz), making it possible to sample many radio signals directly. The RFDC 
blocks also incorporate programmable Digital Upconverters (DUCs) and Digital Downconverters 
(DDCs) to undertake the translation between baseband (signals close to 0 Hz) and modulated 
frequencies, and vice versa.

• Soft Decision Forward Error Correction (SD-FEC) blocks — Wireless communications schemes 
usually incorporate some form of Forward Error Correction (FEC) coding to mitigate against errors 
introduced in the radio channel (i.e. allowing the receiver to detect bit errors, and correct them where 
possible). The RFSoC architecture includes hardened SD-FEC blocks for implementing the coding and/
or decoding schemes used in selected mobile cellular standards. The use of these hardened SD-FEC 
blocks is an optimised and low power means of including FEC functionality within a radio design.

Figure 1.1:  High level illustration of the Zynq UltraScale+ RFSoC.
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• Gigabit Transceivers (GTY Transceivers) — While the RFDCs represent the RF interface, in many 
cases the RFSoC requires a wired link to other elements of a radio system. The most prominent example 
is wireless cellular infrastructure: the RFSoC can be used to implement the radio front end, but high 
speed links back to the core network are needed, and these are usually implemented in wired or optical 
form. The required interface is supported on the RFSoC by hardened GTY Transceiver blocks, high rate 
serial interfaces that can implement a number of different standards [50].

In addition to these specialised resources, the PL also provides a programmable hardware resource for imple-
menting custom radio architectures. From an SDR perspective, runtime flexibility can be integrated to change 
parameters of the hardware design from software, or even to reprogram sections of the PL design on the fly. 

The PS architecture includes a quad-core application processing unit, a dual-core real-time processing unit, 
and features for platform management and security [131]. There are also local memories, interconnects, and 
peripheral interfaces. These features can be combined to implement the software components of an SDR, such 
as an operating system, control and orchestration of the hardware elements, and software-based algorithms. 

1.3.  Design Methods

SDR implementations can be realised using a variety of hardware technologies and software approaches. As 
noted in the previous pages, the RFSoC platform provides a powerful hardware platform for SDR, and its PS 
represents a capable host for the software components. 

This book covers SDR implementation from a conceptual perspective, and also delves into the mathematical 
background where appropriate. Practical aspects of SDR system design are also presented, along with several 
examples and reference designs. The Vivado® Integrated Development Environment (IDE) is used extensively 
for hardware development, along with the block-based tools, Vitis™ Model Composer and HDL Coder, which 
are both used within the MATLAB® and Simulink® environment. The basis of the ‘software’ part of the SDRs 
we feature in the book is the PYNQ framework [39], an AMD open source project that aids software-hardware 
integration and productivity on AMD adaptive computing platforms. It achieves this by combining elements of 
SoC hardware design, Linux®, and Python, with a Jupyter™ environment for applications development [294]. 

RFSoC-PYNQ is an extension of PYNQ that incorporates support for the RFSoC platform and accelerates SDR 
development. It includes design support for hardened features such as the RFDCs, enabling easy control over 
the parameters and operation of hardware blocks. RFSoC-PYNQ is further introduced through the practical 
elements of the book, starting with Notebook Set A which immediately follows this chapter, and forms the 
basis of the reference designs provided alongside the book. 
4
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1.4.  How to Use this Book

Whether you are reading in print or electronic form, this book is more than just the set of pages you see here. 
The intention is to provide a rich set of design resources, through the inclusion of sets of practical materials. 

In the main book, you will find short sections that are enumerated as:      Notebook Set A, B, C, D, E, F, G H, I. 

These are actually short summaries (just a few pages) of practical resources that exist separately, and can be 
freely obtained from the GitHub® repository accompanying the book, which is introduced in the next section. 
The user interface for these designs is via a set of Jupyter notebooks, hence the title ‘Notebook Set’.

The Notebooks and designs can be freely obtained, downloaded to a supported RFSoC development board, 
and interacted with via Jupyter. Some of the notebooks sets cover related concepts on topics such as DSP and 
communications theory, and do not need to be run on a development board (although they can be). Notebook 
Set A (see page 7) provides an introduction to the practical elements of the book, and explains how to get 
started. These design resources can be investigated, reused, and built upon. 

Of course, the rest of the book is simply a book — a set of chapters covering key topics in SDR and RFSoC 
technology, which are intended to be an accessible and informative read. These chapters are enumerated 
conventionally, from this current chapter through to Chapter 19. We hope you find them useful! 

1.5.  Related Work and Resources

This book aims to provide a valuable resource for getting started with RFSoC-based SDR design, and to act as 
a useful companion for those further along the journey. As we discovered in the process of writing the book, 
RFSoC-SDR design actually involves quite a number of topics! We have sought to cover each of these in an 
accessible style, and in a practical level of detail. There are undoubtedly limits to the scope of material that can 
be included here, and in many cases you can find entire textbooks on topics that are covered in a chapter, or 
subchapter, in this book. Sources of further information are cited where appropriate throughout, and these are 
listed at the end of the book in the List of References. 

In addition, it is useful to highlight some particular sources of information and supporting resources:

• The website for this book https://www.rfsocbook.com.

• RFSoC-PYNQ website https://www.rfsoc-pynq.io/ and GitHub repository https://github.com/
Xilinx/RFSoC-PYNQ — RFSoC-PYNQ resources, and a repository for the open source project.

• StrathSDR GitHub repository https://github.com/strath-sdr/RFSoC-Book — A repository hosting 
the practical materials accompanying this book.
5
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CHAPTER 1: Introduction
• The ‘Exploring Zynq UltraScale+ MPSoC’ book [https://www.zynq-mpsoc-book.com] [131] — Our 
previous book on the Zynq UltraScale+ MPSoC is a useful reference, as many aspects of the architecture 
are in common with the RFSoC.

• AMD support webpages [https://www.xilinx.com/support.html] — AMD provides extensive 
documentation and support for RFSoC, and related development tools and design resources.

• AMD University Program [https://www.xilinx.com/support/university.html] — Information about 
university support, projects, events and other initiatives.

Materials shared via GitHub can be considered ‘living’ designs, and may benefit from bug-fixes, upgrades, and 
extensions over time. 

1.6.  Chapter Organisation

The book is organised into four main sections:

• Introduction — Chapters 1 to 3, and Notebook Set A
This first part of the book introduces SDR, the RFSoC platform, and provides a ‘getting started’ tutorial 
as the first practical element of the book.

• DSP and communications concepts for SDR with RFSoC — Chapters 4 to 8, Notebook Sets B to E
The fundamental concepts from Digital Signal Processing (DSP) and wireless communications theory 
are reviewed, along with complementary practical examples, with reference to the RFSoC as appropriate. 
A particular feature in this section is the introduction of an RFSoC-based spectrum analyser — if you 
have access to a supported RFSoC development board, you can download this application to your board, 
and explore the radio spectrum around you!

• RFSoC features and practical design — Chapters 9 to 15, Notebook Sets F to H
This section of the book looks more closely at the architecture and features of the RFSoC, and considers 
how to develop designs using the device. Particular focus is placed on the RFDCs, which represent the 
analogue/digital interface of the SDR architecture; we also examine the SD-FEC blocks and learn how to 
use them, and cover design methods for RFSoC more generally. The practical chapters also demonstrate 
frequency planning techniques, and present a complete transmit-receive radio design.

• Systems and applications — Chapters 16 to 19, Notebook Set I 
The final chapters present a variety of systems as context for RFSoC SDR design. The multiple access 
method of Orthogonal Frequency Division Multiplexing (OFDM) is covered, along with a practical 
example. The use of RFSoC in cellular networks, and in the implementation of Multiple-Input-Multiple-
Output (MIMO) and beamforming systems, is discussed. Finally, future directions in spectrum 
management and cognitive radio solutions are considered.

Moving forward, we continue in Notebook Set A with an introduction to Jupyter Notebooks and PYNQ, 
followed by a feature on SDR in Chapter 2. 
6
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Notebook Set A
Introduction to Jupyter 
Notebooks and PYNQ 

Welcome! You have just arrived at the first of nine notebook chapters distributed throughout this book, which 
comprise practical exercises for your computer (or in fact, any device that can host a web browser) and RFSoC 
development board. The practical exercises are delivered using Jupyter [294], an interactive platform that can 
be accessed using a web browser. Before we begin, let’s get started by installing the practical exercises on your 
system and introduce you to some guidelines that will be used throughout this book.

First of all, the exercises in this book can be installed on your computer or RFSoC platform, by using the set of 
installation and setup instructions at the GitHub repository: https://github.com/strath-sdr/RFSoC-Book. After 
navigating to this web page, simply scroll down to find up-to-date instructions. Additionally, if you have any 
questions or problems with the practical exercises and RFSoC designs featured throughout this book, you can 
use the GitHub issue tracker in this repository to tell us about them.

Jupyter notebooks are interactive documents that comprise executable code, documentation, and visualisation 
of results. Two types of Jupyter notebooks are included in the ‘Notebook Set’ chapters in this book. The first 
type can be executed on your computer or RFSoC platform; the second type must be executed on an RFSoC 
platform, because it uses the hardware features of the RFSoC (note that when a notebook is run on the RFSoC, 
it is executed natively using its Arm processors). 

The following icons are used to distinguish between the types of notebook:

    ALL   This icon is used when a Jupyter notebook can be executed on a computer or an RFSoC platform.

 RFSoC This icon is used when a Jupyter notebook can only be executed on an RFSoC platform.
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Notebook A: Introduction to Jupyter Notebooks and PYNQ
The icons above appear at the start of every notebook chapter, and can help you distinguish between Jupyter 
notebooks that require an RFSoC development board, and those that can also run successfully on a computer. 
It is important that you have an RFSoC platform for the best experience with this book and the associated 
practical examples. However, if you do not have an RFSoC platform, you can still enjoy many of the supported 
practical exercises on your computer, via a web browser.

After following the installation and setup instructions on the RFSoC book’s GitHub repository [327], you will 
now have everything you need to begin using the practical exercises presented in this book. To begin, the first 
notebook will present the Jupyter project and the key components of a Jupyter notebook, so that you can 
become familiar with this interactive environment. The second notebook will demonstrate key plotting and 
scientific computing libraries that enable visualisation and analysis in Jupyter. Notebooks three and four can 
only be used on your RFSoC platform. These Jupyter notebooks will introduce you to the RFSoC-PYNQ 
framework [44], which is a specialisation of the PYNQ framework [39] specifically for RFSoC platforms, and 
the use of hardware overlay designs, respectively. 

There are four notebooks to explore throughout this chapter using Jupyter and your RFSoC platform. The 
notebooks and their relative locations are listed as follows:

    ALL   01_jupyter_lab.ipynb — rfsoc_book/notebook_A/01_jupyter_lab.ipynb

    ALL   02_visualisation_and_analysis — rfsoc_book/notebook_A/02_visualisation_and_analysis.ipynb

 RFSoC 03_pynq_introduction.ipynb — rfsoc_book/notebook_A/03_pynq_introduction.ipynb

 RFSoC 04_overlays.ipynb — rfsoc_book/notebook_A/04_overlays.ipynb

A.1.  Getting Started with Jupyter

Project Jupyter is a non-profit, open source and community driven effort to create a web-based interactive 
computing environment with a focus on data science and scientific computing [294]. The Jupyter community 
is responsible for developing and governing the Jupyter Notebook standard, as well as creating a complete set 
of tools to experiment, develop, share, and explore all things relating to software code.

Jupyter initially started as an interactive shell for Python [295], where it was known as IPython [289]. It now 
supports over one-hundred different programming languages, which use their own Jupyter kernels written by 
the community. Throughout this series of notebooks, we will use the Python programming language to 
demonstrate examples and interact with the RFSoC development platform. The first notebook, which will 
introduce you to Jupyter, can be opened here: rfsoc_book/notebook_A/01_jupyter_lab.ipynb.

Jupyter has two interactive graphical environments. These are classic Jupyter Notebooks, and the more recent 
JupyterLabs, which is a browser-based Integrated Development Environment (IDE) that includes support for 
8
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Notebook A: Introduction to Jupyter Notebooks and PYNQ
Jupyter Notebooks. All notebooks that are used throughout this book will leverage JupyterLab, which 
combines several useful tools into one environment. These tools include the text editor, command terminal, 
workspace viewer and other useful features that improve the overall user experience when developing with this 
environment. After setting-up JupyterLab, you will be presented with the window shown in Figure A.1. 

There are three main areas on the JupyterLab interface. These are the menu bar, sidebar, and the main 
workspace, which is in the centre of the window given in Figure A.1. The menu bar at the top of the window 
exposes several settings and commands relating to file control and the operation of JupyterLab. The sidebar 
provides a set of useful tools, which includes a file browser, a workspace manager, a notebook navigation tool, 
and the Jupyter extension manager.

Figure A.1:  The JupyterLab window with annotations.
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Notebook A: Introduction to Jupyter Notebooks and PYNQ
The main workspace usually contains interactive notebooks that you are able to view, modify, and run. In 
Figure A.1, the main workspace contains a launcher window, which will be visible when you first launch 
JupyterLab. The launcher window helps you to create new notebooks and other useful files.

The Getting Started with Jupyter notebook will introduce you to the JupyterLab environment and help you 
navigate many of its key tools and features. By the end of this notebook, you will have a better understanding of 
why JupyterLab is an excellent development environment, and you will also learn about useful Python libraries 
that can support software design.

A.2.  Visualisation and Analysis

JupyterLab can leverage several Python libraries for plotting, evaluating, and manipulating data. These 
libraries include NumPy™, Pandas™, SciPy™, MatplotLib, and Plotly™. In the second notebook, we will 
introduce these libraries so that you can become familiar with their features and capabilities. The visualisation 
and analysis notebook is located at rfsoc_book/notebook_A/02_visualisation_and_analysis.ipynb. Below is a 
list containing Python libraries that are used in this notebook and their descriptions.

• NumPy [281] may be one of the most commonly used Python libraries for high-level mathematical 
functions and multi-dimensional matrix operations. It is based on optimised C code, which results in 
fast execution.

• Pandas [286] is a data manipulation and analysis library, which provides developers with data structures 
and numerical tables (primarily sequences and data frames) for fast, flexible data processing.

• SciPy [314] is an enormous Python library consisting of various modules for scientific computing tasks 
that are commonly found in science and engineering disciplines. There are many different modules and 
tools including integration, interpolation, decimation, spatial processing, optimisation, Fourier analysis, 
and much more.

• MatplotLib [257] is a useful library for generating plots in Python. This library provides a vast number 
of options for user customisation.

• Plotly [291] provides users with a simple set of classes and methods for creating figures and plots 
quickly with very few lines of code. By default, the generated plots are interactive, allowing the user to 
hover over data points to reveal further information.

• ipywidgets [221] allows the user to create graphical interfaces in software, such as buttons and text 
boxes. These interfaces are commonly known as widgets and are very useful for facilitating user inter-
action with software and hardware designs.
10
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Notebook A: Introduction to Jupyter Notebooks and PYNQ
A.3.  The PYNQ Framework and RFSoC-PYNQ

Python Productivity on Zynq, known as PYNQ [39], is an open-source project from AMD. The aim of the 
project is to provide a framework that simplifies hardware and software development on AMD SoC platforms. 
The third notebook requires an RFSoC development platform to explore and use PYNQ. You can launch this 
notebook from the following directory: rfsoc_book/notebook_A/03_pynq_introduction.ipynb. If you are not 
using JupyterLabs on RFSoC, this notebook will not be available in your workspace.

This notebook begins with a brief introduction to the PYNQ framework and ecosystem, which is illustrated 
using a simplified diagram in Figure A.2. Note the green components, which are specific to RFSoC-PYNQ. 

Figure A.2:  Simplified diagram of the PYNQ framework and ecosystem (contains relevant RFSoC software libraries).
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Notebook A: Introduction to Jupyter Notebooks and PYNQ
Online resources such as the PYNQ website [39] and the corresponding Read The Docs page [40], which 
contains useful documentation, will also be discussed. We will then explore several libraries that are provided 
alongside PYNQ. These libraries are generally used to control and interface to Intellectual Property (IP) cores 
that are implemented in the PL section of the device.

An introduction to PYNQ overlays will be provided. Overlays are programmable hardware configurations that 
are implemented on the PL [38]. They can be controlled from software, and may be used to accelerate a 
software application operating in the RFSoC’s PS, to give one example. We will investigate the base overlay
design using an RFSoC development board (the base overlay is the default PL configuration provided in the 
PYNQ distribution for your RFSoC platform).

Lastly, if you have any questions about the PYNQ framework, you can visit the support area of the PYNQ 
website, located at: https://discuss.pynq.io/.

A.4.  Overlays and Hardware Interfacing

The final notebook in this chapter can be found in rfsoc_book/notebook_A/04_overlays.ipynb. This notebook 
expands our understanding of PYNQ overlays by investigating a simple overlay design on RFSoC. The overlay 
design consists of a Numerically Controlled Oscillator (NCO) that generates a sine wave. The sine wave is sent 
to a data movement IP core, so that the data can be transferred from the FPGA logic fabric to the RFSoC’s PS. 
The NCO is controllable by the user from Jupyter, allowing sine wave frequencies and amplitudes to be 
modified. A functional block diagram of the system is presented in Figure A.3.

Throughout this notebook, we will explore several PYNQ classes including the DefaultIP and DefaultHier-
archy classes, which support IP core and hierarchy driver development, respectively. The Advanced eXtensible 
Interface (AXI) Direct Memory Access (DMA) controller [18] will also be introduced, which facilitates data 
movement between the RFSoC’s FPGA logic fabric and PS (shown as the ‘Datamover IP core’ in Figure A.3). 
Finally, visualisation and analysis tools, such as NumPy and Plotly, will be used to process the sine wave data 
and plot it in a graph.

Figure A.3:  Functional block diagram of the NCO overlay design.
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Chapter 2
Software Defined Radio
Louise Crockett

This chapter provides an introduction to SDR, prefaced by some fundamental background on radio communi-
cations in general (further review on wireless communications will be presented in Chapter 6). In particular, 
we consider the increasing sampling rates in modern devices, and the three main architectures for SDRs that 
arise from low, medium, and high sampling rates at the Analogue-Digital interface. The associated design 
considerations and trade-offs are also discussed. 

2.1.  Radio Fundamentals

Before discussing Software Defined Radio, it is worthwhile first defining radio communications in general. 

2.1.1.  Basic Radio Architecture

As a a starting point, a simple model of an ideal radio communications system is presented in Figure 2.1, 
highlighting three sections of interest: the transmitter, channel, and receiver. As we proceed through this 
chapter, more detail will be added to this model, and architectures for software defined radio will be developed. 

At the transmit side, data is prepared for transmission (baseband processing), and the resulting signal is then 
converted up in frequency, such that it is centred in the allocated frequency band for transmission (i.e. the 
signal is modulated, which will be explained in more detail shortly). The modulated signal is then amplified, 
and transmitted by an antenna.
13
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CHAPTER 2: Software Defined Radio
The physical link between the transmitter and receiver is the channel, and it can be wired or wireless. In radio 
communications, we usually consider the channel to be wireless: at the transmit side of a wireless link, an 
antenna is used to emit radio waves, and another antenna is used at the receive side to absorb them. It is also 
possible to transmit radio signals along a cable or fibre (indeed, many of the practical activities presented in 
this book will use a cable, to avoid emitting radio signals that could interfere with other devices using the radio 
spectrum). As will be discussed later, various impairments are typically introduced in the radio channel, which 
degrade the signal, making it more difficult for the receiver to retrieve the transmitted data.

At the receive side, the equivalent operations to the transmitter are performed in reverse. After the signal is 
absorbed by a receive antenna, it is amplified, demodulated (or mixed), and then further processed at 
baseband. 

As we will discuss in the coming chapters, the transmitter is responsible for preparing data for transmission, 
and modulating it onto the allocated RF band. The receiver has the task of demodulating the received signal 
and recovering the information that was transmitted. As a result of impairments experienced in the channel, 
the receiver has the difficult task of recovering the data, and consequently it is normally significantly more 
complex to design the receiver than the transmitter. 

2.1.2.  Modulation and Demodulation

The operations of modulation (usually referring to shifting, or mixing, a signal up in frequency to a carrier 
frequency), and demodulation (analogously shifting a signal down in frequency) are shown in Figure 2.2. The 
source data for transmission is said to be at baseband, meaning that its constituent frequency components are 
located at DC (i.e. close to 0 Hz). Likewise, the demodulated received data is also at baseband. Modulation and 
demodulation are used to shift the signal between baseband, and the Radio Frequency (RF) band allocated for 
the transmission.   As already mentioned the term mixing is often used alongside modulation and demodu-

Figure 2.1:  A simplified model of a radio communications system.
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CHAPTER 2: Software Defined Radio
lation. (In Figure 2.2 we are just illustrating the general process of modulation and demodulation, or mixing to 
and from carrier frequencies, and the design details for required components, any filtering stages required are 
not shown in this introductory section - this will be detailed later.)

The mathematics of these modulation and demodulation operations will be covered later, in Chapter 7, 
however we can note that in each case, the signal is multiplied or ‘mixed’ with a cosine wave at the RF centre 
frequency, . The value of  can vary across a very wide range, but some examples are ~100 MHz for FM 
broadcast radio stations, ~600 MHz for digital television, ~1.575 GHz for GPS signals, or 28 GHz for mm 
(millimetre) waves for the high bands of 5G.   

2.1.3.  Transmission over the Radio Spectrum

Radio communication is achieved by transmitting information using radio waves or microwaves, which are 
within the electromagnetic spectrum as illustrated in Figure 2.3. Other parts of the electromagnetic spectrum 
can also be used to send information over wireless channels, for instance infra-red light, which is customarily 
used for television remote control handsets as well as some other short-range applications. 

fc fc

Figure 2.2:  Concept of simple modulation and demodulation from baseband to a carrier frequency. (Note that the 
low pass filtering components for the receiver products at twice the carrier frequency are not shown.)
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CHAPTER 2: Software Defined Radio
If a signal were not modulated, it would include frequency components around 0 Hz, which is too low in 
frequency for successful propagation through a radio channel. Further, by modulating signals to different sets 
of frequencies, multiple transmissions can take place simultaneously on different portions of the RF spectrum.  

2.2.  What is Software Defined Radio (SDR)?

In this book, we consider a Software Defined Radio to be:

A radio in which aspects of functionality are implemented in, or controlled by, software. 

Therefore, the term Software Defined Radio refers collectively to systems that are implemented in this manner. 

An important characteristic of SDRs is their flexible functionality, which contrasts with the more traditional 
approach of fixed hardware designs. An SDR contains one or more programmable elements, often in the form 
of reconfigurable hardware. Aspects of radio processing may also be implemented in software. The major 
benefit of SDR is the inherent flexibility obtained: the operation of a radio can be changed without making any 
physical alterations to the device; making it easy to deploy systems in different territories and frequency bands, 
or to add new modes or features.

As will be discussed later in this chapter, there is no single, definitive architecture for an SDR. Multiple 
different types of devices, and combinations thereof, can be used to create SDR systems. Of course, in this book 
our key focus is RFSoC-based implementation, and therefore the discussion in later chapters will be centred on 
SDR architectures using the RFSoC platform. 

Figure 2.3:  The electromagnetic spectrum.
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CHAPTER 2: Software Defined Radio
2.3.  Motivations for SDR: Then and Now

Software Defined Radio is not a new concept, and in fact has been around for several decades. In some ways, it 
was an idea that pre-dated the technology required to enable it! In this section we examine some of the early 
motivations for SDR, and how this has evolved to the present day. 

2.3.1.  The Advent of the SDR Concept

The concept of SDR originated with Joe Mitola’s seminal papers on ‘software radio’ and ‘software defined radio’, 
published in the 1990’s [242], [264], [265]. He noted that radio systems had largely migrated from analogue to 
digital processing in the 1970’s and 1980’s, and foresaw a further revolution with the introduction of more 
flexible architectures that would reduce the reliance on hard-wired components, and instead feature program-
mable elements whose functionality could be defined using software. 

At that time, the rapidly increasing performance (and reducing costs) of enabling technologies such as 
Analogue to Digital Converters (ADCs), Digital to Analogue Converters (DACs), and embedded computing 
processors was seen as a key driver of the impending SDR revolution. This prediction has borne out — in the 
1990’s, ADCs and DACs were capable of sampling at 10’s of Mega samples per second (Msps) [265], while at 
the time of writing (in the early 2020’s), rates are entering the 10’s of Giga samples per second (GSps). 
Meanwhile, the density of integrated circuits has expanded in line with Moore’s Law, roughly doubling every 
18 months since the mid 1960’s [240], [268], enabling more sophisticated processing of radio signals. 

The high level architecture of an ideal SDR was originally defined as in Figure 2.4, wherein all of the radio’s 
functionality, other than the RF conversion stages, is implemented in software. The ADCs and DACs of that 
time did not enable this concept of the ideal SDR to be realised, but it was an insightful model, and one which 
can now be achieved using AMD RFSoC devices and other platforms. Interestingly, Mitola’s ideal SDR was set 
in the context of voice and ‘multimedia’ communications, which perhaps predicted the richer set of wireless 
applications used in mobile networks today.  

Figure 2.4:  ‘An Idealized Software Radio’ (as defined and depicted by Joe Mitola in [265]).
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CHAPTER 2: Software Defined Radio
2.3.2.  SDR Programmes and Military Drivers

Also in the early 1990’s, the US Defense Advanced Projects Research Agency (DARPA), part of the US 
Department of Defense (DoD), initiated research into SDR through its SPEAKeasy programme [126], which 
was later followed by the Joint Tactical Radio Systems (JTRS) programme. The ability to reprogram and 
upgrade radio equipment was seen as an attractive attribute for military systems, which often have to be 
maintained over long product lifecycles. Moreover, the flexibility for radios to interoperate with different 
systems on the battlefield was a significant motivator for military SDR.

Soon after this early work on SDR, in 1996 the Modular Multifunction Information Transfer Systems 
(MMITS) Forum (later renamed the SDR Forum... and subsequently the Wireless Innovation Forum) was estab-
lished. A not-for-profit organisation, its purpose was to develop concepts around SDR, and to define an open, 
modular architecture for SDR that would enable wider adoption and innovation. Interest in SDR started to 
grow, with academic organisations, government, and industry seeing potential in the idea, particularly for 
military applications. In Europe, a number of collaborative research projects were developed to progress SDR 
technology. Early progress in SDR development is well reviewed in [185]. 

2.3.3.  Modern SDR Applications

Moving forward to the present day, SDR has evolved from expensive defence programmes to a more attainable 
price level, even to the point that students and hobbyists can buy low cost SDR equipment (<$50) that can be 
interfaced to a home computer. The availability of SDR equipment at relatively low cost also provides new 
opportunities for amateur radio enthusiasts. Furthermore, SDRs are extremely useful for research and proto-
typing purposes, owing to their reprogrammable nature, and ability to operate over a wide frequency range. 

SDR has found widespread application in commercial networks in recent years, largely because the enabling 
technology (in particular, processing platforms, DACs, and ADCs) has advanced considerably while also 
becoming cheaper. The early ideas of Mitola are now realisable using commodity hardware such as desktop 
processors, and off-the-shelf SDR front-ends. With ADC and DAC sampling rates now entering the 10’s of 
GHz, it is possible to place the analogue / digital interface at RF frequencies, directly digitising signals without 
the requirement for analogue mixing stages. This evolution and impact on SDR will be discussed in Chapter 8. 

Applications in the 2020’s include 4G and 5G networks and emerging 6G implementations, where SDR units 
can be deployed as Remote Radio Heads (RRHs) (also known as Radio Units, or RUs), each handling multiple 
channels of transmit and receive data. An example system is shown in Figure 2.5. Functionality can be split 
across remote, distributed, and centralised resources, leading to several possible options for the network archi-
tecture. The fronthaul links the RRHs and Baseband Units (BBUs), while the backhaul links the BBU resources 
to the core network. 5G networks also introduce a midhaul link, which connects distributed and centralised 
resources (the midhaul is not depicted in Figure 2.5, but see Chapter 17 for more details). 
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CHAPTER 2: Software Defined Radio
The software defined aspect provides operational flexibility, as well as a clear path for future upgrades; for 
instance, to implement new mobile standards or apply security patches.

2.4.  The Radio Frequency Spectrum

The electromagnetic spectrum was introduced in Section 2.1, and it was noted that the ‘radio’ and ‘microwave’ 
frequency bands are used for radio communication1. These bands are often defined as:

• Radio: 3 kHz to 3 GHz

• Microwave: 3 GHz to 300 GHz

Most widely used radio standards use sub-6 GHz frequencies, and therefore these are the primary bands of 
interest for SDR. Next, we provide a brief overview of how the radio and microwave spectrum is used.

1. The Terahertz band, which overlaps the Microwave and Infrared regions (extending from 0.3THz to 10THz), is also 
emerging as a band of interest for future wireless communications [121],[275].

Figure 2.5:  An SDR-based mobile network.
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CHAPTER 2: Software Defined Radio
2.4.1.  Spectrum Allocation

The radio spectrum is a valuable but finite resource, and therefore it needs to be managed for the collective 
good. This is traditionally achieved using a formal set of frequency allocations, i.e. specific bands of 
frequencies are associated with particular types of use, usually on a national basis. 

Figure 2.6 shows some examples of bands that are allocated in the radio and lower microwave regions. Please 
note, however, that this is far from the complete picture! For a more detailed view of the radio spectrum alloca-
tions in your country or region, please refer to information published by the relevant spectrum regulator. For 
instance, the Office of Communications (Ofcom) in the UK, and Federal Communications Commission 
(FCC) in the USA both publish tables showing the allocations for all bands.  

The fixed allocation of bands is useful because it establishes a very clear set of rules that can be readily 
followed. Bands are generally designated as either licensed (users apply for a licence and normally pay a fee), or 
unlicensed (meaning that no fee is required, and any user can access the band provided that they comply with 
the relevant rules). More recently, new paradigms for spectrum management have started to evolve, including 
the idea of dynamic and shared spectrum. This topic will be discussed further in Section 2.5, and Chapter 19. 

Figure 2.6:  Some of the common radio bands up to 4 GHz in UK (for outline only — varies geographically).
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CHAPTER 2: Software Defined Radio
2.4.2.  Propagation and Path Loss

You might notice from Figure 2.6 that wider frequency bands tend to be available at higher frequencies. This 
has the advantage that more information can be carried simultaneously (faster data rates). The disadvantage of 
using higher frequencies is increasing path loss — even in the theoretical best case scenario, where a signal 
propagates through ‘free space’, the proportion of signal power lost increases with the square of frequency. This 
is defined by the Friis Free-Space Path Loss model, 

(2.1)

where  and  are the transmitted and received power, respectively,  is the transmission distance,  is 
frequency, and  is the speed of light, i.e. .

For more realistic scenarios, where the channel is not simply ‘free space’, the path loss is even more significant. 
Higher frequencies are particularly poor at penetrating obstacles like trees, walls and buildings. A number of 
models have been proposed for radio propagation in different environments, including the Okumura-Hata 
model [190] for urban environments, the Longley-Rice model for outdoor propagation over irregular terrain 
[202], and the International Telecommunication Union (ITU) models covering various environments [214]. 
For radio links between earth and space, e.g. for satellite communications, propagation through the different 
layers of the atmosphere must also be taken into account [345]. We will not focus extensively on radio propa-
gation in this book, but the interested reader may find [316] useful for further information on this topic. 

Given the relationship between frequency and path loss, terrestrial radio applications that cover wide 
geographical areas, such as television and radio broadcasting, tend to use relatively low frequencies (up to 
about 700 MHz). In-building wireless systems like Wi-Fi, which are designed to deliver high data rates within 
small coverage areas, adopt bands at much higher frequencies (e.g. 2 GHz and above). There is even potential 
for very high frequencies (greater than 20 GHz) to be used within individual rooms to deliver ultra-high data 
rates, for applications like in-home media and entertainment. 

2.4.3.  Spectrum Harmonisation

The allocation of RF spectrum bands is managed at a country level by national regulators, such as the FCC in 
the USA, and Ofcom in the UK. At an international level, the ITU develops standards and regulations that 
promote global harmonisation in the use of the radio spectrum. 

Although spectrum allocation and usage are not completely standardised across all countries and territories, 
many bands are common, which supports interoperability and the development of wireless technology. Also, at 
a practical consumer level, this means that your mobile phone continues to work when you visit other 
countries on holiday!
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CHAPTER 2: Software Defined Radio
2.4.4.  Spectrum Licensing and Legal Usage

In addition to allocating spectrum, national spectrum regulators are also responsible for issuing licences to 
users for specific frequency bands, ensuring compatibility between uses of the spectrum, and generally 
managing the spectrum efficiently. 

When starting out in SDR, it is extremely important to note the legal implications of accessing the radio 
spectrum. The traditional method of managing the radio spectrum is based on fixed frequency allocations, 
wherein each defined frequency band is allocated for a particular class of use (e.g. public safety, military, or 
satellite applications), or to a specific user (such as a Mobile Network Operator, or MNO). The majority of 
allocated bands are licensed, meaning that you cannot legally transmit on these frequencies without a valid 
licence. Therefore, SDR developers must exercise care when building and testing SDR transmitters; it is a 
personal responsibility to check local spectrum regulations and abide by them.

Selected RF frequency bands are unlicensed, including the Instrumentation, Scientific and Medical (ISM) 
bands at 868MHz (in Europe), 915MHz (in the USA), and 2.4 GHz and 5.8GHz (internationally). Common 
uses include Bluetooth®, Wi-Fi®, and baby monitors. These bands are ready candidates for wireless transmis-
sions using SDR equipment, provided that applicable regulations on power output are adhered to. Another set 
of frequency bands worth mentioning are the amateur radio bands, access to which is shared between appro-
priately qualified amateur operators [161].

Cabled tests are a good alternative when it is not possible to legally transmit on the desired RF frequencies. 

Another important consideration relates to radio reception — while the details may vary in different jurisdic-
tions around the world, is it generally illegal to decode radio transmissions that you are not intended to receive. 
For instance, it would be illegal to use an SDR to intercept others’ Wi-Fi communications, or attempt to listen 
to their mobile phone calls, or to gather wireless sensor data from a private network. On the other hand, you 
may of course receive transmissions that you have generated, as well as ‘public’ signals including broadcasts 
from radio and television stations, Global Navigation Satellite System (GNSS) signals, and so on. 

2.5.  Spectrum Policy

While the fixed spectrum allocation model has been used very successfully for a long time, some changes are 
starting to take place in how spectrum is managed. The motivation for re-evaluating approaches to spectrum 
management derives from the pressure that radio spectrum is now under, sometimes referred to as the 
“spectrum crunch”. In short, the demand for spectrum is accelerating, but the resource itself is finite; leading to 
an apparent shortage, or threat of shortage. Here, we contrast the traditional model of spectrum management, 
with new and emerging approaches. 
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2.5.1.  Fixed Frequency Allocations

The fixed model of spectrum allocation, as introduced in Section 2.4.1, applies strict conditions for using each 
licensed band, which is robust in terms of preventing interference, but often results in spectrum being under-
utilised. If a particular band is licensed but not in active use, then according to the fixed allocation model, it 
cannot legally be used for any other purpose. Further, if licences are issued on a country-wide basis, but the 
licensee only wishes to use the licensed spectrum in a particular region, the band is left fallow (yet unavailable) 
in other areas. 

Therefore, it could be argued that there is no actual shortage of spectrum (at least, not yet!), but rather an 
inefficient method of controlling access to it. The fixed frequency allocation method is however well-under-
stood, easily implemented and effective — this method is likely to persist well into the future, for much of the 
regulated spectrum across many regions. 

2.5.2.  Shared Spectrum

New approaches to spectrum management have begun to emerge. For instance, in the UK, spectrum regulator 
Ofcom started to make ‘shared access’ licences available in specific shared bands, on a geographical (local area) 
basis, from July 2019 [283]. These shared access bands are overlaid with existing licensees from the fixed 
allocation model, and permit geographical reuse of the radio spectrum, thereby increasing efficiency. 

In the USA, the FCC launched Citizens’ Broadband Radio Service (CBRS) as a shared spectrum service [160]. 
CBRS uses a different model, designating users into three tiers (Incumbent Access, Priority Access, and 
General Authorized Access) with decreasing levels of protection from interference. Spectrum access is coordi-
nated by an automated system for allocating frequencies, known as a Spectrum Access System (SAS), which 
operates in real time. The operation of the SAS is based on a database, although it can also incorporate 
Environmental Sensing Capability (ESC) to detect transmissions by the Incumbent Access user. Its primary 
purpose is to protect incumbent user transmissions by re-allocating frequency bands to users from other tiers, 
to prevent interference to the incumbent user and priority users.   

2.5.3.  Dynamic Spectrum Access

Looking further ahead, there is significant research interest in more agile models of spectrum sharing 
(Dynamic Spectrum Access, or DSA). The prevailing vision of DSA will involve some combination of a 
database-driven approach, and local awareness at each radio terminal through active spectrum sensing. The 
Dynamic Spectrum Alliance (also with the acronym DSA!) is a not-for-profit organisation dedicated to 
advancing dynamic spectrum technology and policy around the world, and is a useful source of information 
on the latest developments [144]. 

SDR is an important enabling technology for DSA, given the inherent flexibility and software control of SDR 
devices. Further, SDR provides an ideal platform for cognitive radio systems, wherein radio terminals are 
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CHAPTER 2: Software Defined Radio
additionally capable of autonomous decision-making, for instance to determine the optimum band(s) for 
transmission in a DSA radio. The CBRS model in particular represents a step towards DSA and cognitive 
radio, although its sensing and decision-making do not currently provide protection to the lowest tier (but 
most flexible) class of users. 

2.6.  Wireless Communications Standards

Most radio communications adhere to a standard, meaning that the protocol, modes and parameters of trans-
missions are documented and widely available. The main motivation of standards is to enable more 
widespread and seamless adoption, and thereby to maximise the economic benefit of the technology. Taking 
the example of Wi-Fi (which is based on the IEEE 802.11 group of standards for wireless local area networks), 
a 2021 report commissioned by the Wi-Fi Alliance® trade body estimated the economic benefit of Wi-Fi as $3.3 
trillion (USD) in 2021, rising to $4.9 trillion in 2025 [356]. 

The alternative to published standards are proprietary schemes, where a particular company or organisation 
adopts its own custom protocol, without engaging more widely with other partners. There can be some distinct 
technical advantages of the proprietary approach, such as the ability to optimise a protocol for a particular 
application, thereby optimising the solution (e.g. minimising energy consumption). A practical drawback is 
that developing a proprietary radio is likely to be considerably more expensive than a standards-based 
approach, as off-the-shelf parts and solutions cannot be directly integrated. 

2.6.1.  Wireless Standards

By developing communications products in line with a standard, equipment from different manufacturers 
becomes interoperable, and this encourages competition and innovation in the market, driving quality up and 
prices down. For instance, you can acquire a Wi-Fi router for use in your home, without being concerned 
whether the manufacturer of the router matches that of your laptop — both communication devices adhere to 
the same standard, and as such they can work together seamlessly. Therefore, as a consumer, you can select a 
router based on other factors, such as price, features, brand perception, and so on. 

A small selection of popular wireless communications standards are provided in Table 2.1, covering a variety of 
different applications. Note that in some cases, there is more than one standards body involved — for instance, 
the lower layers of the Zigbee® protocol stack were standardised by IEEE, and the upper layers by the ZigBee 
Alliance (now known as the Connectivity Standards Alliance). 
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CHAPTER 2: Software Defined Radio
The creation and maintenance of wireless standards is a complex process, demanding specialist technical input 
and representations from a wide range of stakeholders such as industry trade bodies, equipment manufac-
turers, and end users, each of whom may have different sets of desires and requirements. As such, standards 
are managed by a standards body, which can maintain a position of neutrality and focus on developing the 
standard for the common good. The primary two standards bodies for wireless communications are the 
Institute of Electrical and Electronics Engineers (IEEE) [204], and the 3rd Generation Partnership Project 
(3GPP) [1], which works in partnership with regional and national standards bodies from around the world. 

2.6.2.  What’s in a Standard?

A standard is a document that specifies all aspects of the communications protocol. This document can run to 
thousands of pages and may represent the combined efforts of hundreds of people. To provide some examples 
of aspects details by a standard (note, this is far from exhaustive!), it should include: 

• The message formats at each layer of the protocol stack. 

• The waveforms and modulation schemes used in the Physical (PHY) layer.

• The PHY layer channel configuration.

• Media Access Control (MAC) layer protocols (e.g. mechanisms for re-sending lost packets). 

• Management functions.

It is perhaps equally important to outline what is not in a standard. 

Table 2.1: Examples of wireless communications standards.

Name Standard Body Frequency 
Band(s) Applications

Bluetooth Bluetooth Special 
Interest Group, IEEE 
(802.15.1)

2.4GHz Short range connections (<10m). Computer peripher-
als, wireless headsets, in-car phone connections, etc.

Wi-Fi IEEE (802.11) 2.4GHz
5.8GHz

Wireless connections for device-device local connec-
tivity (computers, phones, tablets, etc. with wireless 
access points) up to about 100m. 

5G cellular 3GPP™ numerous 
bands, use varies 
geographically

Mobile phone and mobile data networks. Coverage 
varies according to frequency band. 

Zigbee Connectivity 
Standards Alliance,
IEEE (802.15.4)

868 MHz
915 MHz
2.4 GHz

Smart home, industrial Internet-of-Things (IoT), 
agriculture. 
Range: 10 - 100m (depending on the environment). 
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A standards document specifies what must be implemented, but not how it should be implemented. For 
instance, a standard might specify the baud rate and composition of a data frame, the modulation format, the 
pulse shaping filter applied to the transmitted signal, and the maximum permitted adjacent channel inter-
ference arising from a transmission. However, the standard would not specify how to design the transmitter to 
achieve these specifications; rather, many of the decisions are the responsibility of the systems developer, e.g. 
the company developing a standard-compliant radio, based on the specification. Importantly, there is consid-
erable scope to innovate — for instance to develop a product that meets the specification with a more efficient 
design than a competitor. 

2.6.3.  Standards are Not Static!

One common misconception is that, once a standard is published, it is fixed. On the contrary, most standards 
evolve and change after their initial publication, partly to implement corrections and clarifications, but also to 
specify enhancements, and to add new features. For instance, 3GPP works with a series of ‘Releases’, which are 
scheduled to occur every one to two years (e.g. Rel. 15, Rel. 16 ...), as illustrated in Figure 2.7. The IEEE takes a 
different approach, and adds a suffix to signify the year of each new version (e.g. IEEE Std. 802.11-2020).   

3GPP standards are the basis of 4G and 5G cellular networks, and as shown in Figure 2.7, there is a rolling 
programme of Releases, with overlapping work on Release N, and the initial stages of Release N+1. The first 
full set of 5G standards was Release 15, and at the time of writing, the latest Release to be planned is Release 19. 

Figure 2.7:  Actual and planned 3GPP Releases from 2018 - 2025.
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This means that, to keep pace with evolving standards, equipment manufacturers must redesign or update 
their products with the latest functionality. Meanwhile network operators can upgrade infrastructure to cater 
for the most recent 3GPP Release, through field-upgrades. Consumer equipment such as smartphones and 
tablets, which typically have short lifecycles, may simply become obsolete over time. 

2.6.4.  Proprietary Schemes

As should be apparent from the previous discussion, communications standards are often complex, and 
usually become more so as they mature, as a result of new extensions or features being incorporated. These 
changes are a positive development on the whole, because they cater for additional use-cases, improve perfor-
mance, and extend functionality. However, there can be disadvantages too, particularly if the functionality 
offered by available standards is insufficient to meet the requirements of an application, or conversely, is over-
specified and therefore more complex to implement than necessary.

Proprietary schemes can be developed to cater for specific applications. This may include a special feature or 
characteristic that is not part of the standard; or it may strip out many of the complexities and features of a 
standard to form a more lightweight protocol. Advantages of the latter may include minimisation of power 
consumption or implementation cost. 

Another possible use-case for proprietary schemes is for governmental, military or security use, where there is 
no requirement for interoperability with other systems, and perhaps even a desire to avoid interoperability (e.g. 
to reduce the chance of a signal being detected or received).

2.6.5.  The Role of SDR

Recognising that wireless standards evolve, and also that there are clear motivations for proprietary schemes in 
some cases, there are obvious advantages of SDR. 

As SDRs can be reprogrammed using software, they are very suitable platforms for communications network 
infrastructure and other radio systems. When a standard is updated, the SDR can be upgraded to implement 
the changes. This can be done without significant expense — even remotely (avoiding the time and expense of 
site visits). Moreover, SDR platforms can be reconfigured to implement multi-standard radios, wherein the 
same hardware components host the functionality for two or more radio standards at the same time. 

While standard parts may be available for popular standards such Wi-Fi, these parts could not be used as the 
basis for a proprietary protocol, as their functionality is fixed and limited to the original application. SDRs, 
however, are well-suited — they are inherently flexible, and can be programmed with non-standard function-
ality. This means that SDRs can provide solutions for more specialist applications, or where adaptations or 
extensions to typical functionality are required. 
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2.7.  SDR Radio Processing

Next, we briefly introduce the main approaches to implementing the modulation and demodulation aspects of 
a radio system. This functionality can also be mapped to analogue and digital components, which is significant 
in the context of SDR, as the digital elements provide scope for implementing flexible functionality (hence the
software defined aspect of SDR). 

2.7.1.  Heterodyning and Superheterodyning

There are two primary architectures for radio transmitters — one involves direct modulation from baseband 
frequencies to RF frequencies (known as the heterodyne), while the second (the superheterodyne) achieves this 
transition with two modulation stages: the first from baseband to an Intermediate Frequency (IF), and the 
second from IF to RF. In each case, the receiver mirrors the operations of the transmitter. 

Previously, in Figure 2.2 on page 15, we showed the modulation and demodulation required for a heterodyne 
scheme. In this case, a single stage of modulation is used to transition the signal from basedband to RF 
frequencies, and a single demodulation state makes the opposite transition, from RF back down to baseband. 

The superheterodyne scheme is depicted in Figure 2.8, showing the frequency shifts that take place. Note in 
particular that the IF signal is typically modulated to a frequency in the range of 10’s to 100’s of MHz, whereas 
the eventual RF frequency band may be much higher — up to 10’s of GHz.  

2.7.2.  The Impact of Sampling Rates

The sampling rates that can be achieved by the digital processing elements in an SDR, and in particular at the 
digital/analogue interfaces of a radio (the ADC and DAC), determine how a radio can be implemented — in 
particular, which parts can be implemented digitally, and which parts require analogue circuitry. This is 
because digital processing can only be used when the Nyquist criterion is met, in other words when the 
sampling rate is more than double the maximum frequency component present in the signal. 2 

Depending on the RF frequency band used to transmit the signal, it may be possible to implement all 
modulation and demodulation digitally, i.e. if

 (2.2)

where  is the DAC and ADC sampling rate, and  is the maximum frequency present in the RF-
modulated signal. 

2. There are some notable exceptions to this statement, which we will touch on later!

fs 2frfmax


fs 2frfmax
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Figure 2.8:  Modulation and demodulation using an Intermediate Frequency (IF) stage.
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CHAPTER 2: Software Defined Radio
If the condition from (2.2) cannot be met, the alternative is to implement the modulation and demodulation 
stages that transition between baseband and IF frequencies digitally, with the analogue / digital interface at the 
IF stage (i.e. the second and fourth spectra shown in Figure 2.8), and modulation between the IF and RF 
frequency bands taking place in the analogue domain. 

We can now go on to consider three different radio architectures, which arise based on the position of the DAC 
and ADC. Note that all of these models (as depicted in Figures 2.9 to 2.11) are simplified representations that 
omit some of the required filtering stages. 

A Direct-RF (Almost-All-Digital) Radio

The implication of advancing DAC and ADC technology, bringing ever faster sampling rates, is that (almost) 
all-digital radios can be implemented for an increasing number of bands.

An almost-all-digital radio requires very little analogue processing — mostly the antenna(s), front-end filters, 
and amplifiers. From an SDR perspective, the fact that almost all functionality is implemented digitally is 
highly significant — it means that the operation of the radio can be controlled using software, as shown in 
Figure 2.9. (Review of this type of quadrature modulation architectures and related SDR systems will be 
presented in more detail in Chapter 7 and Chapter 8.)

Figure 2.9:  High level architecture of a Direct-RF Software Defined Radio (the RFSoC!).
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CHAPTER 2: Software Defined Radio
An IF-Sampling Software Defined Radio

For situations where the RF frequency is higher than the available DAC and ADC sampling rates, a superheter-
odyne architecture can be used, with modulation / demodulation between baseband and IF accomplished in 
the digital portion of the radio, and the transition between IF and RF handled using analogue circuitry. Even 
so, it is often possible to exert software-based control over the analogue mixing stages. With the analogue / 
digital interface at IF rates, the required sampling rates may range from 10’s of MHz, up to a few 100’s of MHz. 
This type of SDR architecture is depicted in Figure 2.10.  

A Baseband-Sampling Software Defined Radio

A further class of SDR, shown in Figure 2.11, has the analogue / digital interface at baseband processing rates, 
with all modulation and demodulation performed in the analogue domain, either using a single stage or two 
stages. Historically, this approach was used where, due to the limitations of DAC and ADC technology (and in 
particular the achievable sampling rates), it was the only viable position for the A/D interface. This ‘baseband 
sampling’ architecture may also be adopted in low-cost, low data rate devices to minimise the requirements for 
the digital processor, or in applications using state-of-the-art, multi-GSps data converters, to transmit and 
receive extremely wide bandwidth signals. 

Figure 2.10:  High level architecture of a Digital IF Software Defined Radio.
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CHAPTER 2: Software Defined Radio
2.7.3.  Advantages of Digital Implementation

Comparing Figures 2.9 to 2.11 makes clear that, the higher the sampling rate used at the analogue / digital 
interface, the greater the amount of processing that can be done digitally. 

The use of digital implementations for modulation and demodulation has several advantages, including a 
greater accuracy of operation, reduced impact of component tolerances and greater resistance to ageing effects, 
a smaller physical footprint and simplified bill of materials. Power consumption may also be lower. 

There are also additional benefits in the context of SDR, in particular due to the increased scope for software 
control over the operation of the radio, and the flexibility this brings. Where FPGAs or SoCs are used, the 
platform further offers reprogrammability of hardware-based processing, and therefore more fundamental 
upgrades and changes of functionality. 

2.8.  Key Radio Terminology and Parameters

Before moving on the later chapters, it is useful to define some key terms and concepts that will arise 
frequently in our discussions of SDR, and in the context of radio systems in general. These are illustrated in 
Figure 2.12 and described thereafter. 

Figure 2.11:  High level architecture of a Baseband-Sampling Software Defined Radio.
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CHAPTER 2: Software Defined Radio
RF Bandwidth (of Transceiver) 

The term RF bandwidth describes the range of frequencies that the radio transceiver can generate or capture. 
In the context of SDR (and digital radios in general) this is a function of the ADC and DAC sampling rates. 

As shown in Figure 2.12, the RF bandwidth is half of the sampling frequency used at the ADC and DAC. This 
assumes that a single ADC and DAC are used, representing real signals (as opposed to complex signals). The 
RF bandwidth can be doubled to the full sampling frequency, if a complex input/output are used — however, 
this requires a pair of ADCs and pair of DACs. The topic of complex signals will be reviewed in Chapter 7.

Signal Bandwidth

When referring to a radio signal, bandwidth refers to the range of frequencies present in the transmitted signal. 
Note the signal bandwidth annotated against the green signal spectrum in Figure 2.12. 

When working with SDRs, the bandwidth of the signal is a feature of the implemented design (which can be 
defined in software). For instance, the designed transmitter may generate a signal with a bandwidth of 10kHz, 
or 100MHz, depending in its configuration. In general, larger bandwidth signals can transmit data at faster 
rates. 

The maximum signal bandwidth is limited by the RF bandwidth of the SDR, which is a property of the physical 
hardware device(s) used to implement the SDR. The RF bandwidth is defined next.

Figure 2.12:  Signal and RF Bandwidths, and Tuning Range.
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CHAPTER 2: Software Defined Radio
Tuning Range

The term tuning range refers to the range of frequencies across which the RF bandwidth can be shifted, when a 
an IF-sampling or baseband-sampling architecture is used (as depicted in Figures 2.10 and 2.11, respectively), 
where part or all of the modulation / demodulation is undertaken in the analogue domain. The applicable 
tuning range is dependent on the analogue circuitry, and consequently, the data sheet of an SDR incorporating 
a tuning stage will usually specify lower and an upper tuning frequencies. 

For a Direct-RF architecture, there is no analogue tuning involved, as modulation and demodulation are 
undertaken entirely in the digital domain. 

2.9.  SDR Implementation

SDR activities can be pursued for a number of different purposes, including for student and hobbyist use, 
research and algorithm validation, for prototyping, and for the development of SDR-based radio products. 
Some of the simplest SDRs are single-channel, receive-only devices costing only a few 10’s of dollars. At the 
other end of the spectrum, a professional multi-channel development platform could cost upwards of $10,000. 

The major hardware elements of an SDR are:

• Antenna(s)

• Analogue front-end circuitry (signal conditioning, including amplifiers and filters)

• Analogue mixing stages (optionally, depending on the architecture as described in Section 2.7.2)

• Data converters (ADCs and DACs)

• Processing platform(s)

The choice of hardware components in an SDR typically depends on functional criteria (parameters such as 
the RF carrier frequency, data rates, and parameters flowing from these), performance, and cost constraints. 
Another important factor is the number of transmit and receive radio channels to be supported. 

While it is possible to realise an SDR using discrete components for each of the above, increasingly there are 
integrated products available that combine some of the above functionalities. The RFSoC is a prime example, 
as it combines data converters with a processing platform. There are many possibilities for the hardware imple-
mentation of an SDR, especially considering that there are three candidate architectures (corresponding to the 
analogue-digital interface being placed at baseband, IF, or RF, as depicted in Figures 2.9 to 2.11).

Taking the example of the IF-sampling architecture, three possible hardware implementation options are 
depicted in Figure 2.13 (note: this is not intended to be exhaustive!). These options illustrate that, while the 
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CHAPTER 2: Software Defined Radio
radio could be composed of discrete components for each of the main processing stages, there are approaches 
that combine two or more functional stages on the same device. 

For example, integrated SDR transceiver chips include analogue front end circuitry, analogue mixing, and 
ADC and DAC stages. Another possibility is the integration of IF and baseband processing with software 
control aspects, through the use of an SoC or MPSoC device. Finally, adopting the RFSoC to implement an IF-
sampling radio would additionally integrate high speed ADCs and DACs, along with IF and baseband 
processing, and software control. 

While we have not covered software extensively here, SDRs, by their very nature, include at least software-
based control of hardware elements. This software is normally hosted on a dedicated processor. Where very 
capable processors are used, much of the signal processing functionality may also be implemented in software. 
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Figure 2.13:  Some indicative implementation options for an IF-sampling SDR.
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2.10.  Chapter Summary

This chapter has introduced the concept of SDR, along with some fundamental underpinnings in radio 
communications. In particular, we noted an evolution in the motivating factors for SDR, with flexible and 
efficient use of the radio spectrum now being a key driver, due to the ever-expanding demand for data, and the 
emergence of new applications. New, ‘dynamic spectrum’ techniques promise a new approach to managing at 
least some of the radio spectrum, and demand a flexible, agile radio platform. 

SDR is aligned both with the implementation of formal communications standards, as well as proprietary 
schemes. Even standards such as 5G are constantly moving and evolving, and 6G is now very much in the 
research, design and development phase; therefore, the option to change functionality by updating software is 
compelling. 

Also in this chapter, we considered the three primary architectures for implementing SDRs, i.e. with the 
analogue-digital interface positioned at baseband, IF, or RF frequencies. The ability to sample at RF provides 
the option of an almost-all-digital radio, and this provides the greatest scope for implementing SDR. As was 
touched on here, the RFSoC device is able to perform many of required functions in an integrated manner; the 
next chapter will look at its capabilities for SDR in more detail. 
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Chapter 3
Introduction to Zynq 
UltraScale+ RFSoC

Lewis Brown

We now introduce Zynq UltraScale+ RFSoC as a platform for SDR systems. As will be demonstrated and 
discussed in this chapter, the RFSoC is a ground-breaking device with unparalleled facilities for implementing 
SDR, and radio systems more generally: it integrates multiple channels of transmit and receive capabilities, 
operating at sampling rates of up to 5.9 GSps and 10 GSps, respectively, with a Processing System (PS), FPGA 
Programmable Logic (PL), and optimised, hardened radio processing blocks. The integration is significant in 
itself, because of the benefits delivered — especially in terms of performance and power consumption, allied to 
the complete flexibility achieved from this synergy of programmable elements. 

The chapter begins by introducing the capabilities of the RFSoC, and comparing SDRs implemented with 
RFSoC against other candidate architectures based on alternative devices. Later, the RFSoC device architecture 
is reviewed at a more detailed level, and supporting development boards are introduced.

3.1.  RFSoC as an SDR Platform

It is useful to consider the architecture and capabilities of the RFSoC, as we assess its merits as a platform for 
implementing SDR systems. In this section, we review the features of the RFSoC at a high level, how SDR 
systems may be developed based on the RFSoC, and how this approach compares with other possible design 
approaches using alternative chips.
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3.1.1.  RFSoC Architecture Overview

As we start to understand the unique attributes of the RFSoC, it is worth returning to the high level diagram 
from the Introduction (reproduced as Figure 3.1). 

As shown in Figure 3.1, the RFSoC platform incorporates:

• High speed ADCs and DACs (along with front-end signal processing as optimised hardened blocks);

• A processing system incorporating a set of applications and real-time processors and other features;

• FPGA programmable logic;

• Optimised, hardened blocks for Forward Error Correction (FEC) coding and decoding;

• Integrated transceivers for high speed serial communication over wired links.

Importantly, these facilities are all in a single chip. Therefore complete radio solutions can be realised in an 
extremely integrated and compact form. This has multiple benefits, as will be summarised over the next few 
pages (and further discussed in Section 3.5, after the RFSoC architecture has been introduced in more detail). 

Figure 3.1:  Overview of the RFSoC’s integrated features (reproduced from Chapter 1).
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3.1.2.  RFSoC Single-Chip Solution versus Alternatives

The RFSoC comprises all of the features needed to create a complete radio system, other than analogue 
components such as RF amplifiers, filters, and antennae, which must be added externally. But what are the 
alternatives? Figure 3.2 compares the single chip RFSoC solution against some other possible designs (other 
variations are possible) — in each case requiring multiple chips.  

Figure 3.2:  Comparison of a single-chip RFSoC SDR solution, with multi-chip alternatives.
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Due to its highly integrated nature, the RFSoC can provide the basis for a much simpler SDR architecture than 
other alternatives, which would require additional components to perform Digital-to-Analogue (D-to-A) and 
Analogue-to-Digital conversion (A-to-D) conversion. This functionality often forms part of a front-end radio 
transceiver chip that also performs modulation and demodulation (instances of which are shown in Figure 
3.2). Integration also means that a number of other components for signal conditioning and interfacing are not 
required. 

3.1.3.  RFSoC Highlights

The integrated nature of the RFSoC family, as well as its many features, results in multiple advantages for SDR 
design. We conclude our initial introduction to the RFSoC device by summarising them below.

Removed Requirement for Front-End Radio Chips 

The integration of RF-DACs and RF-ADCs within the RFSoC removes the need for external front-end radio 
processing, including DACs and ADCs. This in turn enables:

• A smaller physical realisation of the system implementation. 

• A simpler bill-of-materials and Printed Circuit Board (PCB) layout. 

• Reduced power consumption, due in particular to the hardened, optimised RFDC blocks included in 
the RFSoC, and inter-chip communication (e.g. via JESD interfaces) not being required. The topic of 
power consumption will be discussed further in Section 3.5.5.

• Lower latency in both the transmit and receive paths. 

Flexibility and Reprogrammability

As the RFSoC is completely integrated, the PS (which hosts software) has low-latency connections to hardware 
design elements operating in the PL, as well as to the RFDCs and SD-FEC blocks. This means that:

• Under the control of software operating on the PS, parameters can be changed in the PL, and in the 
RFDCs and SD-FEC blocks, meaning that operation can be controlled in an agile manner. 

• Design effort is reduced — engineers can develop using a single device with well-documented features 
for parameterisation, programming, and the interfacing of internal elements.

• The integration of software and FPGA hardware enables hardware-acceleration of computationally-
intensive algorithms.

• The SDR can be reprogrammed with new software and hardware functionality, including dynamically 
changing the hardware elements implemented on the FPGA.
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Performance and Features

Of course, the performance and features of the RFSoC are vital aspects of its suitability for SDR applications. 
There are a number of different aspects to this, which include: 

• RFSoC devices support ADC sampling rates of up to 5.9 GSps, and DAC sampling rates of up to 10 
GSps, meaning that they can capture and generate extremely wide bandwidth signals1. RFSoC also 
supports operation in the 2nd Nyquist Zone, and RF input signal frequencies up to 7.125 GHz2. 
Therefore, an SDR can be developed with RFSoC that covers the majority of popularly used signal bands 
using a Direct-RF architecture (as previously introduced in Section 2.7.2) and thus minimal external 
analogue circuitry.

• The integration of up to 16 transmit and 16 receive channels in a single devices is significant, especially 
for Multiple Input Multiple Output (MIMO) systems, and beamforming, both of which involve multi-
element antenna arrays. In both such systems, the channels must be synchronised, and RFSoC provides 
functionality to enable this. More generally, the availability of multiple transmit and receive channels 
enables SDRs to be designed that support several radio standards in the same chip.

• As well as the ability to combine and synchronise multiple channels on the same RFSoC device, two or 
more devices can also be combined and synchronised. This is significant because it enables integrated 
SDR systems with larger channel counts to be created (such as in Massive MIMO).

• The combination of a capable Arm® multi-processor system in the PS, integrated with a huge area of PL, 
provides huge scope to implement SDR functionality.

• Optimised, hardened blocks are integrated to provide front-end transmit and receive functionality 
(RFDCs, introduced further in Section 3.3.4) and SD-FEC coding and decoding (more in Section 3.3.5). 
The presence of these high-performance blocks reduces design effort and, due to their implementation 
in dedicated silicon, they also operate with low power consumption.

• The RFSoC DFE, which will be introduced further in Section 3.3.6, has an expanded set of optimised 
and hardened processing blocks, optimised for 5G NR and similar deployments.

• The integrated GTY transceivers provide high rate connectivity over fixed links, which is ideal for 
building network infrastructure.

• RFSoC devices have security and platform management functionality.

• Designers benefit from an extensive library of Intellectual Property (IP) cores to aid productivity and 
accelerate system design. These IP cores can be instantiated and systems developed using AMD design 
tools, as will be reviewed in Chapter 13.

1. External analogue circuitry is required to support the generated signals.
2. These figures are for the RFSoC DFE. The respective values for Gen 1, 2, and 3 differ and will be set out in Section 3.3.1.
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Having now reviewed the RFSoC device at a high level, the next section explains how the device fits into the 
development of AMD SoCs, and provides a feature comparison.

3.2.  A System on Chip for RF Applications

The Zynq UltraScale+ RFSoC is one of several System on Chip (SoC) devices that have been released by AMD 
(formerly Xilinx) in recent years. Announced in 2011, Zynq-7000 was the first FPGA-based SoC, combining 
FPGA programmable logic with a dual-core Arm applications processing system [80]. Subsequently, a more 
capable Zynq UltraScale+ MPSoC (Multi-Processor System on Chip) followed [84], and more recently still, the 
RFSoC [88], which is a relative of the MPSoC, and represents a single-chip adaptable radio platform.

3.2.1.  Evolution of AMD SoCs

All AMD SoCs evolved from FPGAs, which are traditionally composed of two-dimensional arrays of reconfig-
urable processing elements known as Configurable Logic Blocks (CLBs) [344]. Modern FPGAs incorporate 
hardened blocks, optimised for specific tasks such as memory (Block RAMs), high speed arithmetic (various 
versions of the DSP48 block), and input/output connectivity (for instance via the 100G Ethernet CMAC 
subsystem [52]). Where applications require processing capabilities, a ‘soft’ processor such as the AMD 
MicroBlaze™ processor can be constructed using the low-level reconfigurable logic resources of the FPGA [54].

The SoC is a natural progression, because it incorporates a hard Processing System (PS) alongside FPGA 
Programmable Logic (PL). The main advantage of a hard processing system is that it can achieve higher 
performance than a soft processor, using less area, and with greater independence from the design imple-
mented on the PL portion of the SoC. It should be highlighted that by combining PL and PS design elements, 
complete applications can run in an SoC, thus simplifying overall system complexity compared to a solution 
with separate processor and FPGA chips.

The PS is also more sophisticated than a processor in isolation; it additionally combines memory subsystems, 
interconnect resources for PS-PL connections, and external interfaces supporting multiple popular standards 
(USB, I2C, HDMI®, DisplayPort™ and others). The PS in the Zynq UltraScale+ MPSoC has more resources 
than the Zynq-7000, with an expanded set of hard processors (two real-time processors and up to four applica-
tions processors, compared to two applications processors in Zynq-7000). Further, the applications processors 
are more highly specified in the Zynq UltraScale+ MPSoC: they are 64-bit as opposed to 32-bit processors, and 
can operate at higher clock frequencies.

3.2.2.  Comparison of SoC Families

The device of interest in this book, the Zynq UltraScale+ RFSoC, has an equivalent PS to the Zynq UltraScale+ 
MPSoC, but without the graphics and video coding features. For more details on Zynq UltraScale+ MPSoC 
devices, see [85] and [131]. 
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The major additional features are the inclusion of 8 or 16 channels of hardened, RF-capable ADCs and DACs, 
which are capable of sampling at multiple Giga Samples per second (GSps). These ADCs and DACs form part 
of RF Data Converter (RFDC) blocks, which also contain hardened Digital Upconverters (DUCs) and Digital 
Downconverters (DDCs). Several RFSoC devices also include a hardened Soft Decision Forward Error 
Correction (SD-FEC) block. Table 3.1 provides a high level feature comparison between the three SoC families. 

Note: There is considerably more variance in hardware resources across Zynq-7000 and MPSoC devices, 
compared to RFSoC devices. The major differentiation between devices in the RFSoC range is the number and 
specification of RFDCs and SD-FEC blocks.

3.3.  Zynq UltraScale+ RFSoC Architecture Overview

As mentioned earlier, the Zynq UltraScale+ RFSoC integrates hardened RF Data Converters and SD-FEC 
blocks alongside PL and PS that are similar to those of Zynq UltraScale+ MPSoC devices. Therefore, the 
RFSoC brings all the components of a radio transceiver into a single device (an MPSoC would require an 
external front end radio chip with high speed DACs and ADCs, and RF signal processing). This section will 
review the PS and PL of the RFSoC in detail, as well as highlighting the RF Data Converters and FEC blocks 
which will be further explored in later chapters. 

A high-level overview of an RFSoC device can be seen in Figure 3.3. 

Table 3.1: Comparison of Key Features of AMD SoC Devices.

Feature Zynq-7000 SoC Zynq UltraScale+ 
MPSoC

Zynq UltraScale+ 
RFSoC

CLBs
DSP Slices
Memory

up to 444K
up to 2020
up to 26.5 Mb

up to 1143K
up to 3528
up to 70.6 Mb

up to 930K
up to 4272
up to 67.8 Mb

Applications Processors up to 2 Arm Cortex® A9
(32-bit, up to 1 GHz)

up to 4 Arm Cortex A53
(64-bit, up to 1.5 GHz)

4 Arm Cortex A53
(64-bit, up to 1.3 GHz)

Real-time Processors - 2 Arm Cortex R5F
(up to 600 MHz)

2 Arm Cortex R5F
(up to 533 MHz)

Graphics Processors - Arm Mali™-400 MP21

1. There are three Zynq UltraScale+ MPSoC sub-families (CG, EG, and EV). The graphics processor is present
in EG and EV devices.

-

RF Data Converters - - up to 16 RF-DACs
up to 16 RF-ADCs

Hardened SD-FEC Blocks - - up to 8 SD-FEC blocks
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3.3.1.  RFSoC Devices

At the time of writing four 'generations' of RFSoC devices are available, known as Gen 1, Gen 2, Gen 3 and 
RFSoC DFE devices. All devices in each generation share common features such as RFDC resolution 
(expressed in terms of the number of bits) and maximum supported input frequencies. The naming 
convention for devices within each generation is as follows:

• Gen 1 ZU2XDR

• Gen 2 ZU3XDR

• Gen 3 ZU4XDR

• RFSoC DFE ZU6XDR

where the ‘X’ is replaced with a single digit to identify a particular device. Table 3.2 highlights a selection of 
devices across the four generations.

Figure 3.3:  High level overview of the Zynq UltraScale+ RFSoC device architecture.
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Note that the number of RF-ADCs and RF-DACs varies across devices (particularly within Gen 3), up to 16 of 
each. The maximum available RF-ADC sample rate is related to the configuration of the RF-ADCs within the 
Data Converter. This RFDC structure will be discussed in Section 3.3.4. 

Although most RFSoC devices incorporate RFDCs, a subset do not, such as the ZU21DR shown in Table 3.2 — 
these devices are targeted at elements of network infrastructure away from the front end RF interface, where 
the hardened SD-FEC blocks can be used to perform FEC coding and decoding. The ZU21DR can be seen in 
the T1 Telco Accelerator Card, which will be introduced in Section 3.4.3.

At the time of writing, the most recent of these RFSoC generations are the DFE devices — specialised RFSoCs 
aimed at 5G New Radio deployment. These devices contain fewer PL resources than other devices, however 
they contain additional optimised hardened blocks, including a hardened Digital Pre-Distortion (DPD) block. 

Table 3.2: A selection of RFSoC devices and their features.

Feature
Gen 1 Gen 2 Gen 3 RFSoC 

DFE

ZU21DR ZU28DR ZU39DR ZU46DR ZU48DR ZU67DR

Max. input frequency (GHz) 4 4 5 6 6 7.125

ADC blocks
Max. rate (GSps)
ADC resolution

0
0
-

8
4.096

12

16
2.220

12

8 | 4
2.5 | 5.0

14

8
5.0
14

8 | 2
2.95 | 5.90

14

DAC blocks
Max. rate (GSps)
DAC resolution

0
0
-

8
6.554

14

16
6.554

14

12
9.85
14

8
9.85
14

8
10.0
14

SD-FEC blocks 8 8 0 8 8 0

System Logic Cells (K) 930 930 930 930 930 489

CLB LUTs (K) 425 425 425 425 425 224

Max. distributed RAM (Mb) 13.0 13.0 13.0 13.0 13.0 6.8

Total Block RAM (Mb) 38.0 38.0 38.0 38.0 38.0 22.8

UltraRAM (Mb) 22.5 22.5 22.5 22.5 22.5 45.0

DSP Slices 4,272 4,272 4,272 4,272 4,272 1,872

Optimised hardened Digital 
Front End (DFE) blocks

- - - - - Yes
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Speed Grade

The Speed Grade is an indication of the timing characteristics/performance of logic elements in the PL. At the 
time of writing, there are eight different speed grades for the PL of the RFSoC. These are 2E, 2I, 2LE, 2LI, 1E, 
1I, 1M and 1LI, where the higher numerical values correspond to faster PL timing performance. An 'L' 
indicates low power mode, whilst 'E', 'I' and 'M' indicate operating temperatures: Extended, Industry and 
Military respectively. These speed grades determine the maximum clock rate of the PL, which is device-
dependent, but generally up to several hundred MHz. For more information about speed grades, see [87].

3.3.2.  Processing System 

The PS consists of several different types of hardened processing resources, including the Application 
Processing Unit (APU), Real-Time Processing Unit (RPU) and Platform Management Unit (PMU). These 
processors are used to run the software stacks of SDR applications. Refer to Figure 3.3 for an overview of the PS 
and its components.

The PS can be used alongside the PL to create a complete SDR system. Some candidate examples of PS 
functionality in an SDR system include: 

• Quad-core Arm Cortex-A53 application processors

• Operating System

• SDR Software Applications (including PYNQ applications)

• PS local memories and external memory control

• Software programs

• SDR instructions and data

• Dual-core Arm Cortex-R5 real-time processor

• Low-level, real-time SDR system control

• Platform management and security functions

• System booting

• Power management

• Physical security

• SDR communications security
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• External interfaces

• Local IoT devices

• SDR backhaul

• Networked system control

We will now review some of these PL facilities in more detail. 

The Application Processing Unit

An overview of the APU is provided in Figure 3.4. It contains a Quad-core Arm Cortex-A53 processor, which 
hosts four processing cores, each with its own dedicated computational units [96]. These include a Floating-
Point Unit (FPU), Neon™ Media Processing Engine (MPE), Cryptography Extension (Crypto), Memory 
Management Unit (MMU) and dedicated Level 1 cache memory per core. The entire APU has access to a 
Snoop Control Unit (SCU) and Level 2 cache memory. 

Most notably, the four Arm Cortex-A53 cores are capable of running a fully featured Operating System (OS) 
alongside software applications. As introduced in Chapter 1, this book is supported by Jupyter notebooks that 
can be run on an RFSoC platform using the PYNQ software framework [39], which is deployed on the APU.

Figure 3.4:  Simplified diagram of the Application Processing Unit (APU).
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The Real-Time Processing Unit 

The Real-Time Processing Unit (RPU) contains two Arm Cortex-R5 cores for real-time applications and deter-
ministic system control, and it provides low latency performance [98]. The RPU contains a number of compu-
tational units and memories, which include an FPU, Tightly Coupled Memories (TCMs), two local caches and 
a Memory Protection Unit (MPU). A simplified overview of the RPU architecture is presented in Figure 3.5. 

Platform Management and Security

The PMU consists of a set of three hardened MicroBlaze processing units [37]. The MicroBlaze CPUs are 
configured in a majority voting system for increased reliability of critical platform management functions. The 
PMU contains several memories, as well as firmware that enables effective management of the RFSoC device. 

Security of the RFSoC device is handled by the Configuration Security Unit (CSU) which consists of a Secure 
Processor Block (SPB) and Cryptography Interface Block (CIB) [24]. Similar to the PMU, the SPB contains 
three MicroBlaze processing units. These manage the secure boot of the Arm processors and several other 
security features, such as Physically Unclonable Functions (PUFs) and tamper protection. The CIB contains 
several cryptographic blocks for secure applications: Advanced Encryption Standard with Galois Counter 
Mode (AES-GCM), SHA-3 and RSA 4096. 

Figure 3.5:  Simplified diagram of the Real-Time Processing Unit (APU).
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3.3.3.  Programmable Logic

The PL available on an RFSoC device is equivalent to an FPGA. The PL is an integral part of SDR design as it 
directly interfaces to the RF-ADCs and RF-DACs. Before examining the specialised resources available on an 
RFSoC device, let us begin by reviewing the fundamental building blocks of an FPGA and the key resources 
required for high-speed processing.

Recall Table 3.2, where we saw that most devices in the RFSoC family provide a common set of resources, 
including 930K CLBs, 4,272 DSP48E2 slices and 38 Mb of memory in Block RAMs (high-speed dedicated 
memories; UltraRAMs are similar but even larger memory blocks). These various resources are highlighted in 
Figure 3.6, which provides a high-level architecture overview of the RFSoC PL.    

The Logic Fabric

As noted when reviewing the selection of RFSoC devices in Table 3.2, each RFSoC contains a large number of 
CLBs. These resources are fundamental for implementing DSP algorithms, as well as logic circuits more 
generally. CLBs are arranged in columns in the FPGA logic fabric, and are closely aligned with switch matrices 
to support signal routing between neighbouring resources. The local routing logic includes multiplexers and 
optimised arithmetic carry logic. 
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The composition of a single CLB is shown in Figure 3.7; note that it contains a number of Lookup Tables 
(LUTs) and Flip-Flops (FFs). LUTs can implement a varied set of functionalities, including logic functions, 
Read Only Memory (ROM), Random Access Memory (RAM), and shift registers (SRL). Each FF represents a 
1-bit register. Multiple LUTs and FFs can be combined using multiplexers to form larger logic functions, 
memories, registers, etc.

Of particular note, single or multiple CLBs can be used to implement small, local memories (which are known 
as Distributed RAM) within the PL; this contrasts with much larger, dedicated memory blocks (Block RAMs 
and UltraRAMs) which we describe a little later.    

Due to its highly programmable nature, the RFSoC logic fabric has a wide variety of applications, as almost any 
desired circuit can be built from these fundamental building blocks. Further detail on this highly flexible 
resource can be found in [49]. 

Advanced eXtensible Interface (AXI)

Also shown in Figure 3.6 are the Arm Advanced Microcontroller Bus Architecture (AMBA®) Advanced eXten-
sible Interface (AXI) ports present within the RFSoC logic fabric, which enable data transfer between the 
RFSoC's PL and PS. The RFSoC implements the fourth iteration of the AXI standard (AXI4, [95]) in both PL 
and PS.
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Three types of AXI4 buses are supported in RFSoC: AXI4 and AXI4-Lite (both of these are memory mapped 
interfaces, for burst transfers and single transactions, respectively), as well as AXI4-Stream, which enables the 
direct flow of data from source to destination. PS-to-PL connections are typically controlled through AXI4 and 
AXI4-Lite buses, enabling large data movement and single-burst IP core register control. For more infor-
mation on AXI4 protocols within PL design, see [20].

DSP48E2 Slices

SDR transmitters and receivers commonly require processing such as Finite Impulse Response (FIR) filters 
(see Chapter 4), Fast Fourier Transforms (FFTs, see Chapter 5) and other computationally intensive DSP 
algorithms. The DSP48E2 slices within the PL are particularly valuable for implementing these design 
elements. DSP48E2 slices provide high speed Multiply Accumulate (MAC) hardware, supporting word lengths 
of up to 48 bits, optimised for high-speed and low-power operation. An example of a DSP48E2 slice is shown 
as Figure 3.8, highlighting the structure of arithmetic and logical operators contained within the slice. 

Block RAM and UltraRAM

As well as being able to implement distributed memory using LUTs and FFs, the PL also contains Block RAMs 
and UltraRAM for data storage [51]. These are dense, high speed memories, suitable for storing larger 
amounts of data. 

Figure 3.8:  DSP48E2 slice (simplified).
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Block RAMs can be set to operate as RAMs, ROMs or First In First Out (FIFO) buffers. An individual Block 
RAM can be configured as either a single storage element, storing up to 36 Kb of data, or as two individual 
memories, each capable of storing 18 Kb of data. They are unique amongst PL memory as they have the ability 
to be reshaped. For example, a Block RAM could be configured to store 4,096 elements  8 bits, or 8,192 
elements  4 bits, or several other dimensions. 

UltraRAM provides significantly larger storage than Block RAM, storing up to 288 Kb of data in one tile [48]. 
Unlike Block RAM, an UltraRAM cannot be reshaped, however multiple UltraRAM blocks can be combined 
to form extremely large on-chip memories. Individual UltraRAM blocks have a fixed address configuration of 
4,096 elements  72 bits. 

Connectivity

The RFSoC PL has many different interfaces for connecting to peripherals. As with MPSoC devices, this is 
primarily achieved using the Multiplexed Input/Output (MIO). The MIO provides a flexible interface that 
configures the route mapping between pins and peripheral interfaces, and is analogous to a very large multi-
plexer. MIO-enabled peripherals include: UART, SPI, CAN, I2C buses, General Purpose IO, Gigabit Ethernet 
(GigE), NAND flash memory, USB 3.0, SD card and Quad-SPI. 

Additional peripheral connectivity can be achieved through the high-speed Serial Input Output Unit (SIOU) 
present within the PS. This supports PCIe, USB 3.0, DisplayPort, SATA and Ethernet protocols. Certain 
connections can also be made accessible through the Extended MIO, which creates a direct path of communi-
cation from the peripheral interfaces in PS, to the PL. 

3.3.4.  RF Data Converters

The RFSoC's Data Converter (RFDC) technology represents the most prominent difference between Zynq 
MPSoC and RFSoC devices. The other significant inclusion in RFSoC (but not in MPSoC) is the set of SD-FEC 
blocks, which are covered in Section 3.3.5. 

A key reason for choosing to use RFSoC devices is the integrated RFDC tiles. because the RF-ADCs and RF-
DACs within these blocks provide an integrated analogue/digital interface at RF frequencies. An MPSoC-
based equivalent could be a viable alternative, but would require external components and interfacing; this 
would lead to performance limitations, increased power consumption, and larger physical system size. 
Extended details of the RFDCs can be found in [90], or in later chapters of this book (Chapters 9 through 11).

The PL to RF Interface

The RFSoC PL acts a gateway to the RF-ADC and RF-DAC channels. As previously shown in Figure 3.6, there 
are several RFDC channels that each require an interface to the PL; however, for the purpose of exploring the 
RF interface, we will focus on a single RF-ADC and a single RF-DAC channel. Signal data is transferred 
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between the PL and the RFDCs using the AXI4-Stream interface. The AXI4-Stream interface features a data 
source (referred to as the master / manager) and a data sink (the slave / subordinate). 

Taking first an RF-DAC channel, we can see that the PL fabric is responsible for transferring data onto the RF 
interface. In this setup, the PL is the manager and the RF-DAC is the subordinate, as shown in Figure 3.9(a). 
Here, the Complex-to-Real configuration is shown, as complex data in the RF-DAC channel becomes analogue 
real data. In contrast, an RF-ADC channel transfers data onto the RF interface for the PL to consume. The RF-
ADC is the manager in this situation, and the PL is the subordinate. An illustration of this setup is provided in 
Figure 3.9(b), which is an example of a Complex-to-Complex configuration.

Figure 3.9:  The manage / subordinate interface between: (a) the PL and the RF-DAC; (b) the RF-ADC and PL.
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The RF Data Converters

As a quick review of the RFDC specifications for the Generation 3 ZU48DR device, the key parameters are:

• 8 RF-ADC channels:

• Max sample rate = 5 GSps

• RF-ADC resolution = 14 bits

• 8 RF-DAC channels:

• Max sample rate = 9.85 GSps

• RF-DAC resolution = 14 bits

The physical configuration of the above channels is worthy of particular note. The RFSoC data converters are 
laid out in tiles, which host a group of blocks that implement the core functionality of the associated data 
converter. This hierarchy of tiles and blocks simplifies the data converter design and implementation. In the 
remainder of this section, we explore the hierarchy of each RFDC to understand the overall layout. 

RF-ADC Hierarchy

The RF-ADCs are configured in one of three different styles, which are fixed for any given device. RF-ADCs 
may be configured as four blocks per tile, two blocks per tile, or one block per tile (referred to as Quad, Dual 
and Single tiles, respectively). As an example, the aforementioned ZU48DR uses a layout of two blocks per tile 
(i.e. Dual tile), meaning that a total of 4 tiles are required to host all 8 RF-ADC blocks. A high-level overview of 
the ZU48DR Dual tile RF-ADC structure is presented in Figure 3.10; note that analogue signals enter from the 
right and the direction of data flow is from right to left.

Each tile contains a Phase Locked Loop (PLL), which generates the clocks required within the tile. The PLL 
requires an external, low-jitter, off-chip clock to operate effectively. RFSoC development boards often host 
these external clocks; for example, the ZU48DR device is located on the ZCU208 board, which features an add-
on clocking board. 

The RF-ADCs operate using differential signalling, however a received signal from an antenna will be single 
ended. Development boards such as the aforementioned ZCU208 contain RF baluns which convert the signal 
from single ended to differential, prior to the input to the RFSoC device. 

The RF-ADC processing pipeline samples the received analogue signal, converting it to the digital domain. 
The RF-ADC block then applies DSP techniques such as threshold detection (to enable adjustments to the 
input signal level) and Quadrature Modulation Correction (QMC), which corrects imbalances in the analogue 
signal chain in a complex configuration, i.e. where the are two (I and Q) inputs subject to possible gain and 
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phase offsets [90]. The signal is subsequently down-converted using a complex mixer and programmable 
decimator, which are collectively known as a Digital Down Converter (DDC). 

RF-DAC Hierarchy

For Gen 1 and 2 RFSoC devices, the RF-DAC is configured as four blocks per tile, and therefore two tiles are 
required to support 8 RF-DAC channels. In Gen 3 devices, RF-DAC tiles can be configured as either two or 
four blocks per tile, matching the RF-ADC tiles. Similar to the RF-ADC tiles, an internal PLL is present on 
each RF-DAC tile, which can be driven from an external low-jitter clock. Figure 3.11 presents an overview of 
the Dual tile RF-DAC configuration found on the ZU48DR device; the direction of data flow is right to left. 

As with the RF-ADC, differential signalling is used at the external interface of the RF-DAC. Baluns can be used 
to convert between differential signals and single-ended signals. 

Each RF-DAC contains several stages including a programmable interpolator and complex mixer (collectively 
known as a Digital Up Converter, or DUC), a QMC block, and inverse sinc compensation filtering. The 
inverse-sinc compensation filter which can be optionally enabled to correct ‘droop’ (non-linear gain) in 
Nyquist Zone 1, and also Nyquist Zone 2 in Gen 3 devices, which arises from the D-to-A conversion process — 
this technique is further explained in Chapter 11. Finally, the digital signal is converted to the analogue 
domain for transmission. 

Figure 3.10:  RF-ADC hierarchy for the ZU48DR RFSoC device [90].
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3.3.5.  SD-FEC Blocks

Forward Error Correction (FEC) coding is often applied to source data prior to modulation and transmission 
over the radio channel. FEC is a powerful method that increases the robustness of transmissions to channel 
impairments, and thus improves link quality. At the receiver, the FEC decoder is able to detect and correct any 
errors that occur (up to some limit that depends on the properties of the coding scheme).

When implementing a FEC scheme, redundancy is added to the transmission, as additional data is transmitted 
beyond the original source data. This implies that the channel has greater bandwidth and energy requirements 
compared to an identical system without FEC, however, the benefit of this extra encoding is that it provides 
more protection against noise. As a result, bandwidth and energy may actually be saved, because there would 
be fewer instances retransmissions required as a result of data being corrupted or ‘lost’ in the channel. As the 
need for retransmissions implies a time delay while handshaking protocols take place and the data is retrans-
mitted, overall latency is also likely to be improved as a result of introducing FEC. 

An example of a radio channel with FEC encoding can be seen in Figure 3.12, demonstrating how errors in the 
received signal can be corrected by a FEC decoder. 
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FEC coding and decoding are computationally intensive processes, and this is particularly true for the robust 
schemes used in 4G and 5G radio systems. Therefore, to reduce the computation required on the RFSoC PL, a 
hardened Soft Decision Forward Error Correction (SD-FEC) block is implemented on selected RFSoC 
devices3 [21]. If needed, ‘soft’ SD-FEC cores can be implemented on the PL of any RFSoC device, instead of (or 
in addition to) hard cores. 

The term 'Soft Decision' is distinct from the ‘soft’ / ‘hard’ manner of describing the implementation of the core. 
Rather, in this context, ‘soft’ reflects that the decoding of received bits is based on a computed probability of an 
error having occurred. 

The SD-FEC core supports the following operational modes:

• Low Density Parity Check (LDPC) coding

• LDPC decoding

• Turbo decoding

Both LDPC and Turbo codes are high-performance coding schemes that have been adopted in modern 
communications standards. Turbo codes are used in 3G and 4G LTE™, whereas LDPC codes are used in 5G 
and provide improved error coding performance. Later in the book, Chapter 14 reviews each of these schemes 
in detail. 

3. Hardened SD-FEC blocks are available on a range of RFSoC devices including the ZU21DR, ZU28DR and ZU48DR.

Figure 3.12:  Simple model of a radio link using Forward Error Correction.
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3.3.6.  RFSoC DFE Architecture and Special Features

The RFSoC DFE is worth a special mention. Although our discussion throughout the book focuses mostly on 
Gen 1, 2 and 3 RFSoC devices, the DFE has a different architecture, tailored for mobile network applications. 

The RFSoC DFE contains an expanded set of hardened IP cores that implement the key processing tasks 
necessary for 5G NR systems [82]. The advantage of these hardened resources is to achieve key functional 
elements with higher performance and lower power consumption than if they had been implemented in PL. 

The additional hardened IP cores specific to the RFSoC DFE include:

• RF Signal Processing (includes resampling and equalisation functions);

• Digital Pre-Distortion (compensates for non-linearities in the external amplifiers);

• Crest Factor Reduction (reduces the Peak-to-Average-Power Ratio (PAPR) to aid amplifier efficiency);

• DUC and DDC (optimised for 5G NR, up to 8 channels);

• Channel Filtering (optimised for 5G NR, up to 8 channels).

Each of these RFSoC DFE's hardened IPs can be actively included within a system design (and configured with 
user parameters), or bypassed, as shown in Figure 3.13. Where a hardened IP is bypassed, the option is open to 
implement a custom IP to replace it, based in the PL — therefore, the designer has considerable flexibility.

Figure 3.13:  Block diagram of the RFSoC DFE architecture [79],[82].
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To illustrate the value of these hardened blocks, we can consider the example of Digital Pre-Distortion (DPD). 
DPD is a technique that implements a corrective gain in the digital domain to compensate for the non-linear 
gain of an external Power Amplifier (PA) in a communications system. Amplifiers are inevitably non-linear, 
but have a linear region at lower power levels. The operating range of a PA can be extended (and thus efficiency 
improved) if the upper region can be linearised. An intuitive diagram of DPD is shown in Figure 3.14. 

The Digital Pre-Distorter must develop a model of the PA gain, updated over time, from which the compen-
sating digital gain function is derived. DPD algorithms are mostly based on the Volterra series, with increasing 
interest in Machine Learning based techniques [105]. Architectures for DPD are non-trivial to design, and can 
be computationally complex. The availability of DPD of a hardened block is therefore of considerable value, 
because this commonly required function is pre-designed and verified (thus saving design effort), and imple-
mented in dedicated silicon (and so is more compact, and reduces power consumption by up to 80% compared 
to an equivalent in PL [82]). If a different solution is needed, the DPD block can be bypassed in favour of a 
custom-designed alternative, and the same applies to other hardened blocks in the RFSoC DFE.

3.4.  RFSoC Development Boards

Now that we have explored the key components of an RFSoC device, it is worthwhile reviewing the available 
development and evaluation boards. Such boards combine an RFSoC device with supporting features such as 
additional DDR memory, IO connectors, external clocking and baluns, which are used for external interfacing 
of the RFDCs. As a result, such boards provide excellent platforms for designing RF based applications.

Figure 3.14:  The concept of DPD.
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In this book, we focus on RFSoC boards that are developed and supplied by AMD. A number of other boards 
are available from third party suppliers, covering a range of different devices and form factors, and the 
selection continues to increase over time. 

3.4.1.  Overview of Development Boards

At the time of writing, AMD offers five RFSoC boards for industry, as captured in Table 3.3. Extended details 
are available in the corresponding user guides, i.e. references [75] to [79].   

Table 3.3: AMD RFSoC development boards.

Type Feature

Board

ZCU111
[75]

ZCU1285
[76]

ZCU208
[77]

ZCU216
[78]

ZCU670
[79]

RFSoC part Generation
RFSoC device

1
ZU28DR

2
ZU39DR

3
ZU48DR

3
ZU49DR

DFE
ZU67DR

RFDCs ADCs
DACs

8
8

16
16

8
8

16
16

10
10

SD-FEC SD-FEC blocks 8 - 8 - -

Connectors RJ-45
SFP28
USB 3.0
UART/JTAG
QPSI
I2C
FMC+
FMC
RFMC
Pmod

1
4
1
1
2
2
1
-
2 x v1.0
2

-
-
-
2
1
2
-
2
-
-

1
4
1
1
2
2
1
-
2 x v2.0
-

1
4
1
1
2
2
1
-
2 x v2.0
2

1
4
1
1
2
2
1
-
2 x v2.0
-

Memory PL DDR4
PS DDR4
PS DDR3
SD Card

4 GB
4 GB
-
Yes

-

2 GB
Yes

8 GB
4 GB
- 
Yes

8 GB
4 GB
- 
Yes

4 GB
4 GB
- 
Yes

Add-on cards
(see Section 3.4.2)

Balun card
Loopback card
Clocking card(s)

XM500
-
-

RF200
-
CLK101
CLK103

XM655
XM650
CLK104

XM655
XM650
CLK104

XM755
XM650
CLK104
(optional)
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Table 3.3 highlights some of the key details and features of each board, including RFDCs, connectors, memory, 
and add-on cards. More detail about the available add-on cards is provided in Section 3.4.2. As is evident from 
the table, at least one development board exists for each generation of device, and a range of tile configuration 
options are covered. 

To give an example, the ZCU208 is a popular Gen 3 board with 8 channels of ADCs and DACs, and is pictured 
in Figure 3.15 with selected features and interfaces highlighted. 
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(4 ports)

12V power

RFSoC device
(under fan)

SATA M.2
(under shield)

and switch

USB port
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add-on card

SMA clock
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JTAG PC4
MicroSD

Ethernet
RJ-45
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3.0

PMBUS
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MSP430
JTAG

Push
buttons

LEDs and
DIP switches

XM655 balun
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DDR4 memory

(4GB PL + 4GB PS)

Figure 3.15:  The ZCU208 development board (ZU48DR Gen 3 RFSoC).
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A further class of boards are the ‘Telco accelerator cards’ which combine RFSoC and MPSoC devices for 
centralised processing in mobile wireless networks. These are briefly introduced in Section 3.4.3 of this 
chapter, and discussed more extensively in Chapter 17. Additional RFSoC boards are available for academic 
use, as reviewed in Section 3.4.4. 

3.4.2.  Add-On Cards

Each development board featured in Table 3.3 supports one or more add-on cards. These cards expand the 
functionality and/or ease-of-use of a development board. Add-on cards generally fall into three categories: 
balun cards; loopback cards; and clock module cards; which are reviewed in the following subsections.

Similar to the development boards themselves, an expanding selection of add-on cards are available from 
third-party suppliers, and so the review that follows is not exhaustive. 

Balun Daughter Cards

RFDCs transmit and receive using differential signals, and conversion is required to and from a single-ended 
analogue signal format, in many applications. These conversions can be achieved using baluns. 

To fulfil this interfacing requirement, each of the AMD boards from Table 3.3 supports a balun daughter card, 
which can be directly attached to the development board. Each generation of RFSoC device is supported by a 
different daughter card, but they all serve the same purpose of interfacing the RFDCs through a set of baluns to 
a respective set of SubMiniature Version A (SMA) connectors. Front-end components such as filters and 
antennas can thus be connected to the RFDCs via balun add-on cards. 

Typically, baluns are optimised for particular frequency ranges. For example, the XM500 card for the ZCU111 
supports two DACs and two ADCs routed to high frequency baluns; two DACs and two ADCs routed to low 
frequency baluns; and four DACs and four ADCs routed directly to SMAs for external baluns, which permits 
customisation. Detailed information about the balun card accompanying a development board can be found in 
its respective user guide, e.g. [75] for the ZCU111, which features the XM500 balun daughter card.

Loopback Cards

Along with a conventional breakout balun card (for external connections), the Gen 3 and DFE development 
boards are packaged with the XM650 loopback card. This daughter card also incorporates baluns, however, 
instead of providing external access through SMAs, each RF-DAC is internally connected to an RF-ADC. 

The XM650 loopback card provides an internal 4.4 to 5 GHz band pass filter and balun between the RF-DACs 
and RF-ADCs, allowing applications to be tested with no external components. Additional details on the 
XM650 internal loopback card can be found in the user guides of the respective boards [77], [78] and [79].
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Clock Module Cards

Most RFSoC development boards (excluding the ZCU111 which has on-board clocking) are packaged with a 
Clock Module add-on-card. These cards, such as the CLK104 for the ZCU208 and ZCU216 boards [22], 
provide an external ultra low-noise RF clock source for the RF-ADCs and RF-DACs. 

Functionally, Clock Module cards normally consist of two stages. The first stage is an ‘LMK’ clock, which has 
two internal Phase Locked Loops (PLLs) that are combined to provide a smooth, jitter-free clock, generated 
from either a reference clock on the card, or from an external clock interfaced via SMA. The second stage is 
composed of two ‘LMX’ clocks, one to supply a clock signal to the RF-ADCs, and another for the RF-DACs. 
These second stage LMX clocks are directly driven by the LMK clock, and provide dedicated RF PLLs for the 
associated RFDCs on the RFSoC device. A high-level overview of the CLK104 card is provided in Figure 3.16, 
highlighting the LMK and LMX clock stages. 

Frequency planning, discussed in Chapter 12, is key to selecting the proper input frequency for the LMX 
clocks. Generally, the chosen frequency should be an integer factor of the specified RFDC sampling frequency. 
Within the PYNQ software framework, a clocking driver exists to ease the programming of the LMK and LMX 
clocks. The use of this clocking driver will be discussed in practical design examples later in the book. 

Figure 3.16:  High level Overview of the CLK104 Add-On Card for ZCU208 and ZCU216 Boards.
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Other Supported Add-On Cards: Avnet® Qorvo®

Although not included in a standard AMD development kit from Table 3.3, the Avnet Qorvo 2x2 small cell RF 
Front End 1,800 MHz add-on card is also worth highlighting [100]. This card is supported by the ZCU111 and 
acts as a radio front end, using four RF-ADCs and two RF-DAC channels of the ZCU111's ZU28DR device to 
provide two transmit and two receive channels. The remaining two RF-ADCs are utilised as observation 
channels, enabling Digital Pre-Distortion (DPD) to linearise the analogue power amplifiers in a developed 
system. The channels are fitted with 1,800 MHz bandpass filters, which are suited for LTE Band 3 designs. 

3.4.3.  Telco Accelerator Cards

AMD produces ‘Telco’ (Telecomms operator) accelerator cards that feature RFSoC and MPSoC devices. The 
aim of these cards is to enable high performance, low latency and power efficient 5G deployment, recognising 
that a 5G network is structured as a hierarchy of links and processing units, and that the network infra-
structure must meet exacting requirements, as well as the front-end radio interface. Thus, Telco accelerator 
cards are targeted at applications within the network but away from the RF interface. At the time of writing, 
two such Telco cards are available. 

Firstly, the T1 Accelerator Card [72], features a ZU21DR RFSoC and a ZU19EG MPSoC device on one card. 
As identified in Section 3.3.1, the ZU21DR RFSoC does not contain RFDCs — rather, the T1 card leverages the 
RFSoC for its SD-FEC blocks, which enable high speed encoding and decoding for 4G and 5G LDPC schemes. 
The MPSoC device is used alongside this RFSoC device to provide further FPGA PL resources, and software 
control and orchestration for fronthaul 5G protocols.

Secondly, the T2 Accelerator Card [73] is based on a ZU48DR RFSoC device, and accelerates real-time 
baseband processing. The T2 card assumes that fronthaul processing is performed externally to the card, 
allowing the RFSoC device to be used entirely for forward error correction and data offload through the PCIe 
Gen 4 connector. This includes LDPC FEC, Hybrid Automatic Repeat Request (HARQ), rate matching and 
Cyclic Redundancy Check (CRC) functions.

As these Telco cards are designed primarily for deployment in Distributed Units (DUs) in 5G networks, i.e. 
within the network infrastructure rather than at the RF interface, the RFDCs are less relevant, as reflected by 
the choice of ZU21DR RFSoC for the T1 card. Rather, the powerful PL logic fabric and hardened SD-FEC 
blocks are exploited to meet 5G protocol requirements. RFSoC applications in 5G networks are discussed in 
detail in Chapter 17, including the use of the Telco accelerator cards.

3.4.4.  Academic Boards

The primary development board for academic use is the RFSoC 4x2, pictured in Figure 3.17 [42]. This Gen 3 
RFSoC board replaces the (now discontinued) RFSoC 2x2, which features a Gen 1 device [41]. 
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Both boards are named to reflect the number of ADC and DAC channels that are supported with external 
interfaces, i.e. the RFSoC 4x2 has four ADC and two DAC channels, and the RFSoC 2x2 has two of each. These 
academic boards are physically smaller than their mainstream counterparts, due to the reduced channel count.

The RFSoC 4x2 features a ZU48DR Gen 3 RFSoC device, and the board design routes a subset of its 8 transmit 
and 8 receive channels (4 RF-ADCs and 2 RF-DACs) through RF baluns to SMAs, without an add-on card. 

SYZYGY
STD port

2 x DAC
SMA ports

4 x ADC
SMA ports

Clocking
SMA ports

2 x Pmod portsUser I/O ports
(buttons, LEDs,

dip switches)

Ethernet
RJ-45
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Power jack

Power switch

RFSoC device
(under fan) MicroSD

USB 3.0 host

Mini DisplayPort

USB 2.0 (UART/JTAG)

DDR4 memory
(4GB PL, 4GB PS)

OLED
display

USB 3.0 composite

Figure 3.17:  The RFSoC 4x2 board (Gen 3 RFSoC).
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This board also features an OLED screen, real-time clock and high speed QSFP28 interface. The RFSoC 4x2 
(and the RFSoC 2x2 up to a version limit) are supported by the RFSoC-PYNQ framework, enabling applica-
tions such as the Spectrum Analyser, which will be introduced in Notebook Set C of this book. 

3.5.  Key Features and Capabilities

Having introduced RFSoC devices in general, as well as the portfolio of AMD development boards available to 
support the design process, it should be apparent that RFSoC is a unique platform. RFSoC has some significant 
features and capabilities that make it highly suited for SDR applications, as highlighted in this section. 

3.5.1.  Multi-GSps Sampling

Two defining characteristics of the RFSoC are the extremely high sampling rates that it can support — up to 
multiple GSps —and the wide analogue bandwidths that its RF-ADCs can capture. Similarly, the RF-DACs can 
generate extremely wideband signals (at least equivalent to the bandwidths of the RF-ADCs).

To give an example of RF-ADC capabilities, recall the ZU48DR RFSoC device that was discussed earlier in this 
chapter. This device has an RF-ADC sampling rate, of  GSps. Therefore, the entire band between 0 Hz 
and  GHz can be directly sampled by the device4, as illustrated by Figure 3.18(a). This region of 
frequencies is known as the 1st Nyquist Zone. The inclusion of an analogue low-pass filter to isolate this band, 
prior to the sampler, is recommended. 

An equivalent bandwidth can be captured using the 2nd Nyquist Zone, i.e. the range of frequencies between 
 and , by exploiting the effect of aliasing (as explained further in Chapter 4). Therefore, with the RF-

ADC sampling rate set to 5 GSps, the band from 2.5 to 5 GHz can be digitised. An analogue bandpass filter 
should be used prior to the sampler to isolate this band, as shown in Figure 3.18(b). 

Therefore, the RFSoC device is effectively able to directly sample bandwidths of multiple GHz. In the context 
of SDR design, this is incredibly powerful; an SDR can convert between the digital and analogue domains at RF 
frequencies, enabling a large set of wireless standards and technologies to be supported using an ‘almost all 
digital ratio’ architecture (see Section 2.7.2, and page 30 in particular). Examples of standards that can be 
directly sampled include, but are not limited to, Wi-Fi bands at 2.4 GHz, 5G New Radio bands around 3.5 GHz 
and various cellular network bands from 800 MHz to 1.8 GHz (in the UK, other countries may vary) [35]. 

By comparison, many traditional 'off-the-shelf ' SDRs are limited to sampling rates of 10’s to 100’s of MHz only, 
and require an analogue mixing stage to demodulate the above example signals from RF to a suitable IF 
frequency, prior to analogue-to-digital conversion. Increased fidelity, along with a physically compact design, 
can be accomplished using an RFSoC-based design approach. 

4. The properties of external analogue circuitry (e.g. linearity of amplifiers, filters etc.) may restrict the operational range.

fs 5=
fs 2 2.5=

fs 2 fs
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3.5.2.  Super Sample Rate

As PL operating clocks are limited to high hundreds of MHz, the Multi-GSps sampling rates used by the RF-
ADCs and RF-DACs are often transitioned to a lower sampling rate at the interface with the PL. This is 
achieved using the hardened DDCs and DUCs integrated within the RFDCs. Such an approach is not always 
suitable, however, particularly for extremely wideband signals. In cases where very high sampling rates need to 
be maintained, samples require to be transferred from the RFDCs to the PL (at the receive side), or from the PL 
to the RFDCs (at the transmit side) at sampling rates higher than the maximum clock rate of the PL. In other 
words, digital samples cannot be clocked sequentially, as the required clock frequencies are too high. The 
Super Sample Rate (SSR) method addresses this issue.

SSR Interfacing

An SSR interface between the RFDC and the PL contains several time-contiguous samples per AXI-Stream 
clock cycle. To explain this concept, consider the conceptual diagram5 presented in Figure 3.19. Here we 
consider a Gen 3 ZU48DR RF-ADC channel, sampling at the maximum rate of 5 GSps. To acquire a signal 
sampled at 5 GSps in the PL, the samples must first be deserialised. This process increases the signal 
wordlength, but also has the effect of decreasing the required AXI-Stream clock frequency — in this case, 
using an SSR of 8 to reduce the required clock frequency to 625 MHz. Subject to good design practices, a clock 
rate of 625 MHz can be supported on the PL. 

5. The SSR interface depiction of Figure 3.19 is conceptual only; the underlying implementation differs.

Nyquist Zone 1 Nyquist Zone 2 Nyquist Zone 3

fs = 5.0 GHz2.5 GHz0 Hz 7.5 GHz
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Figure 3.18:  Using the ZU48DR (Gen 3 RFSoC) to sample signals in the: (a) first and (b) second Nyquist Zones.
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SSR interfaces are used regularly to transfer data between the RFDC channels and the RFSoC's PL fabric, in 
either direction (i.e. SSR is applicable to both transmit and receive paths). SSR is primarily required when the 
sample rate requirements at the RFDC / PL interface are too high for single-rate implementation. For all 
RFSoC devices, the interface between the RFDCs and the PL uses 16 bits to represent each sample. Therefore, 
when the SSR is 1 (i.e. the trivial case of one sample per clock cycle, or effectively where SSR is not used) SSR 
samples are 16 bits wide; with an SSR of 2 (two samples per clock cycle), SSR samples are 32 bits wide; and for 
an SSR of 4 (four samples per clock cycle) SSR samples are 64 bits wide. 

SSR Design

The SSR interface between the RFDCs and the PL is only one part of the solution, where very high sample rates 
require to be processed on the PL. The other aspect is implementing highly parallel PL-based architectures that 
are capable of processing several samples per clock cycle. To support the creation of SSR designs, optimised 
SSR blocks for commonly required functions are available as IP cores in AMD design tools. This topic will be 
discussed further in Chapter 13. 

Figure 3.19:  Conceptual diagram of converting from a serial interface to an SSR interface.
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3.5.3.  Multiple Channels

The majority of RFSoC devices incorporate RFDCs, as outlined in Section 3.3.1, and such devices typically 
support either 8 or 16 channels of transmit and receive functionality. The integration of such a large number of 
channels on a single chip is a powerful enabler for various different radio applications. To highlight three 
examples, the RFSoC’s multi-channel capabilities can be exploited to implement: Multiple Input Multiple 
Output (MIMO) systems; beamforming; and radios that support several different standards concurrently. 

MIMO is a wireless communications technique that extends upon the fundamental Single Input Single Output 
(SISO) configuration, i.e. a single transmitter and receiver, to instead use multiple transmitters and receivers. 
Consequently, MIMO introduces spatial diversity, as each of the transmit and receive antennas occupies a 
different position in space, and therefore components of the signal take different physical paths through the 
radio channel. Sets of transmit and receive antennas are usually laid out in a linear or two-dimensional arrays, 
with the simplest MIMO systems involving two transmitters and two receivers. 5G helped to popularise the 
concept of ‘Massive MIMO’, which involves substantially more antennas (in this context, massive is not strictly 
defined and does not refer to a fixed minimum number of antennas, but it is indicative that commercial 
Massive MIMO systems may contain 64 or more elements) [244]. The greater the number of antennas, the 
greater the potential to exploit spatial diversity and thus improve the throughput over a wireless link.

Beamforming is another example system where multiple antennas are required. The technique can be used at 
the transmitter, to electronically steer the direction of emitted energy in a desired direction, and at the receiver, 
to electronically steer the direction of sensitivity in a desired direction. It is also possible to generate ‘nulls’ in 
particular directions and as a means of mitigating interference. One of the major benefits of multi-element 
antennas in this context is that the beam direction can be altered dynamically using DSP algorithms, without 
any need to physically move the antennas. Similar to MIMO, antennas can be arranged in different configura-
tions in physical space, and a larger number of antennas implies a greater precision of control in a steering the 
beam. Beamforming and MIMO can also be combined, as they are in 5G systems, to steer beams towards 
specific subscribers in three-dimensional space [187]. This technique increases capacity in cellular networks 
by spatially reusing the available radio channel.

For both MIMO and beamforming applications, it is important that the channels comprising the arrays are 
synchronised with the same time and frequency reference. In RFSoC, this is supported by the Multi-Tile 
Synchronisation feature, which can synchronise channels within the same device, as well as across multiple 
devices [46],[90].

Aside from these multi-antenna systems, which are discussed further in Chapter 18, the multiple channels of 
the RFSoC can also be used to support several different transmit and receive signal paths, from either the same 
or different radio standards, on the same chip. For instance, an RFSoC device could support LTE and 5G NR 
radio standards simultaneously, or even enable multiple network operators to share a device [260], [288]. This 
approach compares to a more complex overall system design, or even an implementation requiring several 
separate radios. 
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3.5.4.  Flexible SDR Design

As reviewed earlier in this chapter, the RFSoC architecture combines PL (FPGA logic); a PS integrating appli-
cations and real-time processors, and platform management functionality; hardened RF Data Converters 
capable of directly sampling at multiple GSps; and hardened SD-FEC blocks. Therefore, the RFSoC is an ideal 
platform for radio applications, and SDR in particular. It is useful to highlight key features of the RFSoC archi-
tecture that support SDR design, where the radio must be dynamic and flexible in operation, and therefore 
under software control. 

The multi-GSps sample rates of the RFSoC enable support for wide RF bandwidth signals. By applying a 
suitable analogue filter to isolate a single Nyquist Zone, signals occupying multiple radio bands within that 
Zone can be generated or captured. In fact, using multi-band operation mode, several RF signals can be 
received through a single RF-ADC channel before being processed through separate DDCs, or similarly at the 
transmit side, multiple signals can be generated using different DUCs, and then combined before passing 
through a single RF-DAC. This flexibility is extremely useful for SDR, where dynamic operation and support 
for multiple signal bands are often required. 

The RFSoC architecture provides the means to exert dynamic control over multiple aspects of a radio's 
functionality. At the front end, the RFDCs are highly programmable, both at setup and during operation. The 
RF sample rate can be reconfigured even during run time, catering for any number of different requirements. 
Similarly, the DUC and DDC parameters for each RFDC channel are flexible, allowing decimation and inter-
polation ratios to be programmed from software while the system is operational. Software-based control can 
also be exerted over other design elements implemented in PL, as well as the configuration of the hardened 
SD-FEC blocks. Of course, elements of SDR processing can be realised in the PS using software, and these can 
also be developed with flexibility in mind.

In Chapter 13, development tools and practical RFSoC design workflows will be reviewed. The use of a Python 
driver to reconfigure the RFDCs will also be discussed, highlighting that changes can be achieved in a straight-
forward manner (allowing modulation and demodulation frequencies to be dynamically altered, for instance). 
We also note that flexibility is further enabled through Dynamic Function eXchange (DFX) support, wherein 
designated areas on the PL can be reprogrammed while the rest continues to operate unaffected [63]. 

The integration of a capable PS with the hardware elements of the RFSoC is particularly significant for SDR 
implementation. The single chip architecture enables software to reside very close to the hardware that it 
controls, and enabling lower latency interaction than would be possible with a multi-chip solution.

3.5.5.  Power Efficiency

As outlined in Section 3.1, the RFSoC is an integrated device, and integration provides a number of benefits. 
One of these is power efficiency. There are also a number of features of the RFSoC that support low-power 
operation. We will now review several aspects of the RFSoC that contribute to power-efficient SDR design.
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Integration

A key advantage of the RFSoC as a single-chip solution is that it removes the need for external front-end SDR 
chips (or external DACs and ADCs), as previously discussed in Section 3.1.2 and illustrated in Figure 3.2. If an 
FPGA or MPSoC is interfaced with external chips, JESD204 links are often used, especially where high data 
transfer rates are required. AMD offers an IP core for implementing JESD interfaces [32].

JESD204 is a high speed serial interface standard for data converters, developed and maintained by the Joint 
Electron Device Engineering Council (JEDEC), with JESD204C the most recent revision at the time of writing 
[219]. JESD204 is implemented as set of ‘lanes’ which each represent a serial link. The number of lanes needed 
depends on the data rate (and therefore the sampling rate and resolution of the data converter), but as an 
example, a 14-bit converter operating at 4 GSps would generate data at a rate of 56 Gb/s. This may require as 
many as 16 JESD204C lanes. For each set of four lanes used, it is estimated that an additional 1W of power is 
used compared to the RFSoC with its integrated data converters [351], and therefore an additional power 
consumption of 4W would be implied. 

Aside from the integration of data converters, the integration of PS and PL reduces power consumption over a 
comparable system developed using a separate processor and FPGA. This power efficiency arises from 
reducing the number of devices, avoiding the necessary external interfacing between them, and eliminating 
the need for various supporting components on the PCB. 

Hardened Processing Blocks

In Gen 1, 2, and 3 RFSoCs, the SD-FEC blocks are hardened, and this provides a substantial power saving of 
approximately 80% compared to equivalent ‘soft’ cores implemented in PL [30]. 

The RFSoC DFE has a much-expanded set of hardened processing blocks, as outlined in Section 3.3.6, and 
similar power savings can be achieved by using these blocks rather than soft cores on the PL. Overall, a system 
taking advantage of all DFE hardened features is estimated to save around 50% of the consumed power, 
compared to an equivalent system implemented using a Gen 3 RFSoC device [82].

Platform Management Features

The PS of the RFSoC includes a Platform Management Unit (PMU), in common with the Zynq UltraScale+ 
MPSoC. One of the functions of the PMU is power management during operation [83], [131]. 

The PMU supports three different power modes: full power mode, low power mode, and battery power mode. 
The RFSoC can therefore be switched from full power mode (for normal operation) to low power mode when 
it does not need to actively transmit or receive data. This can assist in reducing the average power consumed by 
the device. Further, the RFSoC architecture has a defined set of power domains, which can be power gated (i.e. 
they can be powered down when not actively required), which also helps to reduce power consumption. 
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DPD Support

While also covered under the category of DFE hardened blocks earlier in this section, support for DPD is 
worth highlighting again, because the linearisation of the PA response improves their power efficiency, as 
discussed in Section 3.3.6. This advantage applies regardless of whether the DPD functionality is implemented 
using the hardened facilities of the RFSoC DFE, or as a soft core on RFSoC Gen 1, 2, or 3 devices, and it can be 
substantial. For instance, [156] reports an increase in PA efficiency from 8 - 15%, to 30 - 40% (or more) when 
DPD is used. 

Lidless Packages

A power-related innovation is the concept of housing RFSoC devices in ‘lidless’ packages [33]. This means that 
the outer casing of the RFSoC chip does not have a top, and therefore the heatsink can be placed in direct 
contact with the chip. Consequently, heat is dissipated more effectively, and the device can operate in a cooler 
environment. Implications include increased component reliability, and an easing of cooling requirements 
(such as a physically smaller heatsink, and/or smaller or less powerful fans). 

3.6.  Chapter Summary

This chapter has introduced the Zynq RFSoC family of devices in the context of SDR applications. It was 
highlighted that the device architecture comprises two main components: the Processing System (PS); and 
Programmable Logic (PL) with hardened RF Data Converters (RFDCs) and Soft Decision Forward Error 
Correction (SD-FEC) blocks. Various RFSoC devices were compared, both within and between generations, 
noting the number of RFDCs and maximum sampling rates as key parameters. 

The architectures of the PS and PL were explored, with particular emphasis on the hardened, radio-centric 
blocks integrated into the PL. These hardened resources, the RFDCs and SD-FEC blocks, are a key factor in 
selecting RFSoC devices for radio applications. Further, the main advantages of RFSoC architecture and design 
support were reviewed from an SDR perspective. The very high sampling rates, multi-channel support, and 
features for integrating software and hardware elements were highlighted as particularly powerful features. 
The range of development boards that are available to support the practical creation of RFSoC designs was also 
reviewed. As will be explored further later in the book, the RFSoC can enable an array of radio applications 
including radio standards for mobile networks (and many other technologies), beamforming, MIMO systems, 
and cognitive radio. 
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Chapter 4
DSP Fundamentals
Louise Crockett 

Several fundamental Digital Signal Processing (DSP) concepts underpin wireless communications and the 
operation of the RFSoC. While DSP principles will be familiar to many, it may be difficult for readers without 
this background to appreciate some of the theory introduced later in the book. Feel free to dip into this chapter 
as appropriate to your level of prior knowledge.

We begin with sampling and quantisation, before briefly reviewing the frequency domain (noting that more 
extensive coverage of this topic follows in Chapter 5), and aspects of filtering. Conversion between the 
analogue and digital domains is fundamental to the operation of the RFSoC, and these conversions are 
considered in detail from a signal processing perspective. Finally, multirate signal processing is presented — 
increasing and decreasing the sampling rate is integral to almost any radio design we might develop for imple-
mentation on an RFSoC device. 

4.1.  Sampling

Sampling is one of two processes that take place when an analogue signal is converted into a digital equivalent 
(the other is quantisation, which will be covered in Section 4.2). We can think of sampling as converting the 
time axis of a signal to a set of discrete time instants, while quantisation converts its amplitude to a discrete set 
of representable amplitude values. This simple model of Analogue-to-Digital Conversion is depicted in Figure 
4.1, where an analogue signal, , is passed through an ADC to create a digital equivalent, . 

As shown at the left hand side of Figure 4.1, the analogue signal is considered to be continuous time, meaning 
that its amplitude is defined over all time, and can be measured or represented at any arbitrary point in time. 

z t  z k 
73

Downloaded from www.RFSoCbook.com



CHAPTER 4: DSP Fundamentals
When converted to the digital domain, shown on the right of Figure 4.1, the signal is instead represented at 
discrete instants in time, which are separated by a sampling period, . This conversion process is known as 
sampling. The sampling period and the sampling frequency, , have a reciprocal relationship as shown in 
(4.1). Note that the term sampling rate is also common, and can be used interchangeably with sampling 
frequency. 

(4.1)

Quantisation is a separate but concurrent process in the ADC that converts the amplitude of each sample to 
the closest representable level (the set of available quantisation levels is indicated in green in Figure 4.1).

4.1.1.  Sampling Rate Selection

The selection of an appropriate sampling frequency is primarily influenced by the frequency content of the 
signal to be processed. Sample too slow, and information about the signal is not properly captured; sample too 
fast, and the operations needed to process the signal are inflated unnecessarily. To take a simple intuitive 
example, consider the 100Hz sine wave seen in Figure 4.2, which is sampled at three different rates. 

If we sampled this sine wave at 2kHz (shown in the second plot), the signal would certainly be captured faith-
fully (we can clearly see that the samples correspond closely to the shape of the original sine wave), however, 

Figure 4.1:  An intuitive model of Analogue-to-Digital conversion.
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Figure 4.2:  Sampling a 100Hz sine wave at three different rates: top — about right; middle — too fast; bottom — too slow.
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CHAPTER 4: DSP Fundamentals
perhaps this is a higher rate than needed? Twenty samples per sine wave period is actually far in excess of the 
minimum required, and implies a computational overhead for any subsequent processing operations applied 
to the signal. This might commonly include operations like digital filtering, which is introduced in Section 4.5.

At the other extreme, a sampling rate of 80Hz (as shown in the third plot) seems insufficient. This would 
provide fewer than one sample per period of the sine wave, and in fact the sine wave cannot be accurately 
reconstructed from samples taken at this rate. If sampled at a rate of 80Hz, then actually a lower frequency sine 
wave would be perceived. This effect is commonly known as aliasing. In our current example, the aliased signal 
has a frequency of 20Hz, which is related to the sine wave frequency and sampling rate as 

. (4.2)

Although aliasing is generally considered an undesirable effect, there are occasions where it can be deliberately 
exploited, as will be discussed later.

Finally, a sampling rate of 500Hz (the first plot) might seem “about right”. In this case, there are five samples 
per sine wave period, resulting in a good balance of accurately capturing the sine wave, and keeping the 
computation rate reasonably low. 

4.1.2.  Signal Frequency Range Terminology

In this context of sampling rates, it is useful to define some key terms that describe the range of frequencies 
present in a signal. Figure 4.3 shows the frequency domain content of two signals in spectrum sketches.

Firstly, when referring to a signal whose lowest frequency component is at, or close to, 0 Hz, the signal is said to 
be “at baseband”, or “a baseband signal”. Examples of baseband signals include sensor data, such as measured 
voltage and current from a power system, audio signals, and unmodulated communications signals.

falias f esin fs– 100Hz 80Hz– 20Hz= = =

frequency

frequency

m
a
g
n
it
u
d
e

m
a
g
n
it
u
d
e

baseband signal

bandpass signal

bandlimited

bandlimited

f
max

f
l

f
h

Figure 4.3:  Clarification of ‘baseband’, ‘bandpass’, and ‘bandlimited’ signals.
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Often in communications, we consider signals that are in the process of being modulated or demodulated by a 
transmitter or receiver, respectively, and which do not have any components close to 0Hz. A term that may be 
applied to these signals is bandpass, reflecting that the signal occupies a range of frequencies, not adjacent to 
0Hz (akin to a signal that has been filtered by a bandpass filter). Both baseband and bandpass signals may also 
be referred to as bandlimited, meaning that the signal energy is contained within a particular range of 
frequencies. 

4.1.3.  Nyquist Sampling Theorem

A more formal definition of the minimum possible sampling frequency, in order to avoid aliasing, is given by 
Nyquist Sampling Theorem. The Nyquist Sampling Theorem states that a baseband, bandlimited signal must 
be sampled at greater than twice the maximum frequency component present in the signal, i.e. 

(4.3)

in order to accurately preserve all of the frequency content. If the above condition is not met, then all 
frequency components above  are subject to aliasing. To aid in describing this lower limit on the sampling 
rate, the Nyquist frequency is commonly defined as .

Returning for a moment to our 100Hz sine wave example, in that case a minimum sampling frequency of just 
over 200Hz would be the required according to Nyquist Sampling Theorem. Interestingly, if we observe the 
samples taken at a sampling rate of 250Hz (as an example), then the correspondence with a sine wave may be 
unclear; from a human inspection point of view, these samples do not “look like” a sine wave in a time domain 
waveform. Importantly, however, the original sine wave is fully mathematically captured by these samples, and 
an analogue version of the signal could be perfectly reconstructed. 

Nyquist sampling theory can also be applied to bandpass, bandlimited signals. The bandwidth of the signal is 
defined as the difference between the highest and lowest frequency components present, denoted by  and , 
respectively. Provided that sampling takes place at greater than twice the bandwidth, i.e. 

(4.4)

with reference to Figure 4.3, then it is possible to retain all information in the signal. This is accomplished 
using the technique of undersampling, implicitly relying on aliasing effects, and alignment of the signal within 
the applicable Nyquist Zones. 

4.1.4.  Nyquist Zones and Aliasing

Aliasing occurs in a regular pattern based on Nyquist Zones, which are partitions of bandwidth  in the 
frequency domain. Any arbitrary number of Nyquist Zones may be defined, but only sampled signals in the 1st 
Nyquist Zone can be directly represented, according to Nyquist Sampling Theorem. Any signal components 
present in higher Nyquist Zones are ‘folded’ down into the 1st Nyquist Zone as a result of aliasing. 
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To consider an example with some simple numbers, let us assume a sampling rate of 200Hz. Nyquist Zones are 
100Hz wide, with the first Nyquist Zone spanning the range from 0 to 100Hz, the second from 100Hz to 
200Hz, and so on, as shown in Figure 4.4. 

With an ideal ADC sampling at 200Hz, any input signals of frequency less than 100Hz would therefore be 
perfectly captured, residing in the 1st Nyquist Zone. If signal frequencies between 100Hz and 200Hz were 
applied to the ADC, these components would experience aliasing, resulting in terms in the range 0 to 100Hz 
(in other words, components in the 2nd Nyquist Zone would be folded into the 1st Nyquist Zone). The 
frequencies of the aliased terms are predictable due to a point of symmetry at , or 100Hz, as seen in 
Figure 4.5, which illustrates the effect of aliasing. 

In Figure 4.5 shows some examples of tones input at different frequencies within the first, second, third, and 
fourth Nyquist Zones. Notice the pattern of folding that applies, depicted here by the gradiated bar below the 
frequency axis. 

Figure 4.4:  Definition of Nyquist Zones.
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CHAPTER 4: DSP Fundamentals
The technique of undersampling can be used to exploit aliasing, and deliberately fold a bandpass signal down 
to Nyquist Zone 1. In the context of communications, this technique can be used in the receiver as a means of 
converting an IF- or RF-modulated signal to baseband (often this is referred to as direct downconversion). An 
example of this technique is shown on the upper axis of Figure 4.6, in purple.

One of the major advantages of downconverting the signal is that the sampling rate required for subsequent 
processing stages may be substantially lower, which can reduce power consumption and computational load. 
The technique relies on the original signal being entirely contained in a single Nyquist Zone, otherwise the 
resulting spectrum is corrupted by the superposition of aliased components, as depicted in the lower axis of 
Figure 4.6. Notice that, as the received signal straddles two Nyquist zones, two separate portions of the signal 
are both aliased into the upper part of the first Nyquist zone, and are superimposed upon each other.  

These examples have not considered any other frequency components present in the spectrum. However, prior 
to downconversion using this method, it would also be prudent to bandpass filter the signal (more detail on 
filters coming up in Section 4.5!). This would remove any noise or spurious frequency components present in 
any other Nyquist Zones, all of which would otherwise alias to the 1st Nyquist Zone and degrade the quality of 
the desired signal. 
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The RFSoC device exploits Nyquist Zones for signal reception in its RF-ADC processing, as will be discussed 
further in Chapter 9. At the transmit side, signals can be generated in upper Nyquist Zones using the RFSoC’s 
RF-DACs, and this will be covered in Chapter 11. 

4.1.5.  Sampling Jitter

All of our coverage of sampling so far has assumed that samples are perfectly timed, with a consistent 
separation in time of . In practice, ADCs do not operate in this perfect way, and some variation in the 
periods between samples should be expected, as illustrated in Figure 4.7 (note, the degree of variation in 
sampling periods has been exaggerated for visualisation purposes). 

This effect of variable sampling periods is referred to as jitter, and it is undesirable because samples of the input 
signal are not taken at the ideal time instants. Jitter is also a characteristic of DACs, wherein the desired output 
samples are subject to errors in the sampling period, and therefore are not generated at exactly the correct time 
instants. As a result of samples being misplaced in time compared to the ideal sampling instants, the amplitude 
values experience a corresponding error. Therefore, jitter can be modelled as a source of noise. 

High fidelity DACs and ADCs minimise jitter to a great degree, and often other effects such as quantisation 
noise dominate, i.e. they contribute significantly more to the overall level of noise experienced. At very high 
sampling frequencies, however, jitter can be a notable issue (a small deviation in sampling time is significant in 
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CHAPTER 4: DSP Fundamentals
proportion to the sampling period). We will not consider jitter extensively in the remainder of this book, 
however it is worthwhile being aware of the phenomenon and its effects, particularly as the Zynq RFSoC can 
operate at extremely high (GHz) sampling rates which are naturally more likely to experience jitter. 

4.2.  Quantisation

Quantisation is one of the two processes that takes place when an analogue signal is converted to a digital one 
(the other being sampling, as previously covered in Section 4.1). When a signal is quantised, the amplitude 
value taken at each sampling instant of an ADC is mapped to one of a discrete set of possible amplitude levels. 
At the output of the sampling and quantisation processes, therefore, the analogue signal has been discretised in 
both time and amplitude — in other words, it has been converted to a digital signal. 

4.2.1.  The Quantisation Process

To define the process of quantisation in a little more detail, we consider that the ADC has  bits of resolution, 
and therefore can represent  different values. These correspond to the set of discrete quantisation levels to 
which samples of the input signal will be mapped. Usually this is done in a linear fashion as shown in Figure 
4.81, although a realistic ADC would have many more bits (and hence quantisation levels) than this example.  

The larger the value of , the greater the number of quantisation levels that are spread across the operating 
range of the ADC. We note a slight imbalance (there is one more negative quantisation level than positive), but 
this effect becomes negligible for realistic values of . 

1. Non-linear quantisers are adopted in some specific applications, for instance the A-law and -law companding methods
used for audio quantisation in telephony systems.
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Figure 4.8:  An example linear quantiser.
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CHAPTER 4: DSP Fundamentals
When analogue samples are quantised, they are ‘moved’ to the nearest available quantisation level; the 
conversion is more accurate when  is large and the resolution is said to be higher. More formally, the changes 
in represented amplitude between the analogue and quantised samples are referred to as quantisation errors. 

Where  is the maximum input voltage of the ADC, the quantisation step (or interval), , is expressed as

. (4.5)

The dynamic range of an -bit converter, a commonly used figure of merit that expresses the ratio of largest to 
smallest representable numbers, is often given in dBs. It is defined as

. (4.6)

Therefore, a 12-bit converter has a dynamic range of approximately . 

An example of quantising a sine wave is shown in Figure 4.9, using two different quantisers: first using 4-bit 
precision, and then with 6-bit precision. The reference (sampled by not quantised) and quantised sine waves 
have been reproduced in large format here, for ease of inspection — the errors introduced by quantisation are 
relatively obvious in the 4-bit case, but they are more difficult to see when 6-bit quantisation is used. Thus we 
can say that quantising the signal with 6-bit resolution produces smaller amplitude errors than the 4-bit equiv-
alent. Although the errors arising from quantisation become difficult to observe in the time domain, at 6-bits 
this still represents a considerable degradation in signal quality when viewed in the frequency domain. 

Practical ADCs and DACs for most applications use at least 8-bits of precision. All RFSoC devices have at least 
12-bit ADCs (Gen 1 and 2 devices have 12-bit ADCs, and Gen 3 have 14-bit ADCs); all have 14-bit DACs [88]. 

4.2.2.  Quantisation Errors

When the quantisation of an individual sample is considered, and its amplitude is moved to the nearest quanti-
sation level, it follows that the worst-case error is half of one quantisation interval. Using the symbol  to 
represent the amplitude of a quantisation interval, the maximum error is therefore . 

If we assume that the amplitudes of samples input to the quantiser are random, then a Probability Density 
Function (PDF) can be formed as shown in Figure 4.10. The area of this PDF is 1, meaning that when a 
particular sample is quantised, a quantisation error in the range  to  is certain to occur. 

The quantisation noise associated with an ADC can therefore be analysed based on this statistical expectation 
of quantisation errors. As we will see later, the assumption that errors across the range are equiprobable does 
not always hold, as the distribution of errors depends on the properties of the signal being quantised. However 
the PDF from Figure 4.10 provides a useful mechanism for quantifying the noise introduced by the quanti-
sation process. We will now go on to consider how quantisation noise arises and is quantified.  
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Figure 4.9:  An analogue sine wave, sampled and then quantised with 4 bits (upper plot), and 6 bits (lower plot).

Figure 4.10:  Probability density function (PDF) of quantisation noise (for quantisation interval q).

e

p(e)

q/2- q/2

1/q
83

Downloaded from www.RFSoCbook.com



CHAPTER 4: DSP Fundamentals
4.2.3.  Quantisation Noise

The quantisation process discussed in the previous section can also be modelled as the addition of noise. Each 
quantised sample is subject to an error, and the quantised sample at index  can be expressed as

(4.7)

where  is the sample after quantisation,  is the true (unquantised) sample value, and  is the 
difference between the two (i.e. the quantisation error). This process is illustrated Figure 4.11. 

The power of the quantisation error signal (equivalently, the quantisation noise power of the ADC) can be 
derived based on the error PDF from Figure 4.10. The square of the error signal, weighted by the probability of 
the error, is integrated across all possible error values. As the range of possible error values is limited to the 
range  to , the integral can be evaluated over those limits,

. (4.8)

Noting that  for all values of , the error power is therefore expressed as

, (4.9)

where  is the quantisation interval. We can therefore confirm that the noise power introduced by an ADC 
reduces as the number of quantiser bits is increased (as this results in a smaller quantisation interval, ). 

Theoretically, the quantisation error signal extends across the full baseband region from 0Hz to , 
Therefore, there is a chance that low level components present in the signal of interest can be ‘masked’ by the 
presence of quantisation noise, as depicted in Figure 4.12. Based on our analysis above, this problem is more 
acute for low resolution ADCs (i.e. those with few bits), and therefore the motivation for higher resolution 
ADCs is clear. With current technology, ADCs operating at very high (Gsps) sampling rates do not provide as 
many bits as ADCs for lower frequency applications, such as audio processing (operating at tens of ksps). 
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Figure 4.11:  Modelling of the quantisation process as the addition of quantisation noise.
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4.2.4.  Periodic Signals and Frequency Spurs

Not all input signals to the ADC quantiser produce the random quantisation errors discussed in the previous 
section. Where an input signal is periodic, the sequence of quantisation errors follows a repeating pattern, and 
therefore the quantisation error signal is also periodic. We may also find that only a subset of possible quanti-
sation error values are ever generated (in contrast to the PDF from Figure 4.10, which assumes randomness). 

The digitisation of a sine wave is a good example. We can observe that the sequence of quantisation errors 
repeats after some time; the repetition period is defined by the relationship between the sampling period and 
the sine wave period. The resulting quantisation error signal is therefore also periodic, and its periodic compo-
nents correspond to unwanted tones (‘spurs’) in the frequency domain. In practice, however, the signal being 
quantised is usually more complex than a single sine wave (e.g. in communications, a baseband signal is 
composed of a range of frequency components), and consequently the issue of spurs is less pronounced. 

Frequency spurs are a form of harmonic signal distortion, and are undesirable. The extent of this distortion is 
quantified by the metric Spurious Free Dynamic Range (SFDR), which is the ratio between the fundamental 
component (e.g. the sine wave) and the most significant spur, expressed in dBs. The concept of SFDR is illus-
trated in Figure 4.13. 

Aside from the most direct solution of using a higher resolution ADC (i.e. increasing the number of bits), 
another common approach is to add a ‘dither’ signal to the ADC input, prior to quantisation. The dither signal 
is low level noise, which introduces sufficient randomness to prevent the strict periodicity of the quantisation 
errors, and thus avoids the creation of frequency spurs. While adding noise to improve signal quality may seem 
counter-intuitive, the use of dithering can be beneficial in suppressing spurious frequency components, and 
thus improving SFDR. This is often a primary concern in communications systems.
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Figure 4.12:  A sketch of quantisation noise overlaid on a signal of interest.
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4.3.  Time and Frequency Domains

So far in this introduction, we have touched on both time and frequency domain signal analysis, and shown 
sketches of both. Time domain plots are probably the more intuitive of the two — the amplitudes of a measured 
signal are simply plotted against time. Frequency domain analysis involves converting sets of consecutive time 
domain samples (which may be referred to as a window of samples) into a frequency domain representation, 
such that the magnitude or power of the signal can be plotted against frequency. Being able to analyse signals 
in this way is a very useful tool — for instance, a frequency spectrum plot enables an engineer to verify that the 
signal emitted by a communications transmitter occupies only the allocated bandwidth. 

A simple depiction of conversion from the time domain to the frequency domain is provided in Figure 4.14. 
The Discrete Fourier Transform (DFT), which is often implemented in a more efficient form as the Fast 
Fourier Transform (FFT), is used to perform the conversion [127]. The Inverse DFT (IDFT) or Inverse FFT 
(IFFT) can be used to make the opposite transition, from the frequency domain to the time domain. 

There is considerably more to describe on this topic, including parameter choices, and interpretation of the 
resulting spectra, and therefore frequency domain analysis has its own dedicated chapter (see Chapter 5). We 
will leave further discussion of the frequency domain until then. 

The various frequency domain plots and sketches presented in this chapter allow us to view the energy content 
of a signal against frequency, over the interval from 0 Hz to  Hz (assuming that the signal is real). Later, 
we will also consider complex signals, which are generally plotted over the frequency range from  Hz to 

 Hz, and the relevant background to this is covered in Chapter 7. 

Next in this chapter, we consider digital filtering. Digital filters are designed to change the frequency content of 
a signal in some desired way. 

Figure 4.13:  Measuring Spurious Free Dynamic Range (SFDR) with reference to a sine wave input at frequency .ftone
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4.4.  Fixed Point Arithmetic

In Section 4.2, we discussed quantisation and the process of mapping analogue input values to a discrete set of 
representable amplitude values, with the number of bits defining the number of available values, or in other 
words, the resolution. More generally, signals within the hardened processing blocks of the RFSoC device, 
along with custom algorithms developed in the PL are, in the vast majority of cases, represented using a fixed 
point number format. In this section, we review the fundamentals of fixed point numbers and arithmetic. 

Two fixed point number formats are predominantly used in hardware designs: unsigned, and 2’s complement. 
In both cases, numbers are composed of  integer bits and  fractional bits, separated by a binary point. 
Design tools often specify formats in the form ( , , ), where  represents the format (0 = unsigned, 1 = 
signed 2’s complement). For instance, (0,8,5) indicates an unsigned number with 3 integer and 5 fractional bits. 

4.4.1.  Unsigned Fixed Point Format

Unsigned fixed point format is appropriate in cases where a signal can only take on positive values (or zero); in 
other words, where negative values are not required. In signal processing for radio and other applications, 
negative numbers are usually needed (think sinusoidal signals), however there are occasions where this is not 
the case: unsigned fixed point can be used in counters for control circuits, for example. 

The unsigned fixed point number is composed of  integer bits and  fractional bits, separated by a binary 
point. The bits forming the number are arranged from Most Significant Bit (MSB) on the left, to the Least 
Significant Bit (LSB) on the right, and each has an individual bit weighting, which is derived from its index, i.e. 
its position in the array. In unsigned fixed point, all bits have a positive weighting, including the MSB. Figure 
4.15 depicts the structure of a generic fixed point number; the MSB is positive for unsigned fixed point. 

Figure 4.14:  Conversion from the time domain to the frequency domain to analyse the frequency composition of a signal.
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To provide an example, the range of an unsigned fixed point number with 5 integer bits and 3 fractional bits is 
0 to 31. 875. If we wanted to represent the arbitrary value of 14.75 using this unsigned fixed point format, it 
would be expressed as: 01110 110.   

4.4.2.  2’s Complement (Signed Fixed Point) Format

2’s complement is composed similarly to unsigned format, the difference being that the MSB has a negative 
weighting, as indicated in Figure 4.15, and therefore 2’s complement can express negative numbers. Taking the 
example parameters of  and , the range is -16 to +15.875. Notice that the range is not quite 
symmetric around 0; this occurs because there is one more negative level than positive level. 

The smallest representable number occurs when the MSB (which has a negative weighting) is 1, and all other 
bits (which all have positive weightings) are 0; the largest representable number is the opposite. Therefore, it is 
convenient to look at the MSB to confirm the sign of a 2’s complement number (0 = positive, 1 = negative). 

The range and precision of both fixed point formats are summarised in Table 4.1.  

Table 4.1: Summary of unsigned and signed 2’s complement fixed point number formats

Format Lower End of Range Upper End of Range
Smallest 

Representable
Number

Unsigned

Signed 2’s 
Complement



Figure 4.15:  Generic fixed point number format (covers both unsigned, and signed 2’s complement).

2n-1 2n-2 21 20 2-1 2-2 2-3 2-4 2-(b-1) 2-b

n integer bits b fractional bits

fixed point wordlength = (n,b) bits

MSB LSB

index: n-1 n-2 1 0 -1 -2 -3 -4 -b-(b-1)

unsigned (+ve)
signed 2’s comp. (-ve)

binary point

n 5= b 3=

0 0000.0000 1111.1111 2n 2 b–– 2 b–

2 n 1– – 1000.0000 0111.1111 2 n 1–  2 b– – 2 b–
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4.4.3.  Wordlength Growth

It is worth noting that, when fixed point numbers are the subject of arithmetic operations, they should 
normally be allowed to grow, in order to avoid overflow2 (i.e. where a number exceeds the available range, and 
‘wraps around’ to the opposite of the range), or underflow (where there is insufficient resolution to represent 
the number, and it is rounded to zero). Longer wordlengths result in more costly implementation of arithmetic 
circuits, however, and therefore we often require to manage wordlength growth carefully. 

As a simple rule of thumb, when two numbers are added or subtracted, the integer part of the number should 
be increased by 1 bit. This doubles the available range and ensures that all possible answers can be represented.

Multiplication can result in a larger change in magnitude. To avoid overflow and underflow, the integer 
sections of the two multiplicands should be added, as should the fractional sections. For instance, multiplying 
two numbers using our earlier format of  and  would give largest positive and negative results of 

 and , respectively. The smallest magnitude result can be calculated as 
. Therefore, the multiplier output should have 10 integer and 6 fractional bits.

4.5.  Filtering

Filtering is a fundamental signal processing operation that is normally employed to change the frequency 
composition of a signal. In this section, we briefly review some important aspects of filtering, including the 
basic filter response types, the roles of analogue and digital filters in a wireless communications system, and 
the design and implementation of digital filters. 

4.5.1.   Filter Response Types 

Signals are commonly filtered when there is a desire to change their frequency content in some way, for 
instance to remove a certain band of frequencies. Although arbitrary responses are possible, most filters can be 
categorised into four response types, which are: low pass, high pass, band pass, and band stop. These four 
responses are depicted in Figure 4.16. 

A fifth class of filter, which we will not focus on here, is the all-pass. The magnitude of the signal is not altered 
by filtering (or it is altered very little), and instead the purpose of filtering is to modify the phase of the signal. 

Most filters have fixed responses that are set at design time. Some applications in wireless communications, 
such as channel equalisation, require adaptive filters. This a distinct class of filter whose response is adjusted 
continuously while the system operates, based on observed signals. Again, we will not consider adaptive filters 
extensively in this book; the interested reader might wish to refer to textbooks such as [136], [191], and [331]. 

2. Overflow is generally undesirable, although it can be mitigated using saturation, a technique whereby a positive or nega-
tive overflow is detected, and the closest representable number is substituted.

n 5= b 3=
16– 16– 256= 15.875 16– 254–=

0.125 0.125 0.015625=
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4.5.2.  Analogue and Digital Filters

Filters can be implemented in both the analogue and digital domains, and wireless communications systems 
require both, as was evident from the three main radio architectures presented in Chapter 2 (see Figures 2.9 - 
2.11, starting from page 30). For example, the front end analogue section of a receiver should normally include 
a band pass filter to isolate the signal(s) of interest, and remove components at other frequencies, prior to 
conversion to digital at the ADC. This maximises the Signal-to-Noise Ratio (SNR), i.e. the ratio between the 
signal and noise powers, and thus improves the quality of the signal passing through the digital section of the 
receiver. For a more flexible SDR implementation, the front-end analogue filter in the receiver should at 
minimum reject any frequency components outside the Nyquist Zone of interest. The default scenario is to 
capture signals from Nyquist Zone 1, which implies the use of a low pass filter; as we will discuss later in the 
book, however, the RFSoC can also capture signals from higher Nyquist Zones, which would require an appro-
priate band pass filter.

Analogue filters are necessary as part of the overall architecture of an SDR, even where the conversion between 
analogue and digital takes place at RF frequencies and there are no analogue modulation and demodulation 
stages. Analogue filters play an important role in selecting RF bands, as mentioned above, and are also 
required as anti-image and anti-alias filters for DACs and ADCs, respectively. For instance, spectral images are 
generated by the digital-to-analogue process, and these unwanted images should be removed by applying an 
analogue filter to the signal, prior to transmission. 

Figure 4.16:  The four main filter response types.
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For SDR applications, it is generally considered desirable to implement as much of the radio processing in the 
digital domain as possible. With particular reference to filtering, this has several advantages, including savings 
on cost and power consumption (compared to implementing analogue filters), and avoiding the issues where 
temperature or component ageing effects alter the response of an analogue filter. Depending on the implemen-
tation platform, a digital filter can also be reprogrammed with a new response while the system is operational. 
However, there are some tasks that cannot be performed digitally, and analogue filters are vital components in 
the overall system architecture. 

4.5.3.  Filter Magnitude Response Features

Turning our attention towards digital filters (although similar principles apply for their analogue counter-
parts), a filter response can be described by a set of key features. These are in addition to the response type as 
outlined in Figure 4.16. 

Figure 4.17 illustrates these filter features, for the example of a low pass filter response. Note that three regions 
of the response are defined: the passband, transition band, and stopband. Signal frequency components in the 
passband experience approximately 0dB of gain (a linear gain of 1), although there is some ‘ripple’ in the 
passband, meaning that there is some variability in gain across the passband region. In the stopband, the signal 
is subject to attenuation, which has the effect of diminishing or even effectively eliminating these signal 
frequency components. A transition band with sliding gain is present between the passband and stopband. 

When specifying the requirements for a filter, the following parameters are commonly used: 

• Passband edge frequency (in Hz, or on a normalised frequency scale)

• Stopband edge frequency (as above)

• Passband ripple (dB)

• Stopband attenuation (dB)

The transition bandwidth corresponds to the difference between the passband and stopband edge frequencies. 

An ideal filter response, sometimes referred to as a ‘brick wall’ filter, has exactly 0dB gain across the passband, 
infinite attenuation in the stopband, and a 0 Hz transition bandwidth, as shown in Figure 4.18. However, such 
a filter cannot be realised in practice, and there is always a trade-off between the response characteristics of a 
filter, and its computational cost. The closer a filter design is to the brick wall response, the more “expensive” 
its implementation. 

For bandstop and band pass filters, there are two passband regions and two stopband regions, respectively 
(refer back to Figure 4.16 as needed), and the parameters of these additional features of the response can be set 
individually. For instance, the attenuation in the two stopband regions of a bandpass filter need not be equal. 
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Figure 4.17:  Features of an example low pass filter response.
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Figure 4.18:  Features of an ideal ‘brick wall’ low pass filter response (unrealisable in practice).
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4.5.4.  Infinite and Finite Impulse Response Filters

One of the fundamental design choices to be made is the selection of a Finite Impulse Response (FIR) or 
Infinite Impulse Response (IIR) filter. As the names suggest, the response of an FIR to an impulse (i.e. a single 
input sample of amplitude 1, followed by zero-valued samples), lasts only for a finite number of samples. By 
contrast, the response of an IIR filter to an impulse could in theory continue forever. An illustration comparing 
the two filter response types is provided in Figure 4.19. 

The FIR filter performs a weighted average (convolution) on a window of  data samples, to produce

, (4.10)

where  represents the th weight, and  is the input at sample index .

For the example of a 5-weight FIR filter, we could alternatively write the difference equation

, (4.11)

which highlights the computation that is required to calculate each output. For this 5-weight example, five 
multiplications (each between a weight value and a delayed input sample) are required, and four additions are 
needed to sum these products to form the filter output, .

Figure 4.19:  Example FIR and IIR filter impulse responses.
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It is relatively intuitive to map the FIR difference equation from (4.11) to a graphical signal flow graph
representation, as depicted in Figure 4.20. In this signal flow graph depiction of the 5-weight filter, we can 
confirm that five multipliers and four adders are required. The blocks labelled with ‘delta’ symbols represent 
one-sample delays (we will shortly replace them using the more formal Z-notation). 

While an FIR filter computes the weighted sum of past inputs (a feedforward path in the signal flow graph 
shown in Figure 4.20), the IIR filter also includes a feedback path, and so its output is composed of weighted 
sums of past inputs and past outputs. The operation of an IIR filter can therefore be described by the equation

(4.12)

where  and  are the numbers of feedforward and feedback weights, respectively; and where  is the th

feedforward weight, and  is the th feedback weight. Notably, the feedforward section of an IIR filter is 
equivalent to an FIR filter. An example IIR filter with four feedforward and three feedback weights is shown in 
Figure 4.21. 

The primary motivation to select IIR filters is that they can achieve the same magnitude response as an FIR 
filter, using fewer weights, and therefore they require less computation and are less costly to implement in 
hardware. However, FIR filters have two advantageous characteristics which make them the preferred choice 
for communications applications:

• FIR filters are intrinsically stable, as they have no feedback path (IIR filters, on the other hand, have 
feedback paths and carry the risk of becoming unstable). 

• Any FIR filter designed by one of the standard algorithms will have symmetric weights, and therefore 
possess the attribute of linear phase response. This means that all frequencies passing through the filter 
are delayed by the same amount of time, which corresponds to a linearly increasing phase difference. 

Figure 4.20:  Signal flow graph for an example 5-weight FIR filter.
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The significance of the linear phase response attribute is to preserve the phase relationship between 
different frequency components — and this is particularly important in communications, where infor-
mation is carried by ‘pulses’, which are composed of several different frequencies. The pulse shapes can 
be destroyed by non-linear phase filters, but are preserved by linear phase filters. 

In this book, therefore, we focus on FIR filters exclusively3. For more background on phase response, and the 
linear phase response property of FIR filters, the reader may wish to refer to textbooks such as [203] or [234].

4.5.5.  Z-Domain Filter Representation

Digital filters and other DSP algorithms are commonly described using Z-domain representation, which 
provides a convenient and mathematically tractable form that is amenable to analysis. In the context of digital 
filtering, Z-domain representation (or simply ‘Z-notation’) can be used to express input and output signals, 
and also the transfer function of a filter. For the sake of brevity, we do not derive the Z-transform here, but 
rather demonstrate how it can be applied. 

The one-sided Z-transform of a causal signal,  can be defined as:

. (4.13)

3. IIR filters can be used in communications where they are constrained to have approximately linear phase, but that is an
advanced topic not considered here.

Figure 4.21:  Signal flow graph for an example IIR filter with 4 feedforward and 3 feedback weights.
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If we consider  to represent the input to a filter, and  to represent its output, then the Z-domain 
representation of the output is similarly defined as

, (4.14)

and the filter transfer function can be expressed as 

. (4.15)

It is possible to derive the Z-transform representations of various common signals, such as a discrete impulse, 
delayed discrete impulse, unit step, and ramp functions. 

One of the most important is the discrete impulse, denoted as , given that we are often interested in the 
impulse response of a filter or other system (an impulse contains all frequencies, and therefore applying an 
impulse as the filter input excites it across its entire range of operation). 

It is also useful to note the Z-transform representation for the delayed impulse, , where  is the 
number of samples delay. These two signals are illustrated in Figure 4.22, for the example delay of . 

Starting with the discrete impulse, we can define the Z-domain representation as

. (4.16)
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Figure 4.22:  discrete impulse (top), and discrete impulse delayed by 3 samples (bottom).
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Noting the amplitude of  at sample indices 0, 1, 2, 3... , i.e. , and  for all other sample 
indices, we can confirm that the value of , 

. (4.17)

Similarly, for the delayed impulse, we obtain

(4.18)

. (4.19)

By applying the Z-transform to convert a time domain signal to the Z-domain, we therefore observe that one-
sample delays can be represented by  (or more generally,  for a -sample delay). This notation is 
commonly used in signal flow graphs to depict delays (for instance, the delta symbols in Figures 4.20 and 4.21
could be replaced by  annotations). 

One further observation relating to the Z-transform of the discrete impulse, is that if , then we can 
easily determine the transfer function of a filter, , from the output , using (4.15), 

. (4.20)

In other words, the impulse response of a filter corresponds directly to its transfer function. 

4.5.6.  Digital Filter Design

The desired characteristics of a filter response represent inputs to the design process. For instance, to design a 
low pass filter, the parameters of passband edge frequency, stopband edge frequency, passpand ripple, and 
stopband attenuation are typically supplied. The filter design algorithm then attempts to meet these require-
ments, and assuming it can do so, outputs a set of filter weights that realise the desired response. In general, 
unless constrained to generate a filter of a specific length, the design algorithm outputs a filter that achieves the 
required response with the minimum number of weights, as this represents the most computationally efficient 
solution. 

There are several different methods for filter design, including the Windowing, Frequency Sampling, Least 
Squares, and Parks-Mclellan (Equiripple) methods for FIR filters. Each method is likely to produce a slightly 
different response for any given set of input parameters. It is outside the scope of this book to describe such 
filter design algorithms in detail, however there is plentiful support for them in signal processing design tools 
like MATLAB, Numpy etc. There is also useful theoretical background available in books such as [92] and 
[196]. Additionally, ‘special’ types of filters, such as halfband filters, raised cosine filters, and inverse sinc 
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compensation filters, all of which are commonly used in communications systems, are generally supported by 
dedicated functions within these environments.

From a practical perspective, we note simply that the filter design process produces a set of weights that are 
used in the implementation of the filter. The weight values are converted to the chosen fixed point format, 
which is specified as part of the design process; note that the filter response becomes non-ideal if the weights 
are represented with insufficient resolution. As previously shown in Figures 4.20 and 4.21, all weights of an FIR 
filter are in the feedforward path (there is no feedback path), while the IIR has both a set of feedforward 
weights, and a set of feedback weights. As we are now focusing on FIR filters, we additionally note that all of 
the above mentioned design methods produce filters with symmetric weights. Not only does this achieve the 
property of linear phase response outlined in Section 4.5.4, but it is also convenient for efficiently imple-
menting filters on FPGAs and other platforms, as we touch on next.

4.5.7.  FIR Filter Implementation

Having designed a filter response and generated the required set of weights to realise the filter, the next step is 
to implement it. In the context of communications design using the RFSoC platform, the natural target 
resource is the PL (it is also possible to implement filters in software code running on a processor). The PL 
provides a flexible, highly parallel, and low power option, and is capable of supporting the high sampling rates 
often needed in communications systems. Therefore, we focus our discussion on the PL-based implementation 
of FIR filters. 

Taking the example of an 11-weight symmetric FIR filter, we exploit the symmetry by pre-adding those 
samples from the input delay line that should be multiplied with the same weight value. For instance, the first 
and last weights in the filter have exactly the same numerical value, and so the first and last samples from the 
delay line are pre-added together, and then multiplied by the weight value , which is also equal to . This 
reduces the total number of multipliers needed to implement the filter by approximately half — a significant 
saving, as the multipliers are the most costly element within the filter architecture. The efficient, symmetric 
structure is shown in Figure 4.23.

The basic unit of computation in a filter is a Multiply Accumulate (MAC), and the hardware required to 
implement a MAC is referred to as a MAC unit. An example MAC unit is annotated in Figure 4.23. The PL is 
optimised for implementing FIR filter structures, and each of its DSP48E2 slices can support one MAC unit, 
which includes the weight multiplier and post-adder, along with the pre-adder and all associated delay 
elements. Therefore, this 11-weight example can be implemented using six DSP48E2 slices, without requiring 
any additional PL logic.   

The registers within the DSP48E2 slice can be programmed with several configurations, and thus support 
different retimed versions of the FIR, such as the transpose and systolic forms (which perform equivalent 
computation as the standard form presented here, but are optimised to maximise clock rate). We will not focus 
on retiming here, but the reader may be interested to refer to [226] for more information on this topic. 

w0 w10
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Further, it is worth noting that the implementation discussed above is a fully parallel one, wherein each multi-
plier in the signal flow graph (for instance) corresponds to a physical hardware multiplier in the PL. The 
amount of hardware required to implement the filter therefore scales within the number of filter weights, or in 
other words, the filter length. Another possibility is to serialise, or partially serialise, the filter implementation 
such that its resource footprint is reduced — this is achieved by time-sharing MAC units, so that each MAC 
unit calculates two or more MAC operations for each execution of the filter. This is only possible where the 
filter hardware can run at least twice as fast as the sampling rate to be supported, and therefore it is not suitable 
for processing at very high sampling rates, but it can be a very useful tool for filter implementations operating 
at lower sampling rates. 

4.5.8.  Filter Design Trade-Offs

The 11-weight FIR filter presented in the previous section represents a modest filter length, and the response 
achievable by such a filter is also likely to be modest. For instance, it may not be able to achieve a particularly 
sharp transition between the passband and stopband. 

In general, the following design choices tend to increase the number of weights needed to implement a filter:

• Reducing the amount of permissible passband ripple.

• Increasing the required stopband attenuation.

• Specifying a narrower transition band between the passband and stopband.

Figure 4.23:  Example of a symmetric 11-weight FIR filter.

z-1 z-1

w0 w1 w2

y[k]

x[k]

w4

z-1

z-1z-1 z-1

w5

z-1

z-1

w2

z-1

z-1

MAC
unit
99

Downloaded from www.RFSoCbook.com



CHAPTER 4: DSP Fundamentals
For instance, if you were to reduce the transition bandwidth by a factor of two, this would approximately 
double the number of filter weights required. 

To explore the performance versus cost trade-off, the design parameters for two example low pass filter designs 
are given in Table 4.2, and the resulting filter designs are presented in Figure 4.24.        

By inspection of the filter responses, it might be interpreted that the filter on the right (Design B) is “better”, 
but it will require almost 10 times more computation than Design A, on the left. For a parallel implementation, 
this also implies 10 times more resources on the PL, higher power consumption, and so on. Therefore, if both 
filters meet the application requirements, it would be preferable to choose Design A, the 23-weight filter.   

Table 4.2: Filter Design Parameters

Parameter Design A Design B

Filter design method Equiripple Equiripple

Passband edge frequency (normalised) 0.1 0.1

Stopband edge frequency (normalised) 0.2 0.125

Transition bandwidth (normalised) 0.1 0.025

Passband ripple 3dB 0.1dB

Stopband attenuation 30dB 60dB

Figure 4.24:  Two example filter designs (left — Design A; right — Design B).

0 10 20 30
Frequency (MHz)

-100

-80

-60

-40

-20

0

20

M
ag

ni
tu

de
 (l

in
ea

r)

 

Magnitude Response

0 10 20 30
Frequency (MHz)

-100

-80

-60

-40

-20

0

20

M
ag

ni
tu

de
 (l

in
ea

r)

 

Magnitude Response

23 weights
(12 MACs per output)

227 weights
(114 MACs per output)
100

Downloaded from www.RFSoCbook.com



CHAPTER 4: DSP Fundamentals
The fixed point parameters used to represent the filter weights also play a part — as mentioned previously, the 
filter response starts to deviate from the ideal, the shorter the wordlengths used. On the other hand, shorter 
wordlengths imply less expensive arithmetic components (the adders and multipliers that comprise a filter).

We can therefore conclude that there is a trade-off between the performance of a filter, and the computation 
and processing hardware required to implement it. A prudent approach is to design each filter to minimise the 
number of weights and the fixed point wordlengths, while still achieving the required functional specification. 

4.6.  The Analogue-Digital Interface

In this section, we briefly review the operations involved in analogue-to-digital (A-to-D), and digital-to-
analogue (D-to-A) conversion. With respect to the former, we have already discussed the sampling and quanti-
sation processes that are inherent to A-to-D conversion, but it is useful to confirm the overall structure and the 
role of the anti-alias filter. 

4.6.1.  Analogue to Digital Conversion

As reviewed in Section 4.1 and Section 4.2, a continuous-time analogue signal can be converted to a digital 
equivalent by sampling and quantising the signal. The key parameters linked to these operations are the 
sampling rate, in Hz, and the number of bits used in the quantiser. 

A conventional ADC operating in Nyquist Zone 1 is preceded by an analogue low pass anti-alias filter, to retain 
only the frequency components in Nyquist Zone 1, and attenuate all higher frequency signal components that 
are present at the ADC input. Without the anti-alias filter, these higher frequency components would alias into 
Nyquist Zone 1, at minimum degrading the SNR, and potentially even destroying the signal of interest. 

As noted earlier in this section, the ideal filter response is a ‘brick wall’, but this is not realisable in practice, 
either in the analogue or digital domains. Just like digital filters, analogue filters also become more expensive 
and difficult to design, the more exacting the specification. It is therefore realistic to expect that: 

• The anti-alias filter cuts off below the upper limit of Nyquist Zone 1, with the effect that some frequency 
components of interest are lost; and/or

• The transition band extends a little into Nyquist Zone 2, meaning that some level of aliasing may occur.

The above highlighted issues may be addressed by oversampling at the ADC, i.e. sampling at a higher rate than 
is necessary, according to Nyquist Sampling theorem. As a result, a more relaxed analogue anti-alias filter can 
be used, which is less expensive to implement. Any aliased components will not impact the frequency band of 
interest, and can be removed after the ADC using digital filters. 

A comparison between these two different approaches is presented in Figure 4.25. 
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One possible disadvantage of the oversampled method is that the sampling rate is higher than necessary at the 
input to the digital domain, which implies a higher computation load for subsequent processing stages. This 
issue can be easily solved by using a multirate filter to reduce the sampling rate soon after the ADC, such that 
the signal is sampled at a rate closer to the Nyquist rate. Multirate filters will be covered in Section 4.7. 

4.6.2.  Digital to Analogue Conversion

The conversion from Digital to Analogue (D-to-A) has received relatively little attention so far, but is also a 
significant theme within this book, as DACs are required to generate the communications signals to be trans-
mitted across the wireless link. 

The conventional D-to-A process involves regenerating a continuous time signal from discrete samples and 
amplitudes. This is conventionally done using a zero-order-hold techniques, which creates a “steppy” signal as 
illustrated in Figure 4.26. Analytically, we could consider that the discrete time samples have been passed 
through a rectangular filter of duration , i.e. the sampling period. 

Figure 4.25:  Comparison between Nyquist rate (top) and oversampled (bottom) ADCs and anti-alias filters.
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The D-to-A conversion process produces image spectra at integer multiples of the sampling frequency, which 
need to be removed by low pass filtering — if the signal of interest occupies the whole of Nyquist Zone 1, i.e. 
frequencies up to , this demands an expensive analogue filter with a sharp cut off. 

The signal output by the DAC, which includes the signal of interest as well as the image spectra, follows the 
sinc shape of the rectangular filter response, shown in Figure 4.27. The profile of the DAC response means that 
the spectral images are only partially attenuated, leaving remnants with significant energy that require to be 
further attenuated by an analogue reconstruction filter. Their effective removal is especially important in 
wireless communications, where the bandwidth of transmitted signals must be tightly controlled to meet 
spectral emission masks (this topic will be discussed further in Chapter 6). 

To address this issue, a low pass analogue reconstruction filter is included immediately following the DAC. 
This acts to attenuate the significant frequency components present in upper Nyquist Zones, and in doing so, 
smooths out the time domain signal (as shown at the right hand side of Figure 4.26) to produce a more intui-
tively ‘analogue’ waveform.

Even so, the application of such a reconstruction filter does not address the non-linear gain across Nyquist 
Zone 1 — this can distort the signal band of interest, especially if it extends all the way up to . We also 
encounter the same issue as with the anti-alias filter in the ADC, in the sense that a sharp transition in the 
analogue filter response is required, which is expensive and difficult to implement. Once again, oversampling 
techniques can be used to manage these issues: firstly, by increasing the sampling rate at the DAC, the require-

Figure 4.26:  DAC time domain signals and reconstruction filtering.
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CHAPTER 4: DSP Fundamentals
ments for the reconstruction filter are lessened; and secondly, as the signal of interest occupies a smaller 
portion of Nyquist Zone 1, it experiences less severe sinc-shaped distortion resulting from the frequency 
response of the DAC. 

Another mitigation is possible, which is especially relevant if the oversampling ratio is relatively low (or the 
DAC is not oversampled). In this case, there is a significant non-linear gain across the signal bandwidth, and it 
would be desirable to compensate for this effect. To do so, an inverse sinc filter is introduced in the digital 
domain, prior to the DAC, and corrects for its sinc-shaped response. 

4.6.3.  Upper Nyquist Zones

Our discussion in this section has focused on ‘conventional’ ADCs and DACs that operate in Nyquist Zone 1. 
One of the significant innovations included in the RFSoC device, is the ability of the RF-ADCs and RF-DACs 
to additionally operate in upper Nyquist Zones. In other words, in some cases the signal of interest does not 
actually reside in Nyquist Zone 1, but rather might be present in Nyquist Zone 2, or even higher Nyquist Zones 
in some cases. 

In situations where the ADC or DAC operates in an upper Nyquist Zone, the analogue filters discussed in this 
section (anti-alias for the ADC, and reconstruction for the DAC) should no longer be low pass filters, but must 
instead be designed as band pass filters targeting the desired range of frequencies. 

The operation of the RF-ADC and RF-DAC, including in upper Nyquist Zones, will be discussed in further 
detail in Chapters 9 and 11, respectively. 

Figure 4.27:  DAC frequency response, and near-ideal reconstruction filter response.
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4.7.  Multirate Operations

Multirate operations are required to change the sampling rate in a DSP system. For instance, if a signal was 
sampled at 10 MHz, a multirate operation could be used to increase the sampling rate to 40 MHz (interpolation
by a factor of 4), or alternatively, decimation by a factor of 2 could be used to reduce the sampling rate to 5 MHz. 
Further types of multriate operations are used if the sampling rate needs to be changed by a more difficult 
factor, for instance a ratio expressed as a rational fraction (like 3/2), where the ratio cannot be readily 
expressed as a rational fraction (e.g. an arbitrary factor such as 1.178134...), or even where the resampling ratio 
needs to change dynamically over time. 

For the remainder of this chapter, we focus our discussion on the most fundamental multirate operations, 
where the sampling rate is increased or decreased by an integer factor. These operations underpin the major 
tasks of Digital Upconversion and Digital Downconversion that are integral to almost any Direct-RF or IF 
Sampling SDR design and make the transition between baseband and IF or RF sampling rates. Hardened 
DUCs and DDCs are available in RFSoC devices, as discussed in Chapters 3, 9 and 11. For extended coverage 
of applications, theory and implementations, the interested reader is referred to one of the available textbooks 
on multirate signal processing [129], [261], [348], and in particular [188] which focuses on multirate DSP as it 
applies to digital communications systems. 

4.7.1.  Motivations for Multirate Processing

There are several reasons why it may be desirable to change the sampling rate in a system; however the overar-
ching motivations are to optimise computational efficiency, and often, to ease the analogue filtering require-
ments at the digital/analogue interface. 

Multirate processing is often used to maintain a sampling rate that is not much greater than the minimum rate 
according to Nyquist, which is defined as

 , (4.21)

where  is the maximum frequency component present in the signal. With the sampling rate set in this way, 
the computation involved in processing the signal takes place at a minimal (or close to minimal) rate, and the 
overall computational effort of processing the signal is optimised. This may have positive implications for the 
implementation cost and power consumption of a system design. Where the signal bandwidth changes, then it 
may be desirable to increase or decrease the sampling rate using multirate techniques, such that a similar 
relationship between the sampling rate and signal bandwidth is maintained. 

Some example scenarios that require sampling rate changes are:

• To match the sampling rates of two signal paths that will be combined — Two signals can only be 
added if they have the same sampling rate. An example might be an audio mixing desk, where voice 
captured from a phone call is combined with high quality music from a media file. The sampling rate 

fn 2fmax

fmax
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from the voice call is 8 kHz and the music is sampled at 48 kHz. Therefore, the voice can be interpolated 
by a factor of 6 to achieve the 48 kHz sampling rate, before being added to the music.

• To adjust the sampling rate closer to Nyquist when the signal bandwidth changes — In wireless 
communications, the bandwidth of a received signal can be reduced after it has been demodulated to 
baseband, as the higher frequency components (which contain mostly noise and signals on other bands) 
are not required. The benefit of doing so is to reduce the computation rate as outlined earlier.

• To match the sampling rate of an external interface, such as a DAC — Rate conversion may be 
required to match the sampling rate specified at a DAC or other external interface. Sometimes this can 
involve a rate transition by an awkward factor, if the local system sampling rate and interface sampling 
rate are not conveniently related. In wireless communications, a common scenario is to interpolate by an 
integer factor as part of the upconversion process, where a signal is modulated onto a carrier.

• To ease analogue anti-alias or image-rejection filter requirements — It is often desirable to operate a 
DAC or ADC at a higher sampling rate than is required, according to Nyquist sampling theorem (often 
referred to as oversampling), in order to achieve less exacting filtering requirements for the anti-alias or 
anti-image filter. This implies an additional rate change in the digital domain, so that the sampling rate 
can then be reduced closer to the Nyquist rate, enabling efficient computation for subsequent DSP tasks.

The next section will explore the last of these examples in a little more detail. 

4.7.2.  Oversampled ADCs and DACs

Taking the example of A-to-D conversion, if a signal occupied frequencies between 0 MHz and 480 MHz, and 
the ADC was operated at a sampling frequency of 1 GHz, then the band of frequencies between 520 MHz and 
1 GHz would alias into the band of interest, as shown in the upper part of Figure 4.28.  An analogue anti-alias 
filter with a very tight transition band (cutting off between 480 MHz and 520 MHz) would therefore be 
required — such a filter design can be difficult and costly to achieve.

As an alternative, adopting an ADC sampling rate of 2 GHz would allow a much more relaxed analogue anti-
alias filter response, as shown in the lower section of Figure 4.28. A multirate operation (decimation by 2) 
could be introduced after the ADC to reduce the sampling rate to 1 GHz, and perform the remainder of the 
anti-aliasing task digitally (noting that an components present between 1 GHz and 1.5 GHz will alias into the 
band from 0.5 - 1 GHz. We will review the mechanics of decimation in the next section. 

At the DAC, similar rationale applies regarding oversampling, and analogue filtering requirements. The intro-
duction of oversampling at the DAC can be used to lessen the requirements for the analogue image-rejection 
filter. The higher sampling rate is achieved via interpolation prior to the DAC; interpolation will be covered in 
Section 4.7.4. 
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4.7.3.  Decimation

Decimation is the process of reducing the sampling rate. In the simplest and most common cases, this is done 
by an integer factor, which is usually denoted by , for instance a decimation factor of  would be used 
to reduce the sampling rate from 300 MHz to 100 MHz. 

Decimation involves two processes: anti-alias low pass filtering, followed by downsampling, as illustrated in 
Figure 4.30. Here, we assume an input sampling rate of , and denote the output sampling rate (after 
decimation by ), as .  

Figure 4.28:  Alternative ADC sampling rates and analogue anti-alias filter requirements.
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CHAPTER 4: DSP Fundamentals
These two processes that comprise decimation can be outlined as follows:

• Low pass filtering is used to remove frequency components that would otherwise alias, when the 
sampling rate is reduced. FIR filters are generally adopted for this task, as will be assumed in this book.

• Downsampling is the process of reducing the sampling rate, by retaining only every th sample and 
discarding those in between.

The process of decimation is shown in both the time and frequency domains, in Figure 4.30. 

In the upper part of the diagram, we note that the original signal, , has most of its energy at low 
frequencies, but there are some components extending up to , i.e. half of the original sampling rate. These 
higher frequency components, above , or half of the new sampling rate, are attenuated by a low pass anti-
alias filter. The required frequency response of this filter is shown in blue in the middle right diagram. 

After the signal has been filtered to remove terms that would alias, the sampling rate can be reduced by a 
downsampler. In the time domain, notice that the period between samples is increased by a factor of 3, due to 
the downsampler discarding 2 out of every 3 input samples. In the diagram, we denote sample indices after 
downsampling using a different index term,  as opposed to , reflecting that there are fewer samples; in this 
case only every third sample is retained, i.e.

. (4.22)

In the frequency domain, the spectral images move closer together as a result of downsampling. However, as 
the low pass filter has successfully removed frequency components above , no aliasing occurs. 

In implementation terms, the ‘direct’ method of decimation shown in Figure 4.30, while intuitive, is computa-
tionally wasteful. The downsampler immediately discards  out of every  samples output by the filter, 
and therefore the computation required to generate these discarded samples is redundant. Moreover, the 
proportion of redundant computation increases with the decimation ratio. 

To address this issue, decimators are normally implemented in the polyphase form, which exploits the Noble 
Identities to reorder the computation and remove the redundancy, while generating identical outputs to the 
direct method. It is outside the scope of this book to derive the polyphase form, however this topic is well 
covered elsewhere, e.g. [188] and [261]. 

4.7.4.  Interpolation

Interpolation increases the sampling rate, usually by an integer factor denoted by . As an example an interpo-
lator could increase the sampling rate by a factor of  from 200 MHz to 600 MHz. Similar to decimation, 
interpolation also requires a low pass filter along with the rate change operation, although the two operators 
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Figure 4.30:  The process of decimating by a factor of M = 3.
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CHAPTER 4: DSP Fundamentals
occur in the opposite order. An interpolator is composed of an upsampling operation, followed by a low pass 
image rejection filter (assumed in this book to be implemented as an FIR filter), as shown in Figure 4.31. 

The two operations comprising the interpolator can be summarised as:

• Upsampling involves inserting  zero-valued samples in between each pair of original samples, thus 
increasing the sampling rate by a factor of . 

• Low pass filtering is used to remove the spectral images that are present between 0 Hz and , where 
 is the upsampled sampling rate. These images occur at integer multiples of the original sampling rate.  

Like the decimator, we can visualise the process of interpolation in both the time and frequency domains, as 
shown in Figure 4.32 for the example of .   

The upsampler inserts two zero-valued samples between the original ones, raising the sampling rate by a factor 
of 3. In the frequency domain, the two spectral images that are symmetric around , the original sampling 
rate, now exist in the region between 0 Hz and half of the new, upsampled sampling rate, i.e. . This is 
shown in the centre right portion of Figure 4.32. 

These two spectral images must then be removed using a low pass image rejection filter, as a final stage in the 
decimation process. This manifests in the time domain as a ‘smoothing’ of the signal, i.e. the zero-valued 
samples are interpolated to intermediate amplitudes between the original samples. 

Interpolation is an inefficient process, based on the model shown in Figure 4.31: upsampling inserts  
zero-valued samples for every original sample, and these zero-valued samples are then processed by the filter, 
even though they contribute nothing to the computed output samples (zero multiplied by any weight value is 
still zero!). This implies that there is a degree of redundant computation in the interpolation filtering process, 
which is more significant for higher interpolation ratios.

Figure 4.31:  Interpolator for a factor of L.
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Figure 4.32:  Interpolation by a factor of L = 3.
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As for the decimator, a set of optimisations can be made to develop a polyphase form of the interpolator, which 
produces identical results to the direct form described here, but removes the redundant computation. The 
reader is again referred to textbooks such as [188] and [261] for extended treatment of the topic. 

The premise of the polyphase method, for both interpolation and decimation, is “only calculate what you 
need!”. There is no real reason not to use the polyphase method, as it requires significantly less computation 
compared to the direct method of implementing the decimator and interpolator (as shown in Figures 4.29 and 
4.31, respectively), and generates identical results. Polyphase interpolators and decimators are amenable to 
implementation in PL, and indeed the reduced computational requirements can be exploited to produce very 
resource-efficient designs. In this book, we therefore assume that any multirate designs for DUCs, DDCs and 
other interpolation or decimation tasks are implemented using the polyphase method. 

4.7.5.  Halfband and L-Band Filters

On the theme of efficient implementation, it is worth highlighting a special class of filter that is especially 
suited for multirate applications. We note that a rate change by an integer factor of  requires a low pass filter 
passing th of the band, regardless of whether the rate is being increased or decreased; for instance, factor-
of-2 decimators and interpolators both require a low pass filter that passes 1/2 of the band. Nyquist filters, also 
known as Lth-band filters, satisfy this brief: they pass th of the band, as shown in Figure 4.33 for example 
filters from 2-band to 6-band.

Nyquist filters designs have a characteristic impulse response, where every th weight is exactly zero, other 
than the central one (which has a value of ). Therefore, from an implementation perspective, these zero-
valued weights do not need to be computed as MAC operations, and thus the filter implementation can be 
optimised to save computation and hardware. The saving is most prominent for lower values of , with the 
halfband filter (i.e. ) offering the largest benefit and being more commonly used (for higher order 
bands, other filter design methods may produce less expensive designs, i.e. with fewer weights).   

As shown in Figure 4.34, the impulse response of the halfband filter is symmetric (which can be exploited as 
previously demonstrated in Figure 4.23) and can be further optimised by not computing the zero-valued 
weight multiplications. The central weight multiplication by 0.5 can be achieved by an arithmetic shift to the 
right by one place, which costs almost nothing — only routing resources to rewire the bits. Halfband filters can 
be therefore implemented particularly cheaply.  

The requirement to interpolate or decimate by factor of 2 arises frequently, particularly as large interpolation 
and decimation tasks can be efficiently implemented as a cascade of smaller ones (to be further discussed in 
Section 4.7.6), and 2 is a factor of any even-valued rate change. 
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Figure 4.33:  Example Nyquist filter magnitude responses (normalised).
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Figure 4.34:  Impulse response of an example halfband filter.
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4.7.6.  Decimation and Interpolation Cascades

When the decimation or interpolation task extends to larger integer factors, the low pass response required for 
the anti-alias or image rejection filter, respectively, can become expensive to implement. The expense arises 
because the required transition band becomes progressively narrower (with respect to the sampling rate), the 
higher the rate change factor, and this leads to longer filters requiring more computation. 

For a more computationally efficient solution, it is common to partition a larger rate change factor into several 
smaller rate change tasks. For instance, rather than interpolating by a factor of 18 using a single stage, an alter-
native approach is to cascade three interpolators, performing smaller rate changes of 2, 3, and 3 (noting that 

). This results in simpler filter designs, and less computation overall. 

The method of cascading smaller interpolators / decimators is used in the hardened DUCs and DDCs present 
in RFSoC devices. Cascades of interpolators and decimators are used to achieve the set of supported interpo-
lation and decimation ratios, with the aid of multiplexers to select or bypass stages as required. This topic is 
covered in detail in Chapter 9 for the DDC decimators, and in Chapter 11 for the DUC interpolators. 

Example: Rate Change of 6, as (i) a Single Stage, and (ii) a Cascade of Two Stages

For a simple example, let us consider a signal occupying the band from 0 to 45 MHz, which is to be interpo-
lated by a factor of 6, from a sampling rate of 100 MHz to an interpolated rate of 600 MHz. We assume that a 
passband ripple of 0.2 dB is permissible, and that the stopband attenuation (image rejection) must be at least 
60 dB. We assume the direct method of interpolator implementation (polyphase methods have not been 
covered in sufficient detail to permit analysis, but could be used to optimise the computation rate of both of 
the solutions presented here). 

A single-stage approach, interpolating by a factor of 6, would require a low pass filter response that passes 1/6 
of the band, cutting off between 45 MHz and 55 MHz. With the filtering operating at 600 MHz, the transition 
band is relatively narrow in a normalised sense, leading to an expensive filter. This requirement could be met 
by a symmetric filter design with 151 weights. The filter operates at 600 MHz and therefore the computation 
rate is 45.6 GMACs/s (exploiting coefficient symmetry). 

Alternatively, the task could be partitioned into two simpler interpolators with individual rate changes of 2 and 
3 (in either order), making an overall interpolation ratio of 6. For the purposes of this illustrative example, we 
will assume that Stage 1 interpolates by 3, and Stage 2 interpolates by 2. These two stages are depicted in the 
upper and lower halves of Figure 4.36, respectively 

Notice the filter designs shown in Figure 4.36 — the Stage 2 filter can be more relaxed than you might imagine! 
This is because Stage 1 has created a significant portion of ‘empty’ spectrum, by removing the spectral images 
arising from the Stage 1 upsampler. The transition band of the Stage 2 filter can therefore be much wider, 
extending from 45 to 255 MHz, leading to a cheaper filter design. 

2 3 3 18=
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We can therefore design filters to suit the requirements for both approaches, i.e.

• A single stage interpolator, and

• A cascade of two interpolator stages;

and compare the computation involved. All filters are specified with the parameters mentioned earlier (0.2dB 
passband ripple and 60dB stopband attenuation), with the frequency specifications derived from the positions 
of the spectral images. The results are given in Table 4.3. 

Notably, the single stage interpolator design requires a 151 weight filter, which translates to 76 MAC opera-
tions per calculated output sample, taking into account coefficient symmetry. As the filter operates at 600 
MHz, the computation rate of this interpolator option is 45.6 GMACs/s. The cascaded design has two stages, 
with one being able to operate at an intermediate sampling rate of 300 MHz. The design of both of the filters — 
but in particular the second one — can be relaxed significantly. The cascaded design therefore yields a consid-
erable saving in terms of computation, requiring 15 GMACs/s, less than one third of the original value. 

Figure 4.35:  Interpolation by 6 using a single interpolator.

frequency

m
a
g
n
it
u
d
e

6fs0

Upsample by 6

fs 3fs

fu /2 fu

2fsfs /2

frequency

m
a
g
n
it
u
d
e

6fs0

Low Pass Filter

fs 3fs

fu /2 fu

2fs

Low Pass Filter Response (Interpolator-by-6)

Output (interpolated)

frequency

m
a
g
n
it
u
d
e

6fs0 fs 3fs

fu /2 fu

2fs
115

Downloaded from www.RFSoCbook.com



CHAPTER 4: DSP Fundamentals
Figure 4.36:  Interpolation by 6, using two interpolators in cascade (stage 1 interpolates by 3, stage 2 interpolates by 2).
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CHAPTER 4: DSP Fundamentals
This example demonstrates that a cascaded interpolator can reduce the computational requirements, 
compared to a single stage interpolator. A good rule of thumb is to choose smaller rate change factors where 
possible, as these result in simpler filter designs, and to maximise the use of factor-of-2 decimators and inter-
polators, where the efficiency of the halfband filter type can be exploited. The concepts explored here can be 
applied to interpolation cascades with additional stages, and also to cascaded decimators, and can be further 
optimised through the use of polyphase methods. 

The RFSoC’s integrated DUCs and DDCs make use of the same concepts to achieve efficient interpolator and 
decimator designs in dedicated silicon; through analysis of the individual filter responses comprising these 
cascades, we will later observe a similar relaxation of frequency specifications, depending on the position of 
each filter in the cascade.

4.7.7.  Cascade Integrate Comb (CIC) Filters

The Cascade Integrate Comb (CIC) is a particularly efficient class of filter, often used for multirate operations 
[197]. As its name suggests, the CIC is composed of several stages of integrators and combs (which are very 
simple, multiplierless filters) in cascade. An individual stage is derived from the moving average, i.e. an FIR 
filter of length  weights, where each weight value is . The trick of the CIC is to reformulate the compu-
tation of the moving average, such that instead of the conventional FIR structure, a reduced-complexity archi-
tecture can be used to achieve the same output. 

The CIC filter, while inexpensive in hardware terms, has the disadvantage that its magnitude response is very 
sub-optimal: the passband is flat only at very low frequencies (and quickly starts to ‘droop’), while stopband 
attenuation is acceptable only when several stages are cascaded — which makes the droop worse. There are 
also some implementation challenges in terms of specifying the various internal arithmetic wordlengths. 
Nevertheless, the CIC filter often finds utility in multirate systems such as DUCs and DDCs. The role it tends 

Table 4.3: Comparison of two alternative interpolator-by-6 designs (single stage, and a cascade of two stages).

Filter sampling 
rate

Filter length 
(no. weights)

MAC operations 
per output samplea Computation rate

Single stage 600 MHz 151 76 76 * 600 MHz 
= 45.6 GMACs/s

Cascade: Stage 1 300 MHz 79 40 40 * 300 MHz 
= 12 GMACs/s

Cascade: Stage 2 600 MHz 15 5b 5 * 600 MHz 
= 3 GMACs/s

Cascade: Total = 15 GMACs/s

a. Taking into account coefficient symmetry to reduce the number of MAC operations.
b. Of the 15 weights, there are only 5 individual weight values (due to symmetry and zero-valued weights).

W 1 W
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CHAPTER 4: DSP Fundamentals
to play is the final stage of interpolation, or the first stage of decimation, where the sampling rates are highest 
and its computational efficiency can be enjoyed the most, but where the characteristic CIC ‘droop’ tends not to 
affect the signal bandwidth of interest4. 

We elect not to focus on CIC filters in this book, because the first stages of the post-ADC decimation chain, 
and the final stages of the pre-DAC interpolation chain, are both already provided in hardened and optimised 
form as part of the RFSoC’s RFDCs [90]. These decimators and interpolators are implemented as cascades of 
polyphase FIR filters; their functionality will be reviewed in Chapters 9 and 11, respectively. While there may 
be some specific applications where it is useful to implement CIC filters in addition to the RFDC’s decimators 
and interpolators, or even in place of them (the RFDCs permit their internal decimators and interpolators to 
be bypassed if desired), it is anticipated that most RFSoC SDR designs will not involve CIC filters. Design tool 
support for CICs is however available if needed [21]. 

4.7.8.  Resampling and Other Multirate Operations

In addition to the integer rate changes discussed over the last few pages, there are other types of multirate 
operations, as briefly mentioned in the introduction to Section 4.7. These can be referred to collectively as 
resampling operations, i.e. where the amplitudes of a signal are generated at a new set of sampling instants. This 
is analogous to passing a digital signal through a DAC to convert it to analogue, and then through an ADC to 
convert it back to digital, using a different sampling frequency or phase. However, the entire process can be 
undertaken digitally using multirate signal processing techniques, provided that signals are sampled above 
Nyquist rate. 

Briefly, there are three main types of operation to be aware of, beyond simple decimation and interpolation by 
integer factors. These are:

• Resampling a signal by a rational fraction — If the sampling rate is to be changed by the ratio of two 
integers, e.g. a rate change from 100 MHz to 150 MHz could be expressed as . Rational 
fractional rate changes can be achieved using a cascade of an interpolator and decimator, e.g.  
and  in this example. The resulting structure can be optimised using polyphase methods.

• Resampling a signal by an irrational fraction, or by a factor that changes over time — Where there is 
no convenient integer-based expression for the resampling ratio, or where it is dynamic, a different type 
of approach is required. Popular methods include highly oversampled polyphase filters, and Farrow 
structures [158].

• Changing the sampling phase, or introducing a fractional delay — Occasionally it may be desired to 
delay a signal by a duration less than one sample period. This can be achieved using similar methods to 
the second category.

4. The droop does not significantly impact the signal bandwidth of interest, provided that the signal bandwidth is small with 
respect to the sampling rate at the output of the CIC. If desired, droop can be compensated by inserting a correction filter, 
although this adds to the overall cost of implementation.

R 3 2=
L 3=

M 2=
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These more complex multirate techniques are often required in communications receivers, which must 
synchronise to the frequency and timing parameters of incoming signals. It is beyond the scope of the current 
book to cover these topics in detail; books such as [188], [230], and [301] may be useful for further study. 

4.8.  Chapter Summary

In this chapter, we have reviewed some of the key DSP concepts underpinning the SDR theme of this book. In 
particular, the processes of sampling, quantisation, digital-to-analogue and analogue-to-digital conversion 
were covered, and the frequency domain was briefly touched upon (much more on this to follow in Chapter 5). 

The topic of digital filtering was introduced. Filtering is used to change the frequency content of a signal, and 
forms a key building block in many DSP systems, including in wireless communications. The PL portion of the 
RFSoC is particularly well-equipped for implementing high speed filters, via its hardened DSP48E2 arithmetic 
blocks. 

The last part of the chapter focused on multirate operations, in particular interpolation and decimation to raise 
or lower the sampling rate by an integer factor. The RFSoC architecture includes hardened support for interpo-
lation and decimation at the DAC and ADC interfaces, respectively, which is discussed in Chapters 9 and 11. 
The concepts presented here should prove useful background for understanding the functionality of these 
dedicated, hardened RFSoC features, or building your own custom designs using the PL. 
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Notebook Set B
DSP Fundamentals 

For those without a background in DSP, or who would like a refresher, a set of Jupyter notebooks is provided to 
review key concepts from a simulation perspective, consolidating on the theory presented in Chapter 4. These 
notebooks review the DSP fundamentals of sampling and quantisation, ADCs and DACs, and digital filtering. 
In all cases, you can investigate the impacts of different parameters by making adjustments and re-running the 
simulations.

There are four notebooks to explore on the fundamentals of DSP. Their relative locations are listed as follows:

   ALL 01_sampling.ipynb — rfsoc_book/notebook_B/01_sampling.ipynb

   ALL 02_quantisation.ipynb — rfsoc_book/notebook_B/02_quantisation.ipynb

   ALL 03_adcs_and_dacs.ipynb — rfsoc_book/notebook_B/03_adcs_and_dacs.ipynb

   ALL 04_digital_filter_design.ipynb — rfsoc_book/notebook_B/04_digital_filter_design.ipynb

B.1.  Sampling

Sampling is the process of converting a continuous-time signal to a discrete-time signal representation, and it 
is an important aspect of analogue-to-digital conversion. The first notebook in this series named 01_sam-
pling.ipynb provides an interactive example of sampling, similar to the one presented in Chapter 4. You can 
vary the sampling rate and the frequencies of the input sine waves, and view the resulting changes in the time 
and frequency domains. 
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Notebook B: DSP Fundamentals
This notebook also contains an example that demonstrates the effect of aliasing, which shows how signals 
above  are aliased (or ‘folded’ down) into the frequency band between 0 Hz and  Hz. As noted in 
Chapter 4, this occurs based on Nyquist Zones in a predictable way. A simple time domain plot that illustrates 
aliasing is presented in Figure B.1. Notice that aliasing has occurred due to an insufficient sampling rate, 
resulting in a lower-frequency sinusoid being interpreted from the set of available samples. 

B.2.  Quantisation

Quantisation is the process of converting the amplitude of a signal to a discrete set of representable levels. The 
second notebook to explore in this series is named 02_quantisation.ipynb. This notebook will investigate the 
effect of quantisation in the time and frequency domains for a set of test input signals, and will confirm that 
quantising with a greater number of bits produces a more accurate representation of the signal. 

The modelling of quantisation as noise is also explored. The notebook confirms that this noise can be tonal, i.e. 
where energy is concentrated at a number of discrete frequencies. Additionally, the use of dithering to “whiten” 
the quantisation noise (in other words, to reduce or remove the tonal nature of the noise), is demonstrated. 

Dithering is useful in wireless communications applications, because (in the transmitter) tonal noise can 
generate significant out-of-band emissions that interfere with other users, and (in the receiver) tonal noise can 
create harmonics that compromise signal integrity and make signal reception more difficult — white noise 
(even with higher overall energy) is preferable.

Through this notebook, you can experiment with different parameters to gain an appreciation of the effects on 
the quantised signal.

fs 2 fs 2

Figure B.1:  Time domain plot illustrating aliasing of a sampled waveform.
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B.3.  ADCs and DACs

Notebook three reviews the process of converting analogue signals to digital signals, and vice versa. The 
sampling and quantisation operations reviewed in the first two notebooks are integral to these conversions, but 
there are also aspects of filtering and oversampling to consider too, as investigated here. 

To begin exploring this example, open the notebook named 03_adcs_and_dacs.ipynb.

In this notebook, we review the use of an anti-aliasing filter and oversampling techniques when acquiring a 
signal using an ADC. We also explore signal reconstruction with a DAC, by investigating the Zero Order Hold 
(ZOH) technique and the reconstruction filter (as previously reviewed in Section 4.6.2). A time domain plot of 
the digital to analogue conversion process is provided in Figure B.2. As shown, a ZOH is applied to a digital 
signal, resulting in a ‘stepped’ output signal. This signal is smoothed using a reconstruction (lowpass) filter. 

As for the other examples in this set, you can experiment by applying your own custom parameters for the 
ADC and DAC processes, and observing how they effect the results. 

B.4.  Filtering and Filter Design

The final notebook in this set, 04_digital_filter_design.ipynb, introduces the fundamentals of digital filters, 
which are ubiquitous components in digital communications systems, and DSP applications in general. By 
working through this notebook, you will gain an understanding of how to design your own digital filters. 

The design of filters to change the frequency content of a signal is reviewed, covering lowpass, highpass, 
bandstop, and bandpass filters. An example plot of the magnitude response for each type is shown in Figure 

Figure B.2:  Time domain plot illustrating the digital to analogue reconstruction process.
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B.3. The filter phase response is also explored. We also consider the key parameters involved in specifying a 
filter design, an example of which is shown in Figure B.4. Filter design methods are also explored, in particular 
the Window Method, Parks McClellan Algorithm, and the Least Squares Method.   

Figure B.3:  Magnitude response plots of a lowpass filter (a), highpass filter (b), bandpass filter (c), and bandstop filter (d).

A.

C. D.

B.

Figure B.4:  An example of a highpass filter design.
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Chapter 5
Spectral Analysis
David Northcote and Robert W. Stewart 

In this chapter, we will review standard spectral analysis techniques, including the Fourier Series, the Fourier 
Transform, the Discrete Fourier Transform (DFT), and its more efficient version, the Fast Fourier Transform 
(FFT). We will also explore common techniques for analysing and displaying the frequency spectrum as both 
the one sided and two-sided forms. This discussion will also include spectrograms, which are created using the 
Short-Time Fourier Transform (STFT).  Later in Chapter 7 we will review the complex signal frequency 
representation of baseband I and Q signals, and also use the FFT and inverse FFT for orthogonal frequency 
domain modulation and demodulation in Chapter 16.

Electromagnetic waves are everywhere around us, from light waves to radio waves, to X-rays, and so on. Most 
modern communications use frequency bands from VHF (a few 10s of MHz) to mmWave (a few 10s of GHz). 
Measuring the frequency content and power levels of these radio waves is a process known as spectral analysis. 
Instrumentation and specialised equipment, such as a spectrum analyser tool, can measure essential properties 
of electromagnetic waveforms and display these measurements to a user. With the likes of the RFSoC sampling 
at a few GHz, we can digitise wide radio spectrum bands. Using Fourier or frequency domain analysis, we can 
measure and then present acquired waveforms' magnitude and phase spectra.

5.1.  Fourier Theorem

Many modern communication systems and related measurement instrumentation use Fourier analysis to 
investigate a waveform's frequency content and orthogonal Fourier transform methods for signalling. Jean-
Baptiste Joseph Fourier was a French mathematician who studied in Grenoble, France, around the end of the 
French Revolution (1789-1799). Fourier experimented with heat propagation, and in 1822 he published a book 
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on heat flow named La Théorie Analitique de la Chaleur (The Analytic Theory of Heat) [165]. In his book, 
Fourier presented the process for decomposing a signal into a set of harmonically related periodic waveforms, 
which is essentially the Fourier Theorem or the Fourier Series.

In modern-day Fourier Series for time domain signals, we can take any periodic waveform of fundamental 
period  and decompose it into a sum of sine and cosine waves of varying amplitudes at the fundamental 
frequency ( ) of the signal, and harmonically related components . This summation is 
known as a Fourier Series and can be used to decompose a waveform into a harmonically related sum of any
arbitrary base waveform. For example, triangular waves, square waves (known as the Walsh-Hadamard 
decomposition) or some defined wavelet.

In the world of time domain signal processing, decomposing a signal into a sum of sine waves is always the way 
forward. The reason is simple. If a sine wave is input to a linear system, then the output is a sine wave at exactly
the same frequency — the amplitude might be modified, and the phase might be changed, but the frequency 
remains the same. Given that we invariably work with linear systems in DSP, and often assume radio environ-
ments to be linear (or nearly linear), then by presenting the characteristics of a signal or a system in terms of 
sine waves means that we can characterise the frequency content or the transfer function across the frequency 
spectrum. This is not true of any other base waveform. If we input a square wave into a linear system, it will 
NOT always output a square wave of the same frequency with modified amplitude and phase.

In the following sections, we will review the fundamental Fourier series using some simple periodic 
waveforms, and illustrate how we can calculate, present and analyse the outputs of the Fourier Series calcu-
lation. We will also show how the more general Fourier Transform is derived.

5.1.1.  Fourier Series of a Square Wave

The classic Fourier series example is to decompose a periodic square wave into a sum of harmonically related 
sine and cosine waves. We can begin by defining our square wave to have a period of  and a peak-to-peak 
amplitude of 6. You can inspect the square wave on the left of Figure 5.1. Notice that the square wave does not 
oscillate around 0 as it contains a DC bias of +3 (or in frequency terms we could define this as the 0 Hz cosine 
term of amplitude 3). The DC bias is equivalent to the average value of the square wave and is very important 
for our upcoming analysis. 

We can approximate the square wave using a sinusoid consisting of similar characteristics. This sine wave is 
defined mathematically as , where  is the phase in radians. You can inspect a plot of the 
sine wave on the right of Figure 5.1. Notice that we gave the sinusoid a DC bias of +3 and an amplitude coeffi-
cient of . Don’t worry about how the amplitude coefficient of the sinusoid has been calculated as we 
will discuss this later in Section 5.1.2. It is not a great approximation of the square wave, but it is a start.

The Fourier Theorem states we should add several harmonically related sine and cosine waves together to 
improve the Fourier series approximation of our periodic waveform. The next sine wave can be defined mathe-

T
f0 1 T= 2f0 3f0 4f0 

2

3 12   x sin+ x

12  
126

Downloaded from www.RFSoCbook.com



CHAPTER 5: Spectral Analysis
matically as  and can be inspected on the left of Figure 5.2. This sinusoid oscillates three 
times as fast in comparison (its the 3rd harmonic) to the fundamental sine wave and has a lower amplitude 
coefficient. This sine wave can be added to our existing approximation resulting in the waveform shown on the 
right of Figure 5.2. 

Notice that our approximation is beginning to look more like a square wave. Let’s add another sinusoid defined 
as . This (5th order harmonic) sine wave oscillates faster and has a lower amplitude coeffi-
cient than the previous two. We can inspect our new square wave approximation on the right of Figure 5.3.

It should be clear now that the approximation of the square wave will improve as we sum more harmonically 
related sine waves together. For example, consider the plots on the left and right of Figure 5.4. These square 
wave approximations are created using a summation of 13 and 26 sine waves, respectively.

The main point of the example above is to explore the underlying principles of Fourier’s Theorem, where we 
can represent a periodic waveform by summing sine and cosine waves together. In this example, if we summed 

Figure 5.1:  A square wave (left). A sinusoid used to approximate the square wave (right). 
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Figure 5.2:  The second sine wave (left). Accumulation of two sine waves that are approximating a square wave (right). 
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CHAPTER 5: Spectral Analysis
together an infinite number of harmonically related sine waves, with the correct amplitudes, we would be able 
to reproduce the square wave. We can write this summation mathematically,

, (5.1)

where  is the periodic square wave. The sum of sine waves given in (5.1) is known as a Fourier Series. We 
can take a step further and describe a generalised Fourier Series mathematically as,

(5.2)

As you can see, the periodic waveform  is equal to a weighted sum of sine and cosine waves (albeit the first 
example only has sine waves and the amplitudes of the cosines were zero) where:

Figure 5.3:  The third sine wave (left). Accumulation of three sine waves that are approximating a square wave (right). 
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Figure 5.4:  Square wave approximation using a sum of 13 sine waves (left) and 26 sine waves (right).
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•  is the DC bias,

•  to  are the cosine amplitude coefficients,

•  to  are the sinusoid amplitude coefficients,

• and .

We can also represent  using a series summation:

. (5.3)

In this form, we should be able to represent any (real valued) periodic waveform as a sum of sine and cosine 
waves with defined amplitudes. In the following section, we will present the classical Fourier Series to calculate 
the DC bias ( ) and amplitude coefficients  and  of the Fourier Series expansion.

5.1.2.  Fourier Series Coefficients

The Fourier Series coefficients provide the weighting for the DC bias and each sine and cosine wave required 
to expand a periodic function. It will be necessary to use appropriate mathematics in the form of definite 
integrals to compute these coefficients. We can begin by defining three fundamental equations that allow us to 
calculate the DC bias  and the amplitude coefficients  and . 

, (5.4)

, (5.5)

. (5.6)

We will now demonstrate how to compute the DC bias  for the periodic square wave we defined previously 
in Section 5.1.1. This square wave is periodic over the interval . Two statements can be made about the 
square wave across this interval. 

1. The square wave amplitude is 0 between the interval .
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2. The square wave amplitude is 6 between the interval .

To compute , we expand the definite integral in (5.4). The amplitude of the square wave across each interval 
is used to compute the DC bias as follows.

The DC bias result makes sense as we can clearly see that the square wave oscillates around the value of +3 in 
Figure 5.1. We can use this value later when defining our Fourier Series of the square wave. We will now 
evaluate the cosine coefficients. There may be an infinite number of cosine coefficients as . Therefore, 
we should create an expression that can be used to calculate a cosine coefficient  for any value of .

You may be surprised that . In essence, our particular square wave does not contain a cosine 
component for any value of . We will explain this result in a moment. Next we move on to derive a similar 
expression for the sine wave coefficients .
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In the above expression, the term  evaluates to  when  is even, or  when  is odd. We can write 
these two cases mathematically to simplify our expression for  as below,

(5.7)

If we plug-in the expressions for ,  and  into (5.3), we arrive at the Fourier Series expansion for the 
square wave,

. (5.8)

We can calculate the first four terms of (5.8) and plot the results for comparison, as shown in Figure 5.5. Notice 
that the square wave approximation improves as the number of accumulated sine waves increase. Also, it is 
important at this stage to mention the “ringing” that occurs at discontinuities (sudden changes in amplitude). 
This “ringing” is known as Gibbs Phenomenon. We won’t cover Gibbs Phenomenon in this chapter, but you 
can read more about it in [195].

The square wave above is a specific case that expands into a Fourier Series consisting of only sine waves. Figure 
5.6 presents two similar square waves, but with different phase, and the first sinusoidal term of their corre-
sponding Fourier Series expansions. The square wave on the left is another unique case whose Fourier Series 
consists of only cosine waves (by virtue of being an even symmetric square wave). Notice that the square wave 
has a similar amplitude and duty cycle as before. However, the phase of the waveform has shifted by .

The Fourier Series expansion for this square wave is given as,

. (5.9)
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The square wave on the left of Figure 5.6 shares the same phase relationship with a cosine wave, which means 
its Fourier Series expansion will only use cosines. Many practical Fourier Series expansions will use a sum of 
sine and cosine waves. For instance, the square wave on the right of Figure 5.6 does not share the same phase 
relationship with a sine or cosine wave as it exhibits a phase shift of  (in comparison to the square wave in 
Figure 5.5). Therefore, its corresponding Fourier Series expansion will require a weighted sum of both sine and 
cosine waves to represent the square wave correctly.

Up until now, we have only explored the Fourier Series expansion of a square wave. The same process can be 
used to obtain the Fourier Series expansions of other periodic waveforms, such as a sawtooth wave. Figure 5.7
contains a plot of a sawtooth wave and the first three terms of its Fourier Series expansion for you to inspect.

Figure 5.5:  First three significant sine wave terms with amplitude ( , , )with DC bias ( )of a square wave
Fourier Series expansion.
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5.1.3.  Time, Frequency, and Harmonics

The Fourier Series expansions we have performed so far are periodic across the interval . We can also 
expand waveforms that are periodic over an interval of time, such as the waveform given in Figure 5.8. This 
waveform is periodic over the interval , where  is the period of the waveform in seconds (s).

We can compute the Fourier Series over an interval of time by ensuring the sine and cosine waves, which 
expand a periodic function, are still periodic over the interval . Begin by modifying (5.3) to 
express the Fourier Series expansion over any time interval by substituting in  as below,

, (5.10)

where  is the time in the range . We can rewrite the Fourier Series coefficients as,

Figure 5.7:  First three terms of a sawtooth Fourier Series expansion.
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CHAPTER 5: Spectral Analysis
, (5.11)

, (5.12)

. (5.13)

Now that we are expressing the Fourier Series across an interval of time, we can make several observations 
about the frequency content of a Fourier Series expansion. We can use the waveform given in Figure 5.8 as an 
example. The DC bias and the first three sine and cosine terms for this waveform are plotted in Figure 5.9.

Notice that the first sine and cosine waves have the same period  as the original waveform. The period of the 
subsequent terms are shorter, i.e.  and . We can express the waveforms in the Fourier Series 
expansion in terms of the fundamental frequency  of the original periodic waveform as,

. (5.14)

We can deduce that the sine and cosine waves that make up the expansion are a positive integer multiple of the 
original waveform’s fundamental frequency. These sine and cosine waves are known as harmonics and are 
present at frequencies . For instance, the first three terms of a Fourier Series expansion may consist of sine 
and cosine waves at multiples of the fundamental frequency, i.e. ,  and .

The Fourier Series can expand a periodic function into harmonically related sine and cosine waves of the 
fundamental frequency. As we will explore later in Section 5.2, the Fourier Series cannot be used to derive the 
frequency content of an aperiodic waveform. The Fourier Transform is normally applied to continuous 
aperiodic waveforms to reveal their frequency content.

a0
1
T
--- g t  td

T 2–

T 2

=

an
2
T
--- g t  2nt

T
------------ 
 cos t,        nd

T 2–

T 2

 1 2 3   = =

bn
2
T
--- g t  2nt

T
------------ 
 sin t,        nd

T 2–

T 2

 1 2 3   = =

T
T 2 T 3

f0

f0
1
T
---=

nf0
f0 2f0 3f0
134

Downloaded from www.RFSoCbook.com



CHAPTER 5: Spectral Analysis
5.1.4.  Euler’s Formula

We will soon investigate a complex definition of the Fourier Series in Section 5.1.5. Before progressing further, 
we should review Euler’s formula, which is widely known across many science, engineering, and mathematical 
disciplines. Euler’s formula describes the relationship between a complex exponential function and associated 
trigonometric functions. It can be expressed as

, (5.15)

Figure 5.9:  The plots above illustrate the DC bias and the first three terms in the Fourier Series expansion for the wave-
form given in Figure 5.8. Plot A contains the DC bias, plots B to D show the first three cosine waves, and plots E to G 

contain the first three sine waves.
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CHAPTER 5: Spectral Analysis
where  is the base of the natural logarithms (also known as Euler’s constant and is equal to approximately 
2.718...),  is an angle, and . We can plot Euler’s formula on the complex plane by cycling through 
values of  in the range , as shown in Figure 5.10.

The plot of Euler’s formula has produced a circle of radius 1 on the complex plane, which is commonly known 
as the unit circle. The real and imaginary co-ordinates are equal to  and , respectively. We can 
easily compute a point on the complex plane for any angle of . For example, when , we obtain,

 . (5.16)

If the complex exponential is negative, , the equation can be expressed as

, (5.17)

since  and . Equation (5.17) is the complex conjugate of (5.15), which 
is useful to remember.

Although Euler’s formula may appear intimidating, it is a very valuable identity. Complex exponentials can 
reduce the difficulty of performing mathematical operations on complex numbers. For instance, multiplying 
exponentials can be as simple as summing their powers,

. (5.18)

We can represent sine and cosine functions in terms of positive and negative complex exponentials. Let us 
begin by defining the equations for the real (Re) and imaginary (Im) parts of a complex number denoted as , 
where  is the complex conjugate.

e
 j 1–=
 0 2 

Figure 5.10:  Sketch of Euler’s formula showing the unit circle and the relationship between 
trigonometric functions and the complex exponential.
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CHAPTER 5: Spectral Analysis
(5.19)

(5.20)

Then, substitute  and  into (5.19) to produce an expression for .

(5.21)

Repeat the substitution with (5.20) to obtain an expression for .

(5.22)

It is worth mentioning that both trigonometric and complex exponential notations are valid representations of 
complex numbers. We will use both notations throughout this chapter as required.

5.1.5.  The Complex Fourier Series

Up to this point, we have obtained Fourier Series expansions of real valued waveforms using trigonometric 
terms. However, it is useful to represent the Fourier Series in terms of complex exponentials. This technique is 
known as the Complex Fourier Series expansion, which allows the Fourier series of a complex waveform to be 
calculated i.e. a waveform with both real and imaginary terms. In this section, we will derive the Complex 
Fourier Series, which will prove useful later when investigating the Fourier Transform.

Begin by substituting the identities in (5.21) and (5.22) into (5.3). Then rearrange the expression as,

(5.23)

We can use  to simplify the expression further.
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CHAPTER 5: Spectral Analysis
(5.24)

Now, reduce the expression by simply reversing the limits of the second summation so that  operates over the 
range . Each summation now contains the same complex exponential, .

(5.25)

Let us set a new variable  in terms of the Fourier Series coefficients as,

(5.26)

Substituting  into (5.25) we obtain the following.

(5.27)

Finally, we can rewrite (5.27) to reveal a definition for the Complex Fourier Series over .

(5.28)

The variable, , is a complex number that contains the original Fourier Coefficients , , and . We can 
rearrange (5.28) to solve for , which is provided in Appendix A. The expression for  over  is,

. (5.29)

If , (5.29) reduces to the expression for  given in (5.4).  As above for the trigonometric Fourier series, 
we can generalise the Complex Fourier Series so it operates over any interval in time. Substitute  
into (5.28) to produce,
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CHAPTER 5: Spectral Analysis
. (5.30)

We can now create a new expression for  over the interval  as follows.

(5.31)

Conventionally, we normally write the complex exponential using the fundamental frequency of the periodic 
waveform, where . The final expression for  becomes,

. (5.32)

5.1.6.  Positive and Negative Frequencies

Notice that the Complex Fourier Series in (5.30) operates on negative values of , which means our Fourier 
Series expansion will contain negative harmonics of the fundamental frequency. These negative frequencies 
must be addressed in a similar way that we approach positive frequencies. The most effective way to discuss 
both positive and negative frequencies is through an example that uses the Complex Fourier Series.

Let us begin by considering a waveform  that is composed of three cosine waves. We will represent each 
cosine wave using the notation , where  is the amplitude,  is the frequency, and  is an interval 
of time. The waveform is defined as,

. (5.33)

For simplicity, the frequency of the cosine waves are 100Hz, 200Hz, and 300Hz and they each have different 
amplitudes to make our analysis interesting. The time domain plot of this waveform is given in Figure 5.11.

Using the relationship given in (5.21), we can rewrite  as a sum of complex exponentials.

(5.34)

We can expand and rewrite the expression above to separate the positive and negative complex exponentials 
into their own groups.

(5.35)

g t  cne j2nt T ,        n

n –=



 0 1 2 = =

cn T– 2 T 2 

cn
1
T
--- g t e j2nt T– t,        nd

T 2–

T 2

 0 1 2 = =

f0 1 T= cn

cn
1
T
--- g t e

j2f0nt–
t,        nd

T 2–

T 2

 0 1 2 = =

n

g t 
A 2ft cos A f t

g t  8 2100t cos 3 2200t cos 2 2300t cos+ +=

g t 

g t  8 ej2100t e j2100t–
+
2

---------------------------------------------- 
  3 ej2200t e j– 2200t

+
2

---------------------------------------------- 
  2 ej2300t e j2300t–

+
2

---------------------------------------------- 
 + +=

g t  4ej2100t
=

3
2
--ej2200t ej2300t 4e j– 2100t 3

2
--e j– 2200t e j2300t–

+ + + + +
139

Downloaded from www.RFSoCbook.com



CHAPTER 5: Spectral Analysis
As you can see, the first three terms of (5.35) are positive complex exponentials and the last three terms are 
negative complex exponentials. We can plot the amplitude of each complex exponential against its frequency, 
as shown in Figure 5.12.

The plot given above is known as a complex frequency spectrum. You can clearly see that each cosine wave has 
its own equal contribution of positive and negative frequency components (this statement is true for all real 
waveforms).

In essence, we can express a cosine wave as being a sum of a positive-frequency complex exponential, and a 
negative-frequency complex exponential. We can sketch an illustration of this sum for inspection as given in 
Figure 5.13. Notice that the positive-frequency complex exponential is a helix rotating on the complex plane 
over time in the anti-clockwise direction, while the negative-frequency complex exponential rotates in the 
clockwise direction over time.

Each helix is characterised as having a peak amplitude of 0.5. When we sum each helix together, as above, we 
produce the original cosine wave. The main point of this discussion is to recognise that all real waveforms have 
a positive and negative frequency component. In contrast, a complex waveform defined as  only has 

Figure 5.11:  A waveform created by summing three cosine waves together as defined in (5.33).
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Figure 5.12:  Complex frequency spectrum showing negative and positive frequency components. 
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CHAPTER 5: Spectral Analysis
one frequency component, which can be either positive or negative. We will explore positive and negative 
frequencies again when investigating the Discrete Fourier Transform in Section 5.3.

5.2.  Understanding The Fourier Transform

Until this point, we have investigated the Fourier Series expansion, which is advantageous when obtaining the 
frequency content of a periodic wave. However, most practical waveforms are aperiodic and are unable to 
expand into a Fourier Series (without significant caveats). How do we interpret the frequency content of a 
waveform that is aperiodic? Of course, the answer is the Fourier Transform, which is an extension of the 
Fourier Series for aperiodic waveforms. The Fourier Transform converts aperiodic waveforms between the 
continuous time and frequency domains and is one of the most well known tools in spectral analysis.

This section will explore the Fourier Transform by diving into its operation. Before proceeding, ensure that 
you have read and understood the Complex Fourier Series in the previous section, as we will use this to derive 
an expression for the Fourier Transform.

5.2.1.  Continuous Frequencies

Previously in Section 5.1.3, the Fourier Series of a periodic waveform contained harmonics of the fundamental 
frequency, . We can plot the harmonics of a time domain waveform using a frequency magnitude plot as 
shown on the right of Figure 5.14. Notice that the harmonics are evenly spaced across multiples of .

Real world waveforms are never truly periodic as they contain transient and random components pertaining to 
information content. Aperiodic waveforms cannot be expanded into a Fourier Series as it is not possible to 

Figure 5.13:  Plot A contains a positive-frequency complex exponential rotating anti-clockwise over time. Plot B contains a 
negative-frequency complex exponential rotating clockwise over time. Plot C is the sum of each complex exponential, result-

ing in a cosine wave. Notice the cosine wave only oscillates over the real axis. The imaginary axis is always zero.
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CHAPTER 5: Spectral Analysis
obtain the period of the waveform (since it is not actually periodic). However, in order use the Fourier series, 
we could assume the waveform repeats after an ‘infinite’ time. 

If we assume that the period of the waveform increases such that , then the fundamental frequency and 
the spacing between the associated harmonics tends to zero. To observe the effect of the period tending to 
infinity, , we can analyse the effects of increasing the size of the period . Figure 5.15 presents the 
frequency magnitude plots for a square pulse using increasing pseudo-periods. Notice that as the pseudo-
period increases, the number of harmonics also increase (causing the space between harmonics to become 
smaller) and the amplitude of the harmonics decreases, since the total energy in the time domain and Fourier 
Series representations must remain the same.    

The final example in Figure 5.15 (labelled D) depicts a square wave with a period tending to infinity, . 
The resulting frequency magnitude response is one of continuous frequency i.e. as , then . The 
outcome of the Fourier series with  is the Fourier Transform and the frequency spacing between the 
harmonics is a continuous frequency spectrum. You may have noticed that as , the magnitude response 
of the harmonics decrease given the total energy in the waveform remains the same in both time and 
frequency representations. The magnitude of the harmonics are of the order , which requires scaling of 
the y-axis by  if we are to practically plot and inspect the frequency magnitude response. Hence, in evolving 
the Fourier Series equation to the Fourier Transform, we will require to scale the Fourier Series coefficients by 
a factor of .

5.2.2.  The Fourier Transform

In this section, we will derive the equation for the Fourier Transform. We begin with the Complex Fourier 
Series expression for  given in (5.31), and scaling both sides by  and rearranged as

Figure 5.14:  A continuous time waveform (left), a frequency magnitude plot of Fourier harmonics (right).
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CHAPTER 5: Spectral Analysis
Figure 5.15:  Four square waves labelled A, B, C, and D that use pseudo-periods of 2, 4, 8, and infinity. Each square 
wave has a corresponding magnitude plot showing the frequency response.
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CHAPTER 5: Spectral Analysis
. (5.36)

As , the discrete Fourier spectrum  tends to a continuous variable, , as  and . The 
interval of integration is now between . Our expression becomes,

(5.37)

We now replace  with  to realise the Fourier Transform (also called the Forward Fourier Transform), 

. (5.38)

Note that many engineers and physicists commonly write the Fourier Transform in terms of angular 
frequency, which is defined as  and given below.

(5.39)

5.2.3.  The Inverse Fourier Transform

It is possible to convert a continuous frequency spectrum (obtained using the Forward Fourier Transform) 
back to a continuous time waveform. The Inverse Fourier Transform is a tool that transforms a function of 
continuous frequency, , to a function of time, . We are able to derive the Inverse Fourier Transform 
by substituting  into (5.30) as below.

(5.40)

We can describe the complex exponential in terms of the fundamental frequency of the periodic waveform, 
where . The expression now becomes,
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CHAPTER 5: Spectral Analysis
. (5.41)

As before with the Forward Fourier Transform, the period . Therefore,  tends to a continuous 
variable, , as  and . We can also replace the term  with  as follows.

(5.42)

Finally, we use a special mathematical relationship to swap the above summation to an integral. This 
relationship is known as a Reimann sum, which allows us to approximate an integral given a summation as 

. The Inverse Fourier Transform can then be expressed as,

. (5.43)

We can also compute the Inverse Fourier Transform in terms of angular frequency , as shown in (5.44). Note 
that a scaling factor of  is required when integrating with respect to the angular frequency.

(5.44)

This concludes our investigation into the Fourier Series and Fourier Transform. These techniques are for 
manipulating continuous waveforms. The next section will introduce the Discrete Fourier Transform, which is 
a version of the Fourier Transform that yields the discrete frequency spectrum of a sampled waveform, which 
is of key relevance to the RFSoC and operates on discrete time signals.

5.3.  The Discrete Fourier Transform

We seen previously in Chapter 4 that a continuous waveform can be periodically sampled when its time axis is 
divided into discrete points, which are separated by a sampling period . When working with digital systems 
or devices, such as an FPGA, you will likely be performing arithmetic operations on sampled (digital) 
waveforms. The Discrete Fourier Transform (DFT) is a special version of the Fourier Transform that will yield 
a discrete frequency spectrum of a sampled waveform.

In this section, we will begin by deriving the DFT and then work through an example to demonstrate its uses. 
We will also explore various properties of the DFT including its frequency domain symmetry and periodicity. 
Finally, we will investigate spectral leakage, windowing, scalloping loss, and zero padding.
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CHAPTER 5: Spectral Analysis
5.3.1.  The DFT Equation

The DFT will operate on a digital waveform that has been discretely sampled by a regular sampling period . 
Take a moment to inspect the digital waveform that is illustrated in Figure 5.16. We denote digital waveforms 
with the variable , where  is used to index a discrete sample. The variable , shown in the sketch, 
indicates the number of samples in , which is .

We can obtain the time index of any discrete sample in  by simply computing . Alternatively, we can 
express this term using the sample frequency  of , such that the time index is obtained using .

We can derive the DFT by starting with the equation for the Fourier Transform in (5.38) and substitute the 
continuous variable  for the discrete term . Additionally, we also exchange the continuous waveform 

 for our discretely sampled waveform . Lastly, we rename  as  so that our mathematical 
notation remains consistent.

(5.45)

The discrete waveform  must obey the laws of causality, where the amplitude of its data points depend on 
past and current inputs only (and not future inputs). Therefore, assuming our discrete waveform is causal then 
the lower limit of the summation can be changed so , which is the first sample point of . 
Additionally, it is highly unlikely that there are an infinite number of data samples in our discrete waveform. 
Therefore, we can set the upper limit of the summation to . The expression in (5.45) now becomes,

. (5.46)
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Figure 5.16:  A digital waveform that has been discretely sampled by a regular sampling period.
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CHAPTER 5: Spectral Analysis
We are getting very close to the final expression for the DFT, with only one step remaining. By using a finite 
number of data samples, , we are no longer evaluating a waveform over an infinite period of time, which is 
required by the continuous Fourier Transform. Instead, we evaluate  with the implicit assumption that the 
waveform contains pseudo-periods every  samples, or  seconds.

Assuming  is pseudo-periodic, we can reduce the continuous frequency  to a specific set of discrete 
frequencies. We can evaluate (5.46) across integer multiples of the fundamental frequency, , which is 
commonly referred to as the frequency resolution . The frequency resolution is calculated using

. (5.47)

To reduce the expression in (5.46), we can introduce a discrete variable  that is used to index the discrete 
frequencies. The variable  operates in the range . We can exchange the continuous frequency  in 
(5.46) for the discrete frequencies . The final equation for the DFT becomes,

. (5.48)

It is common to think about the operation of the DFT defined above as a Discrete Complex Fourier Series, 
given that the periodicity of the signal was over the window length of  samples. In the next section, we will 
work through an example of applying the DFT to a discrete waveform.

5.3.2.  A Closer Look at the DFT

It can be easier to understand the DFT equation when we use its rectangular form, which can be created by 
separating the complex exponential of (5.48) into its real and imaginary components using Euler’s formula. We 
can rewrite the DFT equation as,

. (5.49)

We can apply the DFT to an input waveform  to reveal its frequency spectrum. Our input waveform will 
be composed of two frequency components at 1200Hz and 2400Hz. These frequency components can be 
created using sine waves, which are added together to create the input waveform as follows.

(5.50)
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CHAPTER 5: Spectral Analysis
The waveform is regularly sampled at discrete time intervals , where the sampling frequency is 9600Hz 
(sometimes defined as 9600 samples/second). Figure 5.17 presents a plot of the input waveform and its 
sinusoidal components for you to inspect.

Our input waveform contains exactly 8 samples, which means we will be able to compute an 8-point DFT i.e. 
the discrete variable . The amplitude of each sample in our waveform is,

(5.51)

The first frequency term of the DFT, when , is a unique case. It is defined as,

. (5.52)

The term  reduces to , which means (5.52) becomes,

. (5.53)

The special relationship in (5.53) evaluates to the sum of the input samples, . When evaluating the DFT 
using , we are actually computing the frequency component of  that does not vary in time, which is 
commonly referred to as the DC bias. Our input waveform would exhibit a DC bias if  returned a non-

nts

Figure 5.17:  Plot of a discretely sampled waveform that was created by summing two sine waves (also shown).
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CHAPTER 5: Spectral Analysis
zero value. Using the samples in (5.51) and (5.53), we can demonstrate that our input waveform does not 
contain a DC bias.

This result can be verified by summing the amplitude of each sample in . We can write the result given 
above using magnitude and phase representation, which gives us . The magnitude and phase equations 
for the DFT are covered later in Section 5.3.3.

Since we know the waveform’s sampling frequency, we can also compute the frequency resolution of the DFT 
using (5.47), which gives us,

. (5.54)

The value of  corresponds to the DC component of . The next component  evaluates to the 
complex amplitude of the first frequency component at 1200Hz. Similarly,  and  will equate to the 
complex amplitude of the harmonics,  and , respectively. We proceed with computing the 8-point DFT 
by evaluating the second frequency term,  as,

. (5.55)

Our input waveform contains a sine wave that has a frequency of 1200Hz. We should expect to obtain a non-
zero value for .
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CHAPTER 5: Spectral Analysis
The result given above for  indicates that there is a frequency component in  at a frequency of 
1200Hz. Notice that the phase of the frequency component is , which is equivalent to  in radians. 
As you can see in (5.50), the 1200Hz sine wave contains a phase shift of . The phase appears to have 
changed sign from positive to negative, which we will explain in a moment. For now, we will evaluate  as,

. (5.56)

A 2400Hz sine wave is present in , so the complex amplitude of  should return a non-zero value.
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CHAPTER 5: Spectral Analysis
The magnitude and phase of  has evaluated to a non-zero value, meaning there is a frequency component 
in  at , or 2400Hz. The phase of the frequency component is , which is equivalent to  
using radians. This result may appear a little strange as the 2400Hz sine wave in (5.50) does not have a phase 
shift. We can explain these results very easily by recognising that the phase returned by the DFT is relative to 
the phase of a cosine wave. The phase of  is correct since , where  is an angle in 
radians. This relationship is proven below.

(5.57)

This relationship can also be used to explain the phase result for i.e. .

The third frequency term of the DFT, , should evaluate to zero as  does not have a frequency 
component at . We begin with the expression for  as given below.

(5.58)

Now, we compute  as follows.

This result shows that  does not contain a frequency component at , or 3600Hz.

Rather than calculate each frequency component of , we will simply list the remaining results in (5.59). 
As an exercise, you should try to compute these frequency components on your own. You will be able to see 
that the results we obtained for  and  will re-emerge (with the phase values negated).
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(5.59)

We have successfully computed the DFT of our input waveform . In the following sections, we will 
explore the operation of the DFT in more detail and describe techniques to plot and manipulate the discrete 
frequency waveform .

5.3.3.  Magnitude and Phase

We often plot the magnitude and phase spectra of  to illustrate its frequency content. You can visualise 
the relationship between a complex number in  and its associated magnitude and phase in Figure 5.18.

We can compute the magnitude of a complex number by initially extracting the real and imaginary coefficients 
using (5.19) and (5.20), respectively. The magnitude  is then obtained using Pythagoras theorem.

(5.60)

The phase spectra of , denoted as , is calculated using,

. (5.61)

We have already used the above definitions to compute the magnitude and phase spectra in our example of the 
DFT in Section 5.3.2. We will proceed by plotting the magnitude and phase spectra against frequency to reveal 
interesting symmetric and scaling properties of the DFT. We will also plot the real and imaginary parts of 

 in a similar way for analysis. Each plot is available for inspection in Figure 5.19.
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CHAPTER 5: Spectral Analysis
The magnitude plot shows that there is a frequency component at 1200Hz and 2400Hz. Each component’s 
magnitude appears to be four times larger than the peak amplitude of the original sine waves given previously 
in (5.50). These results are caused by the DFT and need to be scaled, as we will discuss later.

Further study of the magnitude and phase plots reveal symmetry. We can clearly see that the magnitude plot 
exhibits symmetry across the y-axis. The phase spectra also contains symmetry around the origin. DFT 
symmetry is explored further in the next section.

5.3.4.  Symmetry and Periodicity

The input waveform  is assumed to be periodic over an interval . In a similar way, the output of an -
point DFT is also periodic over an interval . Let us prove output periodicity by substituting  into 
the DFT equation in (5.48), as follows.

(5.62)

We can expand the complex exponential above using the rule in (5.18). The expression becomes,

. (5.63)

Figure 5.19:  Stem plots showing the DFT results from Section 5.3.2: (A) the real part of X(k), (B) the imaginary part of 
X(k), (C) the magnitude of X(k), and (D) the phase of X(k).
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CHAPTER 5: Spectral Analysis
Notice that the second complex exponential can be reduced, since  for any value of . The 
periodic property of the DFT is proved since , as given below.

(5.64)

Previously in Section 5.1.6, we investigated positive and negative frequencies with respect to the Complex 
Fourier Series. An example showed that a real waveform consists of positive-frequency and negative-frequency 
complex exponentials. A similar idea can be extended to the DFT. The periodicity property of the DFT in 
(5.64) is useful, as it means we can reorganise our DFT results to accommodate negative frequencies. 

The sketch on the left of Figure 5.20 contains the magnitude spectra of the DFT example in Section 5.3.2. We 
can rearrange the magnitude spectra to include negative frequencies. Consider the plot on the right of Figure 
5.20. We can see that  is still the DC component and ,  and  correspond to positive 
frequency components.

By using the periodicity property in (5.64), the frequencies , , and  can been reinterpreted as 
negative frequencies , , and , respectively. Note that the frequency component at  
straddles between the positive and negative frequencies. For our purposes,  will remain on the positive 
side of the spectra. Take a moment to inspect the new magnitude spectrum on the right of Figure 5.20.

We can see that there is symmetry between the positive and negative frequencies in the rearranged plot of the 
magnitude spectrum. This symmetry corresponds to the real waveform’s positive and negative frequency 
components (described previously in Section 5.1.6).

For most practical applications where the input waveform is real, it is not necessary to compute both halves of 
the DFT as it contains redundant values. For instance, if we are applying the DFT to a real waveform and  is 
even, then it is only necessary to compute the first  values of . Similarly, if  is odd, we only 
need to compute  values of  instead.
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Figure 5.20:  Rearranging the positive magnitude spectra into positive and negative magnitude spectra.
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CHAPTER 5: Spectral Analysis
Remember that this redundancy is only true for input waveforms that are real. When the input waveform is 
complex (contains non-zero real and imaginary parts), then the DFT does not feature symmetry as a complex 
waveform consists of frequency components that can only be positive or negative (not both).

5.3.5.  Normalisation

The magnitude response  of the DFT example in Section 5.3.2, contained values that were larger than 
the peak amplitudes of sine waves in . For instance,  and , while the peak ampli-
tudes of their sine wave counterparts were 1 and 0.5, respectively. These magnitude values appear to have 
grown over four times in size.

We can normalise the complex output of the DFT by dividing  by the length of the input waveform, . 
This produces the normalised complex output , as below.

(5.65)

The normalised frequency magnitude values become  and . You may still be 
confused by this result, but it can be explained by considering the positive and negative counterparts of a real 
waveform. We seen in Section 5.1.6, that a real waveform is actually a sum of a positive-frequency complex 
exponential and a negative-frequency complex exponential. When the DFT is applied to a real waveform, the 
corresponding frequency spectrum contains positive and negative frequency components. For instance, 

 and .

The frequency magnitude of a real waveform is evenly distributed between its positive and negative frequency 
components. If we sum  and  together, we obtain . Similarly, summing  and  
together gives us . These normalised frequency magnitudes are now equivalent to the peak amplitude of 
their sine wave counterparts in . It is not necessary to sum each half of the spectrum to obtain this result. 
In the future, we can compute one half of  (as discussed in the previous section) and multiply it by 2. For 
the remainder of this chapter, we will plot the magnitude response of a real waveform in this way.

Note that the DFT of a complex waveform can also be normalised using (5.65). However, (5.65) is only used for 
rectangular windows, as we will discuss later in Section 5.3.10.

5.3.6.  Magnitude, Power, and the Logarithmic Scale

In this section, we will demonstrate a variety of different ways that you can plot the output of a DFT. We have 
already seen plots of the real and imaginary parts of  and corresponding magnitude and phase plots in 
Figure 5.19. There are other ways engineers, scientists, and mathematicians like to present and measure the 
output frequency spectrum of a DFT. Before we begin this investigation into frequency representation, take a 
moment to inspect the sine wave given in Figure 5.22.
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CHAPTER 5: Spectral Analysis
We can see that the sine wave has a fundamental frequency of 200Hz (and period of 0.005s) and its amplitude 
has been quantised using 256 levels (8 bit in the 2’s complement range of -128 to +127). The sine wave was 
acquired using a sampling frequency of 1000Hz and there are a total of 32 samples. As previously discussed in 
Section 5.3.5, we are able to compute the normalised magnitude of the DFT output. We can then perform a 
calculation to derive the power spectrum, , by using,

. (5.66)

An example plot showing the power spectrum of the sine wave is given on the left of Figure 5.22. The power 
spectrum was computed using a 32-point DFT (the same number of samples as in the sine wave, ).

Power spectrum plots often allow small (but significant) frequency components to be seen and that are not 
always apparent using a linear y-axis scale. We can more readily see a wider scale by using a logarithmic scale 
for the y-axis. The right of Figure 5.22 contains a log-scale magnitude plot. This plot should make it easier to 
inspect small and large magnitude spectra at the same time. The log-scale power spectrum is calculated as:

. (5.67)

It is possible to exchange the square operation above for a multiplication as shown in (5.68). This exchange 
may reduce the complexity of an FPGA architecture design that uses the log-scale power spectrum.

(5.68)

Figure 5.21:  A 200Hz sine wave that was sampled using a frequency of 1kHz, and quantised using 256 levels.
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CHAPTER 5: Spectral Analysis
There is another log-scale representation approach known as decibels relative to full-scale, which is abbreviated 
as dBFS. Recall in Chapter 4 that an ADC will quantise the amplitude of a continuous time waveform into 
discrete levels known as quantisation levels. When a digital waveform reaches its maximum quantisation level, 
it is said to be at full-scale. The decibels relative to full-scale method of representing the spectrum is defined as 
the ratio of the input waveform’s magnitude versus the waveform’s full-scale representation, as given below.

(5.69)

Lets use a few example to show how the dBFS technique works (rounded to 2 significant figures).

• If  and , then .

• If  and , then .

• If  and , then .

Notice that it isn’t possible for decibels relative to full-scale to produce a value higher than 0.00 dBFS. A plot of 
the log-scale magnitude spectra for the sine wave, which uses dBFS, is given on the left of Figure 5.23.

The final representation we will discuss is another log-scale approach known as decibels relative to the carrier, 
which is denoted as dBc. This approach presents the spectrum as a ratio of the input waveform power versus 
the carrier waveform power. If the output ratio is positive, then the power of the input waveform is greater than 
the carrier. Alternatively, if the output ratio is negative, then the carrier has more power than the input 
waveform. The decibels relative to the carrier can be computed as,

. (5.70)

An example magnitude spectra plot for the sine wave, which uses dBc, can be see on the right of Figure 5.23. 
Notice that the 200Hz sine wave, which we have set to be the carrier, has a value of 0.00dBc. The surrounding 
spectra is scaled relative to the carrier. This representation is useful when we need to compute measurements 
such as the Spurious Free Dynamic Range (SFDR), which was discussed previously in Section 4.2.4.
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Figure 5.23:  Decibels relative to full-scale plot (left) and decibels relative to carrier plot (right).
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5.3.7.  Frequency Bins

In the previous section, we investigated several ways to plot the frequency magnitude spectra of a discrete time 
waveform. In these plots, we can clearly see that the frequency axis is divided into several discrete frequencies. 
Engineers commonly name a point on the frequency axis a “bin”, or “bins”, if referring to all of them collec-
tively. Each bin is regularly spaced by a frequency resolution  (also known as the fundamental frequency). 
Take a moment to inspect the sine wave and its corresponding frequency magnitude plot given below in Figure 
5.24. The sine wave was acquired using a sampling frequency  of 1000Hz.

We can see that the sine wave has 8 samples ( ) and the corresponding magnitude plot has 5 discrete 
frequency bins. The frequency axis in this example uses 5 bins because the input waveform is real, and the 
negative frequencies contain redundant information (see Section 5.3.4). We can compute the frequency 
resolution (or fundamental frequency) of the DFT output using (5.47) as below.

(5.71)

Notice that the frequency axis of the magnitude plot increases in steps of 125Hz. The maximum frequency we 
can represent is 500Hz, which is equivalent to . Similarly, the minimum frequency that we can represent is 

. The bins on the frequency axis are spaced in multiples of  between . For this example, 
the bins correspond to the frequencies 0Hz, 125Hz, 250Hz, 375Hz, and 500Hz (excluding negative 
frequencies). It is worth noting that our input waveform has an exact frequency of 125Hz. We can see that all of 
the bins in the frequency magnitude plot are zero except for the 125Hz bin, which has all of the energy.

We can make several observations about the frequency resolution of the DFT. For example, if we increase the 
number of input samples, , then we can improve the frequency resolution of the DFT (making it finer). We 
have provided an example below in Figure 5.25 that applies a 16-point DFT to a 125Hz sine wave that was 
acquired using a sampling frequency of 1000Hz. We can see that the frequency resolution has now become 
62.5Hz and the bins are closer together. It is worth mentioning that increasing the size of  will also increase 
the number of arithmetic operations required to compute the DFT.

f

fs

Figure 5.24:  Discrete time waveform of a 125Hz sine wave (left) and its normalised frequency magnitude plot (right).
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CHAPTER 5: Spectral Analysis
Another way of obtaining a finer frequency resolution is by reducing the sampling frequency of the input 
waveform. This change will not have a considerable impact on the computational requirements of the DFT. To 
demonstrate the effects of reducing the sampling frequency, we have provided an example in Figure 5.26 that 
applies an 8-point DFT to a sine wave that has been acquired using a sampling frequency of 500Hz.

Notice that the resolution of the frequency axis for this example is equal to 62.5Hz. We are still able to see 
energy in the 125Hz bin on the frequency magnitude plot. However, the range of the frequency axis has now 
decreased, which may be a problem for applications that require a specific range of frequencies. Later in 
Section 5.3.12, we will investigate the zero padding technique, which can also improve frequency resolution.

5.3.8.  The Inverse DFT

The DFT is a tool to convert a discrete time waveform into a discrete frequency representation. We can reverse 
the operation by using the Inverse DFT, which is commonly abbreviated as the IDFT. You can see the equation 
for the IDFT below.

(5.72)

Figure 5.25:  The discrete 125Hz sine wave with 16 samples (left) and its normalised frequency magnitude plot (right).
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Figure 5.26:  The discrete 125Hz sine wave sampled at 500Hz (left) and its normalised frequency magnitude plot (right).
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CHAPTER 5: Spectral Analysis
To demonstrate the functionality of the IDFT, we will use it to simply reverse the DFT performed previously in 
Section 5.3.2. The values for  are given in (5.59). As before, we will use the trigonometric notation to 
perform the IDFT, which is given as,

. (5.73)

We will demonstrate how to compute the first sample of . We begin by substituting  and  
into the above equation, which gives the expression for .

. (5.74)

This expression computes the average value of , as follows.

We have successfully obtained the same value for  as given previously in (5.51).

We could progress by computing the remainder of the IDFT. However, this would involve a lot of complex 
multiplications, which consumes a lot of page space. Instead, you should try converting from the frequency 
domain to the time domain on your own. We recommend using a software tool or programming language 
(such as Python) to assist you with your calculations.

It is worth mentioning that the IDFT is only applied to the discrete complex waveform, . The IDFT 
equation in (5.72) is not applied to the normalised discrete complex waveform .

5.3.9.  Spectral Leakage

The DFT is a marvel of applied signal processing and an indispensable tool for analysing the radio frequency 
electromagnetic spectrum. However, it has various characteristics that users need to be aware of and interpret 
accordingly, or appropriately mitigate against if possible. One such issue is spectral leakage. We will begin by 
discussing how spectral leakage occurs and its impact on DFT results. Then, we will explore ways to reduce 
spectral leakage via windowing in Section 5.3.10.
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CHAPTER 5: Spectral Analysis
We previously established in Section 5.3.7 that the DFT operates across a discrete set of frequencies. These 
frequencies are integer multiples of the frequency resolution, . When we apply the DFT to a discrete-
time waveform that contains frequency components equal to one or more of these discrete frequencies, we 
obtain a perfect DFT result. We have already seen this outcome several times now in this chapter. For instance, 
the original DFT example in Section 5.3.2 had carefully selected sine waves that produced a perfect DFT 
output. 

Take a moment to inspect the sine wave and its frequency magnitude plot given in Figure 5.27. The sine wave 
has 16 samples, a frequency of 80Hz, and was acquired using a sampling frequency of 1000Hz. Notice that the 
sine wave completes one whole period but does not complete its second period. The magnitude plot was 
obtained by applying a 16-point DFT to the sine wave. There does not appear to be a discrete bin for an 80Hz 
frequency so the energy has spread to other neighbouring frequency bins, which is a common problem known 
as spectral leakage. The bins with the most energy are 62.5Hz, 125Hz, and 0Hz. 

We can explain this behaviour by recalling a very important property of the DFT. Previously, in Section 5.3.1
we derived the DFT equation using the continuous Fourier Transform. An important observation we made for 
the input waveform  is given below.

“By using a finite number of data samples, , we are no longer evaluating a waveform over a infinite period of 
time, which is required by the continuous Fourier Transform. Instead, we evaluate  with the implicit 

assumption that the waveform contains pseudo-periods every  samples, or  seconds.”

When the DFT is applied to the sine wave in Figure 5.27, we are actually assuming the waveform is periodic as 
illustrated in Figure 5.28. As you can see, there is an abrupt transition between one period of the waveform and 
another. These points are known as discontinuities and are only found at the endpoints of the waveform’s 
sampling interval. Discontinuities occur because the endpoints of the input waveform do not align with the 
period of the fundamental frequency, or frequency resolution, of the DFT.

We can plot the discrete magnitude response that was given previously in Figure 5.27, alongside an equivalent 
continuous frequency response of the 80Hz sine wave. This plot can be seen in Figure 5.29, with negative 
frequencies excluded. The main lobe of the continuous magnitude response is directly over 80Hz.

fs N

Figure 5.27:  A discrete sine wave with a frequency of 80Hz (left) and its normalised frequency magnitude plot (right).
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CHAPTER 5: Spectral Analysis
The plot in Figure 5.29 shows that the DFT is a sampled version of the equivalent continuous frequency 
magnitude response. In other words, each bin of the discrete magnitude response has been awarded a value 
that corresponds to an equivalent point on the continuous magnitude spectrum. We do not have a frequency 
bin for 80Hz, so the energy leaks into neighbouring bins and causes the DFT output to inaccurately represent 
the frequency content of the discrete time waveform.

5.3.10.  Windowing

We can reduce the effect of spectral leakage by applying particular windows to a discrete waveform before 
using the DFT. Many windows have the effect of “tapering” the endpoints of a discrete waveform to reduce 
abrupt transitions, such as those seen previously in Figure 5.28. There are many different types of windows 
including Hamming, Hann, Blackman-Harris and Bartlett. In this section, we will demonstrate how to apply a 
window to a discrete waveform. Then, we will present different types of windows and briefly explore and 
discuss their magnitude responses.

Figure 5.28:  A discrete time plot showing how discontinuities can occur when using the DFT.
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CHAPTER 5: Spectral Analysis
Windowing is the process of extracting a subset of data from a larger set so that it can be processed by another 
function. We also have the option to modify the data before it is passed on. If the data remains unmodified, 
then we have simply truncated the dataset across a specified window (or interval). This type of window is 
known as a rectangular window. Figure 5.30 contains a plot that illustrates the process of using a rectangular 
window on a discrete 80Hz sine wave.

The rectangular window is simply used to extract an interval of data from the discrete waveform without 
affecting the data. As we have already suggested, windows can be used to modify data too. For instance, we can 
taper the endpoints of the window before applying the DFT to reduce spectral leakage. A common window 
used for tapering the endpoints of a discrete waveform is the Hann window. Take a moment to see the effects 
of applying this window to the discrete 80Hz sine wave in Figure 5.31.

We can mathematically express the process of using a window in the DFT equation. For a discrete window 
denoted as , and a discrete waveform , we simply perform element-wise multiplication before 
applying the DFT. This operation is given as,

. (5.75)

Figure 5.30:  A rectangular window applied to a discrete sine wave of 80Hz.
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CHAPTER 5: Spectral Analysis
As we will see in a moment, tapered windows can reduce spectral leakage in the DFT. However, there are some 
caveats. Windowing has the effect of widening the main lobe of the peak frequency. However, the side lobes 
that cause spectral leakage are reduced.

Let us take a look at the frequency magnitude plots for the windowed discrete waveforms given in Figure 5.30
and Figure 5.31. Each wave was sampled using 1000Hz and a 16-point DFT was applied to obtain their 
frequency representations. We will not normalise the frequency magnitude responses, as we also want to 
inspect the impact that the window has on scaling. The frequency magnitude responses are each plotted below 
in Figure 5.32.

We can see that the main lobe has widened in the magnitude plot corresponding to the Hann window (in 
comparison to the rectangular window). The side lobes have also reduced in magnitude, which effectively 
suppresses the spectral leakage.

We deliberately did not normalise the plots (using (5.65)) so that you can visualise the frequency magnitude 
response on the y-axis of each plot. As you can see, the plot corresponding to the Hann window has a lower 
magnitude response in comparison to the rectangular window. The lower response occurs because we scaled 
the amplitude of the discrete time waveform, which causes the DFT output to proportionately decrease.

As described in Section 5.3.5, we usually normalise the DFT output by dividing it by the number of samples in 
the discrete waveform, . We only normalise in this way for rectangular windows. When we use other 
windows that modify the amplitude of the discrete waveform, we need to scale (or normalise) the DFT output 
by the sum of the window samples, as given below.

(5.76)

For example, a rectangular window, , means (5.76) reduces to . We can plot each frequency 
magnitude response again. This time using the scaled (or normalised) form, as shown in Figure 5.33.

Figure 5.32:  Frequency magnitude plot for the rectangular waveform (left) and the Hann waveform (right).
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CHAPTER 5: Spectral Analysis
There are many different types of windows. Every engineer, scientist, and mathematician has their favourite 
(and you will too). There are various reasons for selecting one window over another. For the remainder of this 
section, we will introduce several windows that you will commonly see in literature including, Bartlett, 
Blackman, Hamming, and Hann windows. We will express each window mathematically and describe their 
features. You can inspect the time representation of each window in Figure 5.34. 

At times, we will be discussing the attenuation of side lobes in terms of dB (log-scale magnitude). These values 
correspond to the window’s frequency magnitude response. We have provided a plot of each window response 
in Figure 5.35 for you to inspect. This magnitude response was created by applying a 16384-point DFT to the 
windows. We will refer to this plot when describing each window below.

Figure 5.33:  Normalised frequency magnitude plot for the rectangular waveform (left) and the Hann waveform (right).
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CHAPTER 5: Spectral Analysis
Rectangular Window

The rectangular window is commonly known as the uniform, or boxcar window. It is the most basic window 
that can be used before applying the DFT to a discrete waveform. It is expressed as,

(5.77)

Remember that using a rectangular window allows spectral leakage to occur unsuppressed (depending on the 
input waveform to the DFT). We typically use the rectangular window as a reference to compare other 
different types of windows.

Bartlett Window

In comparison to the rectangular window, the Bartlett window doubles the width of the main lobe. The first 
side lobe is attenuated by 26dB, which is double that of the rectangular window. For  data samples, the 
Bartlett window is express as,

(5.78)

Note that a Bartlett window is very similar to a triangle window. The exception is a Bartlett window has zeros 
at the endpoints.

Blackman Window

The Blackman window has superior spectral leakage rejection of all the windows discussed in this chapter. It 
boasts approximately 58dB of attenuation for the first side lobe. The Blackman window is defined as, 

(5.79)

The Blackman window also has a fairly wide main lobe, which causes the frequency peak to spread across 
several bins. If you are interested, there is a window in the same family as the Blackman window, which is 
known as the Blackman-Harris window. It has approximately 71.48dB of side lobe rejection.

Hamming Window

In comparison to the rectangular window, the Hamming window doubles the width of the main lobe. 
However, it attenuates the primary side lobe by 46dB. The Hamming window is expressed as,
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CHAPTER 5: Spectral Analysis
(5.80)

Notably, the Hamming window suppresses the first adjacent side lobe more than the subsequent side lobes, as 
shown in Figure 5.35. The other side lobes can only be attenuated by around 42dB.

Hann (or Hanning) Window

Finally, the Hann window features a main lobe that is around double the width of the rectangular window. The 
primary side lobe attenuation for this window is around 32dB. The Hann window is defined by,

(5.81)

We have now finished our discussion on windowing and will be moving on to briefly discuss how to measure 
the error introduced by spectral leakage, which is called scalloping loss. We will also introduce a clever 
technique known as zero padding that can improve the frequency resolution.

5.3.11.  Scalloping Loss

A discrete waveform may contain a frequency that resides precisely between two DFT bins. When this 
happens, the energy from that frequency leaks into the neighbouring bins in the DFT output response. We can 
measure the worst-case reduction in the waveform’s level. Formally, this is known as the scalloping loss and is 
usually abbreviated as SL. Take a moment to inspect Figure 5.36, which contains a plot of the continuous 
frequency magnitude response of a discrete 93.75Hz sine wave, acquired at a sampling frequency of 1000Hz. 
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Figure 5.36:  The continuous frequency magnitude response of a 93.75Hz sine wave that was acquired using a sampling fre-
quency of 1000Hz. The maximum point of the response falls precisely between two discrete frequency bins of a 16-point 

DFT. The energy leaks into the neighbouring bins.
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CHAPTER 5: Spectral Analysis
The maximum point of the response is centred on 93.75Hz. If we applied a 16-point DFT to the sine wave then 
the energy would be precisely between two discrete frequency bins (62.5Hz and 125Hz). We do not have a 
frequency bin for 93.75Hz, so the energy falls into the neighbouring bins instead. 

The scalloping loss in the plot above is 0.6376, as this is the worst case reduction in the waveform’s frequency 
magnitude response. The frequency output was computed without applying a window to the discrete sine 
wave, meaning a rectangular window is inferred. The type of window used and the DFT size impact the 
severity of the scalloping loss. We can define the scalloping loss as the coherent gain located half way between 
two DFT bins, divided by the coherent gain at a DFT bin [189]. The coherent gain is simply the sum of all 
samples in a discrete waveform, divided by the number of samples in the waveform (similar to the average 
value of a waveform). We can express the scalloping loss mathematically as,

. (5.82)

If we substitute in the example above, where  and , we obtain,

. (5.83)

The above expression in (5.82) can be used to compute the scalloping loss for any window. When we use a 
window that is not rectangular, we will reduce the severity of scalloping loss as the main lobe will be wider. For 
comparison, we will compute the scalloping loss of a Hann window using the same constraints as the above 
example i.e. a DFT size of 16. 

. (5.84)

We can see that the Hann window has less severe scalloping loss than a rectangular window. This is expected as 
the Hann window has a wider main lobe than a rectangular window.

5.3.12.  Zero Padding

We will wrap-up our investigation of the DFT by exploring a common method of improving the frequency 
resolution of the DFT plot, known as zero padding. When we studied the continuous Fourier Transform in 
Section 5.2.1, we seen that increasing the period of the time domain waveform to infinity created an infinitesi-
mally small spacing between harmonics in the frequency response. It turns out that this technique can also be 
extended to the DFT (without needing to sample a waveform to infinity!).

Zero padding is a technique that involves inserting zero-valued samples at the end of a discrete waveform to 
improve the frequency resolution of the DFT plot. The effect of zero padding is essentially an interpolation of 
the frequency sample points in the DFT and as such no extra ‘information’ is created on the signal. 

SL
w n e jn N–

n
w n 

n
---------------------------------------------=

w n  1= N 16=

SLRec
1.0000 j10.1532–

16
--------------------------------------------- 10.2023

16
------------------ 0.6376= = =

SLHan
0.6367 j6.4646–

7.5
------------------------------------------ 6.4959

7.5
--------------- 0.8661= = =
169

Downloaded from www.RFSoCbook.com



CHAPTER 5: Spectral Analysis
The effect of time domain zero padding is shown in Figure 5.37 where each of examples above contain a 
discrete 250Hz sine wave at a sampling frequency of 2000Hz. The sine wave has 16 samples. The first example 
(at label A) demonstrates a normal 16-point DFT of the sine wave (using a rectangular window). We have 
provided the discrete and continuous plots of the frequency magnitude. The sine wave is perfectly represented 
in the frequency domain as a 250Hz peak. Also, we can see that other frequency bins do not contain any 
energy. The frequency resolution of this DFT is 125Hz.

We pad the discrete sine wave with 16 zeros at label B in Figure 5.37, which creates a new discrete time 
waveform consisting of 32 samples. Applying a 32-point DFT to this waveform improves the frequency 
resolution of the DFT. The resolution is now 62.5Hz. Notice that the peaks of the side lobes are now visible in 
the discrete spectra on the frequency magnitude plot.

Figure 5.37:  A discrete sine wave consisting of 16 samples (A), 32 samples (B), and 48 samples (C). Each discrete sine wave 
has a corresponding frequency magnitude plot. As zero padding increases, the frequency resolution of the DFT is finer.
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CHAPTER 5: Spectral Analysis
At label C in Figure 5.37, we append 32 zero samples onto the end of the original sine wave. We now apply a 
48-point DFT, which improves the frequency resolution of the output spectrum so that it is now 41.67Hz.

We can see that zero padding the input waveform has the effect of achieving a finer frequency resolution. This 
technique is particularly useful for peak finding. For instance, consider a frequency magnitude plot that has 
spectral leakage since the input waveform is not periodic over the sample period. We could use zero padding to 
improve the frequency resolution and obtain the frequency that corresponds to the peak value.

5.4.  The Fast Fourier Transform

Large DFTs computations are of the order of  computations. Therefore, a  or 1024-point DFT will 
require  arithmetic operations. In 1965, a paper published by Cooley and Tukey [127] described an 
efficient DFT implementation, commonly referred to as the Fast Fourier Transform (FFT). The FFT is an 
indispensable tool, as it can efficiently compute very large DFTs by reducing the total number of arithmetic 
operations. This is achieved by exploiting the periodicity of the DFT calculation. The FFT is somewhat more 
difficult to code/program compared to the DFT (which is in essence two nested FOR loops and a lookup table 
of cosine and sine values) and the FFT is a challenging programming effort, as will be outlined below! But once 
coded, its  times faster than an -point DFT. For a  point FFT, the number of arithmetic opera-
tions reduces by a factor of . So its 10 times faster to do the FFT rather than the DFT, and 
exactly the same answer is produced by both computations.

Hence, it is important to highlight that the FFT is an efficient implementation of the DFT and is not an approx-
imation. The FFT will produce the same results as the DFT and also abides all of its characteristics and features 
that we have discussed so far. For many pre-coded FFT computations, the FFT size is usually a power of 2 
number i.e. , where  is a positive integer.   This defines the window length and the spectral 
resolution. Non-power of 2 FFTs are indeed possible (such as prime factor FFT).

In this section, we will explore the FFT algorithm. Firstly, we will investigate the Danielson-Lanczos lemma, 
which presented a method of computing the DFT, recursively. Then, we will analyse the decimation-in-time
solution that underpins the basic operating principles of the FFT. We will explain decimation-in-time using 
several diagrams and mathematical expressions for an 8-point FFT. Finally, we will work through an 8-point 
FFT example and then describe other notable FFT algorithms and architectures that are worth exploring in 
your own time.

5.4.1.  Danielson-Lanczos Lemma

Danielson and Lanczos described a method of exploiting the periodicity of the DFT [132] to reduce the 
computational requirements i.e. reduce the number of complex multipliers required to compute the DFT. 
Their work is very interesting, as it describes a method of separating an -point DFT into two smaller size 
DFTs. For this method to operate correctly,  must be an even number of samples. 

N2 ~103

~106

log2N N 1024
log2 1024  10

N 2m
= m

N
N
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CHAPTER 5: Spectral Analysis
Consider the expression below for  that separates the input waveform  into two sequences 
containing even and odd samples. An -point DFT is applied to each sequence individually and they are 
summed together. Notice that  still operates over the discrete values .

(5.85)

The complex exponential in the second DFT above, can be moved outside of the summation, which produces

. (5.86)

A common method of simplifying notation is to rewrite the same complex exponential as

, (5.87)

which is referred to as the twiddle factor. We can also rewrite the even and odd DFTs in (5.86) as  and 
, respectively. The Danielson-Lanczos lemma to compute an -point DFT as two smaller DFTs, is 

now expressed as

. (5.88)

Earlier in Section 5.3.4, we looked at the periodic property of the DFT. The same rules apply for the even and 
odd DFTs given in (5.88). For example, we can generate an expression for  as 

(5.89)

We can also create an expression for  as

. (5.90)

Both expressions in (5.89) and (5.90) are the same and a similar result is obtained for the odd DFT, such that 
 . Therefore, we can conclude that there is no increase in the computational 

complexity when calculating  and , due to the fact that  and 
.

We can also observe how the twiddle factor is affected by the periodicity of . For example, when , the 
twiddle factor becomes,
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. (5.91)

When , the twiddle factor’s sign is changed as

. (5.92)

This relationship is true for all values of  that are more than or equal to .

Let us now graphically represent the Danielson-Lanczos lemma to aid our understanding. For example, we 
could create a diagram that would allow us to compute  and  using (5.88). This diagram 
is illustrated in Figure 5.38.

We can see from this diagram that two -point DFTs have been implemented to compute the frequency 
representation of the even and odd discrete time sequences. We have only shown the  and  
connections, but it is worth noting that the other DFT outputs would be connected in a similar way. These 
DFT outputs are connected to a structure known as a radix-2 butterfly, as shown in Figure 5.38.

We can compute  by simply multiplying the twiddle factor  with  and then adding the 
result to , as given in (5.88). Similarly,  is calculated by subtracting  from 

. The subtraction is necessary as the twiddle factor is negative when .
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Figure 5.38:  Graphically the Danielson-Lanczos lemma can be sketched as a signal flow graph (as above). Here, we can see 
that two smaller DFTs have been applied to the even and odd samples of a discrete time waveform. The DFT outputs are 

used in (5.88) to compute the final output values when k=0 and k=N/2. 
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CHAPTER 5: Spectral Analysis
The Danielson-Lanczos lemma can be extended to an 8-point DFT. Take a moment to inspect the diagram 
given in Figure 5.39. It is not necessary to use trigonometry (as required by the DFT) to compute . The 
twiddle factors are used instead. We can see that we only need to perform four multiplications to compute the 
twiddle factors in this example. The even and odd DFTs both require  complex multipliers each. This 
means a total of 40 multipliers are required for this design. An equivalent 8-point DFT uses 64 multipliers. As 
we can see, the computational complexity has reduced. Additionally, we obtain the exact same results as an 8-
point DFT (there are no approximations). 

5.4.2.  Decimation in Time

When we separate a discrete waveform into two sequences, such as odd and even samples, we are actually 
decimating the waveform in time. In the previous section, we used the Danielson-Lanczos lemma to decimate-
in-time, which is a well known and commonly used FFT design technique.

The Danielson-Lanczos lemma can be used to recursively decimate-in-time so that we use four 2-point DFTs 
rather than two 4-point DFTs from the previous section. See Figure 5.40 for an idea of how we can further 
reduce the computational complexity of the DFT.

We can start by separating the even DFT, , into two DFTs of its even and odd samples, as

. (5.93)

X k 

N2 4

Figure 5.39:  The diagram above is an 8-point DFT that has been implemented using two 4-point DFTs and four multipliers.
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CHAPTER 5: Spectral Analysis
Similar to before in (5.86), we extract the complex exponential from the second summation. We then replace 
the complex exponential with the notation for the twiddle factor, which gives

. (5.94)

We can repeat the process for the odd DFT, , so that it can be expressed as

. (5.95)

Now the even and odd DFTs have both been rewritten so they use two 2-point DFTs each. We can continue our 
8-point FFT design and replace the 4-point DFTs shown previously in Figure 5.39 with two 2-point DFTs. We 
can see this rearrangement in Figure 5.41. Notice that the twiddle factor after the odd 2-point DFT, operates 
over four points (which corresponds to a 4-point DFT). 

We are almost finished our 8-point decimation-in-time FFT implementation of the DFT. We just have one step 
remaining, which is to replace the 2-point DFT, with a simple butterfly structure. The 2-point DFT can be 
efficiently computed by recognising that  and . For example, we can replace the first 2-
point DFT block using (5.88), which evaluates to  for the even side, and  for the odd 
side. See the final architecture of an 8-point FFT in Figure 5.42.

The final design is the 8-point FFT implementation of the Cooley & Tukey algorithm we mentioned at the 
start. In the next section, we will validate the design of this FFT in an example.

Figure 5.40:  An abstract diagram that shows the Danielson-Lanczos lemma being applied recursively.
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CHAPTER 5: Spectral Analysis
Figure 5.41:  The diagram above uses the Danielson-Lanczos lemma to recursively to implement of an 8-point FFT using 
two 4-point DFTs and four 2-point DFTs.
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Figure 5.42:  The final architecture of an 8-point DFT using two 4-point DFTs and four 2-point DFTs. This implementation 
is generally known as the Radix-2 decimation-in-time FFT architecture.
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CHAPTER 5: Spectral Analysis
5.4.3.  An FFT Example

In Section 5.3.2, we demonstrated an 8-point DFT in a simple example using a discrete input waveform. Let us 
use the same waveform to validate the 8-point FFT architecture we created in the last section. To remind 
ourselves, the input samples for the previous example was,

(5.96)

Figure 5.43 contains the results of the 8-point FFT using the input samples above. We have annotated the 
diagram with intermediate calculations as required. You can see the discrete frequency representation on the 
right of the diagram. The results match the DFT output given previously in (5.59).

We can evaluate and compare the number of multipliers that would be required to implement the design in 
Figure 5.43. Originally, an 8-point DFT would require 64 complex multipliers to operate successfully. The 
design above only requires 8 complex multipliers (noting that ). The FFT decimation-in-time method 
is very efficient and can be used in real-time on modern computer systems.
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Figure 5.43:  An 8-point FFT example using the data stimulus from Section 5.3.2. 
The results are the same as the 8-point DFT example.
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CHAPTER 5: Spectral Analysis
5.4.4.  FFT Algorithms and Architectures

The FFT is a vast and interesting subject area that has a lot to discuss and explore. There are numerous 
resources that you should investigate on your own, which describe various FFT algorithms and designs. We 
will list two of these here to get you started.

• The decimation-in-frequency FFT technique [243].

• Fixed-point and floating-point FFT design considerations [28].

5.5.  Short-Time Fourier Transform

FFTs are very efficient and have low computational complexity, allowing us to achieve real-time performance 
on modern computing systems. It is possible to consecutively perform FFT operations across an interval of 
time, which is useful for a variety of reasons. For instance, we can separate a discrete waveform into small equal 
size segments and use the FFT to obtain the frequency representation of each segment. This process is known 
as the Short-Time Fourier Transform (STFT). A simple example is given in Figure 5.44.

Figure 5.44:  This diagram shows a discrete time waveform being divided into four equal sized segments. 
A 16-point FFT is applied to each segment, resulting in four FFT outputs. 
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CHAPTER 5: Spectral Analysis
The STFT can be used to explore how the frequency spectra of a discrete waveform changes over time. For 
example, we can plot each of the FFT outputs as a function of time, which is known as a spectrogram or 
waterfall plot.

5.5.1.  STFT of a Chirp

A chirp is a waveform whose frequency increases or decreases over time. It is quite a valuable waveform for 
demonstrating the STFT in action. Take a moment to inspect the up-chirp wave given in Figure 5.45. Notice 
that it increases in frequency as a function of time.

To perform the STFT, we divide the chirp into 8-equal size segments and applied a hamming window to each 
segment. We then use a 256-point FFT to obtain each segment’s frequency representation. Plotting the FFT 
output frequency against time reveals an increasing frequency response, as shown in the 2-dimensional and 3-
dimensional plots in Figure 5.46. Note that we have used log-scale to display the plot.

The 3-dimensional plot uses the x-axis for frequency, the y-axis for time, and the z-axis for the log-scale 
magnitude. Each colour on the plots represent a frequency magnitude value as shown on the scale to the right 
of the plot. It is worth mentioning that there are other ways to implement the STFT. For instance, if the time 
axis is particularly coarse in the spectrogram output, the adjoining segments can be overlapped to smooth out 
sharp fluctuations between FFT frames.

5.5.2.  Time Versus Frequency Resolution

An issue with the STFT is deciding on the time and frequency resolution. Recall that the frequency resolution 
of a DFT is given by , where  is the sampling frequency and  is the number of samples. To obtain a 
finer time resolution, we divide the input waveform into small segments. Partitioning the waveform in this way 
causes the frequency resolution to be coarse, since the frequency resolution becomes larger i.e.  is small. In 
contrast, we can divide the input waveform into larger segments, which means each segment has a large 
amount of samples. This results in a fine frequency resolution, but the time resolution is coarse as the value of 

 is large.

Figure 5.45:  A chirp waveform of increasing frequency.
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CHAPTER 5: Spectral Analysis
In summary, there is a trade-off between the time and frequency resolution. There are other techniques to 
address this issue that you can explore on your own, such as the wavelet transform [183].

5.6.  Chapter Summary

We began our deep dive into spectral analysis with Fourier's Theorem, which is the foundation for all Fourier 
analysis techniques. We explored the Fourier Series expansion by demonstrating that any continuous periodic 
waveform could be expanded as a weighted sum of harmonically related sine and cosine waves. We then 
rearranged the Fourier Series to use complex exponentials. A simple example was given, which demonstrated a 
Complex Fourier Series expansion of a real waveform, revealing positive and negative frequency components. 
Then, we derived the continuous Fourier Transform, which obtains the frequency representation of aperiodic 
continuous time waveforms.

We then derived the equation for the DFT. The DFT operates in a similar way to a Discrete Complex Fourier 
Series and can be used to obtain the frequency representation of discrete-time waveforms. We explored a 
simple example for an 8-point DFT and established that the DFT output has symmetry for real input 
waveforms. Our investigation into symmetry revealed periodic properties of the DFT that could be used to 
rearrange the discrete frequency representation as a positive and negative complex frequency spectrum. Lastly, 
we investigated various features of the DFT, including normalisation, log-scale plots, frequency bins, spectral 
leakage, scalloping loss, and zero padding.

Figure 5.46:  A 3-dimensional spectrogram of the chirp (left), and a 2-dimensional spectrogram of the chirp (right).
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CHAPTER 5: Spectral Analysis
In the final part of this chapter, we derived the FFT and explored its architecture and resource consumption for 
an 8-point DFT. We found that the FFT is not an approximation of the DFT; rather, it is the DFT and is 
effective when reducing computational complexity. We established that the FFT technique could only be used 
with DFT sizes that are a power of two. We applied the FFT to the same stimulus as the 8-point DFT example 
and obtained the same results. Finally, we investigated the STFT by looking at a simple chirp example. We 
discussed issues regarding the time and frequency resolution of the STFT’, and introduced 3-dimensional and 
2-dimensional spectrogram plots.
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Notebook Set C
Exploring the Spectrum 
with the RFSoC 

Following Chapter 5 on Spectral Analysis, we can begin to explore the spectrum with the RFSoC. There are 
two notebooks on this topic. The first notebook will allow you to explore the ambient radio spectrum. You will 
be able to inspect several radio bands including those that belong to the broadcast, license-exempt, and mobile 
and wireless broadband sectors. The second notebook will launch a spectrum analyser tool on your RFSoC 
platform [328]. The spectrum analyser tool is capable of inspecting multiple channels, and also integrates 
features for generating test signals. The spectrum analyser tool is an excellent way of learning about RFSoC 
and its capabilities. 

The notebooks and their relative locations are listed below. Each notebook must be used on an RFSoC 
platform. Section C.3 contains additional spectral analysis notebooks that can be used on a computer or 
RFSoC device. These notebooks cover topics on Fourier’s theorem, the DFT, and the FFT.

 RFSoC 01_exploring_the_spectrum.ipynb — rfsoc_book/notebook_C/01_exploring_the_spectrum.ipynb

 RFSoC 02_rfsoc_spectrum_analyser.ipynb — rfsoc_book/notebook_C/02_rfsoc_spectrum_analyser.ipynb

C.1.  Exploring the Spectrum

Begin by opening the notebook named 01_exploring_the_spectrum.ipynb. This notebook contains several 
code cells that will automatically tune your RFSoC device to various frequency bands so that you can begin 
exploring the spectrum. Follow the instructions in the notebook to correctly setup your RFSoC platform.
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As you progress through the notebook, you should be able to see power in various frequency bands. These 
radio signals are broadcast from nearby sources such as TV, radio, or mobile transmitters. Note that the 
presence of signals in different bands will depend on your location. If you are unable to detect a signal at some 
of the radio frequencies provided, this may be because no transmissions are currently occurring at that 
particular frequency, or because the frequency band is not used in your geographical location. Listed below are 
the frequency bands you will explore in this notebook.

• (88 to 108) MHz — Frequency Modulated (FM) radio broadcasts.

• (210 to 230) MHz — Digital Audio Broadcast (DAB) radio communications.

• (470 to 700) MHz — Ultra-High Frequency (UHF) digital television broadcasts.

• (700 to 1000) MHz — Spectrum access for mobile communications.

• (1700 to 2200) MHz — Spectrum access for mobile communications.

It may be useful to consult the frequency allocation tables from your national or regional spectrum regulator to 
obtain a better understanding of frequency allocations in your area. For example, the spectrum regulator for 
the United Kingdom (UK) is the Office of Communications (Ofcom) [282] and the regulator for the United 
States (US) is the Federal Communications Commission (FCC) [159].

Many of the frequency ranges provided above are approximate bands in the spectrum where you should be 
able to find radio activity in your geographical area. For the best reception of radio signals, try moving your 
antenna close to an external window or door, or even move your antenna outside! Be careful if the weather is 
not in your favour, i.e. don’t place the antenna outside if it is raining or there are high winds.

Some readers may be following this book without access to an RFSoC platform. If this is the case, then you can 
view some images of the spectrum acquired by the RFSoC in Figure C.1. These screenshots are each labelled 
with the content of the radio spectrum.

C.2.  The RFSoC Spectrum Analyser

The spectrum analyser tool is available to use on your RFSoC platform by navigating to the following directory 
in Jupyter Labs: rfsoc_book/notebook_C/02_rfsoc_spectrum_analyser.ipynb. When you execute this 
notebook, the RFSoC spectrum analyser tool will launch and you will be presented with the analyser’s 
graphical interface. A diagram highlighting parts of the spectrum analyser interface is presented in Figure C.2.

• You can use the control panel highlighted in Figure C.2 to switch on the spectrum analyser and 
spectrogram. Centre frequency selection and bandwidth control can also be configured using the 
control panel’s drop down widgets.
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A.

C.

B.

Figure C.1:  Screenshot A: viewing the FM radio spectrum; Screenshot B: spectrum of a licence-exempt band (UK only); 
Screenshot C: spectrum from the mobile and wireless broadband sector.
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• The RF sampling frequency and resolution are reported in the information panel. 

• Each RF-ADC input to the RFSoC board is routed to its own spectrum analyser channel. You can view a 
different spectrum analyser channel using the tab selection at the top of the screen. 

• Lastly, you will be able to see the frequency domain of the input waveform through the plot in the centre 
of the screen. This plot is created using the Plotly [291] Python library.

The spectrum analyser tool is conveniently accessible through a standard web browser, where it is possible to 
inspect the frequency domain of acquired radio signals and configure the analyser using various properties 
and operating parameters. The spectrum analyser is supported on several RFSoC platforms and uses a 
different sampling frequency depending on the generation of the associated RFSoC device. 

• Zynq UltraScale+ RFSoC Gen 1 devices are able to achieve a sampling frequency up to 4,096 MSps. 

• Zynq UltraScale+ RFSoC Gen 3 devices are able to achieve a sampling frequency up to 4,915.2 MSps. 

Figure C.2:  The RFSoC spectrum analyser interface displayed in a web browser.
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Notebook C: Exploring the Spectrum with the RFSoC
If you do not have an antenna or amplifier connected to the input of the RF-ADC channel, then you may 
notice that the spectrum analyser does not contain significant power in any of the frequency bands. See 
Section 13.7 for some useful tips that will help improve signal acquisition and visualisation of the spectrum.

As an example, it is possible for you to generate Wi-Fi signals and inspect them on the spectrum analyser. Wi-
Fi signals can be generated using a Wi-Fi router or a mobile phone that uses 2.4GHz Wi-Fi channels. You 
should be able to inspect Wi-Fi signals by configuring the spectrum analyser to a centre frequency in the range 
2,400 MHz to 2,500 MHz. It is important that the spectrum analyser is not set to apply any averaging 
techniques, as Wi-Fi signals only transmit across a short period of time. The spectrogram / waterfall plot can 
also be used to display the frequency spectrum over time.

In order to acquire Wi-Fi signals effectively, the RF-ADC front-end must be connected to an appropriate anti-
aliasing filter to suppress unwanted frequency components. The RF-ADC input requires a bandpass filter, such 
as the Mini-Circuits® VBF-2435+ [263], to suppress the spectrum around the frequency band of interest.

You may also wish to try viewing the spectrum generated when you use your mobile phone (this has two 
components: the uplink (phone transmitting to basestation) and downlink (phone receiving from basestation). 
This is best done by switching off your phone’s Wi-Fi connection (so as to direct all traffic over the mobile 
network — however, note that this may incur data charges, so be careful if necessary!). For instance, if you 
stream a video from YouTube or another source, then you should be able to view traffic in the downlink. 

C.3.  Additional Spectral Analysis Notebooks

We have also provided three notebooks that cover spectral analysis, which was previously introduced in 
Chapter 5. These notebooks can be used on your computer. The topics include Fourier’s theorem, the DFT, and 
the FFT. See below for an enumeration of these extra notebooks and where you can find them.

   ALL   03_fouriers_theorem.ipynb — rfsoc_book/notebook_C/03_fouriers_theorem.ipynb

   ALL   04_investigating_the_dft.ipynb — rfsoc_book/notebook_C/04_investigating_the_dft.ipynb

   ALL   05_fast_fourier_transform.ipynb — rfsoc_book/notebook_C/05_fast_fourier_transform.ipynb

Notebook 3 explores practical implementation of the Fourier Series and the Complex Fourier Series. The user 
will be able to interact with functions that perform harmonic analysis on square and sawtooth waves. 
Additionally, the functions can operate reveal the spectral content of any arbitrary periodic waveform. Euler’s 
formula is also introduced.

In Notebook 4, we apply the DFT to time domain waveforms and explore the fundamental concepts of 
frequency domain analysis using Python. These concepts include investigating spectral resolution and leakage, 
computing the power spectrum, and implementing zero-padding techniques to improve spectral resolution.
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Notebook 5 introduces practical implementations of the FFT. The user will investigate an implementation of 
the FFT using the decimation-in-time technique. The DFT and FFT will be compared for speed of operation 
and arithmetic resources. We will also describe and use the FFT support provided in the NumPy library. 
Finally, spectrogram plots and their implementations will also be explored.
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Chapter 6
Wireless Communications 
Fundamentals

Louise Crockett

The aim of this chapter is to provide suitable wireless communications background for the SDR discussion that 
follows later in the book. We begin by introducing the multi-layered models used to describe communications 
protocols, focusing on the OSI model and TCP/IP models (protocols are sets of rules that are used for sending 
data and exchanging messages between communications nodes). The idea of a communications ‘stack’, i.e. the 
implementation of a layered set of communications protocols, is then introduced; we highlight some examples 
of wireless communications stacks, and consider how such a stack might be realised using SDR (in particular, 
the partitioning of different aspects to hardware or software).

Most of the design and implementation work covered in the book is at the Physical (or ‘PHY’) layer, which is 
the lowest layer in the OSI layered model and refers to the transmission of physical signals through the 
communications medium. The remainder of the chapter therefore focuses on various aspects of PHY layer 
radio principles, performance metrics, and design considerations. 

6.1.  Layered Models for Communications Systems

Several decades ago, communications systems began to shift from analogue to digital format and evolved 
towards data networks. New protocols were required to manage the transfer of data. Rather than dedicated 
point-to-point links, for instance to convey voice traffic between telephone users, communications systems 
were created to handle information sent in ‘packets’, which would share infrastructure with traffic from other 
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CHAPTER 6: Wireless Communications Fundamentals
users. Packets could potentially pass through a large number of intermediate nodes between source and desti-
nation. To aid the development of these more complex systems, conceptual models were developed to describe 
the different aspects of functionality required in communications terminals and network infrastructure, 
arranged into a vertical set of ‘layers’. The purpose of these layered models is to provide commonly understood 
frameworks for the development of communications standards. Layers are defined such that they are 
independent from one another, and have clearly defined interfaces between layers.

In this section, we review the most widely used communications systems models, and discuss how the layers in 
these models map to the implementation of protocol ‘stacks’ for wireless communications. 

6.1.1.  The Open Systems Interconnection (OSI) Model 

The Open Systems Interconnection (OSI) Model was first published in 1984 by the International Standards 
Organisation (ISO) and International Electrotechnical Commission (IEC), with the stated purpose “to provide 
a common basis for the coordination of standards development for the purpose of systems interconnection, while 
allowing existing standards to be placed into perspective within the overall Reference Model” [212]. It defines a set 
of seven layers, each describing the functionality of a communications system at a different level of abstraction. 
The OSI model does not provide any detail or guidance on how any of the seven layers should be implemented 
— rather, that is considered the remit of standards developed with reference to the model. 

The OSI model is illustrated in Figure 6.1, which includes a brief outline of each of the seven layers (for a much 
fuller review, see [332]). In this diagram, Nodes A and B are communicating. The top layer is the Application 
layer, which represents the end use/user interface and is the highest level of abstraction in the model — an 
example might be the web browser on a tablet. The lowest level is the Physical (PHY) layer, which is concerned 
with the physical transmission and reception of data across a communications channel, or medium (whether as 
voltages on a wire, RF signals through a radio channel, optical pulses via an optical fibre, or another method). 
The PHY layer also includes the required hardware connections and signal processing operations. 

The Data Link layer is distinct, in the sense that it contains two defined sub-layers. The lower is the Media 
Access Control (MAC) sub-layer, which manages the access of nodes to the physical transmission medium, 
and the upper is the Logical Link Control (LLC) sub-layer, which is responsible for the point-to-point links 
established at the MAC layer, including the coexistence of different types of traffic, and error mitigation. 

In terms of interactions between layers, OSI protocols are conceived such that each layer in Node A can 
communicate with the equivalent layer in Node B; for instance, the Transport layer in Node A could interact 
directly with the Transport layer in Node B. In practice, however, the system implementation is likely to mean 
that only the PHY layers are directly connected (via the Physical Medium, as indicated in Figure 6.1). Under 
that assumption, for the Application layer in Node A to communicate with the Application layer in Node B, 
data passes all the way down the layers (7 through 1) of Node A, along the Physical Medium to Node B, and 
then all the way back up layers 1 to 7 of Node B, eventually reaching the Application layer. Network nodes that 
act as intermediaries (rather than producers or consumers of data) may only implement layers 1 - 3.
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In traversing the layers at the transmit side of the link, data is encapsulated (and de-encapsulated) as depicted in 
Figure 6.2. In general terms, data from layer  is segmented into blocks, and prepended with protocol infor-
mation to create a larger block, known as a Protocol Data Unit (PDU). Each PDU is therefore composed of a 
header (for the protocol information) followed by a payload (carrying the data), and in some cases also a trailer 
(with further protocol information). The PDUs from layer  are subsequently passed to layer , which 
adds its own header information to each, forming new (larger) PDUs, and so on. At the receive side, in layer , 
the header information in each PDU is extracted and used to implement the layer  protocol, and the payload 
is passed to layer , above. Notice that the lowest layers must handle the greatest amounts of data. 

PDUs are known by different terms, depending on the OSI layer. They are defined as:

• Layers 7 - 5: Data

• Layer 4: Segments

• Layer 3: Packets

Figure 6.1:  The OSI 7-layer model.
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CHAPTER 6: Wireless Communications Fundamentals
• Layer 2: Frames

• Layer 1: serialised into bits, and then physical signals in the transmission medium

The protocol information included in the PDU headers (and trailers, where applicable), varies according to the 
layer, but can include fields such as addresses, sequence numbers, and error check information. 

The OSI model can be successfully applied to a variety of communications systems. As such, the model is well 
known and studied; it provides a frame of reference for standards development, and a fairly universal context 
for understanding the structure of communications protocols. The OSI model has shown great endurance and 
remains a well used and referenced framework. 

6.1.2.  The TCP/IP Model

The Transmission Control Protocol / Internet Protocol (TCP/IP) model is defined with four or five layers1, 
compared to the seven layers of the OSI model [322]. Its origins date back to the 1960’s, when the US Defense 
Advanced Projects Research Agency (DARPA) began the computer networks research that created the internet. 

Figure 6.2:  Data encapsulation in the OSI 7-layer model.
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CHAPTER 6: Wireless Communications Fundamentals
The TCP/IP model therefore pre-dates the OSI model. It has been widely adopted, including in many wireless 
communications systems, and underpins the internet as we know it today. 

The TCP/IP model is shown in Figure 6.3, which also clarifies how it maps to the OSI model. The TCP/IP 
model uses a similar method of encapsulating and de-encapsulating PDUs (not illustrated here), adding 
protocol information as the data moves down the layers at the transmit side, then extracting and utilising the 
protocol information at the receive side. 

The term ‘TCP/IP’ also refers to the suite of internet-related protocols that are used to implement the model. 
There are several such protocols, which serve various functions throughout its four principal layers, the most 
important ones being TCP and IP (as the name suggests), along with User Datagram Protocol (UDP). These 
can be briefly summarised as follows:

• TCP [216],[217] — The TCP Transport layer protocol provides guaranteed delivery of data. Packets 
generated at the source are numbered, sent across the network, and reordered at the destination. A 
scheme of packet acknowledgements, timeouts and selective retransmissions is used to recover from any 
losses that occur, and this provides the guarantee of delivery, albeit at the cost of significant complexity. 

1. The TCP/IP model can be presented in different ways. The model has five layers when the PHY layer is included. Alterna-
tive interpretations are that the TCP/IP model refers only to the four layers above the Physical layer, which is assumed to 
exist beneath it, or that the Data Link and PHY layers are combined into a single Network Access layer. We assume the five 
layer version here.

Figure 6.3:  The TCP/IP model, and comparison to the OSI 7-layer model.
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CHAPTER 6: Wireless Communications Fundamentals
• UDP [292] — UDP is also a Transport layer protocol, but unlike TCP, does not provide any guarantees 
of successful delivery. This results in a far simpler protocol, where messages are only sent in one 
direction, and there are no acknowledgements and retransmissions. UDP is appropriate for applications 
where some level of data loss can be accommodated and low latency is an important attribute, such as 
audio and video calls. 

• IP [215] — Both TCP and UDP assume that the Internet layer implements the IP protocol. The IP 
protocol enables data transmission from a source node on one network, to a desired destination node 
which may be on another network, potentially passing through several other networks on the way 
(hence the term internet, derived from inter-networking). The IPv6 protocol superseded IPv4, the most 
significant change being an extended address space (providing addresses for a larger number of 
endpoints, due to the rapid expansion of internet-connected devices). At the time of writing, both IPv4 
and IPv6 remain in widespread use.

The TCP/IP model is designed to be agnostic to the underlying physical medium, and is therefore compatible 
with wireless, wired, or optical transmission. The protocols used to implement the Data Link layer, and the 
PHY layer beneath it, are specific to the target transmission medium, functionality and performance attributes. 
For instance, wired Local Area Networks (LANs) are implemented according to the ISO/IEC 88022 standard 
[213] for the LLC sublayer of the Data Link layer, and the IEEE 802.3 standard [206], which defines the MAC 
sublayer of the Data Link layer, and the PHY layer. 

This very brief summary of TCP/IP, of course, barely scratches the surface of a complex and interesting topic. 
For further reading, [157] and [225] are good sources of information. 

6.1.3.  Communications Protocol Stacks

Considering the conceptual OSI model alongside the TCP/IP model for internet traffic, the major common 
feature is the use of layers to represent a ‘stack’ of protocols, each dealing with a different level of abstraction. 
This general idea of layers forming a stack is reflected by the standards defining most data communications 
systems, and their practical implementations. In this book, we are primarily concerned with wireless commu-
nications systems, and therefore it is pertinent to outline a few examples of wireless communications stacks. 
Three types are featured: Wi-Fi (for wireless LANs), Digital Enhanced Cordless Telecommunications (DECT™, 
primarily used for cordless telephony), and 5th Generation New Radio (5G NR, for cellular networks). Even as 
new 6G standards and paradigms emerge, the adherence to a layer and stack model will continue.

Wi-Fi

Wireless Local Area Networks (WLANs) are ubiquitous: they are widely used in the workplace, at home, and in 
public spaces, to provide wireless data connectivity inside buildings, and outdoors up to a range of ~100m. 

2. Previously published as IEEE standard 802.2.
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The name ‘Wi-Fi’ is the well known and widely used, however the standards underpinning the technology are 
maintained by the IEEE, and known as IEEE 802.11 [207]. There are several variants of this standard, e.g. 
targeting different frequency bands, and supporting different data transfer rates; these are denoted with 
lettered suffixes, as IEEE 802.11a, IEEE 802.11b, and many others. 

IEEE 802.11 is used in the lower part of the Data Link layer (the MAC sublayer), and the PHY layer, as shown 
in Table 6.1. They are specified such that the sublayer above (the LLC Data Link sublayer) can co-operate with 
them in the same way as other network implementations, such as wired Ethernet (IEEE 802.3). 

The upper layers are not considered part of Wi-Fi, although Wi-Fi is typically used in the context of TCP/IP 
networks, where protocols from the TCP/IP model (such as IP at the Network layer, TCP at the Transport 
layer, and HTTP at the Application layer) would be adopted.   

Digital Enhanced Cordless Telecommunications (DECT)

The primary purpose of DECT is to convey speech signals for digital cordless telephony. The DECT standard 
defines four protocol layers (Network, Data Link Control, MAC, and Physical), which map to the lowest three 
levels of the OSI model, and two planes — the Control Plane and the User Plane [153]. The mapping of these 
DECT planes and layers to the OSI model are summarised in Table 6.2.

The DECT PHY layer defines a Time Division Multiple Access (TDMA) protocol which is across multiple RF 
carriers. A frame structure is defined, which repeats every 10ms and contains 24 timeslots; each timeslot 
provides the opportunity to transmit one packet generated and passed down from the MAC layer. The MAC 
layer also selects physical channels, and sets up and closes connections across those channels. 

Above the MAC layer, the protocol separates into two planes at the Data Link Control layer: a user plane for 
data traffic, and a control plane for management traffic and tasks. The Data Link Control Layer is responsible 

Table 6.1: Wi-Fi communications stack.

Layer OSI Model TCP/IP Model Wi-Fi Stack

- Application

Application- Presentation

- Session

- Transport Transport

- Network Network

2 Data Link Data Link LLC sublayer:     IEEE/ISO/IEC 8802
MAC sublayer:   IEEE 802.11 

1 Physical Physical IEEE 802.11
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for link reliability and data integrity, while the Network layer is for signalling, e.g. to establish and release calls. 
Note that DECT does not define any layers above OSI layer 3 [153].  

5th Generation New Radio (5G NR)

5G NR is the most advanced wireless cellular standard at the time of writing, and it offers enhanced capabilities 
over its predecessor, 4th Generation Long Term Evolution (4G LTE), in terms of performance and function-
ality. In particular, 5G NR targets a triumvirate of use-cases: Massive Machine-to-Machine type Communica-
tions (MMMC) and Ultra Reliable Low Latency Communications (URLLC), as well as Enhanced Mobile 
Broadband (eMBB).   Although a new set of standards, 5G builds and evolves the designs and architectures of 
4G. A similar evolution from 5G to 6G is now also in play, with 6G standards, applications and new paradigms 
moving forward and building on the SDR designs from 5G.

5G NR defines three layers (denoted as Layers 1 - 3), of which Layers 2 and 3 are composed of sublayers. The 
mapping of these 5G NR layers and sublayers to the OSI model is captured in Table 6.3. 

Variations on the protocol stacks apply for the control and user planes, and also for different components 
within the network, the detail of which are outside the scope of the current discussion. We will also omit to 
review the functionality of each of the protocols given in Table 6.3 (for more information, see [11]). The main 
point of interest is that, similar to the Wi-Fi and DECT examples, the 5G NR standard only specifies protocols 
equivalent to the lowest layers of the OSI model, primarily the Data Link and PHY Layers. 

The Network layer, directly above the Data Link layer, contains the Layer 3 5G NR Radio Resource Control 
(RRC) protocol for the control plane, while the user plane of 5G NR Layer 2 interfaces with IP in the Network 
layer, which is defined separately from the 5G NR standard. Applications, in this context, may ultimately be 

Table 6.2: DECT communications stack [153].

Layer OSI Model DECT Stack (Control Plane) DECT Stack (User Plane)

- Application

- Presentation

- Session

- Transport

3 Network Network layer

2 Data Link Data Link Control layer Data Link Control layer

(most of) MAC layer

1 Physical (part of) MAC layer

Physical layer
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‘apps’ on a smartphone, supported by the appropriate Transport layer protocols (such as TCP, UDP, etc.), and 
these sit above the 5G NR specification.  

Other Standards and Proprietary Schemes

There are many other standards-based wireless stacks that could be mentioned here, from broadcast networks 
such as Digital Audio Broadcast (DAB) [359] and Digital Video Broadcast (DVB) [143]; to Internet of Things 
(IoT) standards like LoRaWAN®, SigFox®, Zigbee and NBIoT [101]; to Personal Area Networks (PANs) 
including Bluetooth and Near Field Communication (NFC) [106]; and many others. And as 5G becomes an 
integral part of wireless and mobile deployments, we are already now seeing the design and development of the 
next evolved wireless generation — the new 6G standards, applications and paradigms — that can be built on 
RFSoC technologies.

There are also industry-specific standards for transportation, public safety, and military uses, and innumerable 
proprietary protocols for different applications. Even simple wireless communications systems, such as 
wireless doorbells, car keyfobs and so on, have defined protocols which could be mapped to the OSI model as 
a protocol stack. 

Observations

From considering these examples of protocol stacks, the layer that is intrinsically ‘wireless’ is the PHY layer, as 
it interfaces with the physical medium of the radio channel. The MAC sublayer of the OSI Data Link layer is 

Table 6.3: 5G NR communications stack [11].

Layer OSI Model 5G NR Stack (layers) 5G NR Stack (sub layers)

- Application

- Presentation

- Session

- Transport

3 Network - Internet Protocol (IP) — user plane

Layer 3 Radio Resource Control (RRC) — control plane

2 Data Link Layer 2 Service Data Adaptation Protocol (SDAP)

Packet Data Convergence Protocol (PDCP)

Radio Link Control (RLC)

Medium Access Control (MAC)

1 Physical Layer 1 Physical layer (PHY)
197

Downloaded from www.RFSoCbook.com



CHAPTER 6: Wireless Communications Fundamentals
designed for the wireless medium, too, as its role is to implement the necessary protocols for accessing the 
radio spectrum, and the requirements for wireless and wired media differs — for instance, in radio systems 
there may be other concurrent transmissions in the target band, arising from the same or a third party system, 
which affect channel access. 

The degree to which wireless standards specify the upper Data Link Layer (the Logical Link sublayer) and 
above may differ. In the three examples considered here, i.e. Wi-Fi, DECT, and 5G NR, only the bottom two or 
three layers of the OSI model are specified. 

To form a complete system, the upper layers are tailored to the types of services and applications offered. 
Taking 5G NR as an example, there are many possible applications (think of all of the apps on your smart-
phone!) and these would be facilitated by the appropriate higher layer protocols. 

6.1.4.  SDR Implementation of Communications Stacks

In designing an SDR, consideration must be given to how the communications stack should be implemented, 
and in particular, how the different layers of the stack should be mapped to the facilities of the target platform. 
This section provides some comments on possible approaches, with reference to the layers of the OSI model. 

In the context of RFSoC, we conceive a general wireless transceiver model as shown in Figure 6.4. This may not 
be suitable for all communications standards or scenarios; rather it is presented as a starting point for thinking 
about SDR implementation. As shown here, the PHY layer and parts of the MAC sublayer can be targeted to 
the PL portion of the RFSoC, as these algorithms are suited to hardware implementation, and benefit from low 
latency, deterministic operation. Upper layers are often be implemented in software on the PS, with optional 
hardware acceleration of suitable algorithms. Given the RFSoC architecture, the partitioning of the system 
implementation across hardware and software is flexible.  

Lower Layers (MAC and PHY) 

Based on the OSI model considered previously, and the associated encapsulation and de-encapsulation of data, 
we observed that the PHY layer must handle the greatest amount of data, as it includes all of the protocol infor-
mation from the upper layers. The computational demands on the PHY layer implementation are the most 
challenging of all the layers, not just because of the volume of data, but also the algorithms and operations 
needed to prepare data for transmission across the physical radio channel, and recover it at the receiver. This 
includes various stages of filtering, synchronisation, coding/decoding, and so on. 

The PHY layer requires high throughput operation, but takes the form of a constant flow of data requiring 
deterministic signal processing operations. In this context, we use the term deterministic to mean that 
processing stages have consistent latencies, and that the relative timing of data paths is maintained, both of 
which are important factors in successfully implementing the designed DSP algorithms. Therefore, the PHY 
layer maps well to hardware implementation on an FPGA, or equivalently the PL portion of an RFSoC device3. 
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The MAC layer (i.e. the lower sublayer of the Data Link layer) is also required to handle high data throughputs. 
At this layer, data is partitioned into frames, which in some standards may be associated with different logical 
channels (e.g. user data and control channels) in the layers above; one of the tasks of the MAC layer is therefore 
to multiplex and demultiplex these frames. 

The MAC layer must also determine when to access the radio channel for transmitting data, for instance using 
the Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA) algorithm [125] in Wi-Fi networks. This 
method involves “sensing” the radio channel to check if it is busy with transmissions from other users, before 
attempting to send a frame when the channel appears to be free (recall that Wi-Fi operates in a shared band). 
Whether operating in shared bands or licensed bands, the MAC layer often implements a scheme of selectively 
retransmitting frames, based on the knowledge (or assumption) of failed frame transmissions. This is 
commonly achieved using an Automatic Repeat reQuest (ARQ) handshaking scheme involving acknowledge-
ments of successfully received frames, non-acknowledgements of corrupted frames, and/or timeouts [227]. 

3. Depending on the data rates involved, some aspects of the PHY layer can be implemented on a processor if desired.

Figure 6.4:  An indicative model for software / hardware partitioning of a radio onto RFSoC resources
(alternative partitioning across hardware and software is possible).
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Hybrid-ARQ (HARQ) schemes are a variation on ARQ: they add an element of FEC to reduce the requirement 
for retransmissions at the cost of additional redundancy [11].

Aspects of the MAC layer therefore need to operate at high rates, for frame processing, and in HARQ schemes 
to implement FEC coding and decoding. There is also a degree of determinism required. Therefore, some 
MAC layer protocols can also be mapped successfully to PL; this is generally considered to be the ‘lower MAC’.

Upper Layers

As is evident from the review of wireless standards in the previous section, the upper layers of wireless commu-
nications stacks can vary considerably. They also require to process data at lower rates (more so towards the 
top of the stack), given the formation of PDUs as shown in Figure 6.2. 

The functions implemented in the uppermost layers are naturally implemented in software. Examples of 
Application and Presentation layer protocols are, for instance, web browsers and other GUIs, and protocols 
like HyperText Transfer Protocol (HTTP), and XML. The Transport and Network layers involve tasks that are 
also best implemented in software; for instance, the implementation of TCP and routing protocols. Therefore, 
collectively, the upper layers map better to a processor running software, than to a hardware architecture 
implemented in PL. There are, however, some upper layer tasks that may be suitable for acceleration using a 
hardware co-processor, such as coding and decoding. 

A Focus on the PHY Layer

In this book, attention is generally focused on the PHY layer. These are the elements of the radio that deal with 
physical signals for radio transmission and reception, which are most closely associated with the wireless 
medium, and where we make the most specific use of the PL and the RFSoC’s hardened blocks (particularly 
the RFDCs). We additionally touch on the MAC layer via the RFSoC Radio Demonstrator (see Notebook Set 
G), and discuss the various layers of the 5G NR communications stack in Chapter 17.   

6.2.  The Wireless Physical Layer

Focusing on the PHY layer of the radio, we can present a basic overview model of Quadrature Amplitude 
Modulation (QAM) transmitter and receiver architectures in Figure 6.5, which provides a basis for the 
remainder of the chapter. 

The major parts of the transmitter architecture are:

• Baseband modulation (bit-to-symbol mapping)

• Pulse shaping
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CHAPTER 6: Wireless Communications Fundamentals
• Interpolation

• Carrier modulation

The major parts of the receiver architecture are:

• Carrier demodulation

• Decimation

• Matched filtering

• Baseband demodulation (symbol to bit demapping)

• Synchronisation (carrier and timing)

This chapter will concentrate on baseband modulation and demodulation (bit-to-symbol mapping, and vice 
versa), and the processes of pulse shaping and matched filtering. Carrier modulation and demodulation is 
covered in Chapter 7, while interpolation and decimation are discussed in Chapter 8.

Also within this chapter, we discuss the wireless channel, and the various degradations that radio signals are 
subject to as they pass through the channel. One of the issues encountered is that the transmitter and receiver 
are not synchronised in frequency and time, and we discuss the effects of this (although not the solutions — 
please see a textbook such as [301] or [326] for more information on implementing synchronisers). 

6.3.  Baseband Modulation (Bits to Symbols)

As previously noted in Section 2.1.2, a communications signal is said to be at baseband if it is composed of 
frequency components close to 0 Hz. At the transmit side of the wireless link, this corresponds to a signal that 
has not yet been modulated with a carrier to form a bandpass signal centred at IF or RF. At the receive side, the 
signal is at baseband after it has been demodulated from an IF or RF carrier, and is again close to 0 Hz. 

In order to send digital data over the physical wireless channel, and prior to carrier modulation, it must first be 
converted from bits to symbols using a baseband modulation scheme. This process is referred to as baseband 
modulation. The modulation scheme defines the symbol mapping, i.e. the number of symbols, their amplitude 
levels or phases, and how groups of bits are converted to these symbols. The resulting pattern of symbols is 
often referred to as a constellation. It is also worth clarifying that baseband modulation, and modulation onto a 
carrier signal, are two distinct processes (sometimes, baseband modulation is known as bit-to-symbol mapping, 
which is arguably clearer!). 
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The remainder of this section reviews the baseband modulation schemes that are used to map bits to symbols. 
Digital modulation schemes can convey data by changing the amplitude, phase, or frequency of the signal. We 
focus on the first two of these in the discussion that follows. 

6.3.1.  Quadrature Modulation and Symbol Space Dimensions

Before proceeding further, a quick note on the symbol space that symbol constellations occupy, which may be 
depicted as one-dimensional or two-dimensional. 

The majority of SDR architectures considered in this book modulate data onto both sine and cosine carriers 
simultaneously (quadrature modulation), as opposed to a single cosine carrier. The motivation is bandwidth 
efficiency — twice as much information can be carried within the same bandwidth, if sine/cosine orthogonal 
carriers are used. 

This topic will be covered in more detail in Chapter 7, but for now, the main point of interest is how it defines 
the mapping of bits to symbols: with quadrature schemes, the symbol space is defined in two dimensions, as 
depicted in Figure 6.6. The x-axis represents the amplitude of the In Phase component (also known as the Real
component), while the y-axis represents the amplitude of the Quadrature Phase component (or Imaginary
component). The resulting two-dimensional space is therefore often referred to as the I-Q plane (i.e. the In 
Phase / Quadrature plane). If there is no Quadrature Phase, the signal space is one-dimensional and all 
symbols are conveyed by a position on the x-axis. 

Example symbols are depicted on the axes in Figure 6.6 as an indication of how the spaces are used — more on 
this shortly.  

Figure 6.6:  Symbol space for: (left) single carrier and (right) quadrature carrier baseband modulation schemes.
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CHAPTER 6: Wireless Communications Fundamentals
6.3.2.  Amplitude Shift Keying (ASK)

Amplitude Shift Keying (ASK) conveys data on a single phase (i.e. where there is a single cosine carrier) by 
mapping the amplitude of a baseband signal to a discrete level from a defined set. In the simplest case, there are 
two such levels (+1V and -1V), which may be denoted as 2-ASK. If four levels are used, the scheme is referred 
to as 4-ASK, and the applicable levels are +1V, +1/3V, -1/3V, and -1V, and so on. 

Taking the example of 2-ASK, each bit is mapped to one of two symbols, corresponding to amplitudes of +1 
and -1, as shown in Figure 6.7. The symbol mapping diagram shows that both of these symbols belong to the In 
Phase component (in fact there is no Quadrature Phase component in this case). Using the 2-ASK modulation 
scheme, one bit corresponds to one symbol, and therefore the bit and symbol rates are the same. 

There are four possible amplitude levels in 4-ASK, and therefore two bits are needed to represent each symbol. 
In other words, one symbol conveys two bits of information, as can be confirmed by inspection of Figure 6.8. 
For a given baud rate (symbol rate), the supported bit rate is twice that of 2-ASK. 

If we consider two parallel channels of 2-ASK, and conceive that one channel corresponds to the x-axis of the 
symbol mapping diagram, and the other to the y-axis, the concept of Quadrature Amplitude Modulation 
(QAM) can be developed.

6.3.3.  Quadrature Amplitude Modulation (QAM)

In QAM, two baseband channels are used: one is denoted the In Phase or Real channel and is modulated onto 
the cosine carrier, while the other is denoted the Quadrature Phase or Imaginary channel as is modulated onto 
the sine carrier. As the carrier signals are sine and cosine at the same frequency, they are separated by 90o, and 

Figure 6.7:  Example time domain waveform for 2-ASK (top), and 2-ASK symbol mapping diagram (bottom)
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CHAPTER 6: Wireless Communications Fundamentals
are orthogonal to each other. This property of orthogonality ensures that the data sent on the two channels 
remains separate, and can be perfectly recovered, i.e. one channel does not interfere with the other. 

An example of two baseband signals for QAM are shown in Figure 6.9. In this case, each of the two channels 
(or phases) transmits data equivalent to the 2-ASK modulation scheme. In total, there are four possible 
symbols in the resulting symbol mapping, meaning that two bits are transmitted per symbol. This modulation 
scheme is therefore known as 4-QAM (and is equivalent to 4-PSK, as will be discussed in the next section). 

To clarify the terminology, the following terms are equivalent: In Phase, Real Component / Phase, Channel 1; 
and the following terms are also equivalent: Quadrature Phase, Imaginary Component / Phase, Channel 2. 

Similar to ASK, the number of levels on each of the two QAM phases can be increased, leading to a larger set of 
symbols. Conventionally, a power-of-two number of evenly spaced amplitude levels are used per phase. The 
next largest QAM symbol mapping is 16-QAM, where there are four amplitude levels on each of the two 
phases, and this scheme conveys four bits per symbol. A diagram of 16-QAM is provided in Figure 6.10.  

Table 6.4 provides a summary of QAM modulation schemes, extended to include larger symbol mappings and 
restricted to square patterns (32-QAM, 128-QAM etc., are also possible and these produce non-square shapes). 

Figure 6.8:  Example time domain waveform for 4-ASK (top), and 4-ASK symbol mapping diagram (bottom).
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CHAPTER 6: Wireless Communications Fundamentals
Note that larger constellations convey a greater number of bits per symbol; therefore, for any given symbol rate, 
selecting a larger QAM scheme will result in a higher bit rate.   

Table 6.4: Summary of QAM modulation scheme sizes.

Scheme Levels per phase Bits per phase Total bits per symbol

4-QAM 2 log2(1) = 1 1 + 1 = 2

16-QAM 4 log2(4) = 2 2 + 2 = 4

64-QAM 8 log2(8) = 3 3 + 3 = 6

256-QAM 16 log2(16) = 4 4 + 4 = 8

1024-QAM 32 log2(32) = 5 5 + 5 = 10

4096-QAM 64 log2(64) = 6 6 + 6 = 12

Figure 6.9:  Example time domain waveform for 4-QAM (top), and 4-QAM symbol mapping diagram (bottom).
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CHAPTER 6: Wireless Communications Fundamentals
As will be discussed in Section 6.4, the disadvantage of larger QAM schemes is that their performance is more 
susceptible to degradation due to noise. Therefore, smaller QAM schemes such as 4-QAM and 16-QAM are 
preferred in noisy environments. 

6.3.4.  Phase Shift Keying (PSK)

Another method of digital modulation involves modulating the phase of the signal. For m-PSK, data bits are 
encoded by symbols that are placed at a set of  evenly spaced phases around the 360o degree range. Figure 
6.11 illustrates the two lowest order PSK schemes, 4-PSK (also known as Quaternary Phase Shift Keying, or 
QPSK), and 8-PSK. Both larger and smaller PSK symbol mapping sizes are also possible, as summarised in 

Figure 6.10:  Example time domain waveform for 16-QAM (top), and 16-QAM symbol mapping diagram (bottom).
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Table 6.5; Binary PSK (BPSK) is a special variation which does not have a quadrature component (its two 
symbols are placed at -1 and +1 on the In Phase axis).  

Similar to the QAM schemes from the previous section, we note that higher order PSK schemes convey a 
greater number of bits per symbol. The drawback is that the separation between symbols becomes smaller 
(here in terms of phase), and therefore they become more difficult to distinguish in the presence of noise. 
Larger QAM schemes are generally preferable to larger PSK schemes because they perform better in noisy 
conditions — this is because the symbols are further apart and fewer errors are encountered for any given level 
of AWGN.

Table 6.5: Summary of PSK modulation scheme sizes.

Scheme Number of Phases Phase Separation Bits per symbol

BPSK (Binary PSK) 2 360o / 2 = 180o log2(2) = 1

4-PSK 4 360o / 4 = 90o log2(4) = 2

8-PSK 8 360o / 8 = 45o log2(8) = 3

16-PSK 16 360o / 16 = 22.5o log2(16) = 4

32-PSK 32 360o / 32 = 11.25o log2(32) = 5

Figure 6.11:  QPSK (4-PSK) and 8-PSK symbol mapping schemes.
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CHAPTER 6: Wireless Communications Fundamentals
The process of converting bits to symbols using a PSK scheme involves generating the required In Phase and 
Quadrature amplitudes. The amplitudes may be scaled compared to those shown in Figure 6.11, to normalise 
the output power.

6.3.5.  Other Modulation Schemes

In addition to the QAM and PSK modulation schemes presented in the preceding sections, there are several 
other types of digital modulation schemes. These include:

• On Off Keying (OOK) — A very simple scheme wherein a carrier signal is multiplied with a ‘0’ or ‘1’, 
depending on the bit value, to transmit one bit per symbol. This has the effect of switching the carrier 
signal on or off, as the name suggests. A disadvantage of OOK is the sharply changing power envelope, 
which can create challenges in the analogue parts of the transmitter and receiver, such as power amplifi-
cation and active gain control.

• Frequency Shift Keying (FSK) — Symbols are mapped to discrete frequencies from a defined set. For 
instance, 4-FSK comprises four symbols, corresponding to a set of four different frequencies, and 
conveys two bits per symbol. As the power envelope is constant, this avoids the issues of OOK, however 
there may be sharp phase transitions between symbols, which can expand the occupied bandwidth 
considerably compared to the set of frequencies defined by the modulation scheme.

• Minimum Shift Keying (MSK) — MSK is a form of FSK, which addresses the issue of phase discontinu-
ities experienced in FSK by ensuring that transitions between symbols occur at the zero-crossing points. 
Variations of MSK include Gaussian MSK (GMSK).

• Offset Schemes, e.g. Offset-QAM — Offset QAM schemes involve changing the In Phase and 
Quadrature components of the transmitted symbols in a staggered manner, i.e. the Quadrature symbol 
transitions occur half a symbol period after the In Phase transitions. Offset QPSK is another offset 
scheme, whereby alternate symbols in the sequence are transmitted using mappings offset by 45o.

These schemes are mentioned here for background interest, but QAM (in particular) and PSK are the 
dominant digital baseband modulation techniques, especially for high value systems, and will receive the 
majority of attention in the remainder of the book. 

6.4.  Baseband Demodulation (Symbols to Bits)

Next, we turn our attention to the receiver, which has the opposite task to perform: translating the received 
symbols back to bits. For the purposes of our current discussion, we abstract away the modulation and demod-
ulation processes that take place between baseband modulation and demodulation in a real radio system, and 
concentrate on the retrieval of bits from received symbols. As well as considering the process of converting 
received symbol samples back to bits, performance metrics are also reviewed. 
209
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The plotted received symbol samples, in the two-dimensional I-Q plane, is often called the received symbol 
constellation. The term constellation can also be used to describe the original symbol mapping, e.g. reference 
constellation. 

6.4.1.  Symbol Decisions

First, we consider the symbol-to-bits demapping process under ideal conditions where the radio channel does 
not degrade the signal. The receiver determines which is the closest symbol to the received sample — under 
perfect conditions, the transmitted and received symbols are the same, and so the process is trivial. 

More generally, symbol decision boundaries can be conceived between the symbols defined in the original 
mapping, such that the closest possible symbol to each received symbol sample is assumed. Symbol decision 
boundaries are depicted in Figure 6.12 for the examples of 4-QAM / QPSK (recalling that these are equivalent), 
and 8-PSK. An example of 16-QAM will be included a little later. Note that in QAM schemes, the lines are 
drawn horizontally and vertically between symbols, and in PSK, at equally spaced angles between symbols.   

6.4.2.  Additive White Gaussian Noise (AWGN) Channel

In an ideal channel, there would be no degradation of the signal between the transmitter and receiver, but of 
course this is not realistic. Even in an excellent channel, some level of thermal noise must be expected at 
minimum, and this is normally modelled as Additive White Gaussian Noise (AWGN). Note that noise is 
described as ‘white’ if it contains approximately equal energy across all frequencies. 

To consider the effect of an AWGN channel, we assume a simplified model of a communications link, shown 
in Figure 6.13. In this model, the modulation and demodulation processes (between baseband and the carrier 

Figure 6.12:  Decision boundaries for symbol-to-bit demapping.
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frequency) are abstracted. This is reasonable as, in theory, a modulated signal can be perfectly reconstructed at 
the output of the demodulator. The channel is modelled at baseband, where it is assumed that AWGN is intro-
duced at the input to the receiver, and that samples are taken at the ideal time instants (more on this later, in 
Section 6.6.4). 

The received signal conditions can be quantified using the metric of Signal to Noise Ratio (SNR), given by 

(6.1)

where  and  are the powers of the signal and noise, respectively.

For a received signal of some arbitrary power, then, the greater the amount of AWGN introduced, the lower 
the SNR. Also, intuitively, the more difficult it is to correctly retrieve the transmitted signal.

In the time domain, AWGN has a Gaussian Probability Density Function (PDF), meaning that small 
magnitude errors (both positive and negative) are most likely. The variance ( ) of the AWGN describes the 
degree of spread; AWGN with a higher variance has a greater likelihood of large magnitude errors. Examples of 
AWGN with difference variances are shown in Figure 6.14. 

The effect of AWGN is to spread the received symbol samples, so that they form a ‘cloud’ around the ideal 
positions. Up to a point, this can be tolerated, because the clouds are contained within the decision boundaries 
and the correct symbol decisions are still made. However if the level of noise is too high, some of the symbol 
samples forming these clouds extend beyond the decision boundaries, resulting in incorrect symbol decisions. 
Examples of 16-QAM in the presence of AWGN are provided in Figure 6.15: in the left hand example, the 
received symbols are close enough to the reference positions to prevent any errors occurring; however in the 
right hand example, where more noise is added, some of the received symbols stray into adjacent regions and 
therefore a proportion of the symbol decisions are likely to be incorrect. 

Figure 6.13:  Communications link modelled at baseband with an AWGN channel.
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For any given level of noise, there is a practical limit to the size of the QAM scheme that can be used, because 
the reference symbols are more closely spaced for larger QAM schemes, and therefore the scheme is more 
susceptible to incorrect symbol decisions. To give an example, 16-QAM might experience very few symbol 
decision errors at a certain noise level, whereas 64-QAM would suffer from an intolerable level in the same 

Figure 6.14:  AWGN profiles for different variances.
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CHAPTER 6: Wireless Communications Fundamentals
noise conditions. Therefore, some communications standards support multiple baseband modulation 
schemes, and switch between them according to the experienced environment. Low noise implies that a higher 
order modulation scheme can be used, which translates to a higher data rate because each symbol conveys 
more bits; conversely, when the noise level is high, a low order modulation scheme is necessary to provide 
more robust performance, but at a reduced data rate. 

6.4.3.  Error Vector Magnitude (EVM)

It is useful to quantify the degree of received symbol spread around the reference symbol points, and conven-
tionally this is done using the Error Vector Magnitude (EVM) metric. For one individual symbol, the EVM is 
defined as the distance between the reference and received symbol points, in the I-Q symbol space, as a ratio 
with respect to the magnitude of the reference sample point. Figure 6.16 illustrates how the EVM between one 
received sample and the reference point is calculated. This can be expressed as,   

(6.2)

where the symbols are as defined in Figure 6.16. 

When used as a quality metric, EVM is commonly expressed as a percentage of the peak signal level, and 
computed as an RMS value over some time window (  samples), i.e. 

Figure 6.16:  Definition of EVM.
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  (%) (6.3)

Note that, in the case of 16-QAM or higher, the  and  values used to calculate the reference signal power 
are those of a corner point in the constellation, as this corresponds to the peak signal level. 

Clearly, a larger EVM value indicates a greater degree of noise in the received constellation.

6.4.4.  Bit Error Rate (BER)

While EVM is a useful indication of how the received symbol constellation has been affected by noise, it does 
not directly capture the success of accurately transmitting data across the radio channel (although the two are 
undoubtedly linked).

More useful measures of successful data transmission are Bit Error Rate (BER) and Symbol Error Rate (SER). 
SER can be related intuitively to the discussion from Section 6.4.2 — when a received sample is closer to a 
different reference symbol than the transmitted one (e.g. due to the effects of AWGN), an incorrect symbol 
decision is made, leading to a symbol error. The SER is simply the rate of occurrence of such errors, with 
respect to the total number of transmitted symbols. BER considers the rate of bit errors, after the received 
symbols have been converted back to bits. 

For any given SER, the BER can be minimised by strategically allocating symbols, such that the group of bits 
represented by adjacent symbols in a constellation differ minimally (i.e. the Hamming distance is minimised). 
This is commonly done using Gray coding (as shown in Figure 6.10 — compare the sequences of bits repre-
sented by adjacent symbols, and you should notice that they differ by only one bit). Therefore, each symbol 
error results in a minimum number of bit errors. 

BER is perhaps the key metrics for assessing link quality, and will be discussed further in Section 6.7.

Next, we will consider the part of the communications system not yet discussed — the channel! The channel is 
the ‘real-world’ part of the system that inevitably poses various difficulties for successful communication 
across a wireless link, and which is the cause of the bit errors that we have discussed here. 

6.5.  The Radio Channel

When a wireless signal is transmitted across a radio channel, it can experience a variety of different effects and 
degradations, depending on the physical environment, and factors such as the carrier frequency of the signal, 
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CHAPTER 6: Wireless Communications Fundamentals
and the degree of mobility involved (i.e. the relative motion between the transmitter and receiver). This section 
reviews commonly encountered channel effects and the reasons that they arise; these effects are also depicted 
graphically in Figure 6.17. We also mention some of the techniques that can be used to manage or mitigate the 
adverse effects introduced in the channel, although it is outside this scope of this book to review them in detail. 

6.5.1.   Channel Effects

First, we review the various wireless channel effects that may occur, as illustrated in Figure 6.17. The impacts of 
selected channel effects are shown in Figure 6.18, for the example of a QPSK / 4-QAM symbol constellation. 

The Ideal Channel and Path Loss

The ideal wireless channel between a transmitter and receiver may be modelled by a simple wire, meaning that 
the signal is transferred perfectly. Often this method is used in simulations as a first step in validating a 
receiver design. To introduce a degree of realism, however, signals are subject to attenuation as they cross the 
radio channel: the signal power reduces in proportion to the distance travelled. 

The attenuation of signal power in the channel can modelled by a path loss model. The simplest such model is 
the Friis free space path loss model [167], which defines that

, (6.4)

where  and  are the transmitted and received signals power, respectively;  and  are the effective 
areas of the transmit and receive antennas, respectively;  is the distance between antennas; and  is the 
wavelength of the transmitted signal. 

A common adaptation of (6.4) replaces the antenna areas  and  with gain values  and , which are 
defined with respect to an isotropic radiation pattern, i.e. where power is emitted equally in all directions. This 
modification results in

. (6.5)

Bearing in mind that the RF carrier wavelength is the reciprocal of frequency, it is observed that power loss 
varies with the square of frequency, and the square of distance. In other words, the higher the RF carrier 
frequency, and the further the signal must travel, the lower the signal power will be on reaching the receiver. 
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CHAPTER 6: Wireless Communications Fundamentals
Additive White Gaussian Noise (AWGN)

It is normal for a signal to experience additive noise in a radio channel. This is an inevitable effect, which 
always arises to some extent, as a result of the transmission environment and radio hardware in use (at 
minimum, thermal noise is generated in the analogue components of the radio front end). There can also be 
low level interference in the environment that arises from other uses of radio spectrum, such as spectral 
leakage from other bands, and distant transmissions in systems that reuse frequencies geographically (for 
example, mobile networks [370]). Such interference is often modelled as noise. 

AWGN is usually modelled as being added to the signal at the point of reception. The impact of AWGN on the 
constellation of received QAM signals, i.e. to spread the received symbol samples around the reference points, 
as already been noted in Section 6.4.2.

Interference and Jamming

Aside from low level background interference (modelled as noise as mentioned above), there may also be more 
significant interference presented by other users of the radio spectrum. This is most pertinent when operating 
in one of the unlicensed bands, as there are no restrictions on how many other radios can seek to use these 
bands simultaneously, although all must comply with transmitted power limits. As unlicensed bands are 
shared, users must contend for access to the radio spectrum, typically using a MAC protocol such as Carrier 
Sense Multiple Access / Collision Avoidance (CSMA/CA) [125]. 

Interference can also arise from other sources, such another radio malfunctioning or otherwise not operating 
within its out-of-band emission limits, or perhaps even transmitting illegally in a licensed band. It is also 
possible for non-radio devices to generate RF interference, such as microwave ovens. Interference may be 
limited within one or more frequency band(s), and it may vary over time (for instance, bursts of interference 
may occur if another user transmits intermittently). As such, its characteristics may be dissimilar to AWGN, 
although it is usually handled in the same way in simulation models, i.e. as an additive signal at the receiver.

Jamming is a type of deliberate interference: it refers to malicious emission of radio signals, with the aim of 
disrupting other transmissions and users of the radio spectrum. Its signal characteristics can very considerably, 
but may include very wide bandwidths or high powers. Jamming is most relevant to military radio applications 
and will not be a focus in this book. 

Doppler Effect

The Doppler Effect occurs when the transmitter and receiver of a radio link are in relative motion. For 
instance, when a mobile subscriber is travelling in a train, towards a trackside basestation, the distance 
travelled by the radio waves is constantly decreasing. The receiver experiences this as the wavefronts of the 
carrier signal arriving more frequently, or in other words, it perceives the received signal at a higher frequency 
than its transmitted frequency. There is therefore an error at the receiver between the expected signal 
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frequency, and the actual signal frequency, which is known as a Doppler shift. The Doppler shift can be 
expressed as

(6.6)

where  is the transmitted signal frequency,  is the propagation velocity of a radio signal in air (which is 
approximately equal to the speed of light), and  represents the relative motion of the transmitter and 
receiver (a positive value when they are moving towards each other, and negative when they are moving apart). 

In wireless communications, Doppler effect causes the received symbol constellation to spin, as depicted in 
Figure 6.18(c). It also affects the timing parameters of the received signal, i.e. the symbol period is perceived as 
slightly shorter or longer than it should be. 

The most challenging Doppler conditions are when the rate of relative motion is extreme, where the 
environment is dynamic and there are frequent changes, or where there are a variety of signal paths each 
experiencing different Doppler shifts (known as Doppler spread) [346]. Some of the largest Doppler shifts 
occur in satellite communications systems, where the satellites are not geo-stationary, and the relative motion 
between transmitter and receiver can result in several kHz of Doppler shift [305].

Fading

Fading refers in general to the loss of signal power experienced in a channel. This occurs due to distance-
dependent path loss (even in free space) as discussed earlier. Another possible cause is shadowing, where the 
presence of a large object such as a hill or a building causes less signal power to reach the receiver. In dynamic 
environments, for instance where the transmitter and receiver are moving relative to each other, the loss of 
signal power can also vary over time. The general concept of fading is illustrated in Figure 6.18(a), i.e. the 
constellation points move closer together, although retain the desired shape. 

In very broad terms, the effect can be categorised as either ‘slow-fading’, where the channel characteristics vary 
only gradually over time, or ‘fast-fading’, where rapid temporal variations in the receive signal power can occur. 
Fluctuations in the received power level can often be compensated (or at least, partially compensated) by a 
dynamically changing amplifier gain in the receiver (Active Gain Control, or AGC). However, a deep fast-fade 
can cause a loss of ability to receive the signal, e.g. temporarily when traveling through a railway tunnel. 

Multipath Propagation and Fading

If the propagation environment is cluttered, it may include various objects that reflect or diffract radio signals. 
The result is multipath propagation, where components of the transmitted signal take several different paths 
between the transmitter and receiver, with each one arriving with a different time delay and loss of signal 
power, depending on the distance travelled and the reflectivity of the object. 
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Where there is a Line-of-Sight (LoS) path between the transmitter and receiver, this implies that one dominant 
signal component is received, along with other lower-power multipath components. The situation is more 
difficult when the channel is said to be Non-Line-of-Sight (NLoS), and only a collection of multipath compo-
nents arrive at the receiver.

The impact of multipath propagation may vary, but in general it causes multipath fading, which may be either 
‘flat’, or ‘frequency-selective’. In the former case, the entire signal bandwidth experiences the same general 
effect. Therefore, at any arbitrary time instant, the received power is relatively constant across the signal 
bandwidth, although the degree of fading is still likely to change over time. This type of fade can be compen-
sated with a simple gain (equivalent to a one-tap filter). The effects of fading are more challenging in the 
‘frequency-selective’ case, when the signal bandwidth exceeds the coherence bandwidth. This is defined as 

(6.7)

Figure 6.18:  Illustration of the impacts of selected channel effects on a received QPSK / 4-QAM symbol constellation:
(a) flat fading, (b) I/Q imbalance, (c) Doppler / oscillator mismatch, and (d) multipath frequency selective fading.
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CHAPTER 6: Wireless Communications Fundamentals
where  is the delay spread of the channel (i.e. the maximum time difference between signal components of 
significant energy that arise from the multipath channel) [346]. 

In this case, the channel exhibits frequency-selective fading, i.e. the received signal power varies with 
frequency, and therefore the response cannot be represented by (or compensated by) a single-tap filter. This is 
much more difficult from a signal reception perspective — in the time domain, frequency-selective fading 
manifests as a distortion of the received symbol constellation which, if severe enough and left unaddressed, 
may make it impossible to correctly receive the transmitted data. A (tolerable) example is shown in Figure 
6.18(d); the patterns produced due to multipath propagation can however vary considerably.

An added difficulty is that multipath effects are often time-varying, for instance due to the transmitter and/or 
receiver moving through a cluttered environment. Fortunately, adaptive DSP techniques can be used to 
compensate for the effects of multipath channels (discussed further in Section 6.5.2). 

Transmitter and Receiver Artefacts: I/Q Imbalance, Oscillator Mismatch

Although not strictly part of the radio channel, it can be useful to model some of the possible imperfections 
arising from the transmitter and receiver implementations, in particular the analogue front end sections of the 
transmitter and receiver. 

Depending on the architecture employed (referring back to Section 2.7), some radios have analogue 
modulation and demodulation stages. RFSoC designs actually do not require them, and can modulate and 
demodulate digitally, provided that the RF signal resides within the first or second Nyquist Zones (which 
translates to frequencies below about 6 GHz, depending on the RFSoC generation). At the other extreme, for 
very high bandwidth, high frequency signals, quadrature (I/Q) analogue modulation and demodulation is 
needed, which is achieved using sine and cosine carriers at the carrier frequency, . 

For modulation and demodulation to be undertaken perfectly, the oscillators must provide sine and cosine 
waves with exactly equal amplitudes, and they must be separated in phase by exactly 90 degrees. If this is not 
the case, then the resulting signal constellation is distorted, as seen in Figure 6.18(b). 

Direct-RF radio architectures are particularly beneficial here, as all modulation and demodulation is 
performed in the digital domain, where sine/cosine amplitudes and phases can be controlled precisely. 
However, analogue oscillators may have some degree of amplitude and/or phase imbalance. A benefit of 
RFSoC-based radios is that they only require external modulation and demodulation stages for extremely high 
frequencies, so I/Q imbalance can largely be avoided.

Another issue (an almost inevitable one) is that the oscillators in the transmitter and receiver are subject to 
component tolerances, and do not generate exactly the same frequencies. In wireless systems, the transmitter 
and receiver are not connected in any way, and therefore do not share a common frequency reference from 
which to generate sample and symbol timing parameters, or carrier signals for modulation and demodulation. 
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This means that, for instance, the transmitter believes that it is producing symbols at a rate of 1 Msymbol/s, but 
the actual rate is 1.00083 Msymbols/s; meanwhile the receiver expects symbols to arrive at 1 Msymbol/s, but 
actually the rate is 0.99936 Msymbols/s. Similarly, the nominal RF carrier frequency is 2.45 GHz, but the trans-
mitter actually modulates the signal to 2.45203 GHz, and the receiver believes the received signal should be 
located at 2.44843 GHz. This issue occurs even in Direct-RF systems, because all radios rely on a frequency 
reference provided by an oscillator.

Fortunately, the resulting deviations in timing and frequency parameters tend to be relatively small, provided 
that high quality oscillators are specified for the radio design. They also generate the same effect as Doppler-
induced timing and frequency shifts (such as that illustrated in Figure 6.18(c)). The combined effects of both 
Doppler and oscillator tolerances can be compensated in the radio receiver using synchronisation techniques 
[230], [301]. 

6.5.2.  Mitigation Techniques

Having reviewed the problems that can be introduced as the radio signal propagates through the channel, we 
will now briefly review some of the techniques used to address these issues at the PHY layer. It should be 
highlighted that, in addition to PHY layer processing, higher layer protocols usually apply further mitigations 
against data loss, e.g. error coding, buffering, and selective retransmissions. 

Analogue Receiver Front End Filtering

Perhaps the most obvious mitigation against channel effects is bandpass filtering, around the signal of interest, 
to remove as much of the incident AWGN and interference as possible. This should be done initially in the 
analogue domain, to ensure that the SNR is as high as possible when reaching the ADC. Further filtering can 
subsequently be undertaken in the digital section of the receiver (acknowledging that there are practical limits 
to the performance of the analogue filters).

Analogue front-end filtering is especially useful when there are high-power signals present on adjacent or 
nearby frequency bands, as these could otherwise saturate the ADC. 

Quadrature Modulation Correction

Noting that the symbol constellation is distorted when a signal is subject to modulation and/or demodulation 
with imperfect quadrature modulators (an example of which was shown in Figure 6.18(b)), it may be desirable 
to apply corrections for these effects in the receiver. This can be achieved in two ways:

• I/Q gain imbalance — The effect of unequal I and Q amplitudes can be corrected by applying a 
compensating gain to the I and/or Q branches in the receiver.
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• I/Q phase error — Where the separation between the two phases is not the required 90o, and therefore 
the signals are not orthogonal, an element of mixing between the two phases takes place. This can be 
corrected by adding a scaled version of the received Q signal to the I signal.

Support for the above corrections, and also offset compensation (to correct for an incorrect DC level) is 
available in RFSoC devices, via the QMC block, a hardened resource on the RFSoC [90]. This block provides 
the facility to apply corrections to the I and Q signal paths, based on user-developed algorithms. 

Forward Error Correction (FEC)

FEC is one of the key techniques used in wireless communications to protect against bit errors. By applying a 
coding scheme which adds redundancy to the transmitted data, the receiver is able to detect when bit errors 
have occurred (up to some limit), and also in most cases to correct them (again, up to some limit). The degree 
of protection depends on the coding scheme used, and its parameters. FEC is reviewed in considerable detail 
in Chapter 14, and so further discussion is not included here. 

Synchronisation

As noted earlier, and depicted in Figure 6.17, the transmitter and receiver do not have a common frequency or 
timing reference. Therefore, the frequency and timing parameters of signals arriving at the receiver are almost 
certain not to correspond to the nominal values expected by the receiver. The Doppler effect will add to these 
offsets and in total there may be considerable deviations in the actual and expected signal characteristics. 

Synchronisation systems are used in the receiver to estimate frequency and timing offsets, and apply adjust-
ments to correct for them. There are two main synchronisation tasks involved:

• Carrier synchronisation — The receiver must adjust the frequency and phase of its local oscillator, to 
match the frequency and phase of the carrier within the received signal. The outcome of successful 
carrier synchronisation is that the symbol constellation ceases to spin.

• Symbol timing synchronisation — The receiver must take samples of the incoming symbols at the 
correct rate, which is determined from observation of the incoming signal. Ideally it should position 
them at the maximum effect points, i.e. the optimum timing instants to achieve the best possible SNR.

Depending on the structure of transmitted data, frame synchronisation is additionally required in the receiver 
MAC layer to determine when the start of each frame occurs, and correctly extract the payload.

Equalisation

As noted in the previous section, and depicted in Figure 6.18(d), fading caused by multipath propagation can 
distort the received symbol constellation. 
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Where the fading is frequency-selective, the implication is that the channel acts like a filter, and causes varying 
gain across the signal bandwidth. In compensating for this effect, we consider a baseband equivalent channel, 
which includes the entire signal chain between applying input symbols at the transmitter, and retrieving output 
symbols in the receiver. In other words, the baseband equivalent channel includes aspects of the transmitter 
and receiver architectures, as well as the wireless channel itself. Adaptive DSP techniques can be used to 
generate an inverse of the baseband channel. If the output of the baseband channel is passed through this 
inverse, it is equalised, which achieves an approximately constant gain across the signal bandwidth, and in 
doing so, corrects the distortion witnessed in the constellation.   

When the channel introduces flat fading, the equalisation only involves applying a gain, and is therefore trivial.

The popular technique of Orthogonal Frequency Division Multiplexing (OFDM), employs an interesting 
approach that converts a wideband signal into a set of smaller sub-channels to simplify the equalisation task; 
more information on this, along with further review on the subject of equalisation, is presented in Chapter 16. 

6.6.  Pulse Shaping and Matched Filtering

Our discussion from Section 6.3 presented baseband modulation, i.e. conversion of bits to symbols, and then 
Section 6.4 focused on converting symbol values back to bits; however, neither touched on how the symbols 
are represented as physical signals for transmission across the channel, or how the symbols are retrieved from 
the received signal. The purpose of this section is to address these issues. 

6.6.1.  Symbols as Impulses

The representation of symbols as impulses, for instance as shown in the time domain waveforms from Figures 
6.7 to 6.10, is problematic from the perspective of physical signal transmission across the radio channel. The 
reason is that an impulse contains all frequencies, and therefore, transmitting impulse across the radio channel 
would create extremely wide bandwidth radio signals, which would intrude into adjacent bands (and beyond), 
causing interference to other users of the radio spectrum. 

The solution to this issue is to apply pulse shaping — equivalent to passing each of the pulses through a filter. 
In the following sections, we set out the requirements for pulse shaping, in both the time and frequency 
domains, and outline how the task can be decomposed into a pair of matched filters.

6.6.2.  Pulse Shaping Requirements and Implementation

Pulse shaping can be easily achieved in the digital domain by upsampling the symbol waveform, and passing it 
through an FIR filter with the desired filter response. The design of the pulse shaping filter must be specified 
carefully — there are two key requirements:

• The filter should appropriately contain the signal energy within the desired bandwidth. 
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• The filter should enable symbols to be accurately recovered when sampled at the ideal timing instants.

Taking these requirements in turn, the containment of signal energy within a specific bandwidth is usually 
needed to comply with a spectrum licence, and/or the spectral mask specified by the wireless standard. An 
example spectral mask is illustrated in Figure 6.19. The performance of a radio transmitter implementation 
with respect to this mask can be measured experimentally: Adjacent Channel Leakage Ratio (ACLR), i.e. the 
degree to which emissions are suppressed in the adjacent band, is often quoted as a figure of merit. 

In both cases, limits are placed on the power that can be emitted both within the allocated band, and also in the 
adjacent and next adjacent bands. It is usually necessary to achieve a high degree of suppression in adjacent 
bands, which protects other users of the radio spectrum from interference effects. 

The second requirement refers to the time domain process of sampling the received symbols at their maximum 
effect points, i.e. the instants when the best SNR is achieved, which corresponds with the centre of the shaped 
pulses. The chosen pulse shape should not produce any interference between successive symbols (known as 
inter-symbol-interference) at these ideal sampling points. The most reliable way to achieve this is using a pulse 
shape whose impulse response is one symbol period (or less); however, such a constraint limits the frequency 
domain performance of the pulse shaping process4. Possible pulse shapes include the rectangular, half-sine, 
Gaussian, and probably the most popular — the Raised Cosine (RC). 

4. The most basic pulse shape is a rectangle. In this case, all of the filter coefficients are 1, and the filter length is equal to the 
upsampling ratio — it is therefore a particularly simple filter to implement. Unfortunately, the frequency response of the 
square rectangular pulse shape is sinc-shaped, which equates to considerable spectral leakage into adjacent bands. It is 
therefore not preferred.

Figure 6.19:  Example of a spectral mask specification.
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6.6.3.  Square Root Raised Cosine Matched Filtering

The RC is a desirable pulse shape, because it satisfies both of the requirements set out in Section 6.6.2. It is not 
necessary, however, to implement this response entirely via transmit filtering; rather, the important point is to 
apply the pulse shape across the link. Therefore it is possible to split the filtering task into two sections, and 
implement one each in the transmitter and receiver. This is actually preferable because it enables the receive-
side filter to also filter out some of the noise introduced in the channel. 

The RC filter response can be split into two Square Root Raised Cosine (RRC) filters, which in cascaded form 
correspond to the RC response. When implemented in this separated form, the filters are referred to as the 
Pulse Shaping Filter (in the transmitter) and the Matched Filter (in the receiver). 

When designing an RC filter (or equivalently, an RRC filter), three parameters need to be specified:

• The oversampling ratio (or upsampling ratio, i.e. the number of samples per symbol period)

• The filter span, in symbol periods

• The filter roll-off parameter, usually denoted by . This controls the excess bandwidth, i.e. how much 
additional bandwidth is occupied by the signal when pulse-shaped. In the time domain, it determines 
how quickly the ‘tails’ of the RC impulse response diminish. 

We explore RC design further in Notebook Set D (which immediately follows this chapter). 

6.6.4.  Maximum Effect Points

Although the RC impulse lasts for several symbol periods, it avoids Inter-Symbol Interference (ISI) provided 
that the signal is sampled at the ideal timing instants, i.e. the maximum effect points, in order to retrieve the 
symbols. Referring to Figure 6.20, which shows the RC responses arising from successive pulses, it is clear that 
at the maximum effect points (i.e. the peak of each impulse response, where the amplitude is greatest), the 
amplitude contribution of all other pulses is exactly zero. Therefore, no ISI is experienced if the samples are 
ideally timed. 

The difficulty is timing the samples correctly at these exact instants, especially given the timing frequency 
offset issues discussed in Section 6.5.1, which may arise from oscillator mismatches in the transmitter and 
receiver, and/or the Doppler effect in the channel. In the receiver, symbol timing synchronisation is required to 
adjust the timing parameters of the symbol sampler, such that samples are taken as closely as possible to the 
maximum effect points. We do not cover timing synchronisation in this book, but the interested reader can 
find more information in textbooks such as [230], [301], and [326]. 

If symbol samples are not correctly timed, this results in a contribution to the overall error, or in other words, 
to the spreading of received symbol samples around the reference constellation points. As discussed in Section 
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6.4, spreading is measured in terms of EVM, and a larger EVM leads towards incorrect symbol decisions (and 
hence, bit errors), with higher order modulation schemes being more susceptible. The symbol timing synchro-
niser is therefore an important part of the receiver. 

6.7.  Bit Error Rate (BER) Analysis

The Bit Error Rate (BER) metric is used to quantify the ability of a communications link to convey data 
accurately from the transmitter to the receiver. It expresses the average incidence of measured errors, or the 
rate of expected errors; for instance, a BER of  indicates that 1 bit in every 1000 transmitted bits will, on 
average, be in error. A transmission that incurs a significant number of bit errors is unable to deliver high 
quality video, audio, or other data reliably across the link. 

In our earlier review from Section 6.4.2, we observed that increasing levels of AWGN made it more difficult to 
accurately receive transmitted symbols: the received symbols were seen to spread out around the reference 
points, and began to cross decision boundaries, and therefore some of the received symbols were misinter-
preted. Incorrect symbol decisions lead directly to incorrect reception of the bits, as each symbol conveys one 
or more bits. Intuitively, therefore, as the level of AWGN increases, so does the BER. 

Other 'real world' effects from the radio channel also impact the received symbol constellation; such as the 
Doppler effect, multipath propagation, and so on. The receiver, however, normally includes circuitry to 
compensate for these effects (in the form of carrier and timing synchronisation circuits, equalisers and so on). 

Figure 6.20:  Successive RC pulses, demonstrating zero-ISI at the maximum effect points.
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The experienced BER therefore becomes a function of the radio channel environment and the ability of the 
receiver to mitigate channel effects. 

FEC schemes are incorporated into many communications systems, and these methods can correct bit errors 
up to some defined threshold, which depends on the parameters of the coding scheme. The uncoded BER (i.e. 
without error correction), and coded BER (after FEC decoding) may both be of interest in such cases. For 
instance, an uncoded BER of 1e-2 may be acceptable, if the coded BER achieves a BER of 1e-4. This is because 
the latter is the effective one for later stages of receiver processing. 

BER performance is often characterised and visualised using a BER curve; a two-dimensional plot that graphs 
BER on the y-axis against  on the x-axis.  is a normalised digital measure of SNR, which is 
explained very clearly in [319]; our explanation borrows from this. As the  value increases, the trans-
mission environment becomes less challenging, and the BER is seen to decrease. 

In the  term, the symbol  represents energy per bit, which is equivalent to the signal power, , 
multiplied by the time period per bit, . The  term is the noise spectral density, i.e the noise power per 
Hz, which is equivalent to the total noise power, , divided by the bandwidth, . 

 can therefore be expressed as 

, (6.8)

noting that  is the reciprocal of the bit rate, . 

It can therefore be shown that  is a measure of Signal-to-Noise ratio, normalised by bit rate and 
bandwidth. 

(6.9)

Theoretical BER curves exist for commonly used modulation schemes (BPSK, QPSK, 16-QAM, 64-QAM etc.), 
described by equations [293],[319], and a selection are plotted in Figure 6.21. Note that modulation schemes 
with fewer symbols in the constellation can achieve any target BER at a lower level of  (in other words, 
noisier conditions) than those with a greater number of symbols in the constellation. This is in line with our 
discussion from Section 6.4.2. 

During development work, the relevant theoretical curve can be compared with the measured or simulated 
BER curve of a radio design to assess its relative performance.
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6.8.  Chapter Summary

This chapter has reviewed various aspects of communications, and in particular radio communications. We 
began by discussing the 7-layer OSI model, which all communications systems can be compared to, and the 
various levels of abstraction, tasks and protocols that must be undertaken by a communications system. This 
review was expanded to include the popular TCP/IP model, and examples of the ‘stacks’ defined in three well-
used standards for wireless communication. 

Our subsequent review focused primarily on the lower layer in each of these stacks, the PHY layer, which has 
the role of transferring data across the physical radio medium. We noted that the RFSoC is a particularly 
powerful implementation platform for the PHY layer, due to its PL and features such as the RFDCs. The 
RFSoC also has the facility to integrate well with higher layers of the communication stack, due to its PS and 
the tight coupling between the PS and PL (which enables predictable, low latency interaction between the two 
sections).   

Theoretical concepts useful to later chapters were reviewed, including baseband modulation and demodu-
lation, the effects of the radio channel, pulse shaping and matched filter, and BER analysis. Many of these 
topics are further investigated in the example notebooks immediately following this chapter. 

Figure 6.21:  Example BER curves.
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Notebook Set D
Wireless Communications 
Fundamentals 

The notebooks in this section are focused towards baseband wireless communications, i.e. the signal 
processing that takes place when the signal frequency is close to 0 Hz. In other words, before a signal has been 
modulated (shifted up in frequency) to IF or RF, and after it has been demodulated (shifted back down).

A little confusingly, the term modulation is commonly used in communications to describe two different 
processes. One of them is the mapping of bits to symbols (commonly known as baseband modulation), and 
the other is to shift a signal up in frequency by mixing it with a carrier (carrier modulation). In this chapter, 
we focus only on the former — modulation and demodulation with a carrier will be covered in Notebook E.

The following notebooks are briefly introduced in this chapter:

   ALL   01_baseband_modulation — rfsoc_book/notebook_D/01_baseband_modulation.ipynb

   ALL   02_evm_and_ber.ipynb — rfsoc_book/notebook_D/02_evm_and_ber.ipynb

   ALL   03_pulse_shaping.ipynb — rfsoc_book/notebook_D/03_pulse_shaping.ipynb
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Notebook D: Wireless Communications Fundamentals
D.1.  Baseband Modulation Schemes

In digital communications systems, there are various different ways of mapping bits to symbols, and these are 
commonly referred to as modulation schemes. Modulation schemes can convey different symbols by varying 
the frequency, amplitude or phase of a signal. 

The first notebook, named 01_baseband_modulation.ipynb, explores some of the modulation schemes that 
are widely used in wireless communications, in particular Binary Phase Shift Keying (BPSK), Quadrature 
Phase Shift Keying (QPSK) and various sizes of Quadrature Amplitude Modulation (QAM) scheme.

D.2.  Noise and Errors

The task of recovering symbols in the receiver is made more difficult because of impairments encountered in 
the radio channel. In the best-case scenario, the channel introduces some degree of Additive White Gaussian 
Noise (AWGN), and it may also involve other degradations such as multipath propagation, and the Doppler 
effect. The second notebook concentrates on AWGN, and explores the impact of additive noise on the 
receiver’s ability to correctly recover transmitted bits. To explore this example, open the notebook named 
02_evm_and_ber.ipynb.

Initially, we will explore a useful measurement known as the Signal to Noise Ratio (SNR), which is the ratio of 
the signal power and the noise power. Several simulations will be performed that add noise to QAM signals. 
Thes noisy signals plotted using constellation diagrams different values of SNR. These plots allow us to inspect 
the impact noise has on a QAM signal and can help determine the amount of error that has been introduced. 
For instance, see the constellation diagrams in Figure D.1, where a QAM-16 signal has been plotted with an 
SNR of 20dB and 10dB. It is clear that a lower SNR introduces more errors.

Figure D.1:  QAM-16 symbol constellations: (left) tolerable noise, and (right) too much noise!
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After understanding how noise impacts QAM signals, we will then review two important metrics. Firstly, we 
will explore Error Vector Magnitude (EVM), which is commonly used to characterise the impact of channel 
degradations on received symbol constellations. An example of EVM is sketched on the left hand side of Figure 
D.2, where the magnitude of an error for a generic sample, , has been labelled. The EVM measurement is the 
mean of the measured error magnitudes.   

The second metric we will investigate is the Bit Error Rate (BER), which quantifies the amount of errors 
encountered in the received data. We also inspect BER curves, where BER is plotted against , which is a 
normalised SNR used for digital communications analysis that provides an overall characterisation of commu-
nications link quality (refer back to Section 6.7 for further discussion of BER and ). An example BER 
curve is sketched  on the right of Figure D.2.

D.3.  Pulse Shaping and Matched Filtering

This final notebook in this set, 03_pulse_shaping.ipynb, demonstrates the technique of pulse shaping. The 
purpose of pulse shaping is to constrain the bandwidth occupied by a transmitted signal, helping to ensure that 
it complies with a spectral mask (i.e. the limits placed on transmitted power across the allocated and adjacent 
spectrum). Pulse shaping is performed at baseband, before the signal is modulated onto a carrier.

Several types of pulse shapes can be used and they have different properties, such as the sinc and raised cosine 
filters presented in Figure D.3. Here we confirm the undesirable spectrum generated by transmitting impulses, 
and compare the properties of square, sinc, and raised cosine pulse shapes. Note that the  parameter shown 
in the right hand plot refers to the roll-off of the raised cosine pulse shaping filter, a design parameter that 
determines the excess bandwidth occupied by the filtered signal (in the frequency domain), and how quickly 
the ‘tails’ of the impulse response diminish (in the time domain).   
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Figure D.2:  Error Vector Magnitude (left) and a BER curve (right).
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Notebook D: Wireless Communications Fundamentals
The raised cosine is a popular choice as the pulse shape — the notebook demonstrates that it can be success-
fully implemented as a pair of matched, Square Root Raised Cosine (SRRC, or simply RRC) filters, one each in 
the transmitter and receiver, which results in the raised cosine response across the communications link as a 
whole. This filter topology introduces Inter-Symbol Interference (ISI) at the transmitter, which is when 
successive symbols interfere with each other, however the matched filter compensates at the receiver.

Plots of the notebook simulation can be inspected in Figure D.4, where the results of RRC-filtering transmitted 
and received symbols are presented on the left and right, respectively. Notice that the zero-ISI property is 
restored after matched filtering, where the symbol maximum effect point of each symbol (i.e. where its 
amplitude is greatest) occurs simultaneously with the zero crossings of all symbols that are transmitted before 
and after.  .

Figure D.3:  Example plot of a sinc function (left) and a raised cosine (right).

Figure D.4:  Root raised cosine pulse shaped symbols at the transmitter (left), 
and symbols after matched filtering at the receiver (right).
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Chapter 7
Quadrature Modulation & 
Complex Exponentials

Robert W. Stewart and Louise Crockett

When working with communications systems, it is common to encounter signals that are described as 
complex signals (i.e. with real and imaginary components) and communication systems being presented with 
complex exponentials rather than with modulating real sine and cosine waveforms. Hence in this chapter, we 
explain what complex signals really are in terms of representing the I and Q channels of a quadrature 
modulator, and specifically how they relate to the mixing (or modulation and demodulation) of quadrature 
signals in communications. As a way of explanation we will present the quadrature mixing or modulation/
demodulation using both standard trigonometric notation (sines and cosines), and also with complex 
exponential mathematics. Both of these representations are precisely equivalent — they are simply alternative 
ways of describing the same signal processing — and, as will be demonstrated in this chapter, the complex 
signal representation and notation will actually make the maths and system design that little bit ‘easier’! 

Before presenting an analysis of classic quadrature modulation and demodulation, the next two sections 
provide context and motivation for choosing to work with a complex signal representation. We will review the 
mathematical background for presenting real signals using a complex signal spectrum representation, the so-
called two-sided spectrum. 
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
7.1.  Signal Representations

As a preliminary step in advance of analysing modulation and demodulation, we first review the methods used 
to represent signals in this chapter. 

7.1.1.  Analogue and Digital Signals

In this chapter, our review will be based on continuous time real signals rather than sampled discrete digital 
signals. This will minimise the mathematical notation required and allow the principles of quadrature 
modulation, demodulation, mixing etc. to be emphasised and more clearly presented. For example, a 100 Hz 
sine wave with amplitude 5, over time, , is given by:

. (7.1)

If we were to consider a sampled version of a 100 Hz sine wave with sampling frequency  10,000 Hz, then 
we can write this as:

(7.2)

with  the discrete sample index, and noting that  and . While not an arduous addition of 
more variables ( ), in order to focus on the trigonometry and complex notation in this chapter, we will 
just work with the continuous time mathematics and signals. 

The RFSoC is of course a DSP device, and therefore signals are always sampled and quantised, as was reviewed 
earlier in Chapter 4. In Chapter 10 we will review the RF-ADC quadrature and complex implementations for 
various receivers. and these designs will be presented in terms of discrete-time signals.

7.1.2.  Real and Complex Signals

A complex signal is composed of ‘real’ and ‘imaginary’ signal components. When working with quadrature 
modulators or mixers the in-phase signal path and quadrature phase signal path in a transmitter and receiver 
can be conveniently represented as a complex signal. More mathematically, as the quadrature oscillator path is 
90o offset (or orthogonal) to the in-phase oscillator path, then it becomes possible to represent one channel as a 
real signal path and one channel as an imaginary signal path (multiplied by )1. Therefore, when 
working with quadrature modulated versions of two real signals, we can depict one of these signals as real and 
the other as imaginary. The motivation for doing so is to simplify the mathematics of spectrum ‘shifting’ that 
comes later. If the trigonometric equations for modulation and demodulation can instead be expressed using 
complex exponentials (sometimes called complex sinusoids) then, as we will see later, the mathematics is easier 
to work with compared to directly using the quadrature sine /cosine representations.

1. We assume that readers are familiar with the imaginary number, .  (Also represented by i by mathematicians.)

t

x t  5 2100t cos=

fs =

x nT  5 2100n
fs

------------------- 
 cos=

n t nT= T 1 fs=
n fs  & T

j 1–=

j 1–=
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
As a very simple illustration of the ‘ease’ of working with complex exponentials (or complex sinusoids), 
suppose that you wished to express the multiplication of two cosines, 

(7.3)

as a sum of sine and cosine terms. You may remember (or be able to consult a list of trigonometric identities!), 
but otherwise, the result of

(7.4)

might be difficult to derive from first principles (although we show this done with complex exponentials in Eq 
(7.11) on page 236). 2

On the other hand, if you were asked to express the product of two complex exponential terms (  and ) 
as a single exponential, that task is much easier, just add the indices, i.e. 

. (7.5)

Therefore, we might anticipate that this simplicity can be exploited. Indeed, the use of complex mathematics to 
describe signals, and the processes of modulation and demodulation, could be most convenient if we the trigo-
nometric notation for quadrature modulation and demodulation could be replaced with complex exponentials 
and complex notation. 

7.1.3.  Euler’s Formula

When implementing wireless communications systems, the signals transmitted and received via antennas are 
real voltages, which change over time, and may take on positive or negative values. We often choose to 
represent these signals in our receivers in a way that yields a complex signal, i.e. a signal which includes both 
real and imaginary parts. These are known as analytic signals, i.e. signal representations that are used for 
analysis purposes only. However by using complex numbers as a notation, we can describe the operation of 
quadrature modulators and demodulators in a more convenient way, and make the associated mathematics 
much more tractable. 

The basis of this translation into the complex world is Euler’s formula, 

, (7.6)

where  is the base of the natural logarithm (a constant approximately equal to 2.71828...),  is an angular 
frequency given by , , and  represents time. 

When we have a negative exponential, , this can be written as

2. A list of trigonometric identities is provided at the back of this book. See page 703.

A  B coscos

A  B coscos 0.5 A B+  0.5 A B– cos+cos=

e jA e jB

e jAe jB e j A B+ =

e jt t  j t sin+cos=

e 
 2f= j 1–= t

e jt–
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
, (7.7)

because  and . 

By finding the sum and difference of (7.6) and (7.7), we note that

(7.8)

and

, (7.9)

and with some further reorganisation, we can represent both sine and cosine terms using positive and negative 
powered complex exponential notation, i.e. 

    and    (7.10)

Now, returning to the problem of multiplying  from a little earlier, it is possible to derive (7.4)
using the complex exponential terms given in (7.10), without too much difficulty:

(7.11)

In fact, using Euler’s formula, all of the sine and cosine terms arising from the standard trigonometric analysis 
of quadrature systems can be expressed using exponentials. 

e j– t t  j t sin–cos=

t– cos t cos= t– sin t sin–=

2 t cos e jt e jt–+=

j2 t sin e jt e jt––=

t cos e jt e jt–+
2

---------------------------= t sin e jt e jt––
2j

---------------------------=

A  B coscos

A cos B cos e jA e jA–
+
2

------------------------ e jB e jB–
+
2

-----------------------=

e jA

2
-------- e jB e jB–

+
2

----------------------- e j– A

2
---------- e jB e jB–

+
2

-----------------------+=

1
2
-- e jA jB+ e jA jB–  +

2
------------------------------------------- e jA jB+– e jA jB ––

+
2

-----------------------------------------------+
 
 
 

=

1
2
-- e j A B+ 

2
-------------------- e j A B– 

2
------------------- e j– A B– 

2
--------------------- e j– A B+ 

2
----------------------+ + +

 
 
 

=

1
2
-- e j A B+ 

2
-------------------- e j– A B+ 

2
----------------------+

 
 
  1

2
-- e j A B– 

2
------------------- e j– A B– 

2
---------------------+

 
 
 

+=

             12
-- A B+      cos          12

-- A B– cos+=
236

Downloaded from www.RFSoCbook.com



CHAPTER 7: Quadrature Modulation & Complex Exponentials
As stated earlier, both trigonometric and complex representations are equivalent, and equally valid — the use 
of complex notation is entirely optional, and it is perfectly valid to stay in the real domain (in other words, to 
use only real numbers, and trigonometric representations). Given the omnipotence of quadrature modulation 
in communications systems, however, it is useful to have at least an awareness of complex exponentials and 
complex notation.

In the coming sections we will show visually the relationship between presenting the frequency spectrum of a 
signal in terms of its ‘sine’ and ‘cosine’ representations (the so-called real spectrum, or sometimes the one-sided 
spectrum) and as complex exponentials (the complex spectrum, or two-sided spectrum). 

7.1.4.  Viewing Real Signals in the Frequency Domain using Complex Spectra

As presented earlier in the book, it is useful, in fact essential, to view and analyse signals in the frequency 
domain. When the signal to be analysed is complex, i.e. in communications terms, it has both In Phase (I) and 
Quadrature Phase (Q) parts, then it becomes necessary to understand the complex frequency spectrum 
representation. A set of example signals are analysed over the next few pages, as a means of introducing this 
method, starting with a simple sum of sine waves (in cosine form), i.e. a real signal. Note than Chapter 7 will 
look at computation methods for frequency domain calculation from a discrete sampled time domain signal 
(via discrete Fourier series and transforms), whereas in this chapter we will create frequency spectra from 
simple observation of the constituent sinusoidal components in the signals.

Simple Real Signal in the Frequency Domain: A Sum of Three Tones (One-Sided Spectrum)

In this first example, we consider a real signal composed of three cosine terms, which have frequencies of 100 
Hz, 200 Hz, and 300 Hz, respectively, and amplitudes of 10, 1, and 4,

(7.12)

A time domain plot of this signal, covering the first few tens of milliseconds, is provided in Figure 7.1. By 
inspection, we can ascertain that the signal is periodic, and perhaps pick out that the lowest frequency term has 
a period of 0.01s (i.e. 100 Hz), however it is difficult to analyse the frequency content of the signal in any detail. 

An alternative method of displaying the signal is using magnitude and phase spectra, as shown in Figure 7.2, 
and this permits easy interpretation of the sinusoidal frequency components and, as we show the cosine 
frequency values only (which are positive), we often refer to this as a the one-sided spectrum. Of course, the 
current example is an artificially simple one where we know exactly what we are looking for, but the same 
principle applies for any arbitrary signal (more generally, analysis would involve computing an FFT and gener-
ating the required plots — in the case of this straightforward example, we can simply sketch the spectra). 

s1 t  10 2100t  2200t  4 2300t cos+cos+cos=
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
Sum-of-Three-Tones Signals in the Complex Frequency Domain (Two-Sided Spectrum)

Next, we will analyse the signal  from (7.12) in the complex frequency domain. The signal can be 
converted to a complex exponential representation by substituting the complex version of  from 
(7.10), i.e. . This produces a sum of exponential terms:

(7.13)

Figure 7.1:  Time domain plot of the signal  as defined in (7.12).s1 t 
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Figure 7.2:  Spectra of the signal  from (7.12): (a) magnitude spectrum and (b) phase spectrum.s1 t 
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
We can then group the positive (blue ) and negative (pink ) exponentials to give

, (7.14)

and these terms can be plotted in a complex frequency spectrum, as the amplitudes of the complex exponential 
terms. The resulting plot is sketched in Figure 7.3 and we now have both significant components in the positive 
and negative axes, and will refer to this as a two-sided spectrum. 

In this plot, we can see the positive exponential terms plotted against the blue  background, and the negative 
exponential terms plotted against the pink  background. Sometimes these are referred to as ‘positive’ and 
‘negative’ frequencies, although the terms ‘positive frequency’ and ‘negative frequency’ are arguably confusing 
and misleading, since a frequency refers to the cycles per second of a real-valued, varying quantity. A more 
accurate term would be ‘negative complex exponential’, in reference to components such as . In practice, 
however, the somewhat imprecise language of ‘positive and negative frequencies’ is commonly used rather 
than the correct  ‘positive and negative (power) complex exponentials’.   

Notice that the right hand side of the complex spectrum in Figure 7.3 corresponds to the real magnitude 
spectrum from Figure 7.2(a), with a change in amplitude being the only difference. Noting once more that 

, the symmetry of the complex spectrum means that the components at, for 
instance, -200 Hz and 200 Hz, add together to form a real cosine at a frequency of 200Hz. Hence this two-sided 
spectrum is a complex notation representation of a real signal, because it is symmetric around 0 Hz.

The phase of the signal, which previously was shown explicitly as a phase spectrum plot (Figure 7.2(b)), is now 
captured in complex spectra plots for the real and imaginary components, although in this particular example 
there is no imaginary spectrum. When we introduce a phase shift away from a standard cosine, things become 
a little more complicated and we will have both real amplitude complex exponentials and imaginary amplitude 
complex exponentials, and hence will require two spectra (to be presented in Figure 7.7).
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Figure 7.3:  Complex frequency spectrum of the signal  as defined in (7.12)s1 t 
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
Sum-of-Three-Tones Signals in the Complex Frequency Domain (with Phase Shifts)

Our examples so far have considered a signal comprised of cosine terms, all with phase terms of zero (i.e. no 
phase shift from standard cosine waves). The next step is to introduce phase offsets into these cosine compo-
nents. We now define a new signal, 

(7.15)

which includes phase shifts in the 100 Hz and 200 Hz components. Figure 7.4 shows the time domain 
waveform for the new signal, , and Figure 7.5 shows the corresponding frequency domain (magnitude 
and phase spectra) plots, in subplots (a), and (b), respectively.  
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s2 t 

Figure 7.4:  Time domain plot of the signal  as defined in (7.15).s2 t 
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Figure 7.5:  Spectra of the signal  as defined in (7.15): (a) magnitude spectrum; (b) phase spectrum. s2 t 
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
First, notice by comparing the time domain waveforms from Figure 7.1 and Figure 7.4 that they look distinctly 
different from each other — this is due to the 100 Hz and 200 Hz cosine terms having different (non-zero) 
phases in the second plot.

By comparing the frequency plots in Figure 7.5 with those from Figure 7.2, we note that the magnitude-
frequency plot for  looks identical to that for  — this is to be expected, as the two signals contain the 
same cosine terms with the same amplitudes. The phase-frequency plots differ, and non-zero phases for the 
100 Hz and 200 Hz terms of  are now shown.   

Additionally, the same  signal can be analysed and plotted using a complex frequency spectrum. The 
non-zero phase components cause the derivation to be rather more complicated than was presented in (7.13)
for , which resulted in the spectrum shown in Figure 7.3. This derivation from first principles is 
presented in Figure 7.6 using the complex exponential form, with (7.15) as the starting point (note that this 
figure showing the maths spans across two pages!).    

Note that the final complex expression for  (shown at the final stage in Figure 7.6) includes imaginary 
amplitude components, whereas for , there were only real components (as seen in Figure 7.3). 

The real and imaginary spectra for  can be plotted using colours to represent the different components, as 
shown in Figure 7.7: 

•  real amplitude positive complex exponentials (‘positive’ frequencies), 

•  real amplitude negative complex exponentials (‘negative’ frequencies), 

•  imaginary amplitude positive complex exponentials (‘positive’ frequencies) and 

•  imaginary amplitude negative complex exponentials (‘negative’ frequencies). 

It is not necessary to generate a phase spectrum because phase is inherently captured in the real / imaginary 
spectra. The phase information can be extracted using the  function, if required, as indicated in 
Figure 7.8. 

A key point to note is that, if a signal is real-valued only (i.e. it is not complex, and has no imaginary or  
component), its two-sided spectrum is also even-symmetric (as this is formed from any cosine terms present 
in the signal), and its imaginary-valued spectrum is always odd-symmetric (this is formed from any sine terms 
present in the signal). We can therefore confirm by inspection of the complex two-sided spectrum in Figure 
7.7 that the analysed signal  is real-valued (which of course we knew, as it is a real signal composed of a 
sum of real-world, real-valued sine waves).

It is generally more convenient to work with a magnitude spectra, which plots the magnitude of the compo-
nents at each complex exponential value, as shown in Figure 7.8. This actually returns us back to the 
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
First, simplifying the notation, denoting ,  and :

Expressing the cosines as complex exponentials yields:

Noting that , we can re-write as: 

And using Euler’s formula;  and 

Noting ,   ,    , & 

Grouping all of the positive exponentials, , and negative exponentials,  together: 

Now grouping the real and imaginary scaled terms in each of the positive and negative exponentials:

Replacing the scaling terms with numbers to two decimal places:
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Figure 7.6: continues on next page...
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
magnitude / phase spectrum from Figure 7.5, when we viewed just the right hand side of the frequency axis. As 
noted previously, for real-valued signals, the magnitude spectrum is always even-symmetric and therefore the 
convention is to plot only the positive frequency values.  

As will be shown shortly, when working with quadrature communications signals, it becomes very useful to 
use complex number notation and to view complex spectra. The mathematical analysis using complex 
exponentials and the viewing of complex (two-sided) spectra will make the receiver design more straight-
forward in terms of mixing the right signal to baseband with a quadrature mixer/demodulator. A number of 
examples with complex number notation and two sided spectrum design will also be derived for RFSoC RF-
ADC receivers in Chapter 10.    

Substituting back for ,  and ,A 2100t= B 2200t= C 2300t=

s2 t  3.53ej2100t 0.43ej2200t 2ej2300t
+ + 3.53e j2100t– 0.43e j– 2200t 2e j2300t–

+ ++=

              j 3.53ej2100t 0.25ej2200t+ j 3.53– e j2100t– 0.25e j2200t––+ +

Figure 7.6:   First principles calculation of the complex spectrum of Eq. (7.15). 

Figure 7.7:  Complex-valued spectrum of the real signal  as defined in (7.15). s2 t 
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Figure 7.8:  A real signal as complex spectra (left hand side) and as a magnitude and phase spectra (right hand side).
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
7.2.  Amplitude Modulation and Demodulation

The use of complex signal notation is associated with quadrature modulation, where two independent streams 
or channels of baseband data are modulated onto the same carrier. A quadrature carrier refers to when these 
two baseband information signals are modulated onto cosine and sine carriers at the same frequency (i.e. 90o

out of phase) — this creates two orthogonal components that coexist within the same frequency band, without 
causing interference to one another. As we will note in Section 7.4, this can then be elegantly represented with 
a complex notation, and considering that one of the channels is real-valued and the other is imaginary-valued.

As a prelude to quadrature modulation or mixing (or sometimes called QAM — Quadrature Amplitude 
Modulation) in this section we will review the standard AM (Amplitude Modulation) modulator and demodu-
lator using real valued trigonometric analysis. We will first review the process of AM modulation using a single 
carrier signal, and then extend the discussion to quadrature modulation, before introducing the complex 
exponential representation in Section 7.3.

7.2.1.  Double Sideband Suppressed Carrier Amplitude Modulation (DSB-SC AM) 

Consider the amplitude modulation of a low frequency baseband signal, , with a higher frequency carrier, 
. To form the simplest possible example as a starting point, we assume that the baseband signal is a single 

cosine wave, i.e. 

, (7.16)

where  is the frequency of the baseband signal, and  represents its amplitude. 

Note that the amplitude  is somewhat arbitrary, given that in an RFSoC implementation, modulation with a 
carrier is achieved by binary multiplication of the signal with the output of a Numerically Controlled Oscillator 
(NCO), as will be reviewed in Chapter 10. Denoting the amplitude as A allows us to more easily note the 
outcome of amplitude scaling to  that happens later in the receiver stage. 

The carrier signal is of frequency  and is expressed as

. (7.17)

Using simple trigonometry, we can determine that the modulated signal is given by

(7.18)

The modulation of the information signal  onto carrier  is depicted in the time domain in Figure 7.9, 
with a corresponding frequency domain representation shown in Figure 7.10. Notice that two spectral compo-

g t 
c t 

g t  A 2fbt cos=

fb A

A

A 2

fc

c t  2fct cos=

s t  A 2fbt cos 2fct cos A
2
--- 2 fc fb– t cos 2 fc fb+ t cos+= =

g t  c t 
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
nents are generated by the modulation process, at frequencies  and . The ‘modulation’ might also 
be referred to as ‘mixing’ and indeed is accomplished by simple multiplication. 

More generally, baseband signals are not simple cosines, but spectrally rich signals occupying the frequency 
band from 0 Hz to  Hz. We denote such a signal . The result of modulating this more realistic baseband 
signal onto a carrier at  Hz is shown in Figure 7.11, where it is seen to produce upper and lower sidebands. At 
this stage we can see some spectral inefficiency here — the RF transmission bandwidth required, , is twice 
the baseband signal bandwidth, .3

3. Of course, there is a type of communications called single sideband which is spectrally efficient, but QAM helps solve this 
problem as we will see in later sections.
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Figure 7.9:  Modulation of a low frequency cosine onto a high frequency carrier (time domain view).
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7.2.2.  Amplitude Demodulation

The process of demodulating a simple AM signal is straightforward, under the assumption that the carrier 
signal generated in the receiver, with which to demodulate the signal, has exactly the same frequency and 
phase as the incoming signal. (In practice this is almost never the case, which is why synchronisation systems 
are needed in receivers, but that is beyond the scope of the current discussion, more detail on this can be found 
in [176], [230]!).

The demodulation process involves multiplying (or mixing) the received signal with the locally generated 
carrier. This produces two sets of frequency components: one at baseband, and a second at twice the carrier 
frequency, which can be conveniently removed with a low pass filter. An example of demodulation is shown in 
Figure 7.12, for the example of receiving the modulated cosine wave used in our initial modulation example in 
Figure 7.9.  

The signal received at the antenna in Figure 7.12 is the same transmitted signal from Figure 7.9, and is:

(7.19)

Within the receiver, it can then be perfectly demodulated by multiplying with a locally generated carrier, given 
by . 
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Figure 7.11:  Modulation of a baseband signal onto a carrier, producing upper and lower sidebands.
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The output of the demodulation process is given by

(7.20)

.

Note that the trigonometric identity

(7.21)

is used in the third and fourth lines of (7.20).

The two high frequency terms that are present in the demodulated output (sitting around ) are attenuated 
by the low pass filter, which leaves only a scaled version of the signal that was originally transmitted ( , as 
shown in Figure 7.9). 
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Figure 7.12:  Amplitude demodulation of the AM-modulated, transmitted cosine signal from Figure 7.9.

x t  c t  s t =

A
2
--- 2fct cos 2 fc fb– t cos 2 fc fb+ t cos+=

A
2
--- 2fct cos 2 fc fb– t cos A

2
--- 2fct cos 2 fc fb+ t cos+=

A
4
--- 2 2fc fb– t cos A

4
--- 2fbt cos A

4
--- 2 2fc fb+ t cos A

4
--- 2fbt cos+ + +=

A
2
--- 2fbt   cos A

4
--- 2 2fc fb– t cos A

4
--- 2 2fc fb+ t cos++=

A  B coscos 0.5 A B+  0.5 A B– cos+cos=

2fc
g t 
248

Downloaded from www.RFSoCbook.com



CHAPTER 7: Quadrature Modulation & Complex Exponentials
The resulting signal is given by 

(7.22)

This represents perfect modulation and demodulation of a simple cosine wave — but what about the more 
realistic baseband signal introduced via Figure 7.11? 

Actually the same process of demodulation can be shown to produce two copies of the originally transmitted 
signal, one of them at baseband, and another centred at , the latter of which is removed using a low pass 
filter. Demodulation of this signal is depicted in Figure 7.13. 

7.2.3.  Amplitude Demodulation with a Phase Error

As an extension to the original analysis, we now consider the case where the local oscillator used to demod-
ulate the signal is phase offset from the received signal. As mentioned earlier, it is more realistic to expect a 
phase error, or even a frequency error, to exist between the two carrier signals, and if present this produces a 
deviation from the ideal received signal. 

To illustrate the effect of a carrier phase error, we add a phase offset term, , to the local oscillator output 
shown in Figure 7.12. We consider that the signal being modulated is , as previously 
analysed for perfect modulation and demodulation. 
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
The demodulation that was previously presented in (7.20) now becomes:

(7.23)

Following this, the low pass filter removes the high frequency components centred around , and the 
remaining terms are simplified using a trigonometric identity, to obtain

(7.24)

Thus, we can confirm that the output is scaled by , which must have a value in the range . 
However in the absolute worst case, , or equivalently , and this produces an output of zero!

Any time-varying phase error can be represented as , and where the phase error increases or decreases at 
a constant rate, this represents a frequency offset error (noting that the frequency is the derivative of phase). In 
the time domain, this will cause the amplitude of the received signal to fluctuate. Therefore, again we recognise 
that synchronisation is required to compensate for such errors. We do not cover synchronisation in any detail 
this book, but many references and support texts are available (see textbooks such as [230], [301], and [326] for 
further reading on this topic). 

Having reviewed amplitude modulation and demodulation for basic AM signals, the next logical step is to 
progress to QAM. First, it is important to establish the rationale for using QAM, and then we move on to 
analyse QAM modulation and demodulation (initially using trigonometric methods, and then with complex 
notation). We will demonstrate that one of the key rationales for QAM is spectral efficiency. The earlier 
example for AM transmission (see Figure 7.11) requires twice the baseband frequency for transmission — 
QAM will make this more efficient.
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7.3.  Quadrature Amplitude Modulation and Demodulation

We can now begin to review quadrature amplitude modulators (also generically referred as QAM, or just 
quadrature modulation) and present its complex exponential (i.e. real and imaginary) representation. 

The motivation to use QAM, as opposed to modulating with a single carrier, is bandwidth efficiency. Referring 
back to Figure 7.11, a bandwidth of  is required to transmit the standard AM signal, i.e. double the 
bandwidth of the baseband signal. Therefore, it could be said that AM is only 50% efficient. QAM allows the 
efficiency to be improved (all the way back up to 100%!), because two signals are transmitted using orthogonal 
carriers at the same frequency, thus occupying the same bandwidth. As the carrier phases are 90o apart (in 
quadrature), i.e. a sine wave and a cosine wave, these two signals are orthogonal and do not interfere with one 
another, and can be perfectly separated and recovered at the receiver. 

7.3.1.  Trigonometric Representation of Quadrature Modulation

The quadrature modulator is shown in Figure 7.14. Notice that the sine carrier has a negative amplitude here, 
i.e. , which is often stated for mathematical notational convenience (the quadrature modulation 
and demodulation works with orthogonal carriers of  and equally with carriers of 

.   

Note that if the carriers were , then we could negate the Q channel input, giving 
, which would achieve the same result as the carriers of  and . 

Therefore, there is no need to worry about the negative / positive setting of the oscillator amplitude; in the 
examples that follow, the amplitude is set to achieve the same polarity of modulated outputs when presenting 
both the quadrature and the complex exponential versions of the modulators/mixers. 

In this model of quadrature modulation, we now denote two independent baseband signals,  and . 
By convention, the baseband channel modulated by the cosine carrier is referred to as In-Phase, or the I-
Channel, or Real Channel; while the channel modulated by the sine carrier is known as the Quadrature-Phase, 
Q-Channel or Imaginary Channel. As mentioned above, the use of the term ‘quadrature’ arises because the 
negative sine carrier is 90o separated from the cosine carrier, i.e. a phase difference of one quadrant. 

When the information signals,  and , are modulated onto the cosine and sine carriers, the resulting 
quadrature modulated signal is given by

. (7.25)
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7.3.2.  Trigonometric Representation of Quadrature Demodulation

At the receive side, the QAM demodulator likewise uses two local carriers to demodulate the signal, separated 
by 90o. The demodulator is shown in Figure 7.15, and assumes the ideal case where no signal degradation 
occurs in the channel (i.e. the transmitted signal from Figure 7.14 and Eq. (7.25) is the received signal here). 

We can now demonstrate with some trigonometric analysis that the transmitted baseband information signals, 
 and , can be successfully recovered from the  signal at the receiver. 

First of all taking the I-Phase, the output after demodulation with the local cosine oscillator is given by

(7.26)

and after low pass filtering the resulting signal, we obtain

Modulated Signal

 

In Phase (I)

Quadrature
Phase (Q)

Tx
baseband signal 1

m
ag

ni
tu

de

freq.f
b

m
ag

ni
tu

de

freq.f
b

baseband signal 2

cos(2 f
c
t)

-sin(2 f
c
t)

g
1
(t)

g
2
(t)

y(t) = g
1
(t)cos(2 f

c
t) - g

2
(t)sin(2 f

c
t)

m
ag

ni
tu

de

freq.f
c

2f
b

Figure 7.14:  Quadrature modulation of two independent baseband signals.

g1 t  g2 t  y t 

x1 t  y t  2fct cos=

g1 t  2fct cos     g2 t  2fct sin– 2fct cos=

g1 t  2fct cos2     g2 t  2fct  2fct cossin–=

1
2
--  g1 t  1 4fct cos+     12

--  g2 t  4fct sin–=
252

Downloaded from www.RFSoCbook.com



CHAPTER 7: Quadrature Modulation & Complex Exponentials
(7.27)

Note that the above manipulation relies on trigonometric identities as listed on page 703. 

The equivalent process applies for demodulation of the Q-Phase, where the input to the sine wave demodu-
lator is identical to that supplied to the cosine demodulator. The output of the sine demodulator is given by

(7.28)

Figure 7.15:  Quadrature demodulation of a quadrature-modulated signal
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and then after passing through the low pass filter, the output is

(7.29)

Therefore we can confirm that after modulation and demodulation with the quadrature carriers, both of the 
information signals,  and , are recovered perfectly. The only difference between the transmitted and 
received signals is a scaling factor of 0.5, which can be easily compensated. 

7.3.3.  Quadrature Demodulation with a Phase Shift

The analysis from the previous section assumed the perfect scenario, where there is no phase shift between the 
transmit and receive oscillators. We now repeat the analysis of demodulation, in the presence of a  phase shift 
in the receiver’s local oscillator. As will be demonstrated, this causes the I and Q channels to become mixed 
together (the severity varies according to the value of ). 

Rather than the signal obtained in (7.26), the demodulated I-Channel instead contains:

(7.30)

Noting that  and ,we can simplify to

(7.31)

and then filter out the high frequency terms, to obtain

(7.32)

where we note that the demodulated signal contains a component of , as well as .

Using the same analysis, the demodulated Q-Channel is expressed by
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(7.33)

and can be simplified to 

(7.34)

using the property that  and .

After low pass filtering, this yields

(7.35)

and similarly, we see that the demodulated signal 
contains not only the desired , but also a 
component of .

Therefore in summary, when the receive local oscil-
lator has a phase shift of  degrees, the demodu-
lated I and Q Channels are mixed versions of the 
two transmitted signals,  and , scaled by 
0.5,

(7.36)

and of course the scaling can be very easily compensated by applying a gain of 2 to both  and .

Considering (7.36) further, if  represents a point in the Cartesian (x-y) plane at a given sample 
time, then the point recovered after demodulation, , is simply  rotated about the 
origin by  degrees, as shown in Figure 7.16. This represents one of the classic problems in wireless communi-
cations, where a symbol constellation is rotated and has to be ‘de-rotated’ by a synchroniser in the receiver.
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Consider the example of a digital communications link where there is a phase shift at the receiver. If the phase 
shift was constant, then the received constellation would be rotated by  degrees. For example, referring to the 
4-QAM of QPSK transmitted constellation shown in Chapter 6 (in Figure 6.9 on page 206), the received 
constellation points would be rotated by  degrees, as shown in Figure 7.17(a).

7.4.  Quadrature Modulation and Demodulation with Complex Notation

The QAM system model considered in the previous section uses real signals only, and therefore it is absolutely 
not complex and does not involve any complex numbers or notation. A major benefit can be achieved from 
introducing complex arithmetic to represent this model, however, as it makes the mathematics more tractable. 
We will now redefine the equations describing the QAM system reviewed earlier, using complex exponential 
notation.

7.4.1.  Quadrature Modulation with Complex Exponential Notation

First, consider the block diagram in Figure 7.18, which depicts the modulation of a complex baseband signal, 
using a complex exponential at the carrier frequency. Note that complex number signal paths are indicated by 
the double arrow style: . For the purposes of analysis, the two baseband signals  and  are 
now represented by a single complex signal which is composed of a real part, , and an imaginary part, 

. 

(7.37)

Similarly the quadrature carrier pair is represented by another complex signal, but this time it is more 
convenient to represent it in its complex exponential form: 





Q

I

(a)

Q

I

(b)

Figure 7.17:  (a) Rotation of received symbol positions caused by phase error of . (b) Receiver constellation with fre-
quency error , which is a continuously changing phase and is seen in the receiver as a rotating constellation.
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
(7.38)

The modulator creates a signal that consists of real and imaginary components, and is therefore complex. 

(7.39)

After the modulation stage, we simply retain the real part and discard the imaginary part. Therefore, only the 
real part of the signal  is transmitted.   

This last stage before transmission can be expressed mathematically as

(7.40)

(Just for note we could have achieved the same output as Eq. (7.40) by mapping the complex baseband as 
 and mixing with a negative complex exponential, i.e. . The design choices for 

selecting the complex exponential as a positive or negative value will be presented via a few examples in 
Chapter 10.)
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v t 

Figure 7.18:  Baseband signals set as real and imaginary and then mixed with a complex exponential carrier. 
After the mixer we retain only the real component for transmission as a real world signal.
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
Referring back to Figure 7.14, recall that  is also the output of the quadrature modulation when analysed 
using trigonometry. Therefore, we have now successfully used complex exponential notation to create the final 
real signal for real-world transmission. 

As mentioned a number of times earlier in this chapter, the benefit of complex notation and the use of complex 
exponentials is that it requires simpler mathematics and lessens the need to use (and remember) trigonometric 
identities. Going forward, we can more elegantly design systems and work with two-sided spectra to design 
quadrature receivers using the RFSoC RF-ADCs! A number of examples of such receiver designs will be 
presented in Chapter 10.

7.4.2.  Quadrature Demodulation with Complex Exponential Notation

Complex exponential notation can also be used to described the process of demodulation. A model of a 
complex demodulator is shown in Figure 7.19. 

The input to this complex demodulator, i.e. the signal received at the antenna, is a real signal, as it originates 
from the real world, and it is the same  as was generated in Figure 7.14. As in our previous discussion from 
Section 7.3, we assume a perfect radio channel, where the signal received is exactly the signal transmitted. 

After multiplication of the received signal, , with the complex exponential,  (note this requires to 
be a negative to allow the equivalence to the earlier quadrature modulator. The signal  is 

(7.41)

y t 

Figure 7.19:  A complex demodulator used to receive a real RF signal and demodulate it to baseband 
(thus receiving the signal transmitted by the complex modulator in Figure 7.18).
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
To make the equations a little more concise and easier to read, we elect to make the substitutions , 
, and to set . The equation for  can therefore be expressed as

(7.42)

Next, we multiply out the brackets and re-order to give

(7.43)

Trigonometric identities can then be applied to achieve

(7.44)

and, substituting back for , , and , the signal  in Figure 7.19 is 

(7.45)

Therefore, after the low pass filter in Figure 7.19, the output  is the same as the complex modulator input 
Eq. (7.37) in Figure 7.18, i.e.

. (7.46)

This is the same signal as that obtained from the standard quadrature (cosine sine oscillator) demodulator, 
shown in Figure 7.15.
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
With this review, we have established the mathematical equivalence between the standard quadrature demod-
ulator of Figure 7.15, and the complex exponential based demodulator of Figure 7.19. The equivalence of these 
models is further illustrated in Figure 7.20.  

7.5.  Spectral Representation of Complex Exponential Demodulation

It is informative to sketch the complex spectra for the ‘complex’ modulation and demodulation processes, as 
presented in Figure 7.21. The two independent signals to be transmitted are represented by  and . 
Therefore, if we represent them as

(7.47)

Figure 7.20:  Equivalence of (top) standard QAM architecture expressed using trigonometry, and 
(bottom) complex model of the QAM architecture.
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
then  is a complex signal that can be represented in the complex frequency domain, by taking the Fourier 
transform. As this is not a real signal, then the spectrum is not symmetric. This is illustrated in the lower part 
of Figure 7.21, which shows the spectrum from point  in the complex exponential system (note this style of 
diagram is commonly referred to as a signal flow graph). 

The spectrum at  shows the complex baseband signal after it has been modulated by the complex carrier,

(7.48)

which has the effect of shifting the baseband signal spectrum to be centred at frequency . As the two-sided 
spectrum at  is asymmetric, then the signal is of complex form (real and imaginary components).

Taking the real part, using the [.] operator, we obtain the transmitted signal  shown in Figure 7.18, i.e. 

. (7.49)

Therefore the signal at  is , the signal that is transmitted over the channel. As this signal is real, its two-
sided spectrum is symmetric as shown in .

At the receive side, the demodulator multiplies the received signal  with the complex exponential term, 
. In the frequency domain, this has the effect of shifting both the positive and negative spectra by , to 

create the analytic complex signal spectra shown at . So once again, the two-sided spectrum is asymmetric 
and therefore the signal at  is complex (with real and imaginary components).

Finally, both the complex signal at  passes through a low pass filter (which is a real value filter only). This 
can be implemented as separate low pass filters on each of the two channels, or the complex signal can be 
passed through a single, real-valued low pass filter — producing the same output from both. 

At the output of the filtering stage, the complex baseband received signal, , is obtained at . In an ideal 
model, with perfect correspondence between the carrier frequency and phase at the transmitter and receiver, 
and high quality filters, we can therefore determine that the output  is given by

, (7.50)

and therefore the transmitted signal is received successfully via the complex exponential architecture.  
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
7.5.1.  Simple Mathematical Example of Passband to Complex Baseband

A numerical example will now be presented to confirm the concepts of complex demodulation covered so far. 
In this example, we consider a bandpass signal in the range 800 Hz to 1,220 Hz, which consists of four tones 
(cosine waves) at frequencies of 800 Hz, 900 Hz, 1,080 Hz, and 1,220 Hz. The signal  is given by 

. (7.51)

and it is shown in the upper part of Figure 7.22.   To generate this signal, we assume that a baseband signal has 
previously been generated and modulated onto a carrier at 1,000 Hz (note these are all artificially low numbers 
to make the example easy to follow). The signal is real, and therefore has a symmetric spectrum when plotted 
on complex frequency axes. Note that, because no sine terms are present, therefore there are no non-zero 
components in the imaginary spectra and we do not plot it.

Recalling that , we can express  in complex exponential form as

(7.52)

and this can be considered as the transmitted signal shown at point  in Figure 7.21. 

Next, the signal from (7.52) can be demodulated using a complex exponential, to form

(7.53)

which is depicted in the middle spectrum of Figure 7.22, corresponds to the signal at point  in Figure 7.21. 
Finally, the signal (both real and imaginary parts) is passed through a low pass filter to obtain the complex 
baseband signal, which is shown in the final spectrum in Figure 7.22 and relates to point  in Figure 7.21. 

(7.54)
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
Later, in Chapter 10, we will consider the requirement to reverse a baseband signal in terms of frequency (in 
other words, to ‘flip’ it). From a complex exponential perspective, this is easy to do by simply mixing with the 
positive exponential  (instead of the negative exponential as used in Eq. (7.53)) which shifts the signal 
in a positive frequency direction. The negative component of the two-sided spectrum in Figure 7.22 translates 
to around 0 Hz at baseband. The spectrum at baseband is now flipped, and slopes in the opposite direction.

Figure 7.22:  Numerical example of complex demodulation:
(upper) bandpass signal centred around 1,000 Hz;

(middle) complex demodulated by a negative 1,000 Hz complex exponential, creating
(bottom) demodulated components centred around baseband (0 Hz), and at -2,000 Hz (filtered out).
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
7.6.  Receiver Frequency Offset Error and Correction

Returning back to Figure 7.20, with a transmit carrier frequency of , the receiver local oscillator frequency 
should be set to  also. However, there will be a small error, , which represents the deviation in frequency 
between the frequencies that are actually synthesised in the transmit and receive local oscillators (as a result of 
component tolerances, etc.). The carrier frequency used to demodulate the signal is therefore represented as 

 Hz, rather than the expected value of  Hz. 

Depending on the technology, and the actual carrier frequency (100’s of kHz or MHz or GHz... and so on),  
could be a few Hz, or a very small fractional value of, say, 0.0001 Hz. But  will not be zero! So, to some 
degree, the receive carrier will deviate from the transmit carrier, and frequency locking is required. 

If we consider the frequency deviation  as a continuously varying phase,  of the carrier , the carrier 
frequency at the receiver is instantaneously . Consequently, for small frequency errors, a 
received symbol constellation will appear to rotate or spin (as illustrated earlier in Figure 7.17(b)). Therefore, if 
we see a constellation spinning, then this indicates that frequency locking has not been implemented, or is not 
working.

The resulting demodulation to baseband in Figure 7.23 from input  mixed (multiplied) with the complex 
exponential carrier to create output , can be described mathematically as:

(7.55)

which, compared to the ideal demodulation from (7.41), has as frequency error. The lowpass filter then band-
limits the signal at . The effect of this frequency error when viewed in the complex or two-sided spectrum is 
simply to shift the demodulated spectrum an extra  (left if positive and right if negative) with respect to 0 
Hz, as shown in Figure 7.23. Therefore as shown in Figure 7.23, the mixing to baseband was intended to be 

 if there was perfect frequency locking (and shifting left by  Hz (as in Figure 7.21 above); however, 
the  frequency error in the receiver carrier of   has shifted the signal of interest by an extra  
Hz. Therefore, unlike in Figure 7.21 where the signal of interest is centred on 0 Hz, in Figure 7.23 its position is 
offset by  from the 0 Hz centre.

This type of effect, where there is a difference between the frequencies used to modulate and demodulate the 
signal, is an almost inevitable occurrence in practical wireless communications systems. There are various 
reasons for this, including that the oscillators used to generate the transmit and receive carriers will not be 
perfectly matched, and therefore will be subject to component tolerances. Another possibility is that the trans-
mitter and receiver are moving relative to each other in space, and therefore a Doppler shift is generated, which 
appears as a frequency shift. The good news is that such errors can be corrected in the receiver using synchro-
nisation techniques. In the RFSoC RF-ADC there are many strategies to support this.
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Figure 7.23:  Effects of frequency error in a complex receiver — shifting and correction of demodulated signal
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
When the complex signal is received using the carrier frequency at , a frequency correction can be 
applied by multiplying the incoming spectrum  by: 

(7.56)

to obtain the output at  as shown in Figure 7.23.   This is simply a complex multiplication if  is fixed, and 
a changing value if the value of  varies (as is likely), which must be tracked by synchronisation methods.

Whether fixed or varying, the offset frequency  must be calculated in some way — and that is part of the 
synchronisation that is undertaken in a radio receiver and is a part of the RFSoC RF-ADC. In this chapter in 
our simplified analysis, we assume that the frequency error is already known. However, the important point, as 
this example demonstrates, is that an error in the frequency used to demodulate a signal can thereafter be 
compensated by a further multiplication with a complex exponential term (which again is just a single complex 
number). 

Noting the equivalence of the trigonometric and complex models shown in Figure 7.20, and in particular that 
 is the same in both models, this method of frequency correction is equally valid in both cases. 

7.7.  Equivalence of Quadrature and Complex Modulator

As has been established in this chapter, working with the complex exponential representation of a quadrature 
modulator makes mathematical manipulation and frequency domain design easier and more tractable. Key to 
successfully applying these principles is being aware of the difference between a one-sided spectrum for a real 
signal, and a two-sided spectrum for a real spectrum (which will be symmetric), and a two-sided spectrum for 
a complex signal (which will be asymmetric).

In Figure 7.24 we present the equivalence of the quadrature mixer and the complex exponential mixer, 
including the RF-ADCs and RF-DACs from the RFSoC (more on this in Chapter 10) in order to present the 
digital quadrature modulators and demodulators. Shown in Figure 7.24(c) is a re-drawn version of the 
quadrature mixer, where the sine modulator part is simply folded along a horizontal axis; we present this here 
because, in some of the SDR architectures we will present and derive in Chapter 8, we use the folded version to 
reduce space requirements in some SDR architecture figures (for example, Figures 8.1 to 8.7).

7.7.1.  Complex and Real I/O using RFSoC RF Data Converters 

In this chapter, we have observed the usefulness of complex exponential notation for the design and imple-
mentation stages of quadrature modulators and demodulators. The RFSoC architecture makes specific 
provision for this via the RFDC blocks, which can be configured to handle both complex and real inputs and 
outputs. 
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CHAPTER 7: Quadrature Modulation & Complex Exponentials
The RF-ADCs can of course be used singly for real inputs, and in pairs for quadrature or ‘complex’ (I and Q) 
inputs. For instance, an RFSoC device with 8 RF-ADCs can support up to 8 real input channels, or 4 
quadrature or ‘complex’ channels). Similarly, the RF-DACs can be used individually to generate real output 
signals, or in pairs to generate quadrature or complex (I and Q) signals. 

The selection of either real or complex external ports depends on the type of radio architecture being imple-
mented, and will be explored further in Chapter 10. Additionally, complex inputs and outputs may be useful in 
instrumentation applications, e.g. for spectral analysis (see Chapter 5), or to generate test waveforms. 

7.8.  Chapter Summary

This chapter has reviewed quadrature modulation and demodulation, and presented the mathematics 
describing these processes in both trigonometric and complex exponential form. Important underpinning 
concepts of the complex spectrum and the link with Euler’s equation were established, and examples presented. 
The major conclusion of this chapter is that complex notation can greatly simplify the analysis of modulation 
and demodulation, hence its wide adoption. Support for complex architectures and designs is available in the 
RFSoC device architecture and associated design tools. In Chapter 8 we will look at a few structured SDR 
transmit/receive architectures, and in Chapter 10 we will review the parameters and settings for using the RF-
ADC quadrature mixer for receiving RF signals.
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Notebook Set E
Complex Frequency Domain 

Following on from Chapter 7, you can now explore a series of notebooks stepping through three modulation 
and demodulation schemes. These notebooks use Python, along with the NumPy package for computation 
[281], and the MatplotLib package for plotting [257]. The example signals are plotted in both the time and 
frequency domains at each stage in the pipeline, which gives visual support to the underlying mathematics. 

There are three notebooks as part of this chapter, each representing a different modulation scheme. These can 
be accessed through Jupyter Labs, as in previous chapters, and none of them require access to an RFSoC devel-
opment board. The notebooks and their relative locations are:

   ALL 01_amplitude_modulation.ipynb — rfsoc_book/notebook_E/01_amplitude_modulation.ipynb

   ALL 02_qam_modulation.ipynb — rfsoc_book/notebook_E/02_qam_modulation.ipynb

   ALL 03_complex_qam.ipynb — rfsoc_book/notebook_E/03_complex_qam.ipynb

These notebooks step through the process of modulating and then demodulating a baseband signal of interest, 
beginning with a simple amplitude modulation methodology, before introducing a QAM scheme from a trigo-
nometric perspective. An example of a complex QAM scheme is also presented, which confirms that this 
approach is fundamentally identical to the traditional QAM method. 

Before exploring these examples in depth, recall that carrier modulation is the process of multiplying together 
(or 'mixing') two signals, causing the output signal to be 'shifted' in frequency. We can take advantage of this 
property to multiply a baseband information signal with a high frequency carrier signal, to produce a 
modulated signal ready for transmission. In the context of RFSoC devices and implementations, this carrier 
waveform has a frequency in the range of hundreds of MHz to several GHz. 
271

Downloaded from www.RFSoCbook.com



Notebook E: Complex Frequency Domain
E.1.  Amplitude Modulation

The first notebook in this set, 01_amplitude_modulation.ipynb, introduces a basic amplitude modulation and 
demodulation approach, as depicted in Figure E.1. Throughout these notebooks, a simple tone is used as the 
“information signal”, for demonstration purposes. A more generic baseband signal can be modulated using the 
same concepts as those featured here. 

The information signal, , the carrier waveform, , and the modulated signal, , are all plotted as 
presented in Figure E.2. Inspecting the modulated waveform in the frequency domain also confirms that 
modulation generates frequency components at  and .

Figure E.1:  Functional block diagram of amplitude modulation.
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Figure E.2:  The time domain representation of the baseband signal (a), carrier waveform (b), modulated waveform (c), 
and the frequency domain representation of the modulation waveform (d).

A. B.

C. D.
272

Downloaded from www.RFSoCbook.com



Notebook E: Complex Frequency Domain
This signal is then demodulated by mixing  with the known carrier signal, producing an signal which we 
can confirm contains the desired baseband signal, but also high frequency components at  and 

. By applying a low pass filter we remove these high frequency components, leaving a recon-
struction of the original information signal, with half the original amplitude. In addition, the notebook 
explores what happens when the demodulation takes place with a phase error in the local RF oscillator. 

E.2.  Quadrature Amplitude Modulation

The second notebook, 02_qam_modulation.ipynb, explores the QAM scheme, which uses orthogonal carriers 
to transmit twice as much data in a given bandwidth, compared to a single carrier (refer back to Section 7.3 if a 
recap is needed). This transmitter design can be seen in Figure E.3. 

This notebook follows the same format as the first — the information signals,  and , the modulated 
signals,  and , and the summed signal , are plotted for inspection. An example plot from the 
notebook can be inspected in Figure E.4. Here the modulated signals,  and , are presented in the 
time and frequency domain (represented as I and Q). These signals are simply summed to derive the output 
signal .

s t 
2fc fbaseband–

2fc fbaseband+

Figure E.3:  Functional block diagram of QAM modulation.
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To demodulate this signal,  is mixed with sine and cosine oscillators at the same frequency as the transmit 
side, before being low pass filtered to remove high frequency terms. This produces two separate reconstructed 
signals which match  and , but with half the amplitude. We also examine the effects of phase error 
on the QAM demodulation process. 

E.3.  Complex Quadrature Amplitude Modulation

QAM seen previously in Figure E.3 uses real signals. A complex representation is also possible, and this is often 
used to simplify the mathematics. The third notebook, 03_complex_qam.ipynb, demonstrates this complex 
representation. The transmitter for the complex QAM scheme is given in Figure E.5. 

Here we a see a complex input, , where  and  are equivalent to the input 
signals in the previous notebook. This complex information signal can be modulated by mixing with a 
complex exponential at a ‘frequency’ of  Hz. Only the real (in-phase) part of the signal is selected to derive 
the output , which is presented using time and frequency domain plots in Figure E.6.

By observing the plot of this modulated signal, we confirm that it is equivalent to the modulated signal, , 
seen in the previous notebook. Similarly, we confirm that the complex representation of demodulation is 
equivalent to the original trigonometric model.

y t 

g1 t  g2 t 

Figure E.5:  Functional block diagram of quadrature amplitude modulation using complex notation.
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Chapter 8
SDR Architectures
Kenny Barlee 

As introduced previously, Software Defined Radio is a generic term that refers to radio systems in which some 
or all of the PHY components traditionally implemented with dedicated hardware (e.g. mixers, filters, 
modulators, demodulators) are instead implemented using DSP algorithms in software, or on programmable 
hardware. They are an extremely flexible type of radio, as they can be used to transmit and receive many 
different types of waveform and enable the front end of 5G and soon to be 6G radio implementations.

8.1.  SDR Architectures Through the Ages

Since the ‘Software Radio’ term was first coined by Mitola in 1995 [264], there have been a number of evolu-
tions in DAC/ADC sampling technology. In turn, this has resulted in a number of distinct architectural ‘gener-
ations’ of SDR. Early SDRs used a Digital Signal Processor IC for kHz-bandwidth baseband signal generation, 
and all of the modulation to RF (and subsequent RF filtering and RF amplification etc.) was carried out using 
discrete analogue components. The RFSoC platform, being perhaps the most advanced modern SDR platform, 
can generate GHz-bandwidth signals using FPGA programmable logic cores, meaning that upconversion, 
filtering, Digital Pre-Distortion (DPD) and even modulation onto the RF carrier can all be performed digitally. 
In such a Direct-RF SDRs, the only remaining analogue stages are RF filtering and RF amplification.

8.1.1.  Baseband Sampling / Analogue IF Baseband Sampling SDRs (1990s)

Back in the late 1990s, A/D converters running at 100 kSps (kilo Samples per second) with a 16-bit resolution 
was the latest (and rather expensive) technology. As illustrated in Figure 8.1 and 8.2 in these first generation 
‘digital radios’, the analogue section downconverted signals from the RF carrier in either one or two stages 
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CHAPTER 8: SDR Architectures
Figure 8.1:  High level architecture of a Baseband-Sampling Software Defined Radio.
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Figure 8.2:  High level architecture of an Analogue IF Baseband-Sampling Software Defined Radio.
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CHAPTER 8: SDR Architectures
using an analogue Local Oscillator (LO). (In these figures and others in this chapter, we are illustrating using 
the ‘folded’ quadrature modulator signal flow graph, as reviewed in Figure 7.24 on page 268).  The two-stage 
version, as demonstrated in Figure 8.2, features an Intermediate Frequency (IF) stage, and uses a second 
analogue LO to further downconvert the IF signal to baseband (i.e. a superheterodyne architecture, as 
developed by Edwin Armstrong for FM Radio). Historically, these approaches were used where, due to the 
limitations of DAC and ADC technology (and in particular the achievable sampling rates), this was the only 
viable position for the A/D interface.    

The baseband signal is then sampled and digitised using an ADC, and DSP operations are used to perform the 
final processing stages to recover the transmitted information. The second generation mobile phones of the 
1990s — those that received GSM signals — were likely to have used this architecture.

8.1.2.  Digital IF Sampling SDRs (2000s)

With the sampling speeds of A/D interfaces gradually increasing to the MSps range, the next generation of 
digital radios saw the sampling and digitisation processes being performed at an IF, rather than baseband. IFs 
of around 40 MHz (for example), could be supported by an ADC that sampled at, say, 125 MHz. The first DSP 
stage of this architecture involved using a Direct Digital Downconverter (DDC) to shift IF signals to baseband 
using demodulation and decimation filtering, as shown in Figure 8.3. Further DSP processing was then 
performed once the signal was at baseband. In this architecture, more functionality was implemented in the 
digital domain, giving greater flexibility for the SDR.

Figure 8.3:  High level architecture of a Digital IF Sampling Software Defined Radio.
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CHAPTER 8: SDR Architectures
8.1.3.  Baseband Sampling SDR with Tunable RF (2010s)

As SDRs were becoming more widely used, IC manufacturers began to develop single chip SDR front ends that 
combined some of the analogue and digital stages together; bringing digital/software tunability to the analogue 
oscillator, filtering and amplifier stages too, as highlighted in Figure 8.4. This made the SDRs far more flexible, 
and able to operate across a wide frequency range for the first time. A/D interfaces were now able to reach 
sample rates of 100’s of MSps, increasing achievable baseband signal bandwidths to 10’s of MHz; meaning that 
SDRs could be used for prototyping and implementing the popular radio standards that we use day-to-day, 
such as Wi-Fi and LTE.  

By 2010, general purpose computers were also becoming much more capable, with higher CPU clock speeds 
and larger amounts of RAM. Dedicated DSP or FPGA hardware was no longer essential to implement the final 
DSP operations of the SDR system. These could instead be implemented in software (such as MATLAB or 
GNU Radio) on host computers. In order to connect the SDR front end chips to a computer, interfaces such as 
USB, Gbit Ethernet and PCI Express were required on SDR motherboards. FPGAs became key here, as inter-
connection hubs between the computer interfaces and SDR front end chip, as shown in Figure 8.5. 

These two major steps forward opened the SDR market to a much wider community — hobbyists, prosumers 
and student researchers — for the first time, as previously SDR solutions were really only used in advanced 
research and military applications. Economies of scale reduced the cost of this SDR transceiver hardware to 

Figure 8.4:  High level architecture of a Baseband Sampling Software Defined Radio with Tunable RF.
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CHAPTER 8: SDR Architectures
under $1,000, and the SDR revolution really took off. Examples of these types of radio include the USRP™ B210 
(equivalent to the “SDR Motherboard” shown in Figure 8.5), and the Zynq SDR (a combination of an AMD 
Zynq -based development board such as the ZedBoard™, and a third party SDR front end) [104].

8.1.4.  Direct-RF SDRs (Almost-All-Digital) (2020s)

We have now reached the stage where it is possible to run A/D converters at multi-GSps rates, meaning that 
(almost!) all-digital radios can be implemented for an increasing number of bands. Ultimately, the move has 
been made to sample RF signals directly, as illustrated in Figure 8.6, and to subsequently downconvert them 
from RF frequencies to baseband in a single stage, using DSP. This architecture was first realised in a fully 
integrated form in 2018, with the creation of the Gen 1 RFSoC. The Gen 3, released in 2022, is able to sample at 
rates of up to 10 GSps.

An almost-all-digital Direct-RF SDR requires very little analogue processing — mostly the front end RF filters, 
and RF amplifiers. From an SDR perspective, the fact that almost all functionality is implemented digitally is 
highly significant — it means that the operation of the radio can be controlled and even dynamically updated 
at runtime using software, as shown in Figure 8.6. While many (but not yet all) 5G networks are using direct-
RF SDR front ends, we can expect for future 6G implementations that all radios will be of this form. 

Figure 8.5:  Example system level implementation of Baseband Sampling Software Defined Radio with Tunable RF, 
connected to remote host computer which carries out baseband DSP operations in software.
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CHAPTER 8: SDR Architectures
8.2.  Multiple Input, Multiple Output (MIMO)

All of the SDR architectures presented in the previous section are depicted as Single Input Single Output 
(SISO) radios. Commonly, SDRs support at least 2 Transmit (2Tx) and 2 Receive (2Rx) paths. This is known as 
a 2Tx 2Rx or 2x2 Multiple Input Multiple Output (MIMO) SDR. Using MIMO technology can increase the 
throughput, and helps to increase the signal strength and resilience by sending the signal on multiple paths 
from the transmitter to the receiver. 

SDRs with multiple antennas feature duplicate copies of the SDR front end for each of the Tx and Rx paths. For 
the 2x2 example, this means that the SDR will feature a total of four ADCs and four DACs (2 complex 
sampling pairs of each), as shown in Figure 8.7. 

The RFSoC family of SDRs are all able to support MIMO. There are a number of devices available, which range 
between 2x2 and 16x16 Transmit and Receive (TRx) interfaces.

Figure 8.6:  High level architecture of a Direct-RF Software Defined Radio.
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CHAPTER 8: SDR Architectures
8.3.  The Digital Baseband Stage

All of the SDR architectures outlined in Section 8.1 feature a digital baseband processing stage. This stage can 
be implemented on various programmable hardware, such as a DSP IC or FPGA, or as software running on 
general computing equipment. 

8.3.1.  Receive Path

On the receive side, baseband samples of radio signals are input as complex digital words. This means that they 
are composed of In phase and Quadrature components, and represent a window of the radio spectrum, from

 to  ,

Figure 8.7:  2x2 MIMO front end of a Direct-RF Software Defined Radio.
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CHAPTER 8: SDR Architectures
downconverted to baseband (i.e. centred around 0 Hz); where  is the SDR centre frequency, and  is 
equal to the sampling rate at the input to the digital baseband stage. The samples have a digital wordlength, and 
the method of packing this data into the digital word will vary from SDR to SDR. For example, a 16-bit SDR 
with complex sampling may output 32-bit binary words (16 bits for the In phase sample, 16 bits for the 
Quadrature phase sample) every 1/  seconds; or it may output two separate 16-bit words at that rate, using 
distinct In phase and Quadrature output interfaces. The latter is the approach taken by the RFSoC family of 
devices, as presented in Figure 8.8.

Samples are represented using 2’s complement notation. This means the absolute maximum positive value that 
can be represented by each of the ADCs on the receive path is 0111111111111111 in binary (32767 when 
represented in decimal), and the minimum is 1000000000000000 (minus 32768 when represented in 
decimal). 

One of the functional blocks in the SDR receive path is Active Gain Control (AGC). The purpose of AGC is to 
increase or decrease the amplitude of the received signal, by dynamically adjusting its gain to ensure that the 
signal occupies the ADC range as fully as possible, whilst not saturating the ADCs (which results in corrupted 
data). Figure 8.9 provides an illustration of AGC in action (part (b) in the lower two-thirds of the diagram), 
and compares it to an alternative configuration with no AGC present (part (a), in the upper third).

fc fsBB

fsBB

Figure 8.8:  With this example, two 16-bit digital words are received every  seconds.
One word represents the signed 16-bit In Phase sample, and the other, the signed 16-bit Quadrature sample.
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CHAPTER 8: SDR Architectures
Figure 8.9:  The impact of Active Gain Control: (a) ADC saturation will cause corruption of the sampled signal;
(b) Active Gain Control can be used in the SDR front end to automatically reduce the signal amplitude,

to mitigate the risk of saturation.
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CHAPTER 8: SDR Architectures
Using as many bits as possible from the ADC’s operating range, as is achieved by AGC scaling, maximises the 
dynamic range of the digital signal, which can be approximated by 

(8.1)

where  is the target number of bits representing the signal; or 

(8.2)

where  is the target signal amplitude in decimal representation. 

Generally, therefore, the AGC will aim to have the average sample amplitude represented in these digital words 
around 80% of the maximum value. For this example, we will assume the AGC aims to have the ADCs produce 
samples with values around 26214. According to Eq (8.2), this means that the dynamic range of the received 
signal is around 88dB.

The value of the dynamic range is highly significant, as this essentially determines the represented noise floor 
of the ADC. An example of this is shown in Figure 8.10. 

As a result of the AGC stage (as well as gains from the antenna and other RF amplifiers), the sampled signal 
power is not equal to the true RF signal power. Rather, it is relative to the properties of the ADC. This effec-
tively means that the SDR receiver is uncalibrated. In order to use an SDR for an accurate signal measurement 
(for example, use as a spectrum analyser), calibration is required in order to adjust the gain of the sampled 
signal power so that it matches the true RF signal power. With knowledge of the SDR front end antenna gain, 
RF amplifier gain, instantaneous gain of the AGC, and the ADC characteristics, it is possible to implement a 
gain compensation stage, to calibrate the SDR. 

(For an interactive AGC PYNQ Notebook, please check out https://github.com/strath-sdr/pynq_agc).
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Figure 8.10:  Increasing the dynamic range reduces the SDR noise floor, allowing more signals to be detected.
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CHAPTER 8: SDR Architectures
To recap, we receive a 32-bit digital word every 1/  seconds, and the digital word contains complex 
samples of from the I and Q ADCs. Each of these are 16-bit, and the average amplitude of the sample values is 
around 26214. These complex samples represent a window of the frequency spectrum, downconverted to 
baseband (i.e. centred around 0 Hz). The received signal will still be in its modulated form.

“Great, now what?!”, you might ask. The final stages of the receiver must be implemented.

Over the next few pages, we explore two different types of receivers at opposite ends of the complexity scale. 

FM Radio Receiver

If the signal being received was an analogue FM Radio signal, we would now have an FM-modulated 
waveform at baseband, and require to demodulate it using DSP techniques. First, a digital filter would be used 
to isolate the 200 kHz bandwidth of the FM station of interest from the downconverted FM band (which will 
probably contain numerous stations). This filtering operation is depicted in Figure 8.11, and it appears as the 
first stage of the block diagram shown in Figure 8.12.  

Next, this FM modulated signal is passed through an FM demodulator, such as a complex discriminator. Then 
we would demultiplex the stereo FM multiplex, and recover the left and right audio channels. During these 
processes, if fixed point representation is being used (rather than floating point), it is likely that the wordlength 
will grow throughout the demodulation process, due to the arithmetic effects of filtering and other DSP 
processing stages. To give an example of this, a multiplier block—which is a fundamental component of many 
DSP operations—multiplying two n-bit numbers together should be configured with a greater number of bits on 
the output, in order to ensure saturation and data corruption does not occur. Taking our 16-bit samples and 
considering the maximum values they can represent, the output might need to be as large as 32-bits. 

fsBB



Figure 8.11:  Filtering to isolate the baseband FM Radio signal of interest.
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CHAPTER 8: SDR Architectures
The sampling rate could then be reduced to a more conventional audio rate (e.g.  = 44.1 kHz) using 
decimation, and the fixed point wordlength reduced to a value compatible with the output audio codec, 
through truncation of LSBs. At this stage the SDR has completed its task, and recovered the transmitted stereo 
audio signal.

OFDM Receiver

As a more complex example, let’s consider an OFDM receiver (as would be required to receive a Wi-Fi signal). 
A block diagram of this radio is provided in Figure 8.13. 

Figure 8.12:  Baseband Stereo FM Radio receiver block diagram, with demodulator and stereo FM demultiplexer.
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f
S (BB)

Output to 
higher stack

layers

OFDM Receiver Baseband DSP

Error
Correction

QAM
DemapQ

I

Packet
Preamble
Detection

Packet Valid

Carrier Freq + Phase
Offset Correction

Cyclic Prefix
Removal

OFDM Demod
with FFT

Channel
Estimation +

Compensation

Recovered

Binary Data

Rx Data
Buffer

Rx Valid

Request
Data

Data Bitrate
286

Downloaded from www.RFSoCbook.com



CHAPTER 8: SDR Architectures
After digital filtering to isolate the signal of interest, preamble detection is carried out to detect the start of an 
OFDM packet. Following this, frequency and phase synchronisation are performed to compensate for any 
frequency tuning offsets, and sampling offsets in the ADCs (which are guaranteed to exist, as all oscillators 
have tolerances). The next stages are cyclic prefix removal and OFDM demodulation using an FFT. Channel 
estimation and channel compensation systems correct offsets across the bandwidth of the baseband signal that 
are introduced by the RF environment and radio spectrum channel, and finally, QAM demapping is performed 
to recover the binary data stream, and an error correction stage may be used to correct bit errors. (Much more 
detail on OFDM is provided in Chapter 16, when each of these stages are described fully). 

At this point, the PHY layer demodulation of the OFDM signal has been completed, and a binary data stream 
has been recovered. However, this has not yet resulted in useful data for an end user application. The commu-
nication stack receive protocols need to be implemented to convert the binary data stream into the web page, 
document, music or video stream (etc.) that was transmitted.

While the PHY digital baseband stage is normally implemented on a FPGA, because of the parallel processing 
capabilities of FPGAs, a partner CPU will likely be used to process some of the higher software layers of the 
stack. An SoC that couples an FPGA with a CPU, such as the RFSoC, is an ideal platform — it would be 
possible to implement the entire receiver communications stack on the single chip, with some of the function-
ality running on the processor.

Having reviewed the receivers for both FM and OFDM, we now consider the opposite side of the link — the 
corresponding FM and OFDM transmitters. 

8.3.2.  Transmit Path

The digital baseband stage of an SDR transmitter is tasked with producing samples of a baseband signal that 
can be upconverted to an RF carrier and transmitted by the SDR front end. Working backwards, the SDR front 
end / digital baseband interface has exactly the same requirements as the receive path. Complex digital words 
containing I and Q samples with a fixed wordlength need to be output from the digital baseband stage every 1/

 seconds. Continuing with our 16-bit SDR example, this corresponds to 32-bit digital words. Again, as we 
want to maximise the dynamic range of the DAC, and this means that the target amplitude of the generated 
samples should be around 80% of the wordlength, i.e. 26214.

FM Radio Transmitter

To build an analogue FM Radio transmitter using an SDR, the digital baseband stage must process a source 
audio stream to create a stereo FM multiplex, perform baseband FM modulation, and finally adjust the sample 
rate, sample format and sample amplitude to reach the target 16-bit wordlength with average sample amplitude 
of 26214, at the rate . Such a transmitter is illustrated in Figure 8.14. Where the source audio stream is 
supplied in fixed point, it is important to ensure that no loss of data occurs during the multiplexing and 
modulation process. It is common practice to allow the sample wordlength to increase throughout these arith-

fsBB



 fsBB
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CHAPTER 8: SDR Architectures
metic processing stages, before reducing it as the final stage in the process, in order to optimise the signal 
quality and dynamic range. 

With knowledge of the DAC characteristics, it should be possible to accurately calculate the resulting analogue 
signal power, then configure the SDR front end and external RF amplifiers, and select antennae according to 
the RF Effective Isotropic Radiated Power (EIRP) permitted in the licence issued by the spectrum regulator. 
More on this in Section 8.5.

OFDM Transmitter

The initial stages of an OFDM transmitter will likely be implemented in software, with the various levels of the 
communication stack receiving instructions to send data packets over the air interface. By the time the data 
reaches the PHY layer in the SDR’s digital baseband processing stage, this should be in the form of streaming 
binary data (1’s and 0’s). Data arriving to the PHY layer from upper layers is shown at the left hand side of 
Figure 8.15. Where error correction coding is used, this data initially passes through an FEC encoding stage. 

Figure 8.14:  Baseband stereo FM modulation block diagram.
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CHAPTER 8: SDR Architectures
When the transmitter is designed to operate in a ‘bursty’ fashion, rather than by transmitting a continuous data 
stream, the digital baseband stage must insert (and then process and transmit) ‘null’ bits that result in no 
output being sent to the SDR front end. 

The OFDM modulator (as will be explained in greater detail in Chapter 16) takes the binary/null data, and 
performs QAM mapping, thus creating QAM symbols. Next, these pass through the IFFT to create OFDM 
symbols. A cyclic prefix is added, and windowing is performed to smooth discontinuities. Windowing also 
helps reduce the Peak to Average Power Ratio (PAPR), i.e. it reduces large amplitude spikes, which can help 
maintain a constant average sample amplitude (useful for optimising the dynamic range). The preamble, used 
for OFDM packet detection in the receiver, is then added. Again, the wordlength should be allowed to grow 
significantly during the modulation process. Finally, the sample format and amplitude are adjusted to reach the 
target 16-bit wordlength with average sample amplitude of 26214.

8.4.  Digital Up- and Downconversion

As described in Section 8.1, most SDR architectures (including those implemented using the RFSoC) require 
Digital Upconversion and Downconversion stages. These conversions sit between the A/D and digital 
baseband stages, and comprise a frequency translation of the signal (between baseband and the modulated 
carrier frequency, and vice versa), and a change in sampling rate.

In the remainder of this section, we provide an overview of the generic signal processing stages involved in 
each, particularly from the perspective of sampling rates and computational requirements. This generic 
background precedes a more detailed discussion of the hardened DDCs and DUCs present within the RFSoC, 
which follows in Chapters 9 and Chapters 11, respectively. 

We begin with the DDC, which is arguably the more intuitive, followed by a briefer review of the DUC.

8.4.1.  Digital Downconverter (DDC)

Digital Downconverter (DDC) forms part of the receiver, and is the first processing stage following the ADC. 
The architecture of the DDC is presented in Figure 8.16. The DDC first shifts the incoming modulated signal 
from a carrier frequency to baseband, by mixing it with the output of a Numerically Controlled Oscillator 
(NCO). The NCO is normally implemented in the FPGA/ PL, with the output values coming either from a pre-
computed dictionary of samples stored in a Lookup Table (LUT), or by calculating the output dynamically 
using a Co-Ordinate Rotation DIgital Computer (CORDIC) processor [354].

In the examples presented here, we consider that the incoming signal is modulated onto a carrier at  Hz, 
which could be the RF carrier in the case of a Direct-RF radio, or an IF carrier if the radio has an analogue 
conversion between RF and IF. This means that the NCO used to demodulate the signal should generate sine 
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CHAPTER 8: SDR Architectures
and cosine outputs at  Hz. The mixing process shifts the sampled signal to baseband, and cyclically shifts all 
other sampled signals captured by the ADC to other frequencies.

During the demodulation stage, the sampling rate of the system is equal to that of the ADC, , which can 
be extremely high (e.g. 4 GHz or even higher, in the case of RFSoC). Since demodulation shifts the signal of 
interest to 0 Hz, the sampling rate can be substantially reduced. This results in a sampling rate at the output of 
the DDC that is much closer to (but still higher than) the baseband signal bandwidth. We will denote the 
resulting baseband sample rate as . 

In a DDC, sampling rate reduction is normally accomplished using a cascade of decimators (rather than a 
single decimator), as indicated in Figure 8.16. Notice that we require two sets of these cascades, one each for 
the In Phase and Quadrature branches.  

The reason for selecting a decimation chain, as opposed to a single-stage decimator, is computational 
efficiency — the number of MAC operations that need to be performed per second can be reduced by opting 
for a multi-stage design. We will now explore this issue with an example, which builds on the simple two-stage 
decimator previously discussed in Section 4.7.6.
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CHAPTER 8: SDR Architectures
Let us suppose that a DDC has the following parameters: 

Before and after the signal is demodulated to baseband, the remainder of the spectrum is likely to contain 
energy across other frequency bands. When receiving signals from the RF spectrum Over the Air (OTA), this 
energy will comprise AWGN, transmissions by other users of the radio spectrum, and so on. We can model the 
unwanted components generically as noise, as shown in Figure 8.17. Note that the received signal is real
immediately after the ADC, and complex after demodulation (hence the spectrum becomes two-sided). 

Table 8.1: Parameters for DDC design example

Description Symbol Value

ADC sampling rate 4 GHz

Carrier frequency 1.6 GHz

Signal bandwidth 200 MHz

Baseband sampling rate 250 MHz

Decimation ratio1

1. The decimation ratio, , is the ratio between the input and
output sampling rates, i.e. 4 GHz / 250 MHz = 16. 

16
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CHAPTER 8: SDR Architectures
Therefore, we consider that each of the In Phase and Quadrature components are processed by a separate 
decimation chain, composed of filters with real-valued coefficients. (An alternative would be to depict the 
complex signal being processed by a cascade of filters with real-valued coefficients.)

We will now consider the design of one of these decimation cascades, i.e. for an individual I or Q branch (the 
same design would be replicated for both branches). 

If the noise were not removed prior to downsampling, then it would alias into the band containing the signal of 
interest. Therefore, low pass filtering is required; the filter must preserve the signal bandwidth while attenu-
ating the noise, and avoiding aliasing. A sharp transition band is often needed, which translates into a long 
filter, with many weight multiplications to be computed. A filter design for the example scenario is presented 
in Figure 8.18 (i.e. a single stage solution). In this ‘equiripple’ design, the passband ripple is 0.1dB, stopband 
attenuation is 60dB, and the passband and stopband edges are set at 100 MHz and 150 MHz, respectively.  

Given that the designed filter has  weights, and if we assume that the polyphase implementation 
method is adopted (as was reviewed in Section 4.7, meaning that the filter performs arithmetic processing at 
the output rate of 250 MHz), then the computation rate for the single stage decimator design can be expressed 
as:

. (8.3)
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Figure 8.18:  Filter response for single stage decimator (decimating by 16).
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CHAPTER 8: SDR Architectures
An alternative approach is to partition the overall ratio of 16 into smaller stages of decimation, an approach 
that can be taken for any required ratio, other than a prime number. The viable partitionings for the current 
example of 16 are set out in Table 8.2 (including the original, single stage design).

There are two main advantages of partitioning the filtering task into smaller stages. 

Firstly, with smaller decimation ratios, the properties of halfband (and more generally, -band) filters can be 
exploited, wherein approximately  of the filter weights are exactly zero and do not need to be computed. 
This leads to a reduction in computation rate; halfband filters are especially attractive for this reason. 

Secondly, and perhaps less obviously, the design of the filters can be relaxed. Each of the filters only needs to 
preserve the passband1, and apply a stopband across the region that will alias into the passband. This means that 
the transition band can be extremely wide in some cases, leading to relatively inexpensive filters. 

This ‘staged’ approach best illustrated with an example. We will base a cascaded design on the Three-stage 
decimator (c) design, which has decimation ratios of 2, 2, and 4 for the first, second, and third stages, respec-
tively. (Note: the selection does not mean to indicate that this is the most efficient design!) 

Stage 1: Decimate by 2

At the first stage, the filter is designed to pass the region between 0 Hz and half of the sampling rate at the 
output of the cascaded decimator, i.e. 125 MHz in this example. The range of frequencies that would alias into 
this band, after downsampling by a factor of 2, extends from 1.875 GHz to 2 GHz, and therefore the stopband 

1. In the context of this decimation example, we regard the passband as the region from 0 Hz to half of the baseband (i.e.
output) sampling rate. Any further filtering to extract the signal of interest can take place subsequently.

Table 8.2: Candidate partitioned decimation ratios for the x16 decimator

Description Stage 1 Stage 2 Stage 3 Stage 4 Total

Single stage decimator 16 - - - 16

Two-stage decimator (a) 8 2 - - 16

Two-stage decimator (b) 2 8 - - 16

Two-stage decimator (c) 4 4 - - 16

Three-stage decimator (a) 4 2 2 - 16

Three-stage decimator (b) 2 4 2 - 16

Three-stage decimator (c) 2 2 4 - 16

Four-stage decimator 2 2 2 2 16

L
1 L
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CHAPTER 8: SDR Architectures
should be placed here. The transition band may extend across the entire band between 125 MHz and 1.875 
GHz, as any remnant energy in this frequency band can be removed by a subsequent filter in the cascade. In 
this first decimation stage, the sampling rate is reduced by a factor of 2, from 4 GHz to 2 GHz. All filtering 
computation can be performed at the (lower) output sampling rate using polyphase techniques. 

Stage 2: Decimate by 2

The sampling rate at the input to Stage 2 is 2 GHz. Once again, the low pass filter is designed to pass the 
frequency band from 0 Hz to 125 MHz, and to stop the band that would alias into that region, i.e. 875 MHz to 
1 GHz. The frequencies between 125 MHz represent the transition band, and will experience a sliding degree 
of attenuation across the band. The filter computation runs at the output rate of 1 GHz.

Stage 3: Decimate by 4

The final filter in the cascade decimates by a factor of four, and therefore there are three bands that would alias 
into the passband region of 0 to 125 MHz. As a result, Stage 3 requires a filter that cuts off at a lower frequency 
and has a sharper transition than the previous ones. 

With the defined passband region extending from 0 to 125 MHz, the three alias regions exist from 125 to 250 
MHz, 250 MHz to 375 MHz, and 375 to 500 MHz. The low pass filter should therefore cut off at around 125 
MHz. Recall that a ‘brick wall’ filter is unrealisable, i.e. there must be some non-zero transition bandwidth 
between the passband and stopband. This transition bandwidth can be set with knowledge of the signal of 
interest. In this case, we know that the signal occupies the band between 0 Hz and 100 MHz, and therefore a 
filter can be designed with a transition band between 100 MHz and 150 MHz, while avoiding any aliasing into 
the signal band of interest. 

Once again, the filter computation can run at the output, decimated rate, if implemented in polyphase form. 
Therefore, the filter operates at a rate of 250 MHz in this case. 

Three-stage Decimator Summary

The three filter stages outlined above can be summarised graphically, as shown in Figure 8.19. 

The implementation of this cascaded approach can be analysed in a similar manner as the single stage 
decimator. The metrics for each of the individual stages are set out in Table 8.3. In all cases, the ‘equiripple’ 
method was used to design the filters, with passband ripple set to 0.1dB, and a stopband attenuation of 60dB.

Therefore, the total computation rate of the cascaded decimator design is the sum of the individual stages, i.e.

  (8.4)

and this would be replicated for each of the I and Q branches.

RCASC 12 7 14.25+ + 33.25  GMACs/s= =
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The multi-stage approach is therefore much less computationally expensive than the single stage decimator: at 
33.25 GMACs/s, as opposed to 56.25 GMACs/s, i.e. a saving of over 40%. Some of the other candidates 
outlined in Table 8.2 may produce even more efficient decimator implementations. 

The hardened DDC in the RFSoC uses a similar, multi-stage approach as outlined here, with either three or 
four stage cascaded decimators (depending on the device generation). A hardened, LUT-based NCO is 
included within the same blocks. 

Table 8.3: Parameters for DDC design example

Stage Decimation
Ratio

Filter Length
(No. Weights)

Filter Sample 
Rate Computation Rate

1 2 6 2 GHz

2 2 7 1 GHz

3 4 57 250 MHz

Figure 8.19:  Details of the cascaded decimator stages.
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8.4.2.  Digital Upconverter (DUC)

The Digital Upconverter (DUC), which is part of the transmitter, performs a similar but mirrored set of opera-
tions to the DDC. A block diagram representation of a typical DUC architecture is provided in Figure 8.20. 

First, the low sampling rate of the digital baseband stage, , is increased to the much higher rate used by 
the DAC, , by an interpolator. 

The interpolated signal is then modulated by mixing it with sine and cosine signals generated by an NCO, at 
the desired carrier frequency, . Modulation has the effect of shifting the signal up in frequency, such that it 
is centred at , which could be equivalent to the eventual RF transmit frequency (if using the Direct-RF SDR 
architecture), or an IF frequency, if an external IF-to-RF modulation stage is used, i.e. a superheterodyne 
approach. 

The DUC interpolator can be implemented as a single stage that changes the sampling rate by the full interpo-
lation ratio, or by cascading several smaller interpolators together, which collectively perform the total rate 
change. For instance, an interpolation by 16 could be partitioned into an equivalent set of stages as was 
outlined in Table 8.2 for the DDC decimator. Like the decimators considered earlier, the interpolators incor-
porate low pass filters (in this case, to remove the spectral images generated by upsampling, as previously 
outlined in Section 4.7), and they can be implemented in polyphase form such that all filter processing takes 
place at the input rate, i.e. the lower of the two sampling rates. 

Figure 8.20:  Digital Upconversion.
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CHAPTER 8: SDR Architectures
An equivalent analysis could be performed to evaluate the computational cost of candidate cascaded interpo-
lator designs. If a three-stage interpolator with factors of 4, 2, and 2 was chosen (i.e. the mirror image of the 
decimator design examined in Section 8.4.1), the filtering operations indicated in Figure 8.19 for the decimator 
would be performed in reverse. For instance, Stage 1 would interpolate the input signal from a sampling rate of 
250 MHz to 1 GHz. This would be composed of an upsampler, raising the sampling rate by a factor of four, in 
the process creating three spectral images (one in each of the ‘stop’ regions indicated in Figure 8.19), which 
would then be removed using a low pass filter with a relatively sharp cut-off. Stage 2 would then upsample that 
signal by a factor of two, from 1 GHz to 2 GHz, creating one spectral image in the ‘stop’ region, which would be 
removed using a much more relaxed low pass filter. Stage 3 would also interpolate by a factor of 2, from 2 GHz 
to 4 GHz, in a similar manner to Stage 2. 

8.4.3.  Other Filter Types

In our treatment of the decimator and interpolator within the DDC and DUC, respectively, we have assumed 
that FIR filters have been used, implemented in the polyphase form (which is the most efficient method of 
realising them). Given the RFSoC focus of this book, this is the most relevant approach, as the RFSoC’s 
integrated DDC and DUC both use this architecture. 

It should be acknowledged, however, that there are other options for implementing DDC decimators and DUC 
interpolators, beyond those discussed so far. Alternative methods are also relevant to RFSoC development 
(even if not the most direct option!) given that designers can create their own custom designs, bypassing the 
hardened DUC and DDC blocks. 

A popular approach is to use a CIC filter (previously introduced in Section 4.7.7) to perform a final stage of 
interpolation in the DUC, or a first stage of decimation in the DDC. The CIC is an especially efficient type of 
multirate filter that does not require any multiplications; it has the disadvantage of introducing a characteristic 
‘droop’ in the passband, but this is readily corrected with a CIC compensation filter. Another option is to use 
almost-linear-phase multirate IIR filters.

8.5.  Front End Analogue Signal Conditioning, and Antennae 

When a radio spectrum regulator issues a licence for a transmitter, they will normally define a permitted 
maximum signal power, and a spectral mask that the radio must abide by. 

Radio waves propagate from an antenna (connected to the SDR) through the air to the receiver. Signals emitted 
from the antenna will have an electrical power value, known as the EIRP (Effective Isotropic Radiated Power). 
This can be calculated as follows:

(8.5)EIRPdBm PSDR output dBm  GRF Amplifier dBm  GAntenna dBi + +=
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where  is the electrical power output from the SDR,  is the gain from 
any RF amplifiers used, and  is the isotropic gain of the antenna.

8.5.1.  Signal Conditioning

The power output from the SDR will likely be extremely low, in the range of 5mW/7dBm (for comparison, a 
Wi-Fi router in the USA is permitted to transmit at up to 4W/36dBm in the 5GHz channel; x800 higher 
power). Therefore, it is almost certain that external RF Power Amplifiers (PAs) will be required in order 
increase the power and allow the signal to transmit more than a few meters. RF PAs will amplify a wide band of 
frequencies (sometimes hundreds of MHz wide), often wider than the bandwidth of the SDR. In turn, 
analogue RF Bandpass Filters are required in order to ensure the PAs do not transmit unwanted energy at other 
frequencies. 

Most SDRs, if you examine the output ports, have separate connectors for Tx and Rx antennae. Normally in 
radio systems, Tx and Rx are combined into a single antenna port, TRx, and this is then connected to an 
antenna. This can be achieved using an RF Duplexer. Duplexers are components which enable bi-directional 
communication (Tx, Rx) over a single RF path and antenna element. This is especially important in FDD 
radios, which operate Tx and Rx paths simultaneously.

A more in depth explanation of this signal conditioning for a cellular basestation use case is presented in 
Section 17.3.1 of RFSoC Applications in Cellular Networks.

8.5.2.  Antennae

An antenna is a passive object that radiates (transmits) and receives the electromagnetic waves that enable 
wireless communication. The radiation pattern and performance depends on the antenna size, shape, and 
band optimisations. The type of antenna chosen varies upon the RF band in use and the use-cases. 

Antennae have a nominal antenna gain. This gain is entirely passive, as there are no actual amplifiers in an 
antenna. It is measured in dBi, which stands for decibels relative to the isotrope. The isotrope is a hypothetical 
antenna that radiates uniformly in all directions (i.e. it has spherical radiation from a central point) - which is a 
very poor design. All real-world antennae perform better than this imaginary isotropic antenna, and therefore 
have a nominal dBi gain relative to it. 

There are three main categories of antenna you are likely to use in your network, as illustrated in Figure 8.21. 
These are:

• Omni-directional: An antenna that radiates uniformly in 360 degrees around it. These are normally 
cylindrically shaped and installed on the top of a mast or building. They are ideal for providing coverage 
around a flag pole mast in the middle of a town square, for example. They generally have lower perfor-
mance than sector antennae.

PSDR output dBm  GRF Amplifier dBm 
GAntenna dBi 
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CHAPTER 8: SDR Architectures
• Sector: This type of antenna is directional. Commonly you will see 60o, 90o and 120o sector antennae 
used in 4G/5G mobile and Wi-Fi FWA networks. A 60o sector will produce a beam that has most of its 
energy within a 60 degree horizontal wedge, if viewed from the top down. They generally perform better 
than omni-directional antennae, as they are tuned to only radiate in one direction. If a receiver is located 
outside of the transmitter antenna beam, it will struggle to connect to the base station.

• Dish: Dish antennae are curved parabolic objects (like a TV satellite dish), that are used for point to 
point transmissions. They are used in microwave backhaul radios, and in LEO satellite systems.

MIMO antennae are required when multiple transmit and receive paths are used. A 2x2 MIMO antenna will 
feature two antenna ports, and two physical elements inside the antenna. These will likely be offset by 90o, 
giving one transmit/receive path on a vertical plane, while the other is on a horizontal plane. 4x4 MIMO 
antennae will feature four ports, and so on.

8.6.  Chapter Summary

In this chapter, we have reviewed the impact that DAC and ADC sampling rate has had on SDR architectures 
over the last few decades, focusing in particular on the Direct-RF variant enabled by the multi-GHz RFSoC. 
Two examples of SDR architectures were presented, with very different levels of complexity: at the lower end of 
the scale, an FM transmitter and receiver; and as a more sophisticated example, a full OFDM transmitter and 
receiver. More detail on the OFDM architectures outlined here is provided in Chapter 16.

Two other common elements of SDRs were discussed. Firstly, the digital up- and down-conversion operations, 
which are parts of the digital transmitter and receiver, respectively. We saw that, within the DUC, the transmit 
signal is interpolated and modulated onto the carrier; while the DUC performs demodulation followed by 

Figure 8.21:  Various antenna formats.
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CHAPTER 8: SDR Architectures
decimation. We also reviewed some of the more detailed considerations for implementing the decimator of a 
DDC (which are equally applicable for DUC interpolators). Secondly, some of the important front end 
analogue hardware was introduced. The main categories of antennae were reviewed, with the most relevant 
use-cases noted for each antenna type. 
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Chapter 9
RF Data Converters: 
Analogue to Digital

Lewis Brown 

When discussing modern SDR hardware platforms, the most crucial attribute is the ability to directly sample 
key Radio Frequency (GHz signals) without the need for an intermediate stage. This chapter provides an 
overview of the Radio Frequency Analogue to Digital Converters (RF-ADCs) present in the RFSoC and their 
functionality for sampling radio signals. We also discuss RF-ADCs as part of the RF Data Converter (RFDC) 
blocks, and explore the stages of the RF-ADC pipeline required to process an RF signal, before concluding with 
a review of how to program the RF Data Converter RF-ADC in Vivado. This chapter is supported by the AMD 
RFDC User Guide, PG269 [90], which makes excellent follow-up reading to this chapter and the following 
Chapter 10. 

9.1.  Analogue to Digital Conversion

Before exploring the world of RF-ADCs, it is worthwhile recapping on the general process of converting a 
signal from the analogue domain to the digital domain, which entails sampling and quantising an analogue 
signal. Sampling takes place at fixed time intervals, known as the sampling period, , which is the reciprocal 
of the sampling frequency, . 

Quantisation maps the amplitudes of these samples to a set of discrete values. In an ideal ADC, any measured 
analogue voltage would be perfectly mapped to an equivalent digital value, correct to an infinite number of 
binary places. Of course, in practice this is not possible and the numbers of bits used in the quantisation 
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CHAPTER 9: RF Data Converters: Analogue to Digital
process is limited; Gen 1 and 2 RFSoC RF-ADCs have 12-bit precision and Gen 3 and DFE devices have 14-bit 
precision. The measured analogue voltage must be fitted to the closest available quantisation level from the set 
of  levels, where  is the number of bits in the ADC. The gap between quantisation levels, otherwise known 
as the resolution, depends on the smallest value that the ADC can resolve based on the maximum input voltage 
[258], [323]. An -bit ADC has a resolution of

, (9.1)

where  and  are the maximum and minimum input voltages, respectively.

Example: A 12-bit ADC with a maximum input voltage range of  has a resolution of:

. (9.2)

As a result of the quantisation process, differences in amplitude exist between the real, analogue values of the 
sampled signal, and the digital values resulting from quantisation. This quantisation error of a single sample is 
determined by the resolution of the ADC [108]. Assuming that samples are rounded to the closest quantisation 
level, the maximum quantisation error is  (for note, in earlier chapters  also denoted as ‘q’), so for a 
12-bit ADC the worst case error would be ±0.244 mV. To optimise the accuracy achieved by an ADC, 
manufacturer calibrations should be undertaken to minimise other sources of error, such as gain and offset 
errors. If desired, please refer back to Chapter 4 for further review of the sampling and quantisation processes.

9.2.  ADCs for RF Frequencies

Many common mobile and wireless communications signals are located in the low and mid-band RF 
spectrum, with frequencies ranging up to several Gigahertz (GHz), probably 6 GHz, albeit the top of the mid-
band varies a little in the literature. To sample such a signal, a specialised high-speed ADC is required. Modern 
RF-capable ADCs, or RF-ADCs, can achieve multi-Gigasample per second, GSps, (or GHz) sampling rates, 
enabling the direct sampling of signals in this low and mid band RF GHz signal range [173], [338].  

9.2.1.  The 1st Nyquist Zone

Recall the Nyquist Sampling Theorem as discussed in Chapter 4. We noted that the sampling rate should be set 
to greater than twice the maximum frequency component of the sampled analogue signal, in order to avoid 
aliasing. Therefore, the range of frequencies which can be directly sampled by any given ADC can be repre-
sented as 0 Hz to  Hz. This is known as the 1st Nyquist Zone. 

Given the very high sampling rates of the RFSoC’s RF-ADCs, the 1st Nyquist Zone can span multiple GHz. As 
a result, the RF frequencies of many frequency bands used in wireless communications can be directly 
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CHAPTER 9: RF Data Converters: Analogue to Digital
digitised without the need for an intermediate mixing or demodulation stage from high frequency to 
baseband. 

Example: With a sampling rate of , analogue signals present in the range 0 to 2 GHz (i.e. the 1st 
Nyquist Zone of the RF-ADC) can be directly digitised in the conventional manner. However, there may be 
energy (unwanted frequencies) present in the spectrum above the 1st Nyquist Zone, and as such an analogue 
anti-aliasing low pass filter should be included prior to the ADC, to remove all of those frequency components 
above , as illustrated in Figure 9.1. 

Given the example sampling rate of  = 4 GSps, several common communications signals can be captured in 
the 1st Nyquist Zone [285]. This includes:

• Broadcast television (~470 to 700 MHz in the UK)

• Global Navigation Satellite Systems (several bands from 1.164 GHz to 1.610 GHz)

• Low range Internet of Things (IoT) standards (867 to 869 MHz, 902 to 928 MHz) 

• Several cellular bands (800 MHz, 900 MHz, 1.4 GHz, 1.8 GHz in the UK).

Note: Many of these bands differ globally.

fs 4 Gsps=

fs 2

Figure 9.1:  1st Nyquist Zone signal acquisition with analogue lowpass filter.
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CHAPTER 9: RF Data Converters: Analogue to Digital
9.2.2.  The 2nd Nyquist Zone and Above

It is usually desirable to avoid aliasing, however in some cases it can be exploited to deliberately 'fold' a signal 
down into the 1st Nyquist Zone, allowing these signals to be digitised by the ADC. This technique is particu-
larly relevant for RF-ADCs, as it provides access to signals present in the 2nd Nyquist Zone and above, i.e. 
frequencies greater than . 

By sampling an aliased version of the 0 Hz to  frequency range, an RF-ADC can be used to directly sample 
the 2nd Nyquist Zone without an IF demodulation stage. It is assumed that an appropriate bandpass filter 
precedes the RF-ADC, to remove any components present at other frequencies that are not of interest (particu-
larly within the 1st Nyquist Zone, which is the band being folded into!). This process of applying a bandpass 
filter to a 2nd Nyquist Zone signal, and aliasing it into the 1st Nyquist Zone, can be seen in Figure 9.2.

Notably, the aliased signal shown in Figure 9.2 has been 'flipped’ left-to-right in its orientation; we will later 
show how to compensate for this effect and flip back as may be required.

Taking the same example as before, with  = 4 GHz, and extending to the 2nd Nyquist (2 to 4 GHz), 
additional higher frequency mobile and wireless signals that can be received by our RF-ADC include:

• 2.4 GHz Wi-Fi Band (2.4 GHz to 2.5 GHz)

• Bluetooth (2.45 GHz)

fs 2

fs 2

Figure 9.2:  2nd Nyquist Zone signal acquisition with analogue bandpass filter.
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CHAPTER 9: RF Data Converters: Analogue to Digital
• Citizens Broadband Radio Service (CBRS) in the USA (3.55 GHz to 3.7 GHz)

• Cellular Bands for 4G LTE (2.1 GHz, 2.3 GHz, 2.6 GHz) [8]

• Cellular Bands for Frequency Range 1 5G (3.4 GHz, 3.6 to 4 GHz) [8]

The 3rd Nyquist Zone would therefore bring further possibilities again, including the 5 GHz Wi-Fi band from 
5.15 GHz to 5.725 GHz. There are some practical limitations of exploiting aliasing in this way, however, as RF-
ADCs have a limited operating range (signal components experience increasing attenuation above the stated 
maximum input frequency for the device). The maximum input frequencies for Gen 1, Gen, Gen 3, and DFE 
devices are listed as 4 GHz, 5 GHz, 6 GHz, and 7.125 GHz, respectively [88].

9.2.3.  Analogue Bandpass Filter

As reviewed in the previous sections, many RF applications involve fixed frequency bands, and therefore a 
specific frequency range can be targeted with the RF-ADC. When a system has been designed for a particular 
standard or application, an RF bandpass filter can be used to isolate that signal before the signal reaches the 
ADC and thus provide good out of band rejection and improve SNR at the device. An example of such an RF 
filter is sketched in Figure 9.3.

In Figure 9.3, the analogue bandpass filter can be designed to fit around the signal of interest, rather than 
passing the entire Nyquist Zone. In a production system, if the frequency band is known and fixed, then the 
best performance could be achieved by designing an analogue filter to fit relatively tightly around that band, 
thus removing most unwanted frequency components before they reach the RF-ADC. This approach has the 
added benefit of not only removing frequencies with other Nyquist Zones, but also unwanted signals within 
the target Nyquist Zone, resulting in better noise suppression. 

On the other hand, as discussed in earlier chapters, a key benefit of an SDR is the flexibility of design, allowing 
for operation over a wide range of frequencies. The ‘tight bandpass’ approach is not suitable when an SDR is 
required to be maximally flexible, or to receive multiple signals that may reside at different frequency bands 
within the same Nyquist Zone. In these cases, it is preferable to apply a filter that passes the entire Nyquist 
Zone containing the signal(s) of interest. This may also involve a cheaper analogue filter. 

Figure 9.3:  Tightly fitted analogue bandpass filter in the 2nd Nyquist Zone.
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CHAPTER 9: RF Data Converters: Analogue to Digital
To receive signals from the entire 1st Nyquist Zone, a low pass filter with cut-off frequency around  would 
be optimal in most circumstances. This would prevent frequencies in the 2nd Nyquist Zone and above being 
aliased into Nyquist Zone 1, where the signal resides. For Nyquist Zone 2, a bandpass filter would be required. 
In this case, recall that the contents of Nyquist Zone 2 will be folded into Nyquist Zone 1 (i.e., intentional 
aliasing). The bandpass filter clears Nyquist Zone 1 of other frequency components, which would otherwise be 
superimposed on the desired aliased signal from Nyquist Zone 2 whilst also removing higher frequency 
components from Nyquist Zone 3 and above, that would otherwise (unintentionally) alias into Nyquist Zone 1.

9.3.  RF-ADCs on RFSoC

RF-ADCs are advantageous in the sense that they can directly digitise many modern communication signals. 
Additionally, the high sampling rates of RF-ADCs enables instrumentation applications such as RF spectrum 
analysis for low and mid band mobile/wireless spectra, which was explored in depth in Chapter 5. To under-
stand more about the operation of the RF-ADCs, we will now consider their architecture more closely. 

9.3.1.  The RFSoC Device Family

As reviewed in Chapter 3, the defining feature of the RFSoC is its hardened RFDC blocks, which allow the 
device to function as an RF transmitter and receiver (with the addition of analogue circuitry and antenna(e)). 
Most devices also include SD-FEC blocks for implementing error correction schemes. These resources, 
alongside the PL and PS, which are equivalent to the MPSoC devices, make the RFSoC devices extremely 
flexible, and therefore very suitable as an SDR implementation platform.

As of the time of writing, three generations of RFSoC have been released, with Gens 1 and 3 each comprising 
several devices. In addition to the three generations of standard RFSoC devices, there is also a RFSoC DFE
device family which is optimised for 5G New Radio applications and features a targeted set of hardened 
processing blocks. The naming convention for these sets of devices is as follows:

• Gen 1: ZU2xDR

• Gen 2: ZU39DR

• Gen 3: ZU4xDR 

• RFSoC DFE: ZC6xDR

RFSoC devices can be compared in terms of the number of channels, resolution (number of bits used for the 
quantisation process), and the maximum sampling rate supported. Sampling rate dictates the range of signal 
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CHAPTER 9: RF Data Converters: Analogue to Digital
frequencies that can be received, and the resolution defines the noise floor due to quantisation noise. Table 9.1
highlights some examples from the set of available devices. 

Notably Gen 1 and 2 RFSoC devices both feature 12-bit RF-ADCs, while Gen 3 and DFE devices have 14-bit 
RF-ADCs, meaning that they have increased resolution and hence lower quantisation noise. The maximum 
sampling rate also gradually increases as we progress through the generations. To better understand the differ-
ences within a generation we must first investigate the structure, or hierarchy, of the RF Data Converters. 

9.3.2.  The RF-ADC Tile Hierarchy

The RFDC contains the RF-ADCs and RF-DACs of the RFSoC device, structured in a hierarchy of tiles and 
blocks. Each RF-ADC and RF-DAC is contained within a block and one, two or four blocks make up a tile, 
depending on the device. These are referred to as Single, Dual and Quad tiles respectively. High-level illustra-
tions of Quad and Dual tiles are provided in Figures 9.4 and 9.5, respectively.    

Gen 1 RFSoC devices can contain either Dual or Quad tiles, but each device contains only one kind of tile. For 
example, the ZU28DR device has four Dual tiles, each with two blocks, for a total of 8 RF-ADCs. Gen 2 
comprises a single RFSoC device, the ZU39DR, which contains four Quad tiles, giving a total of 16 RF-ADCs. 

Table 9.1: RF-ADC comparison across RFSoC devices [89].

Generation
(‘Gen’) Device Number of 

ADCs
ADC Resolution 
(number of bits)

Maximum 
Sampling Rate 

(GSps)

1
ZU28DR 8 12 4.096

ZU29DR 16 12 2.058

2 ZU39DR 16 12 2.220

3

ZU43DR 4 14 5.0

ZU46DRa

a. The rows are additive, i.e. the ZU46DR contains a total of 12 RF-ADCs.

8
4

14
14

2.5
5.0

ZU48DR 8 14 5.0

ZU49DR 16 14 2.5

DFE
ZU65DR 6 14 5.9

ZU67DRb

b. Similar to the above, the ZU67DR contains a total of 10 RF-ADCs.

8
2

14
14

2.95
5.9
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Gen 3 devices feature either Quad or Dual tiles exclusively, or a combination of the two, depending on the 
device. The ZU48DR and ZU49DR devices are similar to the two devices previously discussed, consisting of 
four Dual and four Quad tiles, respectively, for a total of 8 and 16 RF-ADCs. The ZU46DR device has a mixed 
configuration and contains 12 RF-ADCs in total, consisting of two Dual tiles and two Quad tiles. The ZU43DR 
device contains four Single tiles, each with one RF-ADC, and therefore has a total of 4 RF-ADCs. At the time of 
writing this is the only device with Single tiles.

DFE devices are similar in structure to Gen 3 devices. At the time of writing, two DFE devices are available: the 
ZU65DR and the ZU67DR. The former contains three Dual tiles, for a total of 6 RF-ADCs, and the ZU67DR 
also contains three tiles: two Quad tiles and one Dual tile, and thus a total of 10 RF-ADCs.

Figure 9.4:  Quad RF-ADC tile.
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Figure 9.5:  Dual RF-ADC tile.
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9.3.3.  Interleaving Factor

Each RF-ADC with the RFSoC device is composed of multiple sub-ADCs which are interleaved together to 
improve the maximum sampling rate. By using ADC interleaving, an input signal is sampled simultaneously by 
each sub-ADC (which share a common clock relationship). Therefore, by using  sub-ADCs, the effective 
sampling rate is increased by a factor of   compared to a single ADC. This is known as the interleaving factor. 

For successful interleaving, the clock phase relationship between ADCs is crucial. This is defined as 

, (9.3)

where  is the sampling phase for the th sub-ADC, and .

In a Dual tile, each RF-ADC consists of 8 interleaved sub-ADCs whilst a Quad tile RF-ADC consists of 4 sub-
ADCs. As a result, within an RFSoC generation, a Dual tile has twice the sampling rate of a Quad tile. For 
example, referring to Table 9.1 we can see that the ZU46DR contains Quad tiles with a maximum sampling 
rate of 2.5 GSps and Dual tiles with a maximum sampling rate of 5.0 GSps. Given the varied options available, 
a suitable target device can be chosen to meet the requirements of the application. 

9.3.4.  RF-ADC Tile Composition

Regardless of tile configuration, each RF-ADC block within a tile contains a high-performance input buffer 
alongside a pipeline of components, including the RF-ADC itself; a Quadrature Modulation Correction 
(QMC) unit, which can correct for any imbalances in the external (analogue) signal paths of a quadrature 
system; complex mixers for demodulation; and decimation filters for reducing the sampling rate. This RF-
ADC processing pipeline is optimised for direct conversion from RF signal frequencies.

Gen 1 Tiles

Both quad and dual tiles are structured similarly, and the clock circuitry includes a Phase Lock Loop (PLL) 
that is driven by an external reference clock. A designer can choose to either enable this PLL, or bypass it with 
an external sampling clock. All RF-ADCs within the tile share the same clock source and infrastructure. 

Each RF-ADC within a tile has an associated Digital Down Converter (DDC), which contains a digital 
complex mixer, and a programmable decimator. The decimator contains a chain of half band filters that can be 
programmed to decimate by an overall factor of 1, 2, 4, or 8. Each RF-ADC within the tile has its own 
dedicated mixer and decimator. 

The Gen 1 quad tile, shown in Figure 9.6, contains four RF-ADCs arranged as two pairs. Each RF-ADC can be 
configured either in isolation, or as part of a pair, for real and complex signals, respectively. 
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Figure 9.7 shows a Gen 1 and 2 Dual Tile configuration. This is very similar to the Quad tile, however only two 
RF-ADCs are present. These can be operated either individually or as a pair, enabling complex signals to be 
received.     

Reception of complex signals can only be achieved when the RF-ADCs within a tile are operated as a pair. 
Here, the even numbered RF-ADCs are used for I data, and the odd numbered RF-ADCs are used for Q data. 

We can now simplify the operation of each RF-ADC block within a tile, and its associated DDC to a single 
linear pipeline, as shown in Figure 9.8. 

Figure 9.6:  Gen 1 and 2 quad tile.
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CHAPTER 9: RF Data Converters: Analogue to Digital
The steps of this pipeline are listed below. The RF-ADCs are highly controllable via the RFDC interface, and as 
such the user has a significant amount of control at each stage. 

1. Following an input buffer to control the rate of signal acquisition, the analogue input signal is sampled 
by the RF-ADC to convert it to a digital signal.

2. Next, a threshold detector can be employed to detect and record the amplitude levels of the input. 

3. If the received signal is complex, the QMC block can be used to compensate for any imbalance between 
the I and Q signals. 

4. The complex mixer then modulates the input signal to baseband to ease processing. 

5. The I and Q decimators are capable of decimating the signal, before interfacing with the PL via the 
gearbox FIFO.

Note: A Quad tile contains four RF-ADC pipelines, whilst a Dual tile contains two.

Gen 3 Tiles

Gen 3 tiles operate in much the same way as Gen 1 and 2 tiles, and their high level functionality is similar to 
that shown in Figure 9.8. Additionally, Gen 3 tiles feature a Digital Step Attenuator (DSA) that precedes the 
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RF-ADC. Another key difference is that a more advanced decimation filter chain is provided, to enable 
decimation by factors of 1x, 2x, 4x, 6x, 8x, 10x, 12x, 20x, 24x and 40x. 

The DSA is used in situations where the analogue signal amplitude or power varies over time, allowing the 
amplitude of the variable signal to be adjusted to optimal values for the RF-ADC. This variable power could be 
due to a variance within the received signal strength, or interference signals, for instance. Traditionally, the 
DSA would be an external component (such as a variable gain amplifier), however Gen 3 devices combine this 
functionality with the internal input buffer, as shown in Figure 9.9. 

The DSA is also used for the automatic prevention of over-voltage states, where the input signal is too large for 
the RF-ADC to handle. This comes in two forms: Over Amplitude and Outside Common-Mode Range. For Over 
Amplitude, where the amplitude of the signal in the input buffer is too large for the RF-ADC, the DSA is 
triggered by a flag in the buffer and is automatically set. Outside Common-Mode Range, as implied, is triggered 
when the value at the input is either over or under the reliable common-mode range. This can be resolved by 
disabling the input buffer for its own protection. The location of these over voltage protections in relation to 
the DSA is shown in Figure 9.10. 

Gen 3 RF-ADCs also allow for clock distribution in the RF-ADCs and RF-DACs, as shown in Figure 9.11. In 
normal operation, each tile operates from an independent tile clock. As discussed for Gen 1, this clock can 
originate from an external source or be generated by the on-chip PLL. Clock distribution, as the term implies, 
allows a tile to distribute its tile clock to other adjacent tiles in a chain. Note however that only RF-ADCs 1 and 
2 can operate as the source for high frequency clock distribution (with RF-ADC 1 being recommended). 

This clock can be forwarded through any number of adjacent tiles, so long as a different clock does not 
interrupt the chain. In the example provided in Figure 9.11, RF-ADC1 can distribute to RF-ADC0, as well as 
RF-ADC2 and then RF-ADC3. RF-ADC3 can only be distributed to if RF-ADC2 is also distributed to. 

Figure 9.9:  Gen 3 DSA, showing that the input buffer is combined with the DSA.
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9.4.  RF-ADC Processing Stages: The Digital Complex Mixer

We will now explore two of the key components of the RF-ADC chain in more detail, namely the complex 
mixer and decimator, to better understand the reconfigurable nature of the RFDCs.

As previously discussed, the RF-ADC is capable of receiving signals at RF frequencies up to several GHz. Once 
digitised, the signal is demodulated (shifted to baseband), such that it is then centred around 0 Hz. Key to this 
operation is the Digital Complex Mixer found in each RF-ADC. The complex mixer multiplies the incoming 
signal with sine and cosine waves generated from a Numerically Controlled Oscillator (NCO). This has the 
effect of shifting the input signal up or down in frequency, with the frequency generated by the NCO deter-
mining the direction and extent of this shift. 

Figure 9.10:  Detection of Over Voltage states.
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CHAPTER 9: RF Data Converters: Analogue to Digital
The Complex Mixer functions on the concept of heterodyning — i.e. when two sine wave signals are mixed 
(equivalent to multiplication), we obtain two components; one at  and another at . The same 
principle applies when a bandpass signal is demodulated. Generally, one of the resulting signals is useful and 
falls within the bandwidth of the mixer, whilst the other signal is filtered out by a lowpass filter. Within the RF-
ADC, the NCO frequency should ideally match the carrier frequency and phase of the received signal, , so 
that the differential signal,  can be found at baseband (centred at exactly 0 Hz), as shown in Figure 9.12. 

Note: The magnitude of both output signals is half that of the input (modulated) signal at ! For details of the 
mathematical background, please refer to Chapter 7. 

The I/Q mixer can be operated in three modes: Coarse, Fine and Bypass. These modes can be selected by the 
user at run time. The architecture of the mixer is highlighted in Figure 9.13. Note that the bypass mode can 
also be accessed through the coarse mixer block. 

9.4.1.  The Coarse Mixer and Bypass Mode

The Coarse Mixer component implements both the Coarse mode and the Bypass mode. The Coarse mixer 
only allows for a very restricted set of frequencies: , , and ; however it can operate with much 
lower power than Fine mode. At these frequencies, a sine or cosine wave can be represented with a minimal 
number of samples, e.g. a sine wave of frequency  can be represented with only 4 samples per cycle, {0, 1, 
0, -1}. It is trivial to generate these values in a repeating sequence, and to demodulate an input signal using this 
signal, obviating the need to store an extensive set of samples using a Lookup Table (LUT), as in Fine mode.
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Figure 9.12:  Demodulation using the RF-ADC digital complex mixer.
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CHAPTER 9: RF Data Converters: Analogue to Digital
The restrictive set of frequencies produced in Coarse mode is used for demodulation due to some unique traits. 
For example,  is a rather special mixer frequency, as it has the effect of 'flipping' a spectrum. This can be 
used to correct the inversion of the spectrum when an even Nyquist Zone has aliased to baseband. 

The Coarse mixer component can also be used to implement Bypass mode, where the signal path simply 
bypasses the I/Q Mixing stage. This means that the received signal does not undergo any demodulation, 
directly passing the high frequency signal to the PL. 

9.4.2.  The Fine Mixer

In Fine mixer mode, the mixer uses an NCO, which can generate any arbitrary frequency between  and 
. This is done by setting:

• A step size input to the phase accumulator (automatically calculated in the design tools);

• The size of the LUT;

• The desired frequency.

Optional additional parameters can be set, including a phase adjustment and the addition of dithering.

When a signal residing in an even Nyquist zone is aliased to the 1st Nyquist Zone by the RF-ADC, its spectrum 
is inverted (flipped left-to-right). This can be corrected by setting a negative frequency in the NCO when the 

Figure 9.13:  Complex mixer architecture.
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CHAPTER 9: RF Data Converters: Analogue to Digital
desired signal is located in an even Nyquist Zone, thus shifting the negative image to 0 Hz. Similarly, a negative 
NCO frequency can be used when the desired signal is in an odd Nyquist Zone, to shift the positive image to 0 
Hz. Examples of both are provided in Chapter 10, along with example RFSoC receiver configurations.

9.5.  RF-ADC Processing Stages: the Programmable Decimator

Once the received signal has been demodulated to baseband, it is then decimated to a lower sampling rate, 
which is advantageous because it reduces the computational cost of subsequent processing of the signal. For RF 
decimation, this can mean reducing a bandwidth of multiple GHz (for Gen 1 RFSoCs, up to  = 2.048 
GHz) down to baseband frequencies of around a hundred MHz. 

The decimator is implemented as a programmable chain of filters that each implement a sample rate reduction. 
For Gen 1 and 2 RFSoC devices, the decimator can perform rate reduction by a factor of 1x, 2x, 4x or 8x (where 
reduction by 1 is a complete bypass of the decimating filters). Gen 3 extends the decimation options to a larger 
set of integer factors. In the remainder of this section, we first introduce the decimator architecture from Gen 1 
and 2 devices, which is simpler and thus easier to understand, before moving on to review the Gen 3 decimator 
architecture. 

9.5.1.  Gen 1 and 2 Decimation

This Gen 1 and 2 decimation is achieved by a set of half-band filters: FIR0, FIR1 and FIR2. These lowpass 
filters each decimate by a factor of 2, and are cascaded together to form the selection of decimated outputs. The 
block diagram of a programmable decimator for a Gen 1 RF-ADC is shown in Figure 9.14. 

The design of these filters is fixed in hardware, and the filter weights are not user-customisable. However, these 
half band responses provide the low pass filtering needed to remove frequency components that would 
otherwise alias upon sample rate reduction. The magnitude responses of these filters are shown in Figure 9.15.   

fs 2

Figure 9.14:  Gen 1 and 2 decimation filter chain.
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Figure 9.15:  Fixed magnitude responses of FIR2 (green), FIR1 (blue), and FIR0 (red).
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CHAPTER 9: RF Data Converters: Analogue to Digital
Notice that FIR2 has the sharpest cut-off. If decimation by 2 is required, only this FIR is used, and as a result 
the magnitude response of the decimator is equivalent to that of FIR2. When decimation by 4 is required, FIR1 
is included subsequent to FIR2; while for decimation by 8, all three filters are used in cascade. FIR1 and FIR0 
can have more relaxed responses than FIR2 (requiring fewer coefficients) because the cascaded response still 
satisfies the requirements, as will be demonstrated by the filter magnitude responses shown over the next few 
pages. Table 9.2 gives the number of filter weights for each of the halfband filters. 

Figure 9.14 previously confirmed that three different decimation ratios can be achieved (a factor of 2, 4, or 8), 
by using either a single halfband filter (for x2 decimation), or a cascade of two or three filters, for x4 or x8 
decimation, respectively. The remainder of this subsection demonstrates how these decimator responses are 
composed, beginning with the simplest case. 

Decimation by 2

When the decimator is set to decimate by a factor of 2, then only the FIR2 filter is required. This response is 
shown in Figure 9.16, where the RF-ADC sampling rate is 4 GSps, and therefore  = 4 GHz. Notice that this 
response corresponds to the FIR2 response shown in Figure 9.15. FIR2 passes 80% of the Nyquist bandwidth, 
i.e. all frequencies between 0 Hz and 0.2 , where  is the input sampling rate.

Example:

For our previous example input sampling frequency,  = 4 GHz, we achieve a (decimated) output sampling 
rate from the filter of  = 2 GHz, with a corresponding Nyquist bandwidth of  = 1 GHz. Therefore;

,

or, 

,

.

Table 9.2: Filter lengths for Gen 1 and 2 decimation halfband filters.

Filter Number of Weightsa

a. As half band filters, around 50% of the
weights are zero-valued!

FIR2 61

FIR1 23

FIR0 15

fs

fs fs

fs
fd fd 2

80% of Nyquist bandwidth = 80% of 1 GHz = 0 to 800 MHz

0.2fs 0.2 4 GHz 800 MHz= =

40% of the output fd 0.4 2 GHz 800 MHz= =
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Decimation by 4

If the FIR1 and FIR2 filters are cascaded to decimate by a total factor of 4, what does the overall filter response 
look like? First, we need to look at both individual filter responses referenced to the input sampling rate, , 
which is shown in Figure 9.17. Note that an image of the FIR2 filter response appears above 0.25 .

Notice that the response of FIR1 is more relaxed than that of FIR2. This is because FIR1 is only required to 
attenuate signals that fall within the image of the FIR2 response, between 0.375  and 0.5 . Such frequencies 
would fold into the area of interest covered by the baseband FIR2 response, between 0 Hz to 0.125 . 

Figure 9.16:  Magnitude response for decimation by 2,  = 4 GSps.fs
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Figure 9.17:  Decimation by 4 individual filter responses (FIR2 and FIR1), referenced to input sampling rate.
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CHAPTER 9: RF Data Converters: Analogue to Digital
The response of the two filters in cascade is the superposition of the two individual responses from Figure 9.17, 
and is shown in Figure 9.18. Notice that there is greatest attenuation between about 0.3  and 0.35  (i.e. 1.2 to 
1.4 GHz) where both the FIR and FIR2 filters attenuate by at least -20dB. Where both filters have gains of 0dB 
(in the baseband region), the cascaded response also has a gain of 0dB, as is required to preserve the signal of 
interest; all other frequencies are attenuated by at least ~90dB.  

Decimation by 8

For a decimation factor of 8, the FIR0, FIR1 and FIR2 filters are all cascaded together. All three individual filter 
responses are plotted as Figure 9.19, referenced to the input sampling rate, . An image of the FIR1 filter 
response appears above 0.25  (1 GHz) and similarly, there are also multiple images of the FIR2 filter. 
Therefore, the FIR0 filter is used to attenuate frequencies which fall within these images, once again preventing 
folding into the baseband area of interest.    

In this case, the three filter responses combine to form the cascaded response shown in Figure 9.20. As with the 
decimation by 4 design, the stopband attenuation is at least ~90dB. The most prominent lobes in the stopband 
occur at those frequencies where at least one of the filters (or their images) has a gain of 0dB. For instance, the 
region between about 0.2  and 0.3  (i.e. between 0.8 and 1.2 GHz), where an FIR2 image can be seen, 
exhibits higher gain than some other parts of the stopband of the filter response.  

fs fs

Figure 9.18:  Decimation by 4 cascaded response (emboldened).
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9.5.2.  Gen 3 Decimation

Gen 3 RFSoCs expand upon the available decimation rates in the DDC. On these devices, decimation by a 
factor of 1x (bypass), 2x, 3x, 4x, 5x, 6x, 8x, 10x, 12x, 16x, 20x, 24x and 40x is possible, meaning that a more 
sophisticated filter chain is required than with a Gen 1 or 2 device. The block diagram for this decimation filter 
chain is shown as Figure 9.21. 

Figure 9.19:  Decimation by 8 individual filter responses (FIR2, FIR1 and FIR0), referenced to input sampling rate.
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Figure 9.20:  Decimation by 8 cascaded response (emboldened).
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Here, we see four stages of decimation filters cascaded together, with each able to be bypassed independently. 
Notably, the final stage of the chain, FIR1, contains three decimation filters — FIR1a (2x), FIR1b (3x) and 
FIR1c (5x) and only one of these can be enabled for any specific configuration. The FIR2, FIR3 and FIR4 
blocks each have a decimation factor of 2x, corresponding to the FIR filters of the Gen 1 and 2 RFSoCs. 

The number of weights in each filter are as given in Table 9.3. Note that FIR3 and FIR4 are identical filters.  

As in the simpler Gen 1 and 2 decimators, each of these filters is a half band filter, meaning that approximately 
half of the weights of each filter are exactly zero-valued. We can see that the selectable FIR1 filters have a 
notably larger number of weights than the preceding filters, giving a much tighter response. Where appro-
priate, a single FIR1 filter is used to provide the entire decimation factor, meaning that the overall decimation 
magnitude response is equivalent to the FIR1 filter. To provide other decimation factors in addition to those 
available with a single FIR1 filter (2x, 3x, 5x), one or more of FIR2, FIR3 and FIR4 are enabled in a filter chain. 

Table 9.3: Filter lengths for Gen 3 decimation filters

Filter Number of Weights

FIR1a 59

FIR1b 89

FIR1c 143

FIR2 23

FIR3 15

FIR4 15

FIR4
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(2x)

FIR1b 
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Figure 9.21:  Gen 3 decimation filter chain.
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Example:

To illustrate how different decimation ratios are achieved, the configurations for several different decimation 
factors are provided in Table 9.4. Note that this is not an exhaustive list.  

We will now examine the magnitude response of a Gen 3 decimation factor that is not supported by Gen 1 
devices. Figure 9.22 shows the magnitude response of a decimation by 24x, using FIR4, FIR3, FIR2 and FIR1b 
in a filter cascade. As before, an input RF-ADC sampling rate of 4 GSps is chosen for this decimation example. 

Similar to previous examples, it is possible to recognise images of the filter responses that operate at lower 
sampling rates. Due to knowledge of the positions of these images, the filters that operate at the highest rates 
can be designed with relaxed specifications, thus optimising the amount of filter computation required. 

Table 9.4: Examples of FIR filters required for selected decimation factors.

Decimation Factor Enabled Filters Decimation Chain

2x FIR1a 2

4x FIR2 + FIR1a 2 x 2 = 4

6x FIR2 + FIR1b 2 x 3 = 6

10x FIR2 + FIR1c 2 x 5 = 10

20x FIR3 + FIR2 + FIR1c 2 x 2 x 5 = 20

24x FIR4 + FIR3 + FIR2 + FIR1b 2 x 2 x 2 x 3 = 24

Figure 9.22:  Gen 3 decimation by 24 magnitude response of cascaded filters.
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9.6.  Principles of RF-ADC Operation

The RFSoC is a powerful device, able to serve several different RF receiver architectures due to its support for 
both real and complex RF-ADC inputs. We will now examine architectures for both cases in more detail.

9.6.1.  Real Signal Architectures

As discussed previously in Section 9.2, suitable amplification and analogue filtering (lowpass or bandpass, for 
Nyquist Zones 1 and 2, respectively) are required prior to the RF-ADC. 

If the received RF signal arrives directly from the antenna via analogue signal conditioning (filters, amplifiers, 
etc.) on a single wire then it can be considered a real input signal. Additionally, if the received RF signal is 
mixed down to IF using a real analogue oscillator, then it remains real at the point of reaching the RF-ADC. 
Figure 9.23 illustrates the Direct-RF architecture, followed by an RF-to-IF intermediate stage architecture.

In the first scenario, the RF signal is directly digitised by the RF-ADC, meaning that it does not undergo 
demodulation to either baseband, or to an IF frequency, prior to digitisation. All of the demodulation can 
therefore take place digitally. By implication, the RF bandpass signal must reside within the RF input range of 

RF Amplifier
RF Filter

(low pass or band pass)

IF Filter

(low pass or 

band pass)

Antenna

IF Amplifier

IF to RF
Mixer

Local
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RF Amplifier RF Filter
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Figure 9.23:  Two real signal receiver architectures: (upper) direct architecture, and (lower) intermediate stage architecture.
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the RF-ADC (i.e. within either Nyquist Zone 1 or 2). For example, in the case of a Gen 1 RFSoC RF-ADC, RF 
signals with centre frequencies up to almost 4 GHz could be received. 

If the received RF signal is above the 2nd Nyquist Zone, then it may be desirable to first demodulate it to a 
suitable IF frequency. This can be achieved by an RF-to-IF mixer, as seen in the lower diagram within Figure 
9.23. If required, an additional IF mixer stage could also be used, first from RF to a 'high IF' frequency, and 
secondly from the 'high IF' to a 'low IF' frequency. Regardless of whether a single or a two-stage architecture is 
used, the eventual IF frequency must be within the operating range of the RF-ADC (again, 0 to 4 GHz for a 
Gen 1 RFSoC device). Note that analogue bandpass filtering is required after the RF-IF mixing stage, as the 
mixing process will also generate unwanted spectral components at higher frequencies.

Example:

Let's provide two simple situations involving Wi-Fi signals, where the two architectures may be used:

• The direct-RF architecture could support a 2.4 GHz Wi-Fi signal, as it falls within the operating 
bandwidth of the RF-ADC; however, it could not receive a 5.8 GHz Wi-Fi signal as this carrier frequency 
is too high.

• The 5.8 GHz Wi-Fi signal could instead be received by the second model. An IF-mixing stage would be 
used to shift the signal to a frequency within the operating range of the RF-ADC (for instance, centred at 
1 GHz) before digitising using the RF-ADC.

9.6.2.  Complex Signal Architecture

If a received RF signal is demodulated using an analogue I/Q (complex) mixer, it becomes a complex analogue 
signal, i.e. we obtain two signal components, one demodulated with a cosine (I) and the other with a sine (Q). 
Together these form a complex signal, and therefore a pair of RF-ADCs is required. The complex format 
permits higher bandwidth signals to be received. The resulting architecture can be seen as Figure 9.24.  

In this architecture, the RF signal is demodulated to baseband using a complex mixer (the local oscillator 
generates two outputs separated by 90 degrees), which creates two signals, denoted as I and Q (In Phase and 
Quadrature). The I and Q phases then separately pass through amplifiers and low pass filters (which remove 
unwanted high frequency components prior to digitalisation). There are however a number of issues to be 
aware of when considering the I/Q mixing stage. These are:

• The local oscillator may not produce outputs that are separated by exactly 90 degrees. The mathematics 
of demodulation relies upon orthogonality between the I and Q phases. This means that a small portion 
of the I phase may creep into the Q phase, and vice versa. 

• The gain applied to the I and Q phases may differ slightly. This effect can be mitigated by adopting 
coupled amplifiers or a dual amplifier, rather than two completely separate amplifiers.
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• The responses of the low pass filters applied to the I and Q phases may differ slightly, due to component 
tolerances, as well as environmental and ageing effects.

• The signals in the I and Q paths may experience different voltage offsets.

Each RF-ADC includes a QMC block that can be used to correct for the above effects, which would otherwise 
be detrimental to signal integrity. The designer must incorporate their own logic to detect errors and generate 
the correction signals. 

Given the difficulties laid out above, why choose the I/Q mixing stage architecture? One key reason is that the 
I/Q complex format can represent signals with twice the bandwidth of a real input. Therefore, a signal with a 
bandwidth between  and  can be directly digitised. Using our earlier example, for a Gen 1 RFSoC,  = 4 
GHz, we could directly digitise a signal with a bandwidth of 3 GHz. 

This architecture would therefore be useful for next generation communications standards (such as 5G New 
Radio and O-RAN, discussed in a later Chapter 17) supporting extremely wide bandwidth signals such as in 
the mmWave bands (~30 GHz to 300 GHz), or for radar applications — for instance the Short-Range Radar 
band which offers up to 4 GHz of bandwidth. Another possible application is in instrumentation, for example 
spectrum analysis.  

Figure 9.24:  Complex receiver architecture.
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9.6.3.  Operating Modes

To support these differing radio architectures, the RF-ADC tiles can be operated in two different modes: Real-
to-Complex, and Complex-to-Complex. 

In Real-to-Complex (R2C) mode, an RF channel is input to the RFDC as a real signal, and is then mixed with 
the output of a complex NCO to form a complex I/Q output. For the Dual RF-ADC tile, the upper and lower 
halves of the tile can each handle one input RF signal in this manner. Similarly, each RF-ADC in the Quad tile 
can support one input signal, giving four channels in total.

In Complex-to-Complex (C2C) mode, an RF channel is input to the RF Data Converter as a complex signal (I/
Q), and is then mixed using a complex oscillator to form a complex output (also I/Q). In this configuration, 
two RF channels are required for an RF signal, one for the analogue I input and another for the analogue Q 
input. Therefore, a Dual RF-ADC tile can only support one RF signal, and a Quad RF-ADC can support two.

9.6.4.  Reception of Multiple Bands

The primary application area for the RFSoC device is wireless communications, some examples of which are 
discussed in detail in later chapters. In some circumstances, it may be desirable to combine the receive 
channels for more than one standard, such that they can share an input from a single RF-ADC. The RF-ADCs 
support this use case through Multi-Band reception.

The RF-ADC can be operated in 'multi-band mode', where the input analogue signal consists of signals mixed 
to different carrier frequencies. A single RF-ADC tile can support 2 or 4 frequency bands in a multi-band 
configuration (for Dual and Quad tiles respectively). The support for multi-band operation within a single tile 
recognises that the first stage (RF-ADC sampling) is common for all bands. As a result, one signal with a wide 
bandwidth, containing the multiple signals of interest, can be digitised. Following this, distinct stages of I/Q 
mixing and decimation are required for each of the bands, according to their centre frequencies and 
bandwidths. Therefore, separate I/Q mixers and decimators are needed for each band. If required, different 
decimation ratios can be applied for each band, and samples passed to the PL at different rates. 

Example: 

A Quad RF-ADC tile can be used to receive four different bands within the same Nyquist Zone. The single 
input signal contains signals mixed to four carrier frequencies within the 1st Nyquist Zone: 450 MHz, 750 
MHz, 1.5 GHz and 1.7 GHz. The spectrum of this input signal is illustrated in Figure 9.25. 

Once digitised by the RF-ADC, if Multi-Band mode is enabled, the signal is routed to all four digital complex 
mixers in the tile. These mixers can be configured independently, allowing each to extract a different band 
from the combined input signal. For this example, the four mixers would be set to match the initial bands at 
450 MHz, 750 MHz, 1.5 GHz and 1.7 GHz respectively. Once demodulated and decimated, the bands can be 
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forwarded separately to the PL for further processing. The operation of a single RF-ADC tile in multi-band 
mode is shown in Figure 9.26.  

As previously discussed, with a real architecture, one RF-ADC in the tile would be used. As in this example, 
with a complex architecture two RF-ADCs are used: one for the I signal and the other for the Q signal. Each 
band can be decimated independently following the mixer stage, allowing each band to be passed to the PL at 
different clock rates. 
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Figure 9.25:  Four bands contained within a single input signal.
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9.6.5.  Multi-Tile Synchronisation

The RFDC contains flexible clocking and data interfaces to enable a wide variety of applications. Natively, each 
tile is clocked independently, and the latency within a tile is consistent. However, for some applications, 
multiple tiles or even multiple RFSoC devices are required, and therefore it is highly desirable to match 
latencies across tiles. This can be enabled through the multi-tile synchronisation option, distributing a SYSREF 
clock across the desired tiles. ADC Tile 0 is treated as the 'manager tile' to which all others are synchronised, 
and as such it must be enabled for multi-tile synchronisation. 

9.6.6.  Nyquist Zones in Real World Scenarios

As previously discussed, an ideal SDR should be designed to be maximally flexible, and as such it should offer 
software programmable operation over the widest possible bandwidth. This would imply applying an analogue 
filter across one entire Nyquist Zone, with all band selection being accomplished digitally. An ideal analogue 
filter would have a ‘brick wall’ response, similar to that shown in Figure 4.18 on page 92 in the context of 
digital filters. with immediate transitions between passband and stopband located exactly at the boundaries of 
the Nyquist Zones. However, in practical terms, this is impossible to achieve.

In practice, filters have one or more transition bands, i.e. a range of frequencies with sliding gain between the 
passband and stopband. The aim is therefore to limit the maximum signal bandwidth to slightly less than one 
Nyquist Zone. Consequently, the effects of attenuation and aliasing are particularly pronounced at the edges of 
each Nyquist Zone, as shown in Figure 9.27 for the RF-ADC sampling rate of  = 4 GSps. For this reason, 
signals located very close to the Nyquist Zone boundaries should be avoided via frequency planning, a 
technique which is discussed in detail in Chapter 12. 

To give a simple example, let’s consider that the received signal falls within the edge region of a Nyquist Zone. 
This is undesirable, but can be readily addressed by adjusting the RF-ADC sampling frequency. In the example 
depicted in Figure 9.27, the band from 1.9 - 2.0 GHz falls within the edge region of the 1st Nyquist Zone, but if 
the RF-ADC sampling frequency was reduced from 4 GSps to 3 GSps, the signal would instead be located in 
the central part of the 2nd Nyquist Zone. .

fs

Figure 9.27:  Real world Nyquist Zone filter design (fs = 4 GSps).
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CHAPTER 9: RF Data Converters: Analogue to Digital
The analogue low pass or bandpass filter prior to the RF-ADC is an external component, and therefore is an 
independent design choice linked to the application or use case, and signal frequency band(s). Development 
boards may include some pre-packaged analogue filter support that complements the RF-ADCs on the RFSoC 
board. 

9.7.  Design Tool Support

The hardened RF-ADCs can be added to any RFSoC Vivado 
IP Integrator [61], [65] project by including the RF Data 
Converter IP core, which can be seen in Figure 9.28. This 
core acts as a configurable wrapper around both the RF-
ADCs and RF-DACs, which can be customised per tile. 

Each RF-ADC and RF-DAC can be enabled and configured 
individually. The pins available on the GUI will update to 
match the enabled RF-ADCs and RF-DACs. In addition, the 
customisation options differ depending on the chosen 
RFSoC device. The available tiles and blocks for instance 
will depend on whether the device has Dual or Quad tiles. 

For the IP core, the RFDC tiles are named following their 
schematic bank allocation. For programming convenience, 
through the software driver documentation they are also 
referred to as Tiles 0 to 4. As Vivado uses both of these 
terminologies, Table 9.5 associates a Tile with both a bank 
allocation name and a software driver name. 

Example:

In Figure 9.28, the RFDC is configured for the ZCU208 RFSoC board, using the ZU48DR device part. Here we 
have three RF-ADCs enabled (Tile 224 ADC 0, Tile 225 ADC 0 and Tile 226 ADC 0). Due to clock sharing, 
clocks are available from the IP Core for tiles 225 and 226, as adc1_clk and adc2_clk respectively. Here we use 
the bank allocation tile names within the GUI to refer to the enabled RF-ADCs and the software driver names 
used for the clocks. Similarly, we have enabled two RF-DAC tiles, Tile 228 DAC 0 and Tile 230 DAC 0 which 
are also represented on the GUI by their clock pins dac0_clk and dac2_clk.

Figure 9.28:  RF Data Converter IP 
core (seen in IP Integrator).
330

Downloaded from www.RFSoCbook.com



CHAPTER 9: RF Data Converters: Analogue to Digital
9.7.1.  RF-ADC Tile Configuration

When configuring an RF-ADC in IP Integrator, a number of options are available to configure the tile as a 
whole and to enable and configure individual RF-ADCs. 

Note: The majority of the configuration options below can be initially set through IP Integrator and then 
dynamically reconfigured by the data converter Application Programming Interface (API), either in C or using 
the RFDC PYNQ Python Driver [39]. It is important that any desired tiles are first enabled and connected 
properly in the IP Integrator design. 

Common RF-ADC Tile Configuration Options

This first group of options is found towards the top of the tile configuration page, and contains parameters 
common to every RF-ADC within a tile. These options can be seen in Figure 9.29. 

There are three options of note here: 

• Multi Tile Sync — synchronises the clocks of grouped RF-ADCs across tiles

• Link Coupling — determines if the tile is AC or DC coupled. Most applications will be AC coupled. 

• Converter Band Mode — determines whether the tile is operating in single or multi-band mode

Table 9.5: RF Data Converter Tile Naming Convention.

RF-ADC RF-DAC

Tile 224 ADC Tile 0 Tile 228 DAC Tile 0

Tile 225 ADC Tile 1 Tile 229 DAC Tile 1

Tile 226 ADC Tile 2 Tile 230 DAC Tile 2

Tile 227 ADC Tile 3 Tile 231 DAC Tile 3

Figure 9.29:  RFDC IP core tile configuration GUI, common RF-ADC tile configuration options.
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CHAPTER 9: RF Data Converters: Analogue to Digital
Individual RF-ADC Configuration Options

The second group of options are configurable individually for each RF-ADC block within the tile. These 
options are further broken down into four categories: generic options, data settings, mixer settings and 
analogue settings. The RF Data Converter GUI for these options is shown in Figure 9.30. 

General Settings:

• Enable ADC — Each RF-ADC can be enabled individually.

• Invert Q Output — Configurable only when I/Q output data is selected and the fine mixer is enabled. 
Inverts the output of the Q channel.

• Dither — Adds a small amount of noise to the signal to improve spectral purity. Should be enabled 
unless the sample is under 0.75x the RF-ADC maximum sample rate.

Figure 9.30:  RFDC IP core tile configuration GUI, individual RF-ADC configuration options.
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CHAPTER 9: RF Data Converters: Analogue to Digital
• Bypass Background Calibration (Gen 1 and 2) — If enabled, the background calibration logic is imple-
mented in the IP core. Only available in Real-to-Real mode. 

• Enable TDD Real Time Ports (Gen 3) — Adds the tdd_mode port to the IP, which provides power 
savings by powering down sections of the RF-ADC.

• Enable ADC Observation Channel Ports (Gen 3) — Adds the tdd_obs port to the IP. Provides an 
observation port for the specific RF-ADC block.

Data Settings:

• Digital Output Data — Configures the data of the RF-ADC as Real or Complex. For complex data, 
paired RF-ADCs must be enabled. 

• Decimation Mode — Sets the decimation value of the DDC within the RF-ADC. Valid values are:

• Gen 1 and 2: 1x (bypass), 2x, 4x, 8x.

• Gen 3: 1x (bypass), 2x, 3x, 4x, 5x, 6x, 8x, 10x, 12x, 16x, 20x, 24x and 40x.

• Samples per AXI4-Stream Word — Configures the number of samples to be output per AXI-stream 
sample (1 to 12).

Mixer Settings:

• Mixer Type — choose which mixer type to use: bypass, coarse or fine. The available options are 
dependent on which Digital Output Data option is selected. 

• Mixer Mode — Select between real-to-real, real-to-complex or complex-to-complex output. 

• Coarse Mixer Frequency — Sets the frequency of the Coarse Mixer { , , -  }.

• Fine Mixer Frequency — Sets the frequency of the Fine Mixer between -10 and 10 GHz

• Fine Mixer Phase — Sets the phase of the Fine Mixer, between -180 and 180 degrees. 

Analogue Settings:

• Nyquist Zone — Select between even or odd Nyquist zone operation.

• Calibration Mode — Selects between calibration optimization strategies. Mode 1 is best for signals 
within 10% of the Nyquist Zone boundaries i.e. ±10%, ±10%, ±10% etc. Mode 2 is optimal 
for signals outside of this range. Gen 3 introduces 'Autocal' mode which is suitable for all input 
frequencies.

fs 2 fs 4 fs 4

fs 2 fs 3fs 2
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CHAPTER 9: RF Data Converters: Analogue to Digital
9.7.2.  RF-ADC Clocking Configuration

The system clocking tab within the RF Data Converter GUI enables clocking settings for each tile to be 
configured individually. Enabled tiles are configurable, with non-enabled tiles greyed out. Figure 9.31 shows 
this clocking tab, with configuration for the ZCU208 RFSoC board. 

The available settings can be summarised as:

• Sampling rate — The individual tile sampling rate in GHz, maximum value is device dependent. 

• Max Sampling Rate ( ) — Indicates the maximum sampling rate of the chosen device. Cannot be 
changed by the designer. 

• PLL Enable — Check box to enable the PLL of the tile. If disabled, the tile PLL is bypassed. If enabled, 
the tile generates its own clock based on a provided reference clock. 

• Reference Clock — Set the input clock to the tile. Must be an integer multiple of the sampling rate. The 
drop-down offers options based on the selected sampling rate. This clock drives the tile PLL or the data 
converters directly based on PLL enable settings. 

• PLL Ref Clock — Cannot be changed by the designer; displays the reference clock frequency in the PLL. 
Affected by reference clock value and reference clock divider. Only given if PLL is enabled.

• Ref Clock Divider — If PLL is enabled, sets division of the reference clock. For general applications 
should not be changed. 

• Fabric Clock — Displays the minimum required clock to drive the Data Converter. 

• Clock Out — Optional output clock from the tile that can be used to drive the AXI Stream (AXIS) clock. 

• Clock Source (Gen 3) — Configure which tile clock will drive each tile. Clocks can only be distributed 
to and from adjacent tiles. 

Figure 9.31:  RF-ADC Clocking Configuration, set for the ZCU208 RFSoC board.

fs
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• Distribute Clock (Gen 3) — Configure if the selected tile will distribute its clock. Options are off (no 
distribution), input reference clock (forward the tile reference clock) and output PLL clock (sampling 
clock generated by on tile PLL). For Gen 1 and 2 devices, clock distribution options are not available.

9.8.  Chapter Summary

This chapter has introduced the RF-ADC in detail as a crucial element of the RFSoC device, exploring in depth 
its key components and operating principles, including the decimation chains and complex mixer components 
that are included alongside each RF-ADC. We also summarised the available RFSoC devices, examining the 
number of RF-ADCs available on each device, maximum sample rates and ADC bit depth. RFSoC tile layout 
was then reviewed, introducing Quad and Dual tile configurations for Gen 1, 2 and 3 RFSoCs, noting the 
additional features of Gen 3 tiles. Finally, we examined the RF Data Converter IP Core within Vivado IP 
Integrator, and noted how to use and customise the RF-ADC tiles. 

Although the current chapter has covered the RF-ADCs available on an RFSoC device in great detail, it only 
tells half the story of the RFDCs. Chapter 11 will review the RF-DACs, which enable the transmission of RF 
signals, and have only been touched on up to this point.   In the next chapter will be present some scenarios of 
using the RF-ADC to receive signals in various bands (Nyquist Zones 1 and 2, and RF frequencies outside of 
Zones 1 and 2 requiring initial stages of IF mixing prior to the RF-ADC).
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Chapter 10
RF Data Converters: Example 
Receiver Architectures

Lewis Brown 

Following the review of the structure and operation of the RF-ADCs in Chapter 9, next we explore a set of 
example receiver architectures for different RF frequency receiver range scenarios. With the options to operate 
across Nyquist Zones 1 and 2, to add external IF circuitry to cater for higher frequencies, and to handle 
complex inputs (i.e. two channels, real and imaginary, or I and Q), four primary configurations will be 
presented. We will also show how the designer has the flexibility to bypass the internal DDC of the RF-ADC 
entirely, in favour of implementing a custom solution in the PL. 

For the purposes of presenting these example receivers, we will use an RF-ADC sampling rate of  4 Gsps, 
in order to keep the numbers simple and the explanations intuitive. It should be noted, however, that each of 
the RFSoC generations can achieve higher RF-ADC sampling rates, and the designer can of course choose 
other lower RF-ADC sampling rates than the maximum to suit a specific application requirements.

In the series of examples in this section, analogue signals (which are real!) will be presented as real or single 
sided frequency spectra showing only positive frequencies from 0 Hz upwards and with red shading  for 
showing the frequency domain spectral energy (see an example at Figure 10.2(a), page 340). Digital signals
obtained after sampling with the RF-ADC will use blue shading  to represent the spectra and will be shown 
as two-sided frequency spectra (i.e. both the ‘positive’ and ‘negative’ frequencies, see an example in Figure 
10.2(b), page 340 — refer back to Section 7.1.2, on page 234 to review complex spectra). If the complex spectra 
is symmetric about the 0 Hz line, then this is from a real time domain signal and if asymmetric, then this is 
from a complex time domain signal, i.e. with I/Q channels representing the real and imaginary parts. 

fs =
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CHAPTER 10: RF Data Converters: Example Receiver Architectures
Analogue signal paths will be shown as red lines  and real channel digital signals as blue lines, 
 and a complex digital signal with I and Q, or real and imaginary components, as a double blue line 

arrow . Signals of interest in the frequency domain will be given an asymmetrically shaped spectrum 
and sloped side on the left) as in Figure 10.2(a), page 340. This is so that we can easily and visually keep track 
when the signal spectrum gets flipped (or reversed), during the various mixing and demodulation stages. (In 
some applications reversing the spectrum may be the desired operation and will show how to achieve this later 
in this Chapter.)

The examples that follow will use some of the knowledge of the complex frequency domain from Chapter 7, 
and present the notations and block diagrams for both real path receivers (with separate I and Q paths and 
quadrature cosine and sine mixers/oscillators), and the equivalent complex (real and imaginary) oscillators / 
mixer block diagrams where the more compact complex notation is used, and the receiver mixes down with a 
complex exponentials, i.e. . Please refer back to Chapters 5 and 7 for background on 
these topics if appropriate.

10.1.  Example 1: Nyquist Zone 1, Direct-RF

For this first example we examine the simplest case, and most straightforward RFSoC RF signal receiver, 
referred to as the Direct RF architecture. In this example the analogue RF signal occupies spectrum in Nyquist 
Zone 1 and therefore it can be directly digitised by the RF-ADC with no aliasing process required (from higher 
Nyquist Zones), and no stage(s) of analogue IF (intermediate frequency) required. The signal frequency band 
in this presented example occupies the frequency range from 400 to 700 MHz (300 MHz of bandwidth), as 
shown in Figure 10.2(a), and thus has a centre frequency of  = 550 MHz.

With the RF-ADC , the Nyquist Zone 1 then extends from 0 - 2 GHz ( ), and therefore the 
signal range of interest, 400 to 700 MHz, falls within this Nyquist Zone1. Therefore a Direct-RF architecture, 
which was previously shown in the upper part of Figure 9.23 on page 324, can be used to receive this signal.  

10.1.1.  Equivalent Quadrature Mixer and Complex Mixer Architectures

A block diagram representing this Direct RF receiver architecture is shown in Figure 10.1(a) in its real signal 
quadrature mixer form, and in Figure 10.1(b) as the complex mixer form of the same Direct RF receiver. The 
first stage of the receiver in both the quadrature and equivalent complex versions of the Direct RF receiver in 
Figure 10.1 is the RF analogue signal conditioning, including some RF gain and an anti-alias filter, with both 
components being external to the RFSoC device. The low pass (anti-alias) filter passes signal energy in the 
Nyquist Zone 1 and attenuates the unwanted frequencies above 2 GHz in Nyquist Zone 2 (else the energy in 
this band would otherwise alias down into Nyquist Zone 1). The dotted line in Figure 10.2(a) shows the 

1. Note that we will usually try to state the sampling frequency of an ADC in samples per second (sps), i.e. the RF-ADC here 
is  = 4 Gsps, which is essentially the same as .  However after the ADC/analogue stage we will use Hz to
denote sample rates as the signal traverses through various DSP components, filters, and other signal processing stages.

e j cos j sin+=

fcentre fc=

f 4 Gsps= fs 2

fs fs 4 GHz=
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CHAPTER 10: RF Data Converters: Example Receiver Architectures
magnitude response of the low pass filter that passes the Nyquist Zone 1 (i.e. ideally implemented as flat 
passband Gain = 1 (i.e. 0dB, recalling that (20log10 (Gain) = 0 dB) from 0 to 2 GHz.

The output of the low pass anti-alias filter is input to the RF-ADC sampling at , and outputs the 
real digital signal (and therefore symmetric two sided spectrum) shown in Figure 10.2(b). This signal is then 
input to the mixers shown as two real multipliers in the real path architecture of Figure 10.1(a), and as a multi-

Figure 10.1:  Example 1: (a) Direct-RF Quadrature Mixer receiver to receive a 400 - 700 MHz (i.e. 300 MHz bandwidth-
signal of interest in Nyquist Zone 1.  (b) Complex mixer equivalent of the architecture in (a).

RF Amplifier RF Lowpass

Filter

Antenna

RF Data Converter

Decimators

I

Q

Complex
Mixer

8

8

fcutoff = 2 GHz

I/Q Samples 

to PL @

Analogue Digital

RF
ADC

fdsp = fs / 8 
= 500 MHz

fc = -550 MHz

fs = 4 GHz

fcn/fs)

fcn/fs)

The complex version of the above goes here.

fc = -550 MHz

fs = 4 GHzRF Amplifier

Antenna

RF
ADC

8

I/Q Samples to PL @

fdsp = fs / 8 = 500 MHz

I + jQ

Analogue Digital

Complex
Mixer

RF Data Converter

RF Lowpass

Filter

fcutoff = 2 GHz

ej f
c
n/f

s

(a)

(b)

fs 4 Gsps=
339

Downloaded from www.RFSoCbook.com



CHAPTER 10: RF Data Converters: Example Receiver Architectures
plier with one real input and one complex input for the equivalent complex path architecture of Figure 10.1(b). 
In Figure 10.1(a) the RF-ADC output is multiplied by the ‘-550 MHz’ cosine and sine oscillators, recalling that, 

, i.e.

In the complex path of Figure 10.1(b), the mixer or multiplier has a real input and a complex input, and we can 
see that the positive frequency band is shifted to baseband and the negative frequency band is shifted to be 
centred at . The complex NCO frequency of -550 MHz, i.e. ) as 
shown in Figure 10.1(b) relates to the quadrature oscillators as:
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Figure 10.2:  Example 1: Spectrum of the analogue input signal (400 - 700 MHz) and anti-alias filter low pass filter 
characteristic.  (b) Two-sided symmetric spectrum of the real digitised signal following RF-ADC sampling at 4 Gsps.  

(c) After mixing stage, with the target signal now present at baseband (-150 to 150 MHz) and negative frqeuency
band.  (d) Final demodulated and decimated baseband signal (-150 to 150 MHz), now sampled at fdsp = 500 MHz).
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In the equivalent real path valued architecture, Figure 10.1(a) as written above, the cosine and sine NCOs set to 
550 Hz and -550 Hz respectively which is precisely equivalent to the complex path architecture in Figure 
10.1(b). The mixer in Figure 10.1(a) is operating in Real-to-Complex mode, generating separate I and Q 
baseband signals which are shown as the real and imaginary components respectively at the output as shown 
in Figure 10.1(b) - again as reviewed here and in Chapter 7 the two architectures are identical, and the use of 
the complex notation is for mathematical convenience in Figure 10.1(b) as compared to Figure 10.1.

10.1.2.  Mixing Target RF Signal to Complex Baseband

In Figure 10.2(b), we show the two-sided complex spectrum of the real digitised signal, immediately after 
sampling by the RF-ADC. As the signal is real at this stage, its spectrum is symmetrical around 0 Hz and we 
can denote the positive complex frequency band as  and the negative complex frequency band as 

. 

The complex digital mixer at -550 MHz can then be used to shift the signal  band down to baseband 
and centred around 0 Hz.  Using the fine mixer NCO in the RFSoC (see again Section 9.4.2, page 315), and 
selecting a frequency of  (i.e. the centre of the 400-700 MHz band), the pair of spectra are 
shifted leftwards in the frequency spectrum plot by 550 MHz. As a result, the complex mixed versions of the 
signal are generated at:

,    and

.

The result of this demodulation can be seen in Figure 10.2(c), with one copy of the signal centred at baseband 
(0 Hz), and another at centre frequency of -1100 MHz. The signal is now asymmetrical with respect to 0 Hz, 
and therefore complex. Note that the real architecture in Figure 10.1(a) does exactly the same, but more 
difficult to interpret and sketch when using separate real spectra versions of I and Q, as opposed to considering 
the complex signal I + jQ of Figure 10.1(b).

10.1.3.  Decimation of Mixer outputs for PL (Programmable Logic) Stage

The final low pass decimation filter chain then low pass filters the signal to 250 MHz, and downsamples by a 
factor of 8, from 4 GHz to a signal sampling frequency of  ( ) giving the spectra in 
Figure 10.2(d) with  shown as the green dotted lines. The downsampled rate of 

 is still high enough to represent the complex bandwidth of 300 MHz bandwidth signal from 
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-150 MHz to 150 MHz. Following this Direct RF receiver, the separate I and Q signals are then passed to the PL 
for the next stage of processing.   

Note that a lower  rate (down to 300 MHz) could have been chosen and still represent the signal. (Or 
indeed you might choose a higher  rate). The engineering decision on the  sample rate is for the 
designer to make, and will be based on various factors such as available clocks, or interaction with other DSP 
signal paths where, for example, might perhaps looking to match to the sample rates for those other paths.

10.1.4.  Flipping or Reversing the Received Frequency Band

Notice the shape of the final baseband spectrum now centred at 0 Hz in Figure 10.2 — it slopes on the left hand 
side and same as original RF signal in Figure 10.2(a).  If we had wanted to shift the  image spectrum to 
baseband (i.e. the band initially centred at -1100 MHz, with the slope on the right), then we would instead have 
configured the NCO to generate a frequency of +550 MHz for the mixing process (i.e. a complex oscillator of 

). This would have shifted the magnitude spectra of  and  and from Figure 
10.2(c) to the right (rather than the left), and generated bands at 0 Hz and +1.1 GHz.  This baseband version 
would have the slope on the right, and therefore the original real spectrum from Figure 10.2(a) has been 
flipped or reversed in frequency (not the desired operation though in this example).

10.2.  Example 2: Nyquist Zone 2, Direct-RF

For this second example, we consider a signal of interest between 3 and 3.5 GHz. We can use the same, 
 RF-ADC sample rate as previously, this signal falls in Nyquist Zone 2, i.e. between  = 2 GHz 

and  = 4 GHz. This signal can still be directly digitised by the RF-ADC, and as such the Direct-RF archi-
tecture can be used, as in Section 10.1 for Example 1 above. A block diagram of this receiver is provided in 
Figure 10.3 which shows both the real signal path quadrature mixer and the complex mixer and the various 
filter stages and decimation stages. 

10.2.1.  Selecting Nyquist Zone 2 with a Bandpass Filter

First, an analogue RF bandpass filter passes Nyquist Zone 2, thus attenuating frequencies in Nyquist Zone 1, as 
well as frequencies in Nyquist Zone 3 and above (they all alias down!) as shown in Figure 10.3. The signal is 
then sampled by the RF-ADC operating at , and the signals from Nyquist Zone 2 will alias to 
Nyquist Zone 1 as a result of the sampling process (recall the fundamentals of aliasing — for a reminder see 
Section 4.1.4, page 77). Hence the aliased spectrum will be flipped or reversed compared to the original signal 
in the 3 GHz to 3.5 GHz band as shown in Figure 10.4(b) which shows the real (as its symmetric) two sided 
signal spectrum at the output of the RF-ADC. 
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10.2.2.  Mixing Target RF Signal to Complex Baseband

The signal of interest can now be mixed to baseband by mixing with a ‘+750’ MHz NCO signal in the 
quadrature mixer and in the complex mixer as show in Figure 10.3(c).    Note that different to Example 1, we 
now select to shift the  band from (-1000 MHz to -500 MHz and centred at -750 MHz) to be mixed to 

Figure 10.3:  Example 2: (a) Nyquist Zone 2 Direct-RF Quadrature Mixer receiver to receive a 3 GHz to 3.5 GHz (i.e. 500 
MHz bandwidth) signal of interest in Nyquist Zone 2.  (b) Complex mixer equivalent of the architecture in (a).
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0 Hz in order to get the same spectrum at baseband (i.e. not flipped in frequency which would happen if we 
mixed by ‘-750’ MHz which would mix down the positive frequency components at 500 MHz to 1000 MHz).

So again, mixing the negative spectrum,  to be centred at 0 Hz and baseband is accomplished by 
mixing with an NCO frequency of , i.e. the centre frequency of the aliased band, this produces 
two signals from the mixing up of the spectra at  and :

,    and

500 to 1000 MHz

(flipped)

-1000 to -500 MHz

-250 to 250 MHz

1.25 to

1.75 GHz

-250 to 250 MHz

0 Hz 500 MHz-500 MHz
frequencym

a
g
n
it
u
d
e

0 Hz 2 GHz frequency

m
a
g
n
it
u
d
e

4 GHz

Nyquist Zone 1 Nyquist Zone 2

Analogue Signal
One-Sided Spectrum

0 Hz 2 GHz frequency

m
a
g
n
it
u
d
e

4 GHz

(+) Nyquist Zone 1 (+) Nyquist Zone 2

-2 GHz

(-) Nyquist Zone 1

fs = 4 GHz
Two-Sided Spectrum

0 Hz 2 GHz frequency

m
a
g
n
it
u
d
e

4 GHz

(+) Nyquist Zone 1 (+) Nyquist Zone 2

-2 GHz

(-) Nyquist Zone 1

fs = 4 GHz
Two-Sided Spectrum

3 - 3.5 GHz

decimation by 4
filter cuts off at 400 MHz

fdsp = fs / 4 = 1 GHz
Two-Sided Spectrum

Figure 10.4:  (a) Example 2: Spectrum of the analogue input signal (3 - 3.5 GHz) and band pass filter.  (b) 
Two-sided spectrum of the real digitised signal following RF-ADC sampling at 4 Gsps.  (c) After mixing the 

desired signal is now at baseband (-250 to 250 MHz).  (d) Final demodulated and decimated baseband signal 
(-250 to 250 MHz), now sampled at = 500 Msps).fdsp

(a)

(b)

(c)

(d)

fnegative
fc 750 MHz=

fpositive fnegative

fpositive fc+ 500 to 1000  MHz 750 MHz+ 1250 to 1750  MHz= =

fnegative fc+ 1000 to 500––  MHz 750 MHz+ 250–  to 250  MHz.= =
344

Downloaded from www.RFSoCbook.com



CHAPTER 10: RF Data Converters: Example Receiver Architectures
The signal is now centred at 0 Hz (baseband), and an image of the signal is centred at 1.5 GHz, as shown in 
Figure 10.3(c).   

10.2.3.  Decimation of Mixer outputs for PL (Programmable Logic) Stage

In this example, the signal bandwidth is wider than in Example 1 in Section 10.1 (500 MHz, as opposed to 300 
MHz). Therefore a higher sampling rate is required and a lower downsampling factor of 4 is selected, meaning 
that the I/Q samples are transferred to the PL for further processing at the higher rate of , 
compared to 500 MHz in the previous example. 

As a result of the low pass filtering of the decimator stage to 500 MHz cut-off, the image centred at 1.25 GHz is 
filtered out, resulting in the baseband signal shown in Figure 10.4(d). 

10.3.  Example 3: Nyquist Zone 1, Analogue IF Stage

In the third example, we wish to receive a QAM generated signal which is 100 MHz wide and across the range 
from  to  GHz. An RF frequency in this range cannot be directly digitised by an RF-ADC with sampling 
rate  GSps, and hence a prior stage comprising of an analogue local oscillator (LO) mixer from RF to 
IF is required, which is external to the RFSoC. 

10.3.1.  Analogue Mixing to an IF (Intermediate Frequency) in the RF-ADC Range

Figure 10.5 shows an architecture for digitising this signal in 5.8 to 5.9 GHz range via an IF stage. In this 
example, the received analogue 100 MHz signal occupies the band from 5.8 - 5.9 GHz (we will denote the 
bottom of the band as GHz and the top of the band as GHz). This range is too high in 
frequency to be digitised directly, even in Nyquist Zone 2, which spans from 2 to 4 GHz. 

Figure 10.6(a) illustrates the RF signal of interest, at  = 5.85 GHz, which is first isolated with a suitable 
RF analogue band pass filter to attenuate frequencies that will exist above and below this spectrum. Therefore 
we first mix down to an IF frequency using an RF-to-IF analogue local oscillator (cosine wave!) operating at a 
frequency of GHz as shown in Figure 10.5. Of course other  local oscillator frequencies could be 
used — the low band output from the mixer just needs to land in the 0 to 2 GHz of Nyquist Zone 1 (albeit in 
Nyquist Zone 2 will work too, but usually most straightforward to work in Nyquist Zone 1).

Analogue mixing with the 5.55 GHz local oscillator at frequency   with the signal from  creates both 
lower and upper bands. Recalling the identity:  , then

fdsp 1GHz=

5.8 5.9
fs 4=

f1 5.8= f2 5.9=

fcentre

fo 5.55= fo

fo f1 to f2
A Bcoscos 0.5 A B+ cos 0.5 A B– cos+=

f1to f2 cos fLO cos f1to f2  fLO+ cos f1to f2  fLO– cos+=
upper bandlower band
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CHAPTER 10: RF Data Converters: Example Receiver Architectures
and therefore the centre frequency, , of the band appearing in the RF-ADC Nyquist Zone 1 (0 to 2 GHz) is 
at frequency:

fc = -300 MHz

fs = 4 GHz
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I/Q Samples to PL @
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I + jQ

Analogue Digital
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Figure 10.5:  Example 3: (a) IF receiver for a 100 MHz signal, centred at 5.85 GHz and mixed to an IF in the 
RF-ADC Nyquist Zone 1. (b) Complex equivalent of the architecture in (a).
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CHAPTER 10: RF Data Converters: Example Receiver Architectures
Noting the signal is 100 MHz wide, then the frequency range  to   (5.8 GHz to 5.9 GHz) is translated to the 
baseband frequencies from  to :

   and  

therefore creating an (analogue) IF frequency range of 250 to 350 MHz as shown in Figure 10.6(b).   Note that 
as well as the 300 MHz centred ‘lower’ band there will also be components created in the range  
GHz to  GHz, i.e. 11.4 GHz to 11.5 GHz. This ‘upper’ band can be filtered by other stages, but will 
also be filtered by the RF low pass filter stage shown in Figure 10.5 and which is also functioning as the 2 GHz 
cut-off frequency anti-alias filter for the RF-ADC sampling at 4 Gsps (the low pass anti-alias frequency 
response is again illustrated with the dotted line in Figure 10.6(b)). 

10.3.2.  Sampling the IF centred Signal of Interest in Nyquist Zone 1

Once demodulated to IF in Nyquist Zone 1 as in Figure 10.6(b), and the signal of interest centred at 300 MHz, 
the 2 GHz anti-alias low pass filter removes frequencies above , and also the image band high frequency 
components.   The signal is then digitised by the RF-ADC sampling at 4 Gsps and in Figure 10.6(c) we show 
the two sided symmetric spectrum (i.e. real) for the digital signal centred at 300 MHz. The subsequent steps 
are similar to those of Example 1 in Section 10.1 above and we shift the spectrum to the left to mix the upper 
spectrum to baseband (with a complex mixer/oscillator frequency in Figure 10.5(b) at -300 MHz) creating the 
complex spectrum of Figure 10.6(d). 

Demodulation from IF to baseband has shifted the entire two sided spectrum down in frequency by 300 MHz, 
such that the target signal occupies the frequency range from -50 to 50 MHz, and the negative image occupies 
the frequency range from -650 MHz to -550 MHz, as seen in Figure 10.6(d). 

10.3.3.  Decimation of Mixer outputs for PL (Programmable Logic) Stage

Following the complex mixer, the signal is decimated by low pass filtering and downsampling by 10, producing 
the final baseband signal as in Figure 10.6(e) and with a sampling rate of  = 400MHz (= 4GHz / 10) and 
passes to the PL stage for further DSP and processing. The low pass response of the decimator removes the 
unwanted image of the complex signal centred at -600 MHz. The signal output from this final processing stage 
can be seen in Figure 10.6(e).   (Note, the signal decimation by 10 to achieve a 400 MHz sampling rate requires 
that a Gen 3 RFSoC device is used for rate changes of 10 and above; Gen 1 and 2 cater for a maximum 
decimation ratio of 8).

f1 f2
f1b f2b

f1b f1 5.5– 5.8 5.55– 250 MHz= = = f2b f2 5.5– 5.9 5.55– 350 MHz= = =

5.55 5.85+
5.55 5.95+

fs 2

fdsp
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CHAPTER 10: RF Data Converters: Example Receiver Architectures
10.4.  Example 4: I/Q Mixer to Analogue Baseband and Sampling

For the fourth example, we will use the analogue quadrature mixer receiver of Figure 10.7, to receive the signal 
interest centred at 27 GHz, with a bandwidth of 3 GHz (from 25.5 GHz to 28.5 GHz), and shown in Figure 
10.8(a). As we have selected an RF-ADC sampling rate of  = 4 GHz then while we can digitise from 0 to 4 
GHz with Nyquist Zones 1 and 2, clearly the 3 GHz signal centred at 27 GHz greatly exceeds , and as 
such, cannot be directly converted from analogue to digital.
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Figure 10.6:  Example 3: Spectrum showing the (a) analogue target 100 MHz wide RF signal of interest centred at 
 = 5.85 GHz, (b) the target mixed down to an IF frequency at 300 MHz with an oscillator at  = 5.55GHz, (c) 

the two sided complex spectrum of the real signal input to the RF-ADC, (d) frequency shifting by complex mixing with 
300 MHz complex oscillator, and (e) final decimated signal sampled at  = 400 MHz sent to the PL.
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Figure 10.7:  Example 4: Analogue quadrature mixer receiver architecture used for receiving a 3 GHz wide signal from 27 
GHz carrier frequency.  (b) Complex equivalent of the architecture in (a). 
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CHAPTER 10: RF Data Converters: Example Receiver Architectures
10.4.1.  Quadrature Analogue Mixing to Analogue IF and Baseband Sampling

Unlike previous examples, here the RF signal is demodulated to baseband in the analogue domain, prior to the 
RF-ADC stage. This is achieved using a complex (I/Q) analogue mixer with centre frequency , 
which generates a complex baseband signal Figure 10.8(b) that is supplied to the input of the RF-ADC pair. (As 
above the mixing processing will also create components at the ‘upper’ sideband of 2 x 27 GHz, but these are 
easily filtered by stages of analogue filtering.)

With the RF-ADCs set to  = 4 Gsps, the complex format permits up to a 4 GHz signal bandwidth, whereas 
the maximum with a real signal would be 2 GHz (in practice, the usable bandwidth might be slightly lower in 
both cases, to account for realistic analogue filter responses).   This is often referred to as quadrature sampling.  

Note for this architecture, as the signal has already been demodulated to baseband, externally to the RF-ADC, 
then there is no requirement to use the RF-ADC quadrature/complex mixer, and it is therefore bypassed 
entirely for mixing to baseband purposes. However the complex mixer still may be used as part of a synchroni-
sation scheme to correct for any carrier frequency offset that may exist (recall the carrier offset review back in 
Section 7.6). 

The spectra of the target signal and the demodulated baseband analogue signal, and the complex baseband 
(signal is asymmetric) can be seen in Figure 10.8(a) and (b).
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10.4.2.  Mismatch and Analogue Correction Options

A challenge inherent to this approach is that the two analogue branches may have small analogue mismatches 
and differ slightly in terms of gain, phase, and DC offset, due to component tolerances, I/Q mixer imbalance, 
and other real-world effects, hence causing some issues with the I/Q signal balance. However these 
mismatches can be addressed by the RFSoC’s Quadrature Modulator Correction (QMC) block can be used to 
compensate and thus correct for these analogue impairments. 

Given the very wide signal bandwidth in this example, there is no scope for decimation, and the I/Q samples 
are transferred from the RF-ADC tile to the PL at the rate of 4 Gsps. The digital signal passed from the RF-
ADC tile to the PL is shown in Figure 10.8(c). Given that this sampling rate exceeds that of the PL clock 
frequency, a super-sampling architecture is required for subsequent stages, i.e. a parallelised structure capable 
of processing multiple samples per clock cycle. 

10.5.  Example 5: Custom Architectures

The previous four examples have explored typical use-cases and architectures for using the RF-ADCs on the 
RFSoC, but this is not exhaustive!   Use of the quadrature and complex mixers and decimators on the RF-ADC 
tile is optional — designers can choose to bypass either or both of these, and instead build their own custom 
architectures in the PL, if desired. The custom architecture shown in Figure 10.9 is provided as an example. 

Here we assume that the received signal has a 100 MHz bandwidth and is centred at 850 MHz (in Nyquist 
Zone 1), and is sampled by the RF-ADC at a rate of 3.6 GHz. The complex mixer in the RF Data Converter 
block is used to demodulate the signal to baseband using a complex NCO operating at -850 MHz. 

However in this example, the integrated programmable decimators (see again Figure 10.1) are bypassed in 
favour of custom decimators created on the PL, and with the RF-ADC samples are transferred to PL at a rate of 
3.6 Gsps (unchanged from the input rate, as no decimation has taken place). In the PL and for the purposes of 
this example, the designer implements their own proprietary decimator to reduce the sampling rate by a 
custom factor of 9, prior to any further processing at this rate. 

10.5.1.  RF-ADC Programmable Decimators vs. Custom Decimators

The RF-ADC tile’s programmable decimators offer a discrete set of decimation ratios, which varies by gener-
ation. In each case, the responses of the decimation filters are fixed and cannot be customised by the designer. 
For most applications, it would seem preferable to leverage these hardened facilities within the RF Data 
Converter blocks, as they provide a good range of options and operate at lower power than equivalent 
functionality implemented in the PL. However, occasionally it may be necessary to design a custom archi-
tecture to cater for specific design requirements; for instance, where extremely low latency (and low group 
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CHAPTER 10: RF Data Converters: Example Receiver Architectures
delay in a filter) is required between the signal first being received and reaching algorithms operating on the 
PL. As reviewed in Chapter 9, the ability to individually bypass the complex mixer, and/or the programmable 
decimator within the RF-ADC tile, provides this flexibility. 

Figure 10.9:  Example 5: Custom architecture, using the PL to implement decimators 
instead of using the RF-ADC decimators.
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10.6.  Chapter Summary

This chapter has expanded upon the RF-ADC architectures introduced in Chapter 9 by presenting and 
discussing a set of design examples. First, we explored a Nyquist Zone 1 signal which could be directly 
digitised using a real architecture using a single RF-ADC. A second example was then presented for a Nyquist 
Zone 2 signal. It was shown that the complex mixer can be configured to compensate for the spectrum 
‘flipping’ introduced through aliasing of Nyquist Zone 2 signals. 

Thirdly, an architecture with an analogue IF stage was developed. it was noted that an analogue demodulation 
stage is necessary for receiving signals containing components above the RF-ADC sampling frequency. By 
using such an intermediate stage, the signal could be demodulated to Nyquist Zone 1, and then sampled by the 
RF-ADC. 

The fourth example considered a signal of bandwidth exceeding  with respect to the RF-ADC sampling 
frequency. This necessitated a complex analogue architecture, as well as a pair of RF-ADCs to receive the I and 
Q components of the signal. Finally, custom architectures were explored, highlighting the flexibility to bypass 
the hardened functionality in the RF-ADC tiles, and implement specialised mixer and decimation function-
ality in the PL if desired. 

fs 2
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Chapter 11
RF Data Converters: 
Digital to Analogue

Josh Goldsmith 

As with the RF analogue to digital converters discussed in the previous two chapters, the RF Digital to 
Analogue Converters (RF-DACs) are another crucial component of the RFSoC. Due to the multi-GHz 
sampling rates that they support, in many cases the RF-DACs enable the transmission of radio signals directly 
at radio frequencies, without the need for an IF stage. In this chapter we provide a brief overview of the digital 
to analogue conversion process and detail the structure and components of the RF-DACs on RFSoC devices. 

11.1.  Digital to Analogue Conversion Recap

Before delving into the details of the RFSoC’s RF-DACs, it is worth briefly reviewing the operation of DACs in 
general. For additional detail, please refer back to Section 4.6.2. 

The role of a DAC is to convert discrete-time digital samples into continuous-time analogue signals. It achieves 
this by converting the digital samples to a continuous signal, and then applying a low pass filter to remove any 
high frequency components that have been generated. 

To convert the discrete signal into a continuous signal, DACs commonly use a Zero-Order Hold (ZOH) 
technique, which can be considered a counterpart to the sampling technique used in ADCs. The DAC holds 
the amplitude of samples between clock ticks, creating a staircase effect as illustrated in Figure 11.1. 
355
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Each sample in the signal has now effectively been converted to a rectangular function with a height equal to 
the amplitude, and a width equal to the sample period, as shown in Figure 11.2.

In the frequency domain this rectangular function can be described by the sinc function

, (11.1)

where  is the sampling frequency of the DAC. 

The effect of the zero-order hold sampling process is two-fold. The “steppiness” of the resultant signal creates 
high frequency components, not present in the original signal, that manifest as spectral images across the 
entire frequency spectrum. Additionally, the sinc-like frequency response introduces non-linear gain across 
the frequency band between 0 Hz and , potentially distorting the signal being reconstructed by the DAC. 
In Figure 11.3 we can see both of these effects in action, with the original signal and its images shown in red, 
and the sinc response of the DAC as the blue line. 

Figure 11.1:  Staircase response after the zero-order hold sampling technique.
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CHAPTER 11: RF Data Converters: Digital to Analogue
The spectral images resulting from digital to analogue conversion are generally undesirable, particularly in 
radio applications where these high frequency components could interfere with adjacent radio channels. As 
can be seen from the sinc response shown in Figure 11.3, the images in the upper Nyquist zones are attenuated 
to an increasing degree, however, this is typically inadequate for most applications, and thus a low pass filter is 
required to further attenuate them. This filter is normally referred to as a reconstruction filter (also an anti-
imaging or image rejection filter), and it has a cut-off frequency equal to the DAC Nyquist rate ( ) which 
removes the spectral images and smooths out the time domain waveform, as shown in Figure 11.4. 

Figure 11.3:  Frequency spectrum after zero-order hold process.
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CHAPTER 11: RF Data Converters: Digital to Analogue
The characteristic sinc response of the DAC causes a steady drop in amplitude across the first Nyquist zone 
(and subsequent Nyquist zones) with a difference of around 4dB between DC and  — equating to more 
than a 50% drop in power! There are two options available for dealing with this effect. One is to use a sample 
rate much greater than the highest frequency component of the signal (known as oversampling). In this way, 
the signal occupies only the region of the DAC response with approximately linear gain. The other is to use an 
inverse sinc filter that compensates for this loss in amplitude by increasing the gain of the signal at the affected 
frequencies. We discuss this filter in more detail later, in Section 11.2.2.

Two other important characteristics of a DAC are its resolution, expressed in bits, and its minimum sampling 
period, measured in time. Equivalently, the latter could be expressed as a maximum sampling frequency in 
Hertz, which is the reciprocal of the minimum sampling period.

The resolution of a DAC describes the number of possible values with which it can represent the amplitude of 
a signal. With reference to the staircase waveform from Figure 11.1, the resolution of the DAC determines the 
height of each step. For example, a 10-bit DAC can represent 210 = 1024 different values. Internally within a 
DSP system, a higher resolution may be used (i.e. a greater number of bits may be used to represent the signal, 
than are used at the point of conversion to analogue). Upon digital-to-analogue conversion, each sample is 
quantised to the closest value that the DAC can reproduce, either above or below it; this adds a source of error 
to the signal and is known as quantisation noise. The number of bits used in the DAC therefore has a direct 
effect on the SNR — the higher the resolution of the DAC, the better the SNR will be.

If resolution is considered as the height of the steps in the staircase from Figure 11.1, then the minimum 
sample period describes the width of each step. This is determined by the maximum rate at which the DAC can 
operate. Because time is inversely related to frequency, such that , the smaller the sample period of the 
DAC, the higher the maximum frequency signal component that it can reproduce. Following Nyquist theory, 
this maximum frequency component is just less than half of the DAC sampling rate. For example, if the 
minimum sample period of a DAC is 10 s, then it can faithfully reproduce signals in the range

(11.2)

where the upper limit is determined as

 . (11.3)

DACs can be optimised for a wide range of applications, from low frequency control signals with sampling 
rates in the tens of Hertz, right up to high frequency RF signals in the Gigahertz range. In the next section we 
look at the latter of these, in the form of the radio frequency DACs (RF-DACs) on the RFSoC family of devices.
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11.2.  DACs for RF Frequencies

In many cases, RF-DACs allow the RFSoC to transmit signals directly onto the target RF bands, without the 
need for IF circuitry. In Chapter 9, we discussed how the RF-ADCs are able to sample signals over the entire 
spectrum from 0 Hz to  (i.e. Nyquist Zones 1 and 2) by taking advantage of aliasing constructively. The RF-
DACs are also capable of using both Nyquist zones for transmission, albeit using a different method.

11.2.1.  Normal Mode and Mix-Mode

As discussed in the previous section, the zero-order hold sampling process produces images of the original 
signal in the upper Nyquist bands. Although these images are undesirable in the normal operation of a DAC, 
they can also be exploited to transmit signals with frequency components above the Nyquist rate of the DAC. 
The location of the images on the spectrum is related to the frequency components of the original signal, and 
to the DAC sampling rate. After digital-to-analogue conversion, spectral images will be present at , 
where  is an integer (1, 2, 3, ...), in theory extending along the spectrum to infinity, albeit with increasing 
attenuation due to the sinc response observed in Figure 11.3. Because the location of the images is calculable, 
we can exploit this effect to transmit a signal at any desired position on the spectrum. 

Let’s illustrate the concept with a simple example, with reference to the general response of the DAC presented 
in Figure 11.3. If we wanted to transmit an 8 MHz sine wave using a DAC with a maximum sample rate of 10 
MHz, this would appear not to be possible, as the highest frequency the DAC can represent according to 
Nyquist sampling theorem is just less than 5 MHz, i.e much lower than the 8 MHz tone of interest. However, as 
any signal generated by the DAC within the 0-5 MHz range will also produce a spectral image at , we can 
instead generate a sine wave at 2 MHz, thus creating an image at 8 MHz. An appropriate filter is required to 
pass the 8 MHz sine wave, and reject the original 2 MHz tone, as well as any subsequent images located in the 
upper Nyquist zones. Rather than using a low pass reconstruction filter, we instead use a bandpass filter tuned 
to suppress frequencies outside the  to  frequency band (i.e. Nyquist Zone 2).

When used to generate signals in the second Nyquist Zone, the sinc-shaped frequency response of the DAC 
(arising from the zero-order hold sampling process) compromises signal quality. As we saw in Figure 11.3, the 
sinc response causes the amplitude of the DAC output to decrease at higher frequencies, and notably it is also 
less flat in the second Nyquist Zone than in the first Nyquist zone — this causes distortion, particularly 
affecting wide-bandwidth signals. This issue can be overcome by changing the zero-order hold sampling 
technique (which we hereafter refer to as Normal Mode) to one that is more optimised for generating signals in 
the second Nyquist Zone. In the context of the RFSoC, this technique is referred to as Mix-Mode [90], while in 
some other literature it may also be known as RF mode.

In Mix-Mode the rectangular pulses used in the zero-order hold process are modified by inverting the 
amplitude halfway through the sample period, as shown in Figure 11.5. 
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CHAPTER 11: RF Data Converters: Digital to Analogue
In the frequency domain this new function can be described by the equation,

. (11.4)

This change in sampling technique to Mix-Mode has a direct effect on the output frequency response, such that 
it reshapes the energy output by the DAC. This is due to the difference impulse responses and transfer 
functions of normal mode and mix-mode: compare Figures 11.2 and 11.5, and Equations (11.1) and (11.4). As 
can be seen in Figure 11.6, the output frequency response of the DAC in Mix-Mode exhibits higher and flatter 
gain across the second Nyquist Zone, making it much better suited for operation in this frequency band. 

Figure 11.7 compares the frequency responses of the original, Normal Mode operation of the DAC, and Mix-
Mode. Clearly, Normal Mode is preferable in Nyquist Zone 1, and Mix Mode in Nyquist Zone 2. Even so, we 
observe that there is still a drop in gain at the upper edge of Nyquist Zone 1 (in Normal Mode), and both the 
upper and lower edges of Nyquist Zone 2 (in Mix-Mode). To compensate for these effects, the signal can be 
passed through a digital filter (prior to the DAC) that applies a correction to the frequency response. 

Figure 11.5:  Mix-mode impulse response.
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CHAPTER 11: RF Data Converters: Digital to Analogue
11.2.2.  The Inverse Sinc Filter

As noted over the last few pages, the frequency response of a DAC is not flat, particularly around the edges of 
the Nyquist Zones, meaning that signals within these regions will be attenuated and often distorted. To combat 
this, an inverse sinc filter can be applied to correct for the non-linear magnitude response across the target 
Nyquist Zone [90].  By applying this correction filter, an approximately flat response can be achieved over 90% 
of Nyquist Zone 1, as shown in Figure 11.8.

The frequency response in Mix-Mode can be optimised in a similar way, by applying an inverse sinc filter to 
correct the non-linear gain of the mix-mode response across Nyquist Zone 2. The result of applying inverse 
sinc correction is a flatter response over around 80% of Nyquist Zone 2, as shown in Figure 11.9. 

Care must be taken when applying inverse sinc filters as they inherently increase the gain of the signal and can 
cause overflow or saturation. Therefore, it is usually necessary to attenuate the signal slightly before the filter is 
applied.

Figure 11.7:  DAC output frequency responses for both normal mode and mix-mode.
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CHAPTER 11: RF Data Converters: Digital to Analogue
The RF-DACs on RFSoC devices include a digital inverse sinc filter that can be applied (optionally). It can be 
enabled by configuring the Vivado RFDC IP at design time, or at run-time with use of the software API. The 
frequency responses plotted in Figures 11.8 and 11.9 reflect the actual filters implemented as part of the RF-
DAC architecture (the coefficients are defined in[90]). 

In the following sections we review the RF-DAC architecture in general, and explore some of its other compo-
nents.

11.3.  RF-DACs on RFSoC

The quantity, configuration, structure, and capabilities of the RF-DACs vary between RFSoC devices and 
generations. Table 11.1 highlights the differences in configuration of the RF-DACs of a selection of devices. 

Table 11.1: Comparison of DAC configurations across a selection of RFSoC devices [89].

Generation
(‘Gen’) Device Number of 

DACs
DAC Resolution 
(number of bits)

Maximum Sampling 
Rate (Gsps)

1
ZCU28DR 8 14 6.554

ZCU29DR 16 14 6.554

2 ZCU39DR 16 14 6.554

3
ZCU48DR 8 14 9.85

ZCU49DR 16 14 9.85

DFE ZCU65DR 6 14 10.0

Figure 11.9:  Frequency response correction using an inverse sinc filter (Mix Mode).
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CHAPTER 11: RF Data Converters: Digital to Analogue
An obvious difference between the RF-DACs and RF-ADCs is that the RF-DAC resolution is 14-bits across all 
devices, compared to the mixture of 12-bit and 14-bit configurations available for the RF-ADCs. The 
maximum sample rate of the RF-DAC is also significantly higher than the RF-ADC. Over the next few 
sections, we will go on to discuss the differences (and similarities) between the structure of the RF-DACs and 
RF-ADCs on the RFSoC.

11.3.1.  The RF-DAC Tile Hierarchy

The RFSoC is structured into a hierarchy of tiles and blocks, with each individual RF-DAC and RF-ADC 
contained within a block, and one (single), two (dual), or four (quad) blocks making up a tile, depending on 
the device. The number of tiles available also varies according to the device.

All Gen 1 and Gen 2 RFSoC devices include Quad RF-DAC tiles, whereas Gen 3 devices can be composed of 
Dual tiles, Quad tiles, or a mixture of Dual and Quad tiles. For example, the Gen 1 ZCU28DR device has two 
Quad DAC tiles, making a total of 8 RF-DACs available; whereas the Gen 3 ZCU46DR has two Quad tiles and 
two Dual tiles, making a total of 12 RF-DACs. It is also worth noting that one device, the ZCU43DR, contains 
four Single tiles, with one RF-DAC output per tile, making a total of 4 RF-DACs. As of the time of writing, this 
is the only device that contains Single tiles. 

Quad tiles can be configured either as four individual real signal outputs, or as a pair of complex I/Q signal 
outputs. The Dual tiles are similar, insofar as they can be configured for either real or complex outputs, 
however the number of individual outputs is halved.

11.3.2.  RF-DAC Tile Composition

Each block in an RF-DAC tile contains a pipeline of components before reaching the actual digital to analogue 
converter, including a gearbox FIFO, interpolation chain, complex mixer, QMC block, coarse delay, and digital 
filtering. Many of the pipeline components are identical in function between RFSoC device generations, and at 
least some of the components are identical to those in the RF-ADCs. A detailed explanation of the pipeline and 
its components is given in later sections, but first, it is worth reviewing the architectural differences between 
the tile and block structure of the Dual and Quad tiles over the various device generations. 

Gen 1 and 2 Tiles

The RF-DAC tiles within Gen 1 and 2 RFSoC devices are configured to have four (Quad) RF-DACs and one 
PLL per tile. Each RF-DAC has 14-bit resolution with a highly configurable 16-bit digital signal processing 
pipeline. As with the RF-ADCs, an external reference clock drives the PLL, which can optionally be bypassed 
to allow a direct sampling clock to feed into each block on the tile, if preferred. To suit different analogue front-
end designs, the output power of an RF-DAC tile is also configurable. In the case of Gen 1 and Gen 2 devices, 
two modes are available: 20 mA and 32 mA.
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The Quad tiles organise the four RF-DAC blocks into two pairs. Each pair can be configured separately as two 
individual real outputs, or as a pair of separate In Phase (I) and Quadrature (Q) channels. The RF-DAC that is 
used within the tile is dependent on the mode of operation. For example, if the tile is configured to output 
separate I and Q channels, even-numbered DACs are used for I and odd-numbered DACs are used for Q. 

Figure 11.10 shows the structure of the Gen 1 and 2 Quad tiles. Each RF-DAC block can be simplified into a 
single linear pipeline containing multiple signal processing components, as shown in Figure 11.11.   

The RF-DAC block pipeline allows for a high degree of reconfigurability, both at design-time and run-time. 
The input to the block first passes through a gearbox FIFO, which enables conversion between the different 
data rates of the PL and the RF-DAC, and separates the concatenated I and Q channels (if both are used). 

Figure 11.10:  Block diagram of the Gen 1/Gen 2 RF-DAC tile structure.
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CHAPTER 11: RF Data Converters: Digital to Analogue
The I and Q paths are then passed through separate interpolation chains, implementing a rate change of up to 
8x. The complex mixer can then be used to modulate the separate I/Q paths to a higher frequency carrier. 
Together, the interpolation chain and the complex mixer make up the Digital Up Converter (DUC), which can 
be bypassed if interpolation and/or modulation are not required.

If the DUC is enabled, and if a complex signal is being used, the QMC block is able to correct any gain or phase 
offsets that are experienced between the I and Q channels along the signal path. Further, any timing offsets that 
exist between channels can be compensated by the coarse delay block. The final stage of the pipeline before 
digital-to-analogue conversion is the inverse sinc filter. Unlike the previous stages, the inverse sinc filter does 
not require the DUC to be enabled. 

Gen 3 Tiles

The RF-DAC tiles on Gen 3 RFSoC devices are configured to have either one (Single), two (Dual), or four 
(Quad) RF-DACs and one PLL per tile. The Quad tiles work in much the same manner as their Gen 1 and 2 
counterparts, with the main differences being in the RF-DAC blocks. As with Gen 3 RF-ADCs, the RF-DAC 
tiles also allow for clock distribution between adjacent tiles.

The Dual tiles contain two RF-DAC outputs per tile, as shown in Figure 11.12. However, each Dual RF-DAC 
tile still contains four DUCs and related pipeline components — the purposes of which we will discuss over the 
next few sections. As with the Quad tiles, the Dual tiles can also be configured to output separate I and Q 
channels, although as they only have two RF-DAC outputs, only one I/Q instance is available per tile.  

Figure 11.12:  Block diagram of the Gen 3 RF-DAC Dual tile structure.
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CHAPTER 11: RF Data Converters: Digital to Analogue
Single RF-DAC tiles follow the same structure as the Dual tiles, in the sense that they still contain four DUCs, 
but only provide one RF-DAC output instead of two. Because of this, the Single RF-DAC tiles cannot be 
configured for separate I and Q outputs. 

Although the DSP pipeline of the Gen 3 RF-DAC blocks is similar to that of Gen 1 and 2, there are some key 
differences worth detailing. Figure 11.13 shows the RF-DAC block pipeline for the Gen 3 devices. 

The first change to the RF-DAC blocks is the addition of Variable Output Power (VOP) to the RF-DAC itself. 
This feature allows much finer control of the RF-DAC output power, with an enhanced 10-bit resolution 
providing 1024 different levels, and is backwards compatible with the 20/32 mA modes available on Gen 1 and 
2 devices. The VOP can be controlled either from the PL via IP interface ports, or from the PS via the software 
API.

The programmable interpolation chain has also been updated to enable 13 different interpolation factors, 
including a trivial 1x interpolation. These are: 1x (bypass), 2x, 3x, 4x, 5x, 6x, 8x, 10x, 12x, 16x, 20x, 24x, and 
40x. The addition of higher rate changes and, generally, more rate change options, greatly reduces the need for 
any supplemental interpolation on the PL, freeing up FPGA space for additional DSP logic. 

Another change to the pipeline is the addition of the IMage Rejection (IMR) filter. The IMR filter can be 
configured as either low or high pass, which aids in suppressing images in the second and first Nyquist zones, 
respectively. The IMR filter can only be used in combination with the DUC, and introduces an additional 2x 
interpolation to the pipeline — this means that, if the IMR is enabled, the maximum interpolation rate is 
increased to 80x.

Finally, in Gen 3 devices, the inverse sinc filter has been updated to include correction for Mix-Mode (i.e. 
Nyquist Zone 2) as well as Normal Mode, as discussed in Section 11.2.

Figure 11.13:  Simplified RF-DAC Gen 3 block pipeline.
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CHAPTER 11: RF Data Converters: Digital to Analogue
11.4.  RF-DAC Processing Stages: The Programmable Interpolator

After data is passed through the gearbox FIFO, shown on the left hand side of Figure 11.13, the first processing 
stage increases the sampling rate, such that it is closer to (or equal to) the DAC sampling rate used for trans-
mission. As described in Chapter 4, interpolation is the process of increasing the sample rate of a signal by 
inserting zeros in between the original samples (known as upsampling or zero-stuffing), then filtering the 
resultant signal to remove the spectral images that are generated.

On the RFSoC, the interpolation stage is part of the DUC and it can operate in either real or I/Q (complex) 
modes, depending on the RF-DAC configuration. First and second generation devices have a different interpo-
lation chain structure than the third generation devices, as outlined next. 

11.4.1.  The Gen 1 / Gen 2 Interpolation Chain

Interpolation on the first and second generation devices is achieved by three cascaded stages of upsamplers 
and low pass FIR filters, each performing a rate change of 2x, denoted FIR2, FIR1, and FIR0. Each filter stage 
can be bypassed, and the output of each stage can be routed to the final output of the interpolation chain, as 
shown in Figure 11.14. 

Although the amount of interpolation is programmable by the user, the coefficients used for each of the FIR 
filter stages is fixed. The frequency responses of each of the three FIR filter stages are shown in Figure 11.15. 

As with the RF-ADC decimation chain, the first FIR filter stage has the sharpest cut-off, with the subsequent 
filters having progressively more relaxed responses due to the increasing gap between the signal of interest, and 
the position of the spectral image to be attenuated. Each of the three interpolation stages can either be 
bypassed, or used in cascade with the others, which produces four different interpolation options: 1x (bypass), 
2x, 4x, and 8x.

Figure 11.14:  Gen 1 / Gen 2 interpolation chain.
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11.4.2.  The Gen 3 Interpolation Chain

The interpolator in Gen 3 devices offers a significant increase in rate change options compared to Gen 1 and 2 
devices. The interpolation chain consists of four cascaded stages and, as with the previous generations, each 
stage can optionally be bypassed. Figure 11.16 shows a block diagram of the Gen 3 interpolation chain.  

Figure 11.15:  Magnitude response of the three FIR filters in the Gen 1/Gen 2 interpolation chain.

Figure 11.16:  Gen 3 interpolation chain.

FIR1a 2

FIR1b 3

FIR1c 5

M
U

X Data Out
(to Mixer)

ctrl

FIR2 2 FIR3 2 FIR4 2

M
U

X

ctrl

Data In
(from FIFO)
368

Downloaded from www.RFSoCbook.com



CHAPTER 11: RF Data Converters: Digital to Analogue
Using a combination of these filter stages, the Gen 3 interpolation chain can achieve the set of interpolation 
ratios outlined earlier, i.e.: 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, and 40. A few examples of how these filters can be 
cascaded together to produce each possible interpolation factor are provided in Table 11.2.  

The first stage of the interpolation chain comprises of three multiplexed upsamplers and low pass FIR filters, 
denoted as FIR1a, FIR1b, and FIR1c; allowing 2x, 3x, or 5x interpolation, respectively. Only one filter in this 
group can be used at a time. As these filters collectively represent the first stage of the chain, they all have steep 
transition bands, compared to the subsequent stages. The frequency responses for each of the filters in the first 
stage are shown in Figure 11.17. 

Table 11.2: Examples of interpolation factors supported by Gen 3 RFSoC devices.

Interpolation 
Factor Enabled Filters Interpolation Chain

2 FIR1a 2

4 FIR1a + FIR2 2 x 2 = 4

6 FIR1b + FIR2 3 x 2 = 6

10 FIR1c + FIR2 5 x 2 = 10

20 FIR1c + FIR2 + FIR3 5 x 2 x 2 = 20

24 FIR1b + FIR2 + FIR3 + FIR4 3 x 2 x 2 x 2 = 24

Figure 11.17:  Magnitude responses of FIR1a, FIR1b, and FIR1c in the Gen 3 interpolation chain.
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The second, third, and fourth stages of the interpolation chain all have a 2x interpolation factor, and each can 
be bypassed individually. As with the interpolation chain in the previous generation devices, each subsequent 
filter has a more relaxed response, with FIR3 and FIR4 both having identical responses. The frequency 
responses of stages 2, 3, and 4 are shown in Figure 11.18; these have been generated based on the filter specifi-
cations published in [90]. 

11.5.  RF-DAC Processing Stages: The Digital Complex Mixer

Functionally, the complex mixer within the RF-DAC is identical to that from the RF-ADC; the difference being 
that its role in the RF-DAC is to modulate the data, rather than demodulate it. The function of the mixer is to 
shift the signal into a target frequency band by mixing the input signal with a higher frequency carrier.

The RF-DAC mixer includes a 48-bit digital NCO fine mixer, enabling modulation with arbitrary frequency 
carriers, and a coarse mixer for mixing with one of a small set of preset carriers. The mixer supports I/Q to 
real, and I/Q to I/Q modes. A block diagram of the complex mixer is shown in Figure 11.19. 

11.5.1.  The Coarse Mixer and Bypass

The coarse mixer is the simpler of the two mixer modes and only allows mixing with a restricted set of carriers, 
i.e. , , or . However, the coarse mixer can operate at much lower power than the fine mixer, as 
its architecture is simpler, and in particular, it does not involve storing and accessing an extensive lookup table 
of sine wave amplitudes. 

Figure 11.18:  Magnitude responses of FIR2, and FIR3, / FIR4 in the Gen 3 interpolation chain.

fs 2 fs 4 fs– 4
370

Downloaded from www.RFSoCbook.com



CHAPTER 11: RF Data Converters: Digital to Analogue
The coarse mixer can also be used to bypass the entire mixing component, whereby the signal is simply passed 
through the mixer unmodulated. In this mode, only real input and real output signals are permitted.

11.5.2.  The Fine Mixer

The fine mixer consists of an NCO and set of modulators (multiplication and addition/subtraction operators) 
and is capable of shifting an information signal by an arbitrary frequency, including control over the phase. 
The NCO provides fine control over the generated frequency, in addition to 18-bit phase adjustment, both of 
which are programmable by the user. If using multi-tile synchronisation, the phase of the NCO can also be 
synchronised across tiles.

As can be seen from Figure 11.19, the output of the fine mixer includes a 3dB attenuation block that helps to 
avoid potential overflow in the mixing process (functionally, the attenuation block multiplies the output signal 
amplitude by 0.707, which corresponds to a halving of signal power, i.e. 3dB attenuation). The attenuation 
block can be enabled or disabled as required.

After mixing, signals within even-numbered Nyquist zones are inverted (flipped left-to-right in frequency), 
while signals within odd-numbered Nyquist zones are not. Any inversion can be reversed by using a negative 
frequency in the NCO.

Figure 11.19:  Block diagram of the RF-DAC mixer.
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As the IMR filter in Gen devices introduces an additional 2x interpolation, the sample rate at the mixer is equal 
to half of the DAC output sample rate (when IMR is enabled). Next, we discuss the IMR filter in more detail.

11.6.  RF-DAC Processing Stages: The Image Rejection (IMR) Filter

The IMR filter is available only in Gen 3 and DFE devices and it enables removal of unwanted spectral images 
after mixing has occurred. The IMR filter can provide either a low pass filter, retaining the signal in the 1st 
Nyquist Zone and attenuating the signal image in the 2nd Nyquist Zone; or a high pass filter, attenuating the 
signal in the 1st Nyquist Zone and retaining the signal image in the 2nd Nyquist Zone.

In addition to filtering, the IMR also introduces 2x interpolation to the signal. Because of this, the maximum 
interpolation rate of the RF-DAC is increased from 40x to 80x. If the IMR is enabled, and only 2x interpolation 
is required, the pre-mixer interpolation chain is bypassed and only the IMR interpolator is used. The 2x inter-
polation introduced by the IMR filter has ramifications for system design, as the sample rate at the output of 
the complex mixer will be half that of the RF-DAC output. This issue is discussed in more detail in Section 
11.7.5.

In the RF-DAC data pipeline, the IMR filter comes after the DUC and QMC, but before the inverse sinc filter. 
While the IMR can be enabled and disabled by the user at run-time, it can only be used when the DUC is 
enabled, meaning that the IMR cannot be used when the DUC is in bypass mode. Figure 11.20 shows the RF-
DAC data path with the various routing options for the IMR filter. 

The high and low pass filters of the IMR filter are symmetric, both providing 60dB stopband attenuation with 
reference to the carrier (60 dBc). It is important to note that the cut-off frequencies of the Nyquist filters are in 
relation to the sample rate before interpolation, meaning that the  cut-off frequency relates to the sample 
rate at the output of the DUC, rather than at the output of the IMR. 

As an example, consider that the sample rates after the DUC and IMR are 1 Gsps and 2 Gsps, respectively. In 
this case, the IMR filter cut-off frequency would be 500 MHz, rather than 1 GHz. Figure 11.21 shows the 
frequency responses of both IMR filters. 

Figure 11.20:  RF-DAC IMR data path.
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11.7.  Principles of RF-DAC Operation 

In earlier chapters, we discussed various receiver architectures available on the RFSoC using the RF-ADCs. 
The RFSoC is similarly capable of serving several different transmitter architectures due to its ability to work 
with both real and complex RF-DAC outputs. Much of the discussion regarding both real and complex RF 
receiver architectures has been covered in Chapter 9, with many of the processing stages corresponding closely 
to the equivalent stage of the transmitter architecture (but in reverse order). For this reason, we will only 
briefly discuss transmitter architectures, and quickly move on to the details that are more specific to RF-DACs.

11.7.1.  Real Signal Architecture

For real outputs there are two main options for the transmitter architecture: direct conversion to RF, or using 
an IF stage. 

In direct-RF, the signal output by the RF-DAC is passed to the antenna via the analogue front-end (i.e. filtering 
and amplification in the analogue domain). If an IF stage is used, the output of the RF-DAC additionally 
undergoes a stage of analogue mixing that modulates the signal to a frequency above baseband, but lower than 
the eventual RF carrier frequency. The option to use an IF stage is usually chosen when the RF frequency is 
higher than can be generated in the digital domain, given the sampling rate of the RF-DAC. 

In both cases, the signal can either be purely real, or I/Q modulated, the main point being is that the signal at 
the output of the RF-DAC is a single composite analogue output. Figure 11.22 depicts both of these architec-
tures. 

Figure 11.21:  IMR low and high pass filter frequency responses.
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11.7.2.  Complex Signal Architecture

In a complex signal architecture, the I and Q components have separate internal signal paths, and leave the RF-
DACs as two separate analogue signals, offset in phase by 90 degrees. In this scenario the combination of the I 
and Q channels takes place in the analogue domain, along with any necessary correction of phase or gain 
offsets. 

Figure 11.23 shows an example of this complex signal architecture. As this transmitter modulates directly from 
baseband to RF, low pass filters are included to retain only the baseband signal components and attenuate 
spectral images from the 2nd Nyquist Zone and above. This contrasts with the real transmitter designs from 
Figure 11.22, where the signal is modulated to IF or RF in the digital domain, and which instead require 
bandpass filters around the signal bands of interest.   

11.7.3.  Operating Modes

To facilitate these architectures, the RF-DACs can be operated in two different modes: Complex-to-Real, or 
Complex-to-Complex.

Figure 11.22:  Example of two real signal transmitter architectures. Direct RF (top), and IF (bottom).
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In Complex-to-Real (C2R) mode, the I/Q outputs of the DUC are summed together to create a single channel 
prior to the RF-DAC analogue output. In this mode, Quad RF-DAC tiles can output four separate channels on 
a single tile, while Dual RF-DAC tiles can output two.

In Complex-to-Complex (C2C) mode, the I/Q outputs of the DUC are kept separate throughout the entire 
data path. At the point of the crossbar (shown in Figures 11.11 and 11.13), the Q signal is routed to an odd-
numbered RF-DAC, while the I signal continues along an even-numbered RF-DAC. The two signals are then 
passed to two separate RF-DAC analogue outputs. In this mode, Quad RF-DAC tiles can output two separate 
C2C channels, while Dual RF-DAC tiles can only output a single C2C channel.

The DUC is required for both C2R and C2C modes. The input to the RF-DAC tile must be a single AXI4-
Stream signal with I and Q channels concatenated together. The gearbox FIFO is responsible for separating the 
complex signal into its I and Q components.

A further option exists wherein a real-only signal is passed from the RF-DAC input to the RF-DAC analogue 
output. There are two possible configurations for this mode. The first is that the real-only signal is passed 
through the RF-DAC input directly to the RF-DAC analogue output, bypassing the DUC entirely, removing 

Figure 11.23:  Example of a complex transmitter architecture.
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CHAPTER 11: RF Data Converters: Digital to Analogue
the options for mixing or interpolation. The second configuration, if mixing and interpolation are required, is 
to use the coarse mixer. However, the use of the coarse mixer greatly restricts the possible frequencies that the 
signal can be modulated onto. If the fine mixer is required, then it is possible to use C2R mode by making the 
imaginary part of the concatenated input signal entirely zero-valued.

11.7.4.  Transmission of Multiple Bands

A single RF-DAC is capable of simultaneously transmitting multiple signals that have been modulated onto 
different carriers. This is achieved using multi-band mode, wherein several signals are combined into a 
composite RF-DAC analogue output. Multi-band mode involves combining the outputs of multiple DUCs 
within a single tile, where each DUC processes a single signal. As the use of DUCs is required, they cannot be 
used in bypass mode. When using multi-band mode, latencies between the individual DUCs are automatically 
synchronised across the tile.

Each tile can be configured for real dual-band, I/Q dual-band, real quad-band, or I/Q quad-band. In dual-
band mode, two DUCs are used, while in quad-band mode four DUCs are used. All DUCs must be configured 
in the same way. For example, if I/Q quad-band is used, all four DUCs must be configured for I/Q output. In 
real mode a single analogue RF-DAC output is used, whereas in I/Q mode, two RF-DAC analogue outputs are 
used. As with C2C mode, odd-numbered RF-DACs are used for real outputs, whereas even-numbered tiles are 
used for the imaginary outputs.

Although the Dual tiles have only two RF-DAC analogue outputs, four DUCs are present in the tile. This 
allows both dual-band and quad-bands, and both real and I/Q outputs in the Dual RF-DAC tile devices. As 
Single RF-DAC tiles also contain four DUCs, multi-band operation is also supported. However, given that they 
only contain one RF-DAC analogue output, transmission of separate I/Q channels is not possible.

As multiple signals are summed together in multi-band mode, it is possible that overflow can occur. To avoid 
this possibility, the signals are automatically attenuated at the output of each DUC before they are summed 
together. For dual-band, 6dB of attenuation is applied per channel, while in quad-band, 12dB of attenuation 
per channel is used [90]. If required, the attenuation stage can be bypassed by means of the software API. 

Example:

A Quad RF-DAC tile can be configured to transmit four separate signals within the same Nyquist zone. Four 
separate inputs are required from the PL to the RF-DAC tile. Each signal is passed through its respective DUC 
and mixed to an individual carrier frequency. After mixing, the outputs of the DUCs are summed together to 
create a single composite signal along the DAC0 data path. If used, the composite signal can then be passed 
through the IMR and inverse sinc filter before being converted to analogue at the RF-DAC output. Figure 
11.24 shows the RF-DAC data path for this example. 
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11.7.5.  Nyquist Zones in Real World Scenarios

Earlier in the chapter, we discussed the theory of digital to analogue conversion and the role of filtering in 
removing unwanted images from the signal. Typically, at the output of the DAC, an analogue reconstruction 
filter would be used to remove these images — a low pass filter for the first Nyquist zone, or a bandpass filter 
for the second Nyquist zone, each with a bandwidth equal to the size of a single Nyquist zone.

Ideally, this filter would have a brick wall response, removing any images outside the filter’s passband entirely. 
In practice, however, there will be a transition band between the cut-off frequency and the desired stopband, 
where the amplitude of the frequency response drops off more gradually. This has implications when trans-
mitting signals, as any signal that is close the edge of the Nyquist zone will have an image that may not be suffi-
ciently suppressed by the reconstruction filter. For this reason it is recommended to avoid transmitting IF or 
RF modulated signals within the edge regions of the Nyquist zones, typically ±5% of the sample rate.

There are additional considerations to be made for designs that use the IMR filter in Gen 3 devices. As seen in 
the frequency response of the low and high pass IMR filters in Figure 11.21, there is likely to be insufficient 
suppression of images that fall within the edges of the Nyquist zone. As the IMR filter introduces 2x interpo-
lation after the mixer, this further reduces the bands that the input signal should be modulated onto by the 
DUC. Areas around the edges of the Nyquist zones should be avoided (noting that, when using the IMR, 
Nyquist Zones are defined in relation to the sample rate at the IMR input, rather than at its output). 

Figure 11.24:  high level block diagram of a real quad-band configuration for a Quad RF-DAC tile.
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CHAPTER 11: RF Data Converters: Digital to Analogue
To address these issues, Gen 3 RFSoC devices introduce the concept of the RF-DAC datapath mode. Four 
separate modes act as a guide for designers when using the various applicable combinations of RF-DAC 
components and configurations. This includes the use of Normal Mode or Mix-Mode, the IMR filter, and the 
DUC. Table 11.3 summarises these configuration options, as well as the usable bandwidth in the spectrum for 
each of these modes. Figure 11.25 visually clarifies the bands that should be avoided when using the various 
datapath modes.  

Table 11.3: Datapath mode configuration options (reproduced from [90], Table 63)

Mode Mode 1 Mode 2 Mode 3 Mode 4

Short Name Full Nyquist 
DUC IMR Low-pass IMR High-pass DUC_Bypass

IMR x2 OFF ON ON OFF

Mix-Mode OFF ON OFF ON OFF ON OFF ON

Useable bandwidth (Fs) 0 - 
0.45

0.55 - 
0.95

0 - 
0.2

0.8 - 
0.95

0.3 - 
0.45

0.55 - 
0.7

0 - 
0.45

0.55 - 
0.95

Figure 11.25:  Frequency band restrictions for the RF-DAC.
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CHAPTER 11: RF Data Converters: Digital to Analogue
11.8.  Design Tool Support

As with the RF-ADCs, the RF-DACs can be added to any Vivado project with the inclusion of the RF Data 
Converter IP core. This IP core allows the setup and configuration of the RF-DAC tiles and blocks within the 
IP core settings. Many of the details of the IP core configuration are covered in Chapter 9, therefore only the 
details relevant to the RF-DAC are discussed here.

11.8.1.  RF-DAC Tile Configuration Overview

In the GUI for the main RFDC IP core, the designer can configure the RF-DACs by selecting the ‘RF-DAC’ tab, 
indicated in Figure 11.26, within which various options are available for configuration of the tile as a whole 
(‘common settings’). 

Additionally, various parameters can be controlled independently for each individual RF-ADC. 

A summary of both categories of configuration options is provided over the next few pages. 

11.8.2.  Common RF-DAC Tile Configuration Options

There are three configuration options common to each RF-DAC tile, as seen in Figure 11.26. These can be 
summarised as follows:

• Multi Tile Sync — Similar to the RF-ADC option, multi-tile synchronisation can be enabled to align 
RF-DAC latency across tiles.

• Converter Band Mode — This allows the use of multi-band mode within the RF-DAC tile. Several 
options are available, dependent on device and tile type.

• Variable Output Current (Gen 3/DFE) — Allows the output current of the RF-DAC to be controlled. 
This option is persistent across all RF-DACs within the tile, and cannot be set for individual RF-DACs.

Figure 11.26:  RFDC IP core tile configuration GUI, common RF-DAC tile configuration options.
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11.8.3.  Individual RF-DAC Configuration Options

Each individual RF-DAC can be configured with its own individual settings. These fall into four categories, as 
seen in the RFDC IP core tile configuration GUI shown in Figure 11.27, and summarised thereafter. 

Generic Settings

• Invert Q output — Configurable only when I/Q output data is selected and the fine mixer is enabled. If 
selected, this option inverts the Q channel.

• Inverse Sinc Filter — This option allows the designer to enable or disable the inverse sinc filter. On Gen 
3 devices, the filter selection is determined by the Nyquist zone in use.

• Enable TDD Real Time Ports (Gen 3/DFE) — Provides output ports to the IP that allow power savings 
by enabling the powering down of RF-DACs or RF-ADCs. This option is useful when a Time Division 

Figure 11.27:  RFDC IP core tile configuration GUI, individual RF-DAC tile configuration options.
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CHAPTER 11: RF Data Converters: Digital to Analogue
Duplex (TDD) communications protocol is used, i.e. two terminals communicate with each other by 
transmitting / receiving on the same frequency band, using a time-sharing scheme. In this case, there is 
potential for the transmitter to be powered down some of the time.

Data Settings

• Analog Output Data — Configures the data of the RF-DAC as real or complex. For complex mode, 
both pairs of RF-DACs must be enabled.

• Interpolation Mode — Sets the interpolation rate of the DUC within the RF-DAC.

• Sample per AXI4-Stream Cycle — Configures the number of samples the input to the RF-DAC uses (1 
to 16).

• Datapath Mode (Gen 3/DFE) — Allows the selection of the datapath mode (see Section 11.7.5).

Mixer Settings

• Mixer Type — Configures which mixer the DUC uses (coarse, fine, or bypass). In Gen 3/DFE devices, 
the bypass option is removed and is instead selected within the Datapath Mode setting.

• Mixer Mode — Configures which mode the mixer operates in (I/Q-to-Real, or Real-to-Real).

• Coarse Mixer Frequency — Sets the frequency of the coarse mixer to one of the available options, i.e. 
, , or .

• NCO Frequency — Specifies the frequency of the fine mixer, between -10 and 10 GHz.

• Fine Mixer Phase — Sets the phase of the fine mixer, between -180 and 180 degrees.

Analogue Settings

• Nyquist Zone — Selects between even and odd Nyquist zone operation.

• Decoder Mode — Select between RF-DAC optimisation modes. The RF-DAC can be configured as 
optimised for either low SNR, or high linearity.

11.9.  Chapter Summary

This chapter has detailed the RF-DAC as a component of the RFSoC. After a brief recap of analogue to digital 
conversion in general, we reviewed the operation of RF-DACs, and their ability to transmit efficiently in higher 
Nyquist zones, in particular using Mix Mode to target the 2nd Nyquist Zone. The issue of the non-ideal sinc 
frequency response was identified, and it was demonstrated that an inverse sinc filter can mitigate its effects.

fs 2 fs 4 fs– 4
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The range of RFSoC devices was reviewed, discussing the differences between generations, and the architec-
tural features of the RF-DAC tiles. This included the interpolation chains, the coarse and fine mixers to 
modulate signals onto carriers, and the role of the IMR filter in Gen 3 devices. Following on, we examined the 
principles of RF-DAC operation, and the different configurations of real and complex architectures that the 
RF-DACs can enable. We also examined how composite multi-band signals can be composed using several 
DUCs, and transmitted from a single RF-DAC output, and how to use the Nyquist zones effectively when 
operating in different datapath modes. Finally, the use of the RFDC IP core to implement an RF-DAC was 
briefly reviewed.
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Chapter 12
RF Data Converters: 
Figures of Merit and 
Frequency Planning

Josh Goldsmith 

With RF-sampling devices pushing more of the radio components into the digital space, quantifying the noise 
and spurious emissions (spurs) originating in the devices themselves has become an important aspect of radio 
system analysis. In this chapter we explore the various sources of noise and spurs that can occur when using 
RF-sampling data converters, and look at a variety of methods of quantifying and measuring their effects. We 
then go on to discuss the concepts of frequency planning and how it can be used to reduce the effects that noise 
and spurs have on signal integrity. Finally, we look at some of the characterisation measurements that are most 
relevant to RF-sampling data converters, such as the RFSoC.

12.1.  Noise and Spurious Emissions

Ideally, any analogue signal that passes through an ADC is perfectly reproduced in the digital domain. 
Similarly, in ideal conditions, a DAC converts any digital signal representation into a perfect reproduction in 
the analogue domain. In practice, both noise and spurious emissions are created by the data conversion 
process, which can distort and interfere with the original signal, affecting the overall performance of the 
system. In this section we explore the various sources of noise and spurs that may be encountered.
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CHAPTER 12: RF Data Converters: Figures of Merit and Frequency Planning
12.1.1.  Data Converter Noise

Noise in a system can come from a variety of different sources but, within the data converter itself, two main 
sources are usually discussed: quantisation noise and thermal noise.

As reviewed in Section 4.2, quantisation refers to the conversion of an analogue signal’s amplitude (where any 
arbitrary amplitude can be represented) to a set of discrete amplitude values. Resulting from this conversion 
process, there is an error between the original and discretised signals, known as the quantisation error. Figure 
12.1 demonstrates the quantisation error (shown in red, with a sawtooth-like shape), for the case of a coarsely 
quantised sine wave. 

The errors arising from quantisation can be modelled as the addition of a noise source, of power , where 
 is the quantisation interval. This assumes that the analogue signal input to the ADC is sufficiently random 

that the quantisation errors are themselves uniformly distributed [13]. 

The resolution of a data converter (i.e. the number of bits) has a direct effect on the power of the quantisation 
noise present in a signal. The higher the resolution, the smaller the quantisation interval, , and therefore the 
lower the quantisation noise will be. It is also important to ensure that the signal driving the data converter 
utilises the full amplitude range in order to maximise the Signal to Quantisation Noise Ratio (SQNR).

While quantisation noise is dependent on the input signal, and the data converter resolution, thermal noise is 
independent of these factors and will always be present in the system. Thermal noise is present in all electrical 
components and is caused by quantum effects in the data converter circuitry. As thermal noise is a product of 
the data converter design itself, the user cannot exert control over this effect, although it can be easily 
measured by testing the output of a data converter with a DC-only input signal.

In lower resolution data converters, quantisation errors are typically the primary source of noise. However, as 
resolution is increased, thermal noise becomes more prominent. Other sources of noise can also interfere with 
data converters, such as clock noise and amplifier noise. However, as these noise sources come from compo-
nents separate to the data converter, their effect can be reduced by good circuit design. 

Figure 12.1:  Quantisation errors arising from the sampling process
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CHAPTER 12: RF Data Converters: Figures of Merit and Frequency Planning
It is worth noting that the principle source of noise for RF-ADCs is clock jitter, which is the variation of the 
clock period between clock cycles. Due to the importance of this issue, RFSoC boards use dedicated clocking 
infrastructure that contain multiple clock conditioning chains to reduce the jitter as much as possible. For 
example, the ZCU208 and ZCU216 RFSoC development boards use a separate clocking daughter board, the 
CLK104, that uses two reference clocks, a jitter cleaner, and clock synthesizer to create the necessary clock 
signals for the data converters [22].

Noise is usually measured in relation to the power of a full-scale input signal (in this case, one that uses the full 
range of quantisation values, typically set at 0 dBFS), which is normally a sinusoid. The overall ratio between 
signal power and noise power is the Signal to Noise Ratio (SNR), which we discuss in more detail later in this 
chapter. 

12.1.2.  Harmonic Distortion

Harmonic distortion is caused by non-linearities in the data converter signal path (including components 
external to the data converter itself, such as amplifiers). These non-linearities result in additional frequency 
components being generated, known as harmonics, which are mathematically related to the input signal by the 
relationship

, (12.1)

where  is the order of the harmonic (2, 3, 4, etc.) and  is the frequency of the input signal. In other words, 
harmonic components appear at integer multiples of the input signal frequency, across the entire spectrum. 

Figure 12.2 shows the positions of the first four harmonics on a frequency plot, for the example of a 10 MHz 
input sine wave. The first four harmonics (HD2, HD3, HD4, and HD5) are located at 20 MHz, 30 MHz, 40 
MHz, and 50 MHz, respectively. The magnitude of the harmonics is dependent on the linearity of the data 
converter signal path, and may also be affected by the frequency of the input signal. 

HDn nfin=

n fin

Figure 12.2:  An input signal and its first four harmonic components
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In considering a data converter in isolation, i.e. omitting external component effects, designers can refer to 
manufacturer data sheets for information on harmonic performance. For example, the relevant RFSoC data 
sheet states that the HD2 component of RFSoC Gen 1 Quad tile RF-ADCs has a magnitude of -85 dBc for a -1 
dBFS input signal at 240 MHz, and a magnitude of -65 dBc at 3.5 GHz [87]. Typically, only the first two 
harmonics are stated in data converter specifications, as these tend to dominate.

A common measurement used to describe data converters is Total Harmonic Distortion (THD). THD is 
defined as the ratio between the power of the sum of all harmonic components, and the power of the input 
signal. Typically only the first 6 harmonics are considered and the DC component is excluded [12].

12.1.3.  ADC Interleaving Spurs

Previously, in Chapter 9, it was noted that the RFSoC’s RF-ADCs use an interleaving technique to enable much 
higher sample rates than would be achievable with a single ADC. Rather than using one ADC with a sample 
rate of ,  ADCs are used together to achieve a sampling rate of . For example, an interleaved set of four 
500 Msps ADCs has an effective sampling rate of  = 2,000 Msps, or 2 Gsps. 

Ideally, each of the ADCs has identical characteristics but, in reality, this is extremely difficult to achieve, if not 
impossible. The mismatches between the ADCs manifest as interleaving spurs, of which there are three main 
types: DC offset, gain, and phase/time [233], [353].

DC offset spurs occur when the DC value between the interleaved ADCs are mismatched. This causes the DC 
value to switch back and forth between these values as each ADC is sampled, causing a spur that is related to 
the sampling rate and the number of interleaved ADCs. The th DC offset spur is located at

(12.2)

where  is the number of interleaved ADCs,  is the sample rate, and  is an integer (0, 1, 2,…, -1). For a 
2-interleaved ADC, spurs are present at both DC and , while a 4-interleaved ADC will have spurs present 
at DC, , and . The magnitude of the spurs increases with the degree of mismatch between DC offsets. 
An example of DC offset spurs for a 2-interleaved ADC is shown in Figure 12.3. 

Gain and phase mismatches in the interleaved ADCs relate to the frequency components of the input signal 
and, therefore, the positions of these spurs are relative to the signal frequency components. Gain mismatch 
refers to differences in amplitude of the interleaved ADCs, while phase offset arises from timing differences 
between them. Both gain and phase mismatches result in spurs at

(12.3)

where  is the input signal frequency. Figure 12.4 illustrates how gain and phase mismatches occur, for the 
example of a 2-interleaved ADC [241].
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To avoid gain and phase spurs RF-ADC vendors seek to properly match each interleaved ADCs and ensure 
signal path latencies are equal. However, even if these measures are taken at the design stage, at least some level 
of interleaving mismatch should be expected. It is also possible to calibrate the ADCs during operation to 
reduce the impact of these spurs [353]. For example, the RF-ADCs on RFSoC devices support two calibration 
processes that attempt to compensate for any residual gain, phase, and DC offset mismatches. The foreground
calibration process is run during the initialisation stages of the tile, while the background calibration process 
operates throughout ADC operation, providing real-time adjustments [90].

Figure 12.3:  DC offset mismatch for a 2-interleaved ADC
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Figure 12.4:  Phase (top) and gain (bottom) mismatches in a 2-interleaved ADC
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Additional interleaving spurs are also present, as a result of lower order harmonics mixing with internal ADC 
clock frequencies. These spurs will be located at frequencies given by

, (12.4)

where  is the frequency of the th order harmonic spur. For example, in a 4-interleaved ADC, the second 
harmonic component results in spurs located at  and  [336]. The power of these spurs 
is affected by both the power of the harmonic and the amount of gain and phase mismatch between the inter-
leaved ADCs. However, due to the calibration process on the RFSoC minimising this mismatch, the impact of 
these spurs is typically negligible.

12.1.4.  Clock Spurs

The clocks that drive the data converters can also contribute to spurs during the conversion process. One 
important factor is the relationship between the clock frequency and the input signal frequency. Generally, it is 
best to avoid an integer ratio between these two values, as it can have a direct effect on quantisation noise. If 

 is an integer, quantisation noise tends to be concentrated around the harmonics of the input 
frequency, instead of being uniformly spread across the Nyquist band. This can lead to a non-uniform noise 
pattern in the spectrum, which can decrease the data converter's dynamic range.

Data converter clocks can also introduce their own spurs, although these are difficult to quantify, and can be as 
much down to circuit design as they are to the quality of the clock. One type of spur that can be easily calcu-
lated is the set of PLL mixing products. These spurs occur because the clock signal effectively mixes with the 
input signal, similar to the heterodyning process used to modulate a signal. This effect causes spurs to occur at

(12.5)

where  is the frequency of the PLL clock.

12.1.5.  Spurious Emissions of Bandlimited Signals

So far we have only considered the frequency content of spurs in relation to single-frequency input signals. 
Typically, communication signals contain a number of frequencies that comprise the signal bandwidth, up to 
tens or hundreds of MHz wide (i.e. bandlimited). As a result, any spurs related to the input signal will also have 
a relative bandwidth, increasing the opportunity for them to cause interference and distortion. Moreover, the 
greater the signal bandwidth, the higher the likelihood that a spur will overlap and interfere with it.

In the case of a bandlimited communications signal, harmonic distortion results in harmonic bands rather 
than single tones. In general terms, harmonics are a product of the input signal (i.e. ); as  is now a range 
of frequencies, so too are the resulting harmonic bands. For instance, if a communications signal occupied the 
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bandwidth from 400 MHz to 500 MHz, then the lower end of the HD2 harmonic band would be given by 
 MHz, while the upper end would be  MHz, resulting in a 200 MHz harmonic bandwidth 

between 800 MHz and 1 GHz. 

Therefore, the general relationship is that the th harmonic band has a bandwidth  times greater than the 
original signal. A second order harmonic is twice the bandwidth, while the third order harmonic is three times 
the bandwidth, and so on, as shown in Figure 12.5. Gain and time interleaving spurs are a little more forgiving, 
as their bandwidth is always equal to the bandwidth of the input signal. However, there are generally more 
interleaving spurs to contend with, especially in ADCs that have a large interleaving factor. 

Collectively, the bandlimited spurious components have direct consequences for system design, relating to 
both DACs and ADCs. In the case of DACs, the spurious bands occupy a significant portion of the spectrum, 
and must be filtered out before reaching the antenna, to avoid generating interference for other radio signals. 
For both ADCs and (somewhat unintuitively) DACs, spurs with frequency components above the Nyquist rate 
will alias into the first Nyquist Zone, and potentially interfere with or distort the signal of interest 

The benefit of RF-sampling data converters is the ability to use oversampling as a means of reducing the above 
mentioned effects. We discuss these concepts in more detail later in this chapter.
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Figure 12.5:  Harmonic bands resulting from a bandlimited signal
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12.2.  Traditional Data Converter Characteristics

As we have seen from the previous section, noise and spurs can adversely affect data converter performance by 
impacting dynamic range and interfering with the signal of interest. Therefore, the effects of noise and 
spurious signals must be accounted for when describing the characteristics of a data converter. To quantify 
these effects, there are a variety of measurements available that give a fuller understanding of the data 
converter's ability, each describing a particular aspect in relation to both noise and spurious content. In this 
section we explore the traditional methods of characterising DACs and ADCs in relation to these effects.

12.2.1.  Spurious Free Dynamic Range (SFDR)

Spurious-Free Dynamic Range (SFDR) is probably the most readily understood performance characteristic, 
and is an important metric in communication applications. SFDR measures the useable dynamic range of the 
data converter with respect to the various spurious components that are present in the Nyquist band. It is 
defined as the ratio between the RMS value of the input signal, and the RMS value of the largest spur present in 
the bandwidth of interest (which is typically the first Nyquist Zone), i.e. 

(12.6)

where  and  are the amplitudes of the input signal and largest spur, respectively, and  is the 
units in decibels relative to the carrier. In this case, the carrier refers to a sinusoidal input signal, and therefore 
the harmonic components will be tones rather than bands. SFDR can also be defined in relation to full-scale 
input, rather than to the carrier, given in dBFS.

A simpler method to measure SFDR is to find the difference in the magnitudes of the two frequency compo-
nents. Figure 12.6 shows an example of how SFDR is measured in the frequency domain. 
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Figure 12.6:  Measuring SFDR
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CHAPTER 12: RF Data Converters: Figures of Merit and Frequency Planning
When the input signal is at full-scale, the harmonic components tend to be the largest spurs. However, as the 
input signal drops in amplitude, other spurs can become more prominent. The SFDR metric takes all spurious 
components into account, and it is also common to see SFDR measurements that exclude the harmonics. In 
addition to this, as the amplitude of spurs can depend on the input signal frequency, SFDR measurements are 
often given for various input frequencies. For example, the datasheet for Gen 1 RFSoC devices provides SFDR 
measurements for 240 MHz, 1.9 GHz, 2.4 GHz, and 3.5 GHz, excluding the second and third order harmonics 
[12],[87].

12.2.2.  Signal-to-Noise Ratio

Signal-to-noise ratio (SNR) is one of the most widely known measurements for quantifying data converter 
performance, used to measure noise relative to an input signal. SNR is defined as the ratio between the power 
of the input signal and the total noise power, excluding any harmonics or other spurious components,

. (12.7)

We can see from (12.7) that, as the power of the noise decreases, the SNR value increases, and vice versa. If the 
signal and noise have equal power, then the SNR is 0 dB. Another expression of the SNR of a data converter is 
sometimes given as

(12.8)

where  is the resolution of the data converter, in bits. It is clear from (12.8) that the SNR increases with the 
resolution of the data converter. For example, a 12-bit data converter will have an SNR of 74 dB.

However, care should be taken when using this equation. Firstly, the SNR value given by (12.8) is an ideal case 
and only accounts for the quantisation noise of a data converter, not any other sources of noise. As a result, this 
equation is sometimes referred to as the signal-to-quantisation-noise ratio (SQNR) instead. Secondly, this 
equation assumes the RMS value of the input signal is at full-scale amplitude. If the input signal is less than 
full-scale an additional term must be added.

(12.9)

where  is the ratio between the amplitude of the input signal and the full-scale amplitude of the 
data converter. Hence if the amplitude of the input signal is equal to the full-scale amplitude, this term will 
disappear. However, if the amplitude of the input signal is less than the full-scale amplitude, then the result will 
be negative, decreasing the SNR.
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CHAPTER 12: RF Data Converters: Figures of Merit and Frequency Planning
Finally, (12.8) and (12.9) also assume that the bandwidth of the signal is equal to the Nyquist rate, such that 
. If the sampling rate is greater than twice the bandwidth, another term must be included, also known 

as the processing gain [12].

(12.10)

Similar to the reduction to (12.9), we can see that if , then the final term in (12.10) disappears. We can 
also observe that, as the sample rate increases in relation to the input signal bandwidth, the SNR increases 
proportionately. This has positive consequences for devices like RFSoC, as high oversampling rates can greatly 
increase the SNR. For example, if the sample rate is four times the input signal bandwidth, i.e. ( ), the 
SNR increases by 3 dB. In fact, every doubling of the sample rate results in an additional 3 dB of SNR. The SNR 
of the data converter continues to increase until the quantisation noise power falls below other sources of 
noise, such as thermal noise. If we take our previous example of a 12-bit data converter, but use a sample rate 4 
times greater than input signal bandwidth, the ideal SNR increases from 74 dB to 77 dB.

It is important to recognise that, when increasing the sampling rate, the total energy of the noise remains the 
same. However, as the noise is spread over a wider bandwidth, its density decreases, as observed in Figure 12.7
(notice the reduction in quantisation noise). With that said, because the bandwidth of the oversampled signal 
now occupies less of the Nyquist band, it is possible to filter and/or decimate to reduce the total noise energy. 

fs 2B=

SNR 6.02N 1.76 20
Ainput

AFS
---------------
 
 
 

10
fs

2B
------ 
 

10
log   dB+

10
log+ +=

fs 2B=

fs 4B=

Figure 12.7:  The effect of oversampling on quantisation noise density
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CHAPTER 12: RF Data Converters: Figures of Merit and Frequency Planning
12.2.3.  Signal to Noise and Distortion Ratio

Signal to Noise and Distortion Ratio, usually shortened to SINAD or SNDR, is an important measurement in 
communication systems. It not only includes all noise components (quantisation noise, thermal noise etc.), but 
also all other spectral components such as harmonics, interleaving spurs, and so on. It is defined as 

, (12.11)

where  is the power of the input signal,  is the noise power, and  is the Total Harmonic 
Distortion (THD), excluding DC. Thus, SINAD gives an overall measurement of the dynamic performance of 
the data converter.

12.2.4.  Effective Number of Bits

Effective Number Of Bits (ENOB) is a measurement of the overall dynamic range a data converter is capable 
of, over the full Nyquist band. The best scenario is that a data converter's resolution (in bits) and its ENOB are 
equal, although in practice this is usually not the case. For example, a data converter may be advertised as 
having a resolution of 10-bits but, due to the noise and spectral components discussed in this chapter, its actual 
resolution may be only 8.5-bits. 

A lower ENOB value reduces the dynamic range, as the minimum and maximum values the data converter is 
able to produce are limited. Because ENOB is affected by both the noise and spectral components, it is usually 
expressed in relation to SINAD using (12.8). The equation is solved for , with SNR being replaced with 
SINAD, i.e. 

. (12.12)

12.2.5.  Limitations of Traditional Metrics

As the traditional characteristics we have discussed in this section assume bandwidths close to the Nyquist 
rate, they are less relevant to data converters that operate at RF frequencies and have high oversampling rates. 

Typically a separate, but related, set of measurements are used to characterise the performance of RF data 
converters that better reflect the high oversampling rates and digital up/down conversion employed: noise 
spectral density, intermodulation distortion, and adjacent channel leakage [53]. We go on to discuss these 
terms in more detail later in this chapter but, first, we will explore the use of frequency planning to avoid poor 
performance in terms of the metrics reviewed so far.
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12.3.  Frequency Planning

Noise and spurs are present even in the best designed and manufactured data converters, and so strategies 
must be employed to mitigate their effects. Frequency planning is one such strategy. It exploits the fact that 
many spurs are deterministic, and their frequency content computable. As it is relatively simple to predict 
where spurs will occur in the spectrum based on a known set of parameters (sample rate, input frequency etc.), 
frequency planning involves tuning these parameters to avoid overlaps between spurious components and the 
signal of interest, and positions spurs at frequencies that can readily be removed by filtering.

While it is possible to compute spur frequencies, there are a number of additional factors to consider when 
frequency planning in RF-sampling data converters. Digital complex mixers can shift spur frequencies in 
unexpected (but deterministic) ways, harmonics can become problematic when transmitting in upper Nyquist 
zones and, in RF-ADCs, aliasing can fold spurs into the band of interest, which may even overlap with the 
signal. 

In this section we explore these concepts and provide examples of good frequency planning practices. The 
theoretical review is complemented by a small set of Jupyter notebooks (see Notebook F on page 411), which 
interactively explore the spectral artefacts reviewed in this chapter, and present a Jupyter-based frequency 
planning tool. The latter is based on a similar tool released by AMD [43].

12.3.1.  Effects of Aliasing

In our discussion so far, we have only calculated the frequencies of spurs in direct terms, and omitted any 
discussion of aliasing effects in the case of ADCs. As a result of the ADC sampling process, any spurs located in 
the upper Nyquist Zones will be aliased back into the first Nyquist Zone, increasing the chances that a spur will 
interfere with the signal of interest. Therefore, when frequency planning for receiver architectures, aliasing 
must be taken into account; in other words, the frequencies of spurs after sampling must be calculated. While 
we have already discussed aliasing in detail in previous chapters (in particular, Chapter 4), it is worth briefly 
revisiting the concept here to frame it within the context of frequency planning.

The frequency of a spur after aliasing depends on its original Nyquist Zone. Of course, any spur located in 
Nyquist Zone 1 will not be subject to aliasing and so no further analysis is required. A spur occurring at a 
frequency of  in Nyquist Zone 2, however, will fold into Nyquist Zone 1 at a frequency of . Any 
spurs occurring in higher Nyquist Zones will also experience aliasing according to the pattern depicted in 
Figure 4.5 on page 78. For instance, a spur appearing in Nyquist Zone 4 would be aliased to Nyquist Zone 1, 
with a frequency of .

Noting this repeating pattern, it is trivial to calculate the location of spurs in the upper Nyquist Zones after 
aliasing. A simple algorithm is to take the frequency of the spur ( ) modulo the sample rate ( ), and then 
subtract the result from  if it is above the Nyquist rate. An example implementation of this algorithm is 
provided next, written in the Python language. 

fspur fs fspur–

2fs fspur–

fspur fs
fs
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In Figure 12.8, we observe how the second and third harmonics (HD2, HD3) alias down from Nyquist Zone 2 
when sampled by an ADC operating at 4 GHz. As the input centre frequency is at 1.15 GHz, HD2 and HD3 are 
centred around 2.3 GHz and 3.45 GHz, respectively, placing them both in Nyquist Zone 2. Since the input 
signal bandwidth is 100 MHz, HD2 has a bandwidth of 200 MHz, and HD3 has a bandwidth of 300 MHz. 
After aliasing, HD2 is centred around 4 - 2.3 = 1.7 GHz, and HD3 is centred around 4 - 3.45 = 0.55 GHz. 

It can be seen from this example that HD2 and HD3 are now positioned on either side of the signal of interest, 
meaning that a bandpass filter must be used to sufficiently suppress the spurs, instead of the usual low pass 
filter. This scenario leaves a frequency gap of around 400 MHz between the signal and the spurs (10% of the 
sample rate) at either side, allowing the bandpass filter to have relatively relaxed transition bands. In the case of 
wider signal bandwidths, however, spurs are likely to be closer to the signal of interest, requiring filters with 
stricter characteristics. We discuss filtering in more detail later in this section.

As mentioned earlier in this chapter, DACs are also affected by aliasing. Due to non-linearities within the DAC 
architecture, harmonics will appear at multiples of the input frequency across the entire spectrum. Because the 

f_alias = f_spur % fs
if f_alias > fs / 2 :

 f_alias = fs - f_alias

Figure 12.8:  Example of aliased spurs
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harmonics caused by these non-linearities can occur before the sampling process, each harmonic within one 
Nyquist Zone will have an associated image in all the other Nyquist Zones. 

If we take the first and second Nyquist Zones as an example, any harmonics present in the first Nyquist Zone 
will have an image at  in the second Nyquist Zone, while any harmonics in the second Nyquist Zone 
will have an aliased image in the first Nyquist Zone, also at . While these images can make frequency 
planning more complicated, the locations of the aliased harmonic images are trivial to calculate. This may be 
done using the same equations discussed for the ADC case. 

12.3.2.  Effects of Digital Downconverters (DDCs)

DDCs, which contain digital mixers and decimation chains, also have an effect on the location of spurs. The 
mixer is used to move the received RF signal to baseband, or an IF closer to baseband. However, along with the 
signal of interest, the mixer also shifts any spurs that are present. Furthermore, because aliasing occurs before 
the mixing process, it is the aliased version of the spurs that are shifted. It can be difficult to visualise this 
process, so we will use a simple example to better explain the concept.

Let us imagine an RF-sampling receiver with a 100 MHz ADC, an input signal with a frequency of 40 MHz, 
and a complex mixer with an NCO frequency of 35 MHz. For simplicity we will assume that the input signal is 
a real sine wave, and only the first harmonic spur, HD2, will be considered. We denote the frequency band 
between  and 0 Hz as Nyquist Zone -1.

After sampling, HD2 aliases from 80 MHz to 20 MHz. Because the input signal is real, it also includes negative 
images at -40 MHz (corresponding to the sine wave signal of interest), and at -20 MHz (the aliased version of 
HD2) in Nyquist Zone -1. When the input signal is mixed with the NCO, all frequency components (including 
the images in Nyquist Zone -1) are shifted down in frequency by 35 MHz, i.e. the frequency generated by the 
NCO. Recall that the frequency domain is periodic based on the sampling rate, , such that any component 
shifted left of  (i.e. below Nyquist Zone -1) appears somewhere within Nyquist Zone 1, while any 
positive frequency component that shifts above  appears in Nyquist Zone -1. With this ‘frequency 
wrapping’ in mind, we list the result of the mixing process below, and illustrate the effects in Figure 12.9.

• The input sine wave shifts from 40 MHz to 5 MHz.

• The negative image of the input sine wave shifts from -40 MHz and wraps around to 25 MHz.

• HD2 is shifted from 20 MHz to -15 MHz.

• The negative image of HD2 is shifted from -20 MHz and wraps around to 45 MHz. 

In this example, we observe that the complex mixing process has shifted the frequencies of the input sine wave, 
its HD2 spur, and also the complex images of these components. In fact, there are now three components 
within Nyquist Zone 1, i.e. the region between 0 Hz and . 

fs HDn–
fs HDn–

fs 2–

fs
fs 2–

fs 2

fs 2
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More generally, when considering higher-order harmonics and other spurs, the spectrum can become 
congested after the mixing process — this increases the likelihood that a spur will interfere with the signal of 
interest. One way to reduce these effects is simply to increase the sample rate. This can reduce the amount of 
frequency wrapping that occurs, helping to keep the spurs sufficiently separated from the signal of interest to 
enable their easy removal by filtering.

Like mixing, decimation can also change the frequency content of spurs. Recall that the process of decimation 
by an integer value, , involves anti-alias filtering to suppress any signals above half of the new sample rate, 
followed by a downsampling stage that discards  out of every  samples to achieve the new rate. 

As a result of decreasing the sample rate, any spurs below  or above  (with reference to the new 
sampling rate) are subject to aliasing. These components should have already been attenuated by the anti-
aliasing filter; however, realistic filters do not have an ideal ‘brick-wall’ response, and therefore any spurs 
located close to the Nyquist rate may not be sufficiently suppressed. This must be taken into consideration 
when frequency planning as, by reducing the sample rate, remnants of spurs may move closer to the signal of 
interest, making them more difficult to subsequently filter out. We examine the previously described example 
in Figure 12.10, for the case of  decimation. 

Figure 12.9:  Example of how the NCO shifts frequency components and their images in the complex spectrum
(dashed lines — original frequencies; solid lines — new frequencies after NCO shift)
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The outcomes arising from decimation can be summarised as follows:

• The  decimation reduces the Nyquist rate from 50 MHz to 25 MHz.

• Having previously been demodulated, the input sine wave and HD2 are within the new Nyquist Zone 1 
(between 0 Hz and half of the new sample rate, i.e. 25 MHz), and therefore remain unchanged.

• The image of the input signal now resides at exactly at the new Nyquist rate of 25 MHz, and is not fully 
attenuated by the anti-alias filter.

• The HD2 image is now outside the new Nyquist Zone 1, and is wrapped from 45 MHz to -20 MHz. 
However, the anti-alias filter should suppress this spur sufficiently, and therefore it can be disregarded.

In the example just presented, demodulation precedes decimation. This is typical in receiver architectures, and 
the RFSoC’s DDCs are designed to support that order of processing. Any receiver architecture with an initial 
decimation stage would require dedicated analysis, as the frequencies of the spurs would be affected differently. 

It is worth noting that, as the interpolation and mixing processes in DUCs occur before digital to analogue 
conversion, the frequencies of spurs occurring in RF-DACs are much simpler to calculate. Because spurs are 
not present in the digital signal path, only the input frequencies and sample rate entering the DAC are required 
for analysis. However, any spurs that do occur after conversion will be shifted by any mixing process 
performed in the analogue domain, such as in the IF sampling radio systems discussed in Chapter 8.

Figure 12.10:  Example of how decimation can affect the frequency and amplitude of spurs
(dashed lines — frequency before decimation; solid lines — frequency after decimation, which includes cases of no change)
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12.3.3.  Filtering to Eliminate Spurs

It is important to note that the spurs discussed in this chapter result directly from the data conversion process. 
Good frequency planning can provide adequate protection around the signal of interest, allowing most spurs 
to be eliminated by filtering. The direction of the conversion process (i.e. digital to analogue, or analogue to 
digital) determines the type of filters to be employed.

Any spurs generated by an ADC will be present in the signal it provides to the digital section of the receiver. 
Consequently, a digital filter is required to remove these spurious components. Digital filters implemented in 
the PL of the RFSoC provide a high degree of reconfigurability, and the designed response can be modified to 
cater for a variety of frequencies and bandwidths. Digital filtering also enables SDR applications, where filters 
can be dynamically configured from software, allowing a wide range of radio standards to be supported by a 
single device. In receiver architectures that directly down-convert to baseband in the digital domain, effective 
frequency planning allows much of the required filtering to be achieved by the decimation chain. 

Continuing the example from Figure 12.10, in Figure 12.11 we show how the introduction of an additional  
decimation stage can adequately suppress the spurs that are present. 

2 

Figure 12.11:  Example of decimation filtering to suppress spurs
(dashed lines — frequency before decimation; solid lines — frequency after decimation)
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The result of incorporating an additional stage of decimation can be summarised as follows:

• The additional  decimation reduces the Nyquist rate from 25 MHz to 12.5 MHz.

• The input signal is located within the new Nyquist Zone 1 and remains unchanged.

• HD2 is now outside the new Nyquist Zone -1, and therefore it experiences frequency wrapping from -15 
MHz to 5 MHz. As the spur is positioned at -15 MHz at the time of filtering, close to the new Nyquist 
rate, it will not be completely suppressed by the filter.

• At 25 MHz, the signal image is also outside the new Nyquist Zone 1 and, because its frequency is equal 
to  at the decimated rate, it will wrap to DC. However, the anti-alias filter should sufficiently suppress 
this image, and it can be disregarded.

In digital to analogue conversion, the spurs created by the DAC are present in the analogue domain, meaning 
that an analogue filter is required to remove any spurious signal content. Because channel leakage is so 
important in transmitter designs, care must be taken to ensure that any spurs are well enough suppressed 
before reaching the antenna to avoid interfering with adjacent radio channels. Image rejection filters should 
suppress any spurs outside the Nyquist Zone of operation. However, for oversampled systems where the 
sample rate is many times higher than the band of interest, or where an upper Nyquist Zone is used for trans-
mission, any spurs located within this Nyquist Zone will be transmitted along with the original signal. In this 
case, additional filtering will be required. Figure 12.12 shows how an oversampled DAC with a reconstruction 
filter still passes spurs in Nyquist Zone 1, requiring the subsequent application of an analogue bandpass filter.

2 

fs

Figure 12.12:  Example of analogue filtering to suppress spurs
(faded frequency components denote aliases or images of the harmonics)
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Analogue filters tend to be less configurable than digital ones, reducing the amount of bands and frequencies 
that a single filter can serve. With that said, it is possible to employ multiple filters at the analogue front-end to 
serve different frequency bands. In this configuration the output of the DAC can be routed to the appropriate 
filter(s) under software control. The use of multiple analogue filters can however increase design complexity 
and BOM (Bill of Materials) costs, due to the additional components required, and the need to minimise cross-
talk, which may be unsuitable for some applications.

The requirements for a filter's transition band and stopband attenuation are determined by the frequencies of 
spurs in relation to the input signal, and their relative amplitude. The closer the spurs are to the signal of 
interest, the tighter the transition band needs to be. Also, the more significant the amplitudes of the spurs, the 
greater the stopband attenuation that is required. A good frequency plan will avoid spurs occurring close to the 
signal of interest, lessening the demands on the filtering process.

12.3.4.  Planning the Spectrum

Having examined how and where spurs occur in the spectrum, and the requirement of filters to sufficiently 
suppress them, we can now explore the strategies involved in creating a good frequency plan.

As reviewed in previous sections, the location of a spur is dependent on the frequency of the input signal and 
the data converter sample rate, while the width of the spur is dependent on the input signal bandwidth. The 
role of frequency planning is to adjust these parameters to achieve the ‘cleanest’ possible spectrum around the 
signal of interest, by avoiding the generation of spurs at adjacent frequencies. However, most radio applications 
have standardised signal characteristics including fixed centre frequencies and bandwidths — therefore, when 
creating a frequency plan for such scenarios, only the sample rate can be changed.

In this section we look at two simple examples for a transmitter and receiver based on the characteristics of 
RFSoC devices as stated in the data sheet [87]. These examples demonstrate how different configurations can 
be used to make a good frequency plan. 

The data sheet states values for RF-DAC and RF-ADC second and third order harmonics [87]. In the case of 
the RF-ADCs, DC offset and gain/time interleaving spurs are additionally specified. The following examples 
therefore consider these two sets of spurs. 

It should be noted that the magnitude of the spurs given in the following examples are measured in relation to 
the input signal (or carrier), given in units of dBc. For the RF-DAC examples the input signal has a magnitude 
of 0 dBFS, while the receiver examples use an input signal magnitude of -1 dBFS.
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Example 1: Transmitter

In this example, a signal with a centre frequency of 3.6 GHz and a 100 MHz bandwidth is to be transmitted on 
a third generation Quad tile RF-DAC. The RF-DAC is set for low noise mode, and to operate with a 32 mA 
output current.

Setting the sample rate of the RF-DAC to 5.5 GHz, and operating in mix-mode, we can use a centre frequency 
of 1.9 GHz to transmit a signal at 3.6 GHz in Nyquist Zone 2. Based on the equations presented in previous 
sections, it can be determined that HD2 has a centre frequency of 3.8 GHz with a 200 MHz bandwidth, and 
that HD3 has a centre frequency of 5.7 GHz with a bandwidth of 300 MHz. Due to aliasing, HD3 will have 
components in both the first and second Nyquist zones with centre frequencies of 200 MHz and 5.3 GHz, 
respectively. Similarly, HD2 will have an aliased version in the first Nyquist zone at 1.7 GHz. Referring to the 
data sheet, we can expect HD2 and HD3 to have magnitudes of around -60 dBc and -68 dBc, respectively. 

Figure 12.13 illustrates that this configuration places HD2 very close to the signal image intended for trans-
mission, requiring a filter transition band of around 50 MHz, which equates to less than 1% of the sample rate. 
Such a filter would be very expensive to implement, and therefore it is desirable to seek an alternative solution. 
Note that the amplitude of the fundamental signal at 1.9 GHz will be slightly lower than depicted here, due to 
the sinc-shaped roll-off of the DAC (see Chapter 11). 

To reduce the requirements of the filter needed to suppress the spurs, an alternative approach is taken to 
increase the sample rate and transmit at 3.6 GHz in Nyquist Zone 1. 

Figure 12.13:  Transmitter configuration which contains interfering spurs
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As shown in Figure 12.14, using a sample rate of 9 GHz, HD2 and HD3 will be located in the second Nyquist 
Zone at 7.2 GHz, while their aliases will be in the first Nyquist Zone at 1.8 GHz. This leaves ample separation 
between the signal image and the spurs, and therefore the filter transition band can be substantially relaxed. 
With the signal transmitted directly at 3.6 GHz, the data sheet indicates that the magnitudes of HD2 and HD3 
increase to around -59 dBc and -60 dBc, respectively (these values are not exact for this specific configuration, 
but they give a good indication of expected performance).    

Figure 12.14:  Transmitter configuration which avoids interfering spurs
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Example 2: Receiver

In this example, a signal with a centre frequency of 240 MHz and a 40 MHz bandwidth is received on a Gen 3 
Dual RF-ADC tile. The RF-ADC is set with 0 dB DSA attenuation. With these parameters, the data sheet 
indicates expected HD2 and HD3 values of around -87 dBc and -77 dBc, respectively, with the gain/time inter-
leaving spurs at approximately -92 dBc, and the DC offset interleaving spurs around -86 dBc. Using a sample 
rate of 1 GHz, we can calculate the frequencies of these spurs after aliasing, as shown in Figure 12.15. 

It is evident from Figure 12.15 that HD3 and two interleaving spurs directly overlap the signal of interest, 
making it impossible to remove these spurs with a filter. This represents a poor frequency plan! 

Instead, an alternative sample rate of 2.8 GHz is used and the spur frequencies are recalculated, as shown in 
Figure 12.16. We can confirm that, using this configuration, no spurs directly overlap with the signal of 
interest, and that there is a separation between the signal and closet spurs of at least 90 MHz (around 3% of the 
sample rate) on either side. This represents a favourable frequency plan, and permits the design of a bandpass 
filter of reasonable cost to remove the spurs.  

Figure 12.15:  Receiver configuration which contains interfering spurs
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12.4.  RF-Sampling Data Converter Characteristics

When discussing the traditional characteristic measurements for data converters, we noted that they are of 
limited relevance to RF-sampling devices, due to the high oversampling rates used. Instead, data converter 
manufacturers have generally agreed upon a different set of characteristics that better describe the capabilities 
of RF-sampling data converters. These are: noise spectral density, intermodulation distortion, and adjacent 
channel leakage, each of which we discuss in this section.

12.4.1.  Noise Spectral Density

While SNR gives a good understanding of noise power in relation to an input signal, it is measured across the 
entire Nyquist band. In oversampled systems, SNR becomes less relevant as the noise is spread over a wider 
bandwidth, reducing its density and amplitude. With every doubling of the sample rate, the noise density 

Figure 12.16:  Receiver configuration which avoids interfering spurs
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decreases by 3 dB. Additionally, as it is now spread over a larger bandwidth, noise outside the band of interest 
can be easily filtered out, further increasing SNR within the signal bandwidth of interest. 

It can be difficult to compare oversampled data converters based on their SNR values, because the bandwidth 
of the signal, the sample rate, and the additional filtering used for a given application all affect the SNR. 
Instead, manufacturers use Noise Spectral Density (NSD) as an alternative way of measuring and expressing 
the noise performance of RF-sampling devices. Furthermore, NSD gives a truer picture of the sensitivity of the 
data converter, determining its ability to capture low power signals

NSD measures the noise power per 1 Hz bandwidth, making it simpler to calculate the total noise power 
within a particular band of interest. NSD is measured in relation to the full-scale input and is usually given in 
dBFS/Hz, where FS denotes ‘Full-Scale’ [53]. An approximation of NSD can be calculated using the ideal SNR 
of an -bit data converter, and the theoretical noise floor of an FFT with  points (in some calculations 
NSD is also calculated using SINAD). As we have seen earlier in this chapter, the SNR of an ideal data 
converter can be calculated by (12.8).

Since SNR is the ratio between signal power and noise power across the entire Nyquist band (0 to ), the 
total noise power across the band can be calculated by subtracting the signal power from the full-scale input 
power. If we assume that the input signal is at full-scale, then the total noise power across the band is simply 
the negative of the SNR value in dBFS [12].

The FFT can be thought of as a spectrum analyser with a bandwidth of  per FFT bin, and so the noise 
power per bin can be calculated as

. (12.13)

To calculate the noise power per 1 Hz bandwidth, the number of FFT bins must equal the sample rate, 
becoming

. (12.14)

The NSD can then be calculated by subtracting the noise power over the entire Nyquist band and the noise 
power per 1 Hz FFT bin

(12.15)

. (12.16)
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For example, the NSD of an ideal 4 Gsps 14-bit ADC can be calculated as

. (12.17)

The true value of the NSD will differ from this ideal case because other sources of noise will be present, 
decreasing the SNR, and thus the NSD. Input signal frequency can also affect NSD. Therefore, the actual value 
must be obtained from direct measurement. Most manufacturers supply NSD values for various input 
frequencies, which gives a good characterisation of the overall performance of the data converter. For example, 
for first generation RF-ADC Quad tiles, typical values of NSD are given as -150 dBFS/Hz and -146 dBFS/Hz 
for input frequencies of 240 MHz and 2.4 GHz, respectively.

12.4.2.  Two Tone Intermodulation Distortion

Two Tone Intermodulation Distortion (IMD) is measured by generating two sine waves that are close to each 
other in frequency (we denote the frequencies of these test tones as  and ). Any non-linearity in the system 
causes the two input signals to intermodulate, producing spurs at predictable frequencies. The linearity of the 
data converter can therefore be characterised by measuring the power in these spurs. 

Usually only second order (IM2) and third order (IM3) products are measured, with IM3 products being the 
most important as they tend to be closer in frequency to the input signal (away from this test scenario, the 
implication is that IM3 spurs are more difficult to filter out).

IM2 and IM3 are measured in relation to the carrier (i.e. input signal), and usually stated in dBc. IM2 products 
are located at , while IM3 products are located at  and . Figure 12.17 shows an example 
of the second and third order intermodulation products (IM2 and IM3) produced from two input test tones at 

 and  [12].

NSD 6.02 14 1.76– – 10 4 109
2

----------------- 
  175.53–=

10
 dBFS/Hzlog–=

f1 f2

f2 f1 2f1 f2 2f2 f1
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Figure 12.17:  Second and third order intermodulation products produced from two input signals, f1 and f2.
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As with spurs caused by harmonic distortion, the amplitude of the intermodulation products is dependent on 
the linearity of the device. The more linear the device, the lower the amplitude of the IMD products. Manufac-
turers’ data sheets typically only state third-order products, and provide the input frequencies and amplitudes 
used for measurement. For example, Gen 3 RFSoC RF-ADC Quad tiles have a typical IM3 measurement of -75 
dBc for a 1.9 GHz input frequency, and the two input test tones are separated by 20 MHz [87].

As bandlimited communication signals are composed of multiple frequencies, intermodulation products are 
also bandlimited. This can cause issues in radio systems because IM3 products can ‘leak’ into adjacent 
channels, potentially interfering with other spectrum users. While many components on radio systems are 
non-linear, producing their own IM3 distortion products, IM3 is an important metric in RF-sampling devices 
as it characterises the ability of a data converter to meet radio design specifications.

12.4.3.  Adjacent Channel Leakage Ratio

In modern radio communications, spectrum is considered a scarce resource, and its usage is controlled by a 
national or regional regulator. Users transmitting on allocated frequency bands must do so in a way that 
avoids, or minimises, the interference caused to other users of the spectrum on nearby frequencies. It is 
therefore important to quantify how much a transmitted signal ‘leaks’ into adjacent channels. The standard 
measurement of this is the Adjacent Channel Leakage Ratio (ACLR).

ACLR is a standardised spectrum measurement that is used in radio standards such as 4G LTE and 5G NR. It 
is a measurement of the amount of power that leaks into adjacent channels (mainly caused by IM3 inter-
modulation products) relative to the power of the signal within a target channel, and usually stated in dBc [53]. 
Figure 12.18 shows a measurement of ACLR for a channel directly adjacent to the target channel. An equiv-
alent measurement can also be used to quantify leakage in ‘next adjacent’ channels, i.e. those further separated 
in frequency from the reference channel.

Figure 12.18:  Measuring the Adjacent Channel Leakage Ratio (ACLR)
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12.5.  Chapter Summary

In this chapter we have explored some of the concepts behind frequency planning and the reasons why it is an 
important aspect of radio application design in the era of RF-sampling data converters. The chapter began by 
looking at the various types of noise and spurious emissions that occur as a result of the data conversion 
process. We saw that in traditional Nyquist-rate data converters, quantisation is the primary source of noise, 
and that the impact of quantisation noise can be reduced through oversampling. The origins of harmonics and 
ADC interleaving spurs were reviewed, as well as how to calculate the frequencies at which they appear.

The traditional methods of characterising data converters using measurements such as SFDR, SNR, and ENOB 
were reviewed, and it was noted that various types of noise and spurs can affect these values. We discovered 
that these measurements are less suited for RF-sampling data converters because they assume Nyquist-rate 
sampling, and noted their values can be improved with good frequency planning.

Following on from there, the chapter explored the concepts of frequency planning; in particular, investigating 
how aliasing and mixing can affect spur location, and how filters can be used to suppress spurs that are located 
outside the band of interest. Finally, we looked at alternative data converter characteristics that are more suited 
to RF-sampling devices, such as NSD, IM3, and ACLR. 

As a practical extension, you are invited to try out some frequency planning for yourself! Please see the intro-
duction immediately following this chapter, which outlines the interactive notebooks accompanying the book. 
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Notebook Set F
Frequency Planning 

Chapter 12: Figures of Merit and Frequency Planning looked at the various sources of spurious emissions 
(spurs) and how to mitigate against their effects with the use of frequency planning. Two examples were 
provided, showing the use of frequency planning to design radio applications for a transmitter and receiver. 
The chapter also walked through what constitutes a good or bad frequency plan. Before using the next set of 
notebooks, it is recommended that you read Chapter 12 (if you have not already done so) as it reviews the 
underlying concepts. Some of these key details are briefly revisited here.

In this chapter, we introduce a frequency planning tool (based on a similar tool distributed by AMD), for the 
RFSoC range of devices. The tool is written entirely in Python and can be run within a Jupyter notebook, 
directly from a browser hosted on a computer or RFSoC board. It allows the spur locations for both the RF-
ADCs and RF-DACs to be quickly and easily determined. Spurs are calculated using parameters set by the 
user, such as the sample rate and signal frequency (which determines the Nyquist Zone of operation). The 
signal and spurs are displayed on a plot, which automatically updates when any parameters are changed.

There are two notebooks on frequency planning. Their names and relative locations are listed below.

   ALL   01_frequency_planning.ipynb — rfsoc_book/notebook_F/01_frequency_planning.ipynb

   ALL   02_rfsoc_frequency_planner.ipynb — rfsoc_book/notebook_F/02_rfsoc_frequency_planner.ipynb

F.1.  Introduction to Frequency Planning

Frequency planning is a radio system design technique used to mitigate against the interfering spurs that are 
generated during digital-to-analogue and analogue-to-digital conversion. The most prominent spurs are 
typically the harmonics, located at integer multiples of the input frequency, which are caused by non-linearities 
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in the data converter and external components. Phase-Locked Loop (PLL) mixing spurs may also be present, 
caused by the sampling clock mixing with the input signal, in a process similar to heterodyne mixing. 
Additionally, interleaved ADCs generate spurs due to DC offset, gain, and phase mismatches between the sub-
ADCs, and their frequencies are related to the input frequency and/or sample rate of the data converter.

The first notebook, 01_frequency_planning.ipynb, explores some of the underlying concepts behind 
frequency planning. We begin by exploring the effects of non-linear devices and how non-linearity can create 
harmonic components not present in the original signal. We discuss the mathematics behind non-linear 
responses and allow the user to change parameters and compare results. For instance, a simulation of a non-
linear amplifier is performed and directly compared to a linear amplifier. Results conclude that the non-linear 
amplifier introduces harmonics at integer multiples of the fundamental frequency, while the linear amplifier 
does not introduce harmonics.

Spurs are then investigated in more detail. In particular, we explore spurs that are caused by interleaving 
ADCs. We look at DC Offset Interleaving Spurs (OIS), Gain/Time Interleaving Spurs (GTIS) and harmonic 
interleaving spurs, and calculate their frequencies. We also consider the effects of aliasing, and how this can 
change the frequency properties of a spur in a predictable way, based on Nyquist zones.

A simulation of a non-linear interleaved ADC is then performed, and many of the different spurs that occur 
are generated. At the end of the simulation, we present a plot showing the location of the spurs in the 
frequency domain. This plot is given in Figure F.1, where it is possible to see the OIS, GTIS, harmonics and 
interleaving spurs alongside the ADC output.

Finally, the notebook concludes by considering the design of filters, and how they can be used to suppress 
spurs around the signal of interest.

Figure F.1:  An output plot of a non-linear interleaved ADC simulation. The plot presents the OIS, GTIS, harmonics and 
interleaving spurs with the ADC output.
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F.2.  RFSoC Frequency Planner

The second notebook, titled 02_rfsoc_frequency_planner.ipynb, contains the RFSoC Frequency Planner, 
which enables users to quickly find the location of spurs given a set of configurable input parameters. The 
frequency planner is split into four separate tools:

• RF-ADC

• RF-DAC

• Digital Down-Converter (DDC)

• Digital Up-Converter (DUC)

An example of the RFSoC frequency planning tool is presented in Figure F.2. In particular, the DDC tool is 
shown. Several sections of the frequency planner are highlighted: the tool selection tab (1); the parameter 
control (2); and the frequency plan plot (3). The tool selection tab allows the user to navigate between the 
ADC, DAC, DDC, and DUC plans. The parameter control contains several widgets that tune the frequency 
planner’s properties. Lastly, the frequency plan plot in the middle of Figure F.2 updates in real-time as the user 
tunes the frequency plan parameters.

Figure F.2:  The RFSoC frequency planning tool with annotations.
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The goal of frequency planning is to determine a set of parameters that minimise the interference affecting the 
signal of interest. The frequency plan should also leave sufficient spur-free frequency bands above and below 
the signal to allow the spurs generated elsewhere in the spectrum to be suppressed with filtering. The 
frequency planning tool makes this task easier by allowing the user to quickly tune different parameters and 
see the results before committing to a specific configuration. We will now describe each of the frequency 
planning tools, starting with the RF-ADC.

The RF-ADC tool has five parameters that the user can change: the sampling rate, the centre frequency, the 
bandwidth of the input signal, the PLL reference clock, and the ADC interleaving factor. Changing each 
parameter will update an adjacent plot, displaying the location of the spurs in relation to the input signal after 
aliasing. The user can tune the parameters until a favourable configuration is found. Note that the interleaving 
factor is dependent on the target device. Quad RF-ADC tiles have an interleaving factor of 4, while Dual RF-
ADC tiles have an interleaving factor of 8. Users can refer to [88] to find the appropriate value for their specific 
device. Additionally, this tool also calculates the Calibration Mode the user must select for a given configu-
ration. Mode 1 is optimised for signals located between 0.4  and , while mode 2 is optimised for signals 
between DC and 0.4 .

The RF-DAC tool offers the same configurable parameters as the RF-ADC tool, with the exception of the inter-
leaving factor, which is not relevant to the RF-DAC. Additionally, this tool calculates the sampling mode the 
RF-DAC must use, depending on the given input parameters. Note that, operating within Nyquist Zone 2 
requires the Mix-Mode configuration of the fine mixer to be enabled.

The DDC and DUC tools allow spurs to be located after the mixing and rate change stages (decimation or 
interpolation, respectively). In both of these tools, signals and spurs are limited to single tones rather than 
frequency bands. Additionally, the amplitude of each spur can be controlled by the user. Associated amplitude 
values of spurs can be retrieved from [87].

fs fs 2
fs
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Chapter 13
Design Tools and Workflows 
for RFSoC SDR

Josh Goldsmith, Lewis Brown, 

 Marius Šiaučiulis, and Graeme Fitzpatrick

Many of the earlier chapters have reviewed the features of the RFSoC device, and the theoretical basis of SDR 
system design and implementation. The Notebook Sets provide an opportunity to run, learn, and experiment 
with examples run on an RFSoC device (or simply in a notebook, for theory-based examples).

This chapter discusses the components, tools, and processes necessary to design RFSoC SDR systems, from a 
practical perspective. There are several possible design flows, and the opportunity to use your preferred style of 
working — whether that involves AMD and/or third party development tools, low or high levels of design 
abstraction, and different design entry and integration methods. As well as setting out the main options for 
hardware, software, and combined hardware-software co-design, we also share some of our own experiences of 
developing SDR designs and demonstrators based on RFSoC platforms and PYNQ. 

13.1.  High Level Design Process

As discussed earlier in this book, the RFSoC device is split into two main customisable parts, the Processing 
System (PS) and the Programmable Logic (PL). When designing systems for the RFSoC it is worth first consid-
ering how the functionality of the design will be split between these two elements. For example, will data be 
generated or processed on the PS, or will this be performed solely on the PL? While the FPGA can be used to 
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efficiently accelerate DSP algorithms, other processes may be better suited to the PS. Deciding how and where 
this split happens is an important first step in the design process.

Additionally, while the hardened RFDCs and SD-FEC Intellectual Property (IP) cores are integrated with the 
PL, they can be controlled from both the PL, by means of interface ports, and the PS, with the use of software 
drivers (this may also be the case for any custom or licensed IPs included in a PL design). For some designs, 
configuring these IP cores from PL may be desirable if latency is a key issue. However, for SDR designs where 
the radio may need regular reconfiguration, it may be preferable to use software drivers on the PS.

As a high-level preview of a design featured later in the book (the OFDM transceiver from Chapter 16 and 
Notebook Set I), we consider how its functionality is divided between the PS and PL. The transceiver contains 
both transmitter and receiver processing, as well as additional functionality for demonstration purposes. The 
transmitter generates random data, and then converts this data into an OFDM signal, before sending it to the 
RF-DAC. The receiver performs the opposite process, accepting data from the RF-ADC, undertaking OFDM 
receive processing, and recovering the data. Both the transmitter and receiver logic also require control inputs 
that allow configuration changes. Further, data is tapped off at various points on the transmit and receive paths 
for inspection.

Figure 13.1 shows a simplified block diagram of the OFDM transceiver model, displaying how these processes 
are split between the PS and PL. As can be seen from the figure, the data and signal processing is primarily 
performed on the PL, while the PS is mainly used for control. Additionally, the data inspection process is split 
between both PS and PL. The decision to split these functions between the PS and PL in this way was as much 
to do with the software being used to develop it as its intended purpose as an educational tool. 

Figure 13.1:  Simplified block diagram of the OFDM transceiver example from Chapter 16 and Notebook Set I.
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The rest of this chapter looks at the various software tools and design methods available for developing systems 
for both the PL and PS. We also detail the design flow process that we adopted to develop many of the designs 
featured in this book. 

13.2.  Programmable Logic (PL) Design

All Gen 1, 2, and 3 devices in the RFSoC family have a set of standardised FPGA resources, which include 
CLBs and DSP48E2 slices, as well as memory in the form of Block RAMs and Ultra RAMs. These resources are 
fully reconfigurable by the user, enabling a wide variety of applications and use cases — for SDR design, the PL 
is particularly powerful for implementing signal processing algorithms. 

Alongside logic fabric, RFSoC devices also feature hardened resources such as SD-FEC blocks [45] and RF 
Data Converters [90] which have been covered in detail in previous chapters1. These hardened blocks provide 
optimised implementations of computationally intensive functions, and the parameters that control their 
operation can be reprogrammed to suit the target application. For the RFDCs, this includes setting sampling 
rates, decimation and interpolation rates (and more), as covered in Chapters 9 through 11. These resources can 
be directly connected to user-configured PL logic fabric to build complex designs such as SDR transceivers. 

When designing RFSoC systems, external interfaces should be considered, especially for evaluation boards 
such as the ZCU208 [77] or RFSoC4x2 [42]. As previously discussed, external RF signals can be transmitted 
and received through the RFDCs, via baluns and SMAs. Additional IO may also be desirable, for instance to 
support an external display, high speed QSFP data offload, or Pmod interfaces. These external IO interfaces are 
enabled through reconfigurable connectors within the PL, and offer great potential to integrate the RFSoC as 
part of a larger system (e.g. including SDR functionality along with other features). 

The remainder of this section reviews the design tools and processes used to develop the hardware design for 
an RFSoC-based SDR system. A top-down approach is taken: we first consider the system-level design, before 
reviewing methods of creating the IP blocks that form lower levels of the design hierarchy.   

13.2.1.  Vivado IP Integrator

The most efficient method to merge custom hardware logic, pre-existing IP Cores, and IO together is through 
IP Integrator (IPI) [25], a tool that forms part of AMD’s Vivado Integrated Development Environment (IDE). 
Pre-generated IP cores can be instantiated and connected to form a block design, either using the IPI GUI, as 
shown in Figure 13.2, or programmatically via Tool Command Language (Tcl) scripting [335].  

IPI designs are generally constructed by combining instances of IP cores through interfaces, i.e. groups of 
signals that share a common function. The main benefit of designing with interfaces is a reduction in 

1. The RFSoC DFE architecture provides additional hardened blocks optimised for mobile infrastructure deployments, as 
highlighted in Chapter 3.
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complexity — a single graphical connection in the tool can represent a (potentially very large!) group of signals 
and buses. If each of these signals and buses were represented visually and had to be connected independently, 
the design complexity, effort, and time, would be much greater. Through the use of interfaces, a single 
connection made in the IPI GUI, or equivalently a single Tcl command, can create the complete connection 
between an IP core and another component in the system design2. 

Designing with interfaces also enables use of IPI Design Rule Checks (DRCs), which are aware of the required 
signals for specific interface types, and thus can provide validation that signals are connected correctly. These 
checks occur in real time as the design is assembled, and can be compared to syntax error messages in a 
programming language. 

If a Vivado project is created to target a specific evaluation platform (e.g. the ZCU208 RFSoC development 
board [77]), then IP Integrator has knowledge of the applicable external FPGA pins. This allows the IPI 
Connection Automation feature to be leveraged to tie IO ports of the design to external pins of the board, thus 

2. Connections can also be made by manipulating individual signals (also known as ports) to give a greater degree of con-
trol. An IPI design may involve a combination of both interfaces and port manipulation, depending on the IP cores used.

Figure 13.2:  Example of an IP Integrator hardware system design.
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saving designer effort. The appropriate physical pin and clocking constraints are created automatically through 
this process. IP Integrator also automates the creation of a top level wrapper file, which describes the interface 
of the complete system in Hardware Description Language (HDL) code. 

Example:

A conceptual IP Integrator design is shown in Figure 13.3. The design represents an RFSoC loopback test 
configuration (where the outputs of the RF-DACs are connected, via SMA cable and analogue filters, directly 
to the RF-ADC inputs of the same device). 

Data is generated through a custom ‘Data Generation’ IP Core, which represents the transmitter in the circuit. 
The IP core generates a test signal, which it supplies to an RF-DAC tile. Through loopback, this data re-enters 
the PL through the RF-ADC, before being supplied to a second, ‘Receiver’ custom IP core, which uses DSP 
techniques to process the received signal. A DMA IP core is used to transfer the processed signal to the PS, 
where it can be observed for testing and/or demonstration purposes. 

This design highlights a key feature of an RFSoC IP Integrator design — the Processing System IP Core — 
which represents the PS part of the device. A number of configurable options are available within this IP core, 
including: IO options such as SPI and I2C; various clocking options including peripheral clocks and PL fabric 
clocks; and configurable memory such as DDR4. 

Figure 13.3:  High level overview of a simple IP Integrator SDR design.
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13.2.2.  AXI Interfaces for IP Integrator

One of the key interface types when designing using IP Integrator is the AXI protocol, which is used to 
connect processing elements and IP Cores which require high bandwidth, low latency communication. 

Recall from Chapter 3 that RFSoC devices implement the fourth iteration of this standard (AXI4) in both PL 
and PS, and that there are three key types of AXI4 buses available for RFSoC design: AXI4, AXI4-Lite (both for 
memory-mapped interfaces [95]) and AXI4-Stream (for point-to-point data transfer [94]). IP Cores are 
connected by AXI4 buses through slave and master interfaces. Each of the independent channels within the 
AXI4 bus consists of a set of information signals, as well as tvalid and tready signals which provide a two-way 
handshake mechanism. For information transfer, a transaction is initiated when the master interface provides 
a tvalid signal. A slave interface then confirms that it is able to accept information with a tready signal. 

We can see the usage of the AXI4 protocol in Figure 13.3. Specifically, there are: AXI4-Stream interfaces 
between IP cores; AXI4-Lite interfaces connecting from PS to PL IP cores, via an AXI Interconnect IP core; 
and an AXI DMA IP core for passing data from PL to PS at high throughput rates. When designing custom IP 
cores in external software, it is possible to specify ports as any of the three AXI4 bus types, and to specify an IO 
port as a slave or master interface. 

The typical use of each AXI4 type is described in more detail:

• AXI4 — This protocol is for connections requiring memory-mapped links between processing elements 
(the RFSoC PS) and IP Cores. It is capable of either single-beat transfers or burst transfers with up to 256 
data beats per transfer, and data can be moved bidirectionally simultaneously. There are five 
independent channels for AXI4: read address, read data, write address, write data and write response. 
Each channel has dedicated resources for transferring data. This protocol is suitable for transferring 
large quantities of data to and from main memory — a large data block in PS can be transferred to PL 
through multiple bursts of up to 256 data elements each — and can be implemented in an IPI design 
using the AXI4 Direct Memory Access IP Core [18].   

• AXI4-Lite — A simple memory-mapped link with reduced handshaking signals, resulting in lower 
resource allocation than full AXI4. AXI4-Lite shares the same five channels as AXI4. The main 
difference between AXI4 and AXI4-Lite is that the latter supports only single-beat transfers, and not the 
burst transfers supported by AXI4. This protocol is usually used for low bandwidth communication, for 
instance with the control registers of IP Cores and processing elements, often from a PS-based IP driver. 

• AXI4-Stream — AXI4-Stream supports point-to-point data streaming. It provides burst transfers of an 
unrestricted size. No address channel is required, as the use-case for this protocol is the direct flow of 
data between source and destination IP Cores within a device. The AXI4-Stream protocol is therefore 
particularly useful for signal processing in video, communications and networking applications, and is 
the method used to transferr data to and from the RFDCs of the RFSoC device. 
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13.2.3.  Intellectual Property (IP) Cores and Libraries

Vivado enables the use of IP cores to aid the development of a hardware design. An IP Core is a self-contained 
hardware block, equivalent to an HDL description, that can be integrated into system designs. IP Cores are 
usually highly parameterisable, and stored in an IP repository, from where they can be deployed in different 
designs as required. IP cores are available from AMD for the RFDCs and SD-FEC blocks, along with a rich 
library of high value cores for DSP and communications that accelerate SDR hardware design, as well as many 
more IPs for a range of applications [31], [62]. The availability of pre-made, pre-verified blocks for radio appli-
cations is a notable attribute of the RFSoC design ecosystem and has the potential to greatly accelerate SDR 
system design.

As well as domain-specific IPs like those mentioned above, the availability of the wider IP catalogue means 
that a designer can reuse common functionality such as Direct Memory Access (DMA) [18] and peripheral 
interfaces, thus avoiding the overhead of developing and testing them. This allows the designer to focus on the 
creation of the specific application design, drastically reducing development time.

To give an example, Figure 13.4 shows an AXI Interconnect IP core from the Vivado GUI (specifically, from 
the IP Integrator tool, which was introduced in Section 13.2.1). The IO interfaces which enable connections to 
the wider PL design appear on the IP core representation in IPI: this core has two input interfaces, S00_AXI
and S01_AXI, and one output interface, M00_AXI. Clock ports are provided such that each of these interfaces 
can be clocked independently, if required. 

Designers also have the option to design and package their own IP Cores, and to create their own repositories. 
This is useful when custom hardware blocks require to be developed as part of a system design, and even more 
so when these IP Cores have reuse potential across multiple projects. We will now review the various methods 
available to create custom IP cores.

Figure 13.4:  AXI Interconnect IP from the Vivado IP Catalogue (shown in Vivado GUI).
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13.2.4.  Tools and Methods for Custom IP Creation

As a designer, the ability to efficiently create custom hardware functionality for a design or application is 
crucial. Designers can create their own repositories of custom, user-designed IP cores for importing into 
Vivado and integration as part of an IPI system design. 

Several different tools and methods can be used to create IP Cores. Design methods that use high level 
software languages such as C and C++, or which enable graphical methods of block-based design, offer a layer 
of abstraction over traditional HDL design entry. The major advantage of higher-level methods is an acceler-
ation of the design process, which can lead to reduced costs and faster time-to-market. 

The remainder of this section will review a number of options for IP core creation, including both AMD tools 
and third-party offerings. Some of the third party tools also provide workflows that integrate with Vivado as 
part of their background operations. 

HDL Code Development

The traditional method of hardware design is to develop HDL code using one of the two major HDLs, VHDL 
and Verilog, or SystemVerilog (a superset of Verilog that also includes verification features). The HDL 
description specifies the interface and functionality of the design, and an accompanying testbench is normally 
developed for verification purposes. HDL IP cores can be developed and simulated in the Vivado IDE. HDLs 
support hierarchy, making it easy to develop, test, and integrate hardware modules, and to reuse existing 
modules.

The major drawback of HDL development is the level of design effort and time involved — although a high 
degree of designer control is possible, the process of developing HDL is labour-intensive. Specialist coding 
skills are also required. The tools and methods described in the remaining subsections all raise the level of 
design abstraction compared to HDL design entry, and offer productivity gains as a result3. It is useful to note 
that these higher-level tools all represent or generate HDL code ‘under-the-hood’. 

Vitis High Level Synthesis (HLS)

Vitis HLS [67] is an AMD tool that can be installed alongside Vivado, and enables the development of IP Cores 
from C and C++ functions. The tool automates code modifications, through the use of pragmas4, to optimise C 
based functions to achieve hardware design goals (for instance, to maximise data throughput, or minimise 
latency). Therefore, functions can be fully compiled, simulated and debugged as software algorithms before 
being synthesised into IP Cores. Due to the tight integration between Vitis and Vivado, the designer can readily 
create an IP core repository from within Vitis HLS that is compatible with their Vivado version. 

3. There are certain situations where writing in HDL is still the preferred approach, particularly when aiming to meet tight 
timing constraints, or to minimise resource usage.

4. Pragmas are instructions that are included within the HLS source code, to influence the synthesis of the code.
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HDL Coder and SoC Blockset

MathWorks HDL Coder [249] is an alternative tool for hardware design, based in the MATLAB and Simulink 
environment [251]. Using HDL Coder, HDL code can be generated from compatible MATLAB functions and 
block-based Simulink models [253], to create IP Cores suitable for use in Vivado designs. A simple example 
HDL Coder design is seen later in the chapter, in Figure 13.17.

When HDL Coder is configured at the start of a design session, MATLAB and Simulink are linked with a 
supported version of Vivado, which provides tool integration and allows design flow automation from within 
the MathWorks environment. The main user interface is the HDL Workflow Advisor, a wizard that assists in the 
generation of HDL from a top-level model. This method also allows the IO of the model to be easily mapped to 
the AXI4 Input and Output interfaces of the generated IP Core. 

The functionality of HDL Coder can be expanded with the SoC Blockset [255], which adds Simulink blocks for 
FPGA memory, external IO, and PS scheduling, as well as for hardened RFSoC resources such as the RFDCs. 
These blocks can also be generated into HDL code, enabling complete Vivado block designs to be generated 
from Simulink. The SoC Blockset is closely tied to the SoC Builder tool, which will be explored in Section 13.4. 
When using the SoC Blockset, PS and PL elements can be composed as a single Simulink model — together 
with SoC Builder, this facilitates hardware-software co-design for creating entire embedded systems for RFSoC 
devices. 

Model Composer

AMD offers its own model-based HDL support within the Simulink environment, in the form of Vitis Model 
Composer5 [68]. This tool can optionally be installed alongside Vivado, and provides more than 200 blocks 
maintained by AMD, from which HDL can be generated. A designer is able to import custom blocks, including 
those written (by hand) in VHDL or Verilog, or developed in Vitis HLS. In this way, IP cores can be simulated 
and exported to hardware comprising a mixture of library blocks and user-developed ones. 

Model Composer provides a set of HDL-capable blocks specially designed and optimised for DSP applications, 
including blocks for Finite Impulse Response (FIR) filters, Fast Fourier Transforms (FFTs), and trigonometric 
operations based on the Co-Ordinate Rotation DIgital Computer (CORDIC) algorithm [354]. These blocks 
have been optimised for hardware deployment, and include implementation options that allow the designer to 
target specific PL architecture resources like DSP48E2 slices and Block RAMs, depending on the block type.

5. The System Generator block-based design tool was incorporated into Model Composer from Vivado version 2021.1.
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Open-Source HDL Generation Options

Several alternative HDL and IP Core generation options are available from the open-source community. Clash 
is a high-level HDL that borrows the rules and syntax of the Haskell programming language, and is mapped to 
VHDL and/or Verilog at compile time [296]. MyHDL [274] and Amaranth [15] are both Python-based 
projects that take a similar approach, by converting to VHDL or Verilog at compile time. Chisel [122] is 
comparable to Vitis HLS, adding HDL-capable pragmas to the Scala programming language (rather than C/
C++). Chisel allows for reusable HDL while offering register level coding, raising the abstraction level from 
HDL whilst maintaining low level control. It should be noted that, as community-supported projects, these 
tools may provide less guidance for IP core generation than those featured earlier. 

13.2.5.  Vivado Hardware Design

Vivado enables the creation of hardware designs for programming onto the RFSoC and other AMD program-
mable devices [65]. The entire hardware design workflow can be undertaken within Vivado — from the initial 
design description through to programming the target device. A designer can choose to operate the Vivado 
software through either a GUI, or programmatically via scripting languages such as Tcl. 

At the lowest level, Vivado uses HDL to describe the design that will be implemented on the PL, and it 
supports the VHDL, Verilog, and SystemVerilog6 languages. All PL-based components of a design must be 
included in the HDL description, including external IO, memory, any hardened resources used (such as 
RFDCs or SD-FEC blocks), and interfaces to the PS. It is important to highlight that the steps leading to a 
complete hardware description in HDL can be completed using other tools and design methods, i.e. the 
designer can work at a higher level of abstraction. As discussed earlier in this chapter, IP Integrator is recom-
mended for system design, and tools such as Vitis HLS, Model Composer or HDL Coder can be used for IP 
creation. 

Once the HDL description of the PL design is completed, a series of further steps are required to generate a 
programming file with which to configure the PL with the designed circuit. This is known as the hardware 
design flow, and is outlined next. 

Hardware Design Flow

The Vivado hardware design flow is illustrated in Figure 13.5 and can be summarised as follows: 

• Hardware design entry — A hardware design must first be described using an HDL. Simulation and 
testing are undertaken at this stage to verify the intended functional operation. As noted earlier, higher 
level design tools can be used to generate HDL and thus accelerate this hardware modelling stage.

6. VHDL and Verilog are standardised by IEEE and subject to revisions. At the timing of writing, the current version of 
Vivado supports VHDL-1993 [210]and parts of VHDL-2008 [211], and the 2001 revision of Verilog [209], as well as the 
2009 revision of SystemVerilog [208].
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• Elaboration — During this first stage of the synthesis process, the HDL code is parsed to locate descrip-
tions of standard logic elements such as flip flops and multiplexers. This produces an elaboration netlist, 
i.e. a file listing the components and connections in the circuit, as interpreted from the HDL code. The 
elaboration netlist is technology independent — it is not based on knowledge of the specific PL compo-
nents that the design can be mapped to. 

• Synthesis — This process step configures the HDL code to a technology-specific netlist — mapping the 
circuit described by the elaborated netlist to the PL resources (logic gates, LUTs, DSP48E2 slices, etc.) of 
the target device. At this stage no placement has occurred — the netlist lacks information about where
on the device the circuit should be placed. The definition of timing constraints, IO planning and 
hardware floorplanning can be performed at this stage. Timing estimates are shown following synthesis, 
indicating the expected critical path of the design and whether it should meet timing requirements 
(more on critical path and timing in Section 13.6.3).

Figure 13.5:  Overview of the Vivado design flow.
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• Implementation — After synthesis, implementation is performed. Components and connections 
specified in the netlist are allocated to physical logic and routing resources on the target device, guided 
by machine learning-based predictions [64]. This process can be divided into several substeps:

• Logic and Power Optimisation — Following synthesis, the netlist is further optimised to reduce 
resource utilisation. Clock gating techniques (the pruning of clocks which are not in use) are also 
deployed to reduce power usage without impacting functionality.

• Placement — The cells of the netlist are mapped to physical device resources according to any 
design constraints (in the form of Xilinx Design Constraints (XDC) files) that have been input to 
the process [135]. If an evaluation board is known to Vivado, key constraints are automatically 
applied, i.e. available external clocks and IO ports are specified.

• Routing — Connections between netlist components are assigned to physical routing resources on 
the target device. The routing algorithms prioritise global resources such as IO and clocking, and 
then route the signals from the user design.

• Physical Optimisation — Optimisations are performed throughout placement and routing using 
accurate timing information from hardware mapping, resulting in a reduced critical path.

• Bitstream Generation — The implemented design is translated into a bitstream (i.e. a binary file 
containing configuration information for the PL portion of the RFSoC), that can be downloaded to the 
device to program it with the designed circuit. During the development phase, the bitstream can be 
downloaded directly from Vivado, or the Vitis embedded development environment, or using PYNQ 
runtime software. For production hardware, the bitstream is often stored in non-volatile memory and 
loaded automatically at boot time.

Each of these processes can be driven from within the Vivado IDE, or programmatically. Various options are 
available at each stage; these can be user-specified to guide the achieved results. For instance, there is an option 
to define a routing strategy that explores the design space more thoroughly than with the default settings. 

13.2.6.  IP Cores for Hardened Resources

To conclude this section on PL design, we discuss the use of IP cores corresponding to the two specialised, 
hardened blocks on Gen 1, 2, and 3 RFSoC devices: namely the RFDCs, and SD-FEC blocks. Additional 
hardened blocks are available on RFSoC DFE devices, as previously outlined in Chapter 3, although we will not 
consider those specifically here. 

RF Data Converter IP Core

The RF Data Converter IP allows the RF-DAC and RF-ADC blocks to be included in an IP integrator design. 
Figure 13.6 shows a high-level overview of the RFDC IP Core, highlighting the AXI4 Interfaces connecting the 
RFDC to the PL and PS, as well as the external interfaces to transmit and receive analogue signals. 
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Each RFDC tile within the IP Core is tied to an AXI4-Stream interface, with each RF-ADC tile connected to a 
master interface and each RF-DAC tile to a slave interface. Therefore, large amounts of data can be transferred 
to and from the RFDCs. From IP Integrator the RFDC IP Core can be configured (either programmatically 
through Tcl, or with a GUI as with other standard IP Cores from the IP catalogue). Options are available to 
enable tiles and blocks, set sample rates, configure the mixer and decimators, among many more options. For 
more details of the RFDC, see Chapters 9 through 11. 

The RFDC IP Core also contains an AXI4-Lite interface, which connects to a processor in the design (usually 
the PS). The connector can enable a software-based driver to configure the RF Data Converters at run-time, 
without needing to rebuild a bitstream. For timing sensitive applications, it may be sensible to configure the 
design at the PL level, as this can reduce latency compared to configuring from a PS-based software driver. A 
comprehensive Python driver exists within PYNQ, enabling straightforward use of the RFDCs. 

Figure 13.6:  High Level overview of RFDC IP Core showing AXI4 Interfaces.

RF-DAC

RF-ADC

Control and 
Configuration

RF Data Converter
IP Core

AXI4-Stream

AXI4-Stream

AXI4-Lite

PS PL

RF-ADC
Tile

RF-DAC
Tile

Analogue
427

Downloaded from www.RFSoCbook.com



CHAPTER 13: Design Tools and Workflows for RFSoC SDR
SD-FEC IP Core

The SD-FEC IP Core is similar to the RFDC IP Core, in the sense that AXI4 interfaces are used to connect the 
hardened resource to a wider PL and PS design. Figure 13.7 provides an overview of the SD-FEC core, and 
shows its connections to and from the PL. 

An AXI4-Lite bus connects to the PS and is used for supplying parameters such as LDPC code definitions, 
which can be controlled via a software driver. Multiple code types can be loaded using the AXI-Lite bus, and 
then at run-time, a specific code can be chosen from the loaded types (on a per code block basis) using the 
AXI4-Stream interface. AXI4-Stream interfaces are also used for input and output data, the dimensions of 
which are parameterisable. The last of these can be abstracted from the design by setting a fixed size in the 
GUI. 

Practical design using the SD-FEC IP will be covered in extended detail in Chapter 15. 

Figure 13.7:  High level overview of SD-FEC IP Core showing AXI4 Interfaces.
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13.3.  Processing System (PS) Design

As reviewed in Chapter 3, RFSoC devices incorporate a Processing System (PS) alongside the PL and hardened 
IP resources. The PS includes Arm cores capable of executing software programs. The RFSoC PS subsystem 
design is closely related to the MPSoC CG device family, and contains up to two Real-time Processing Units 
(RPUs) and up to four Application Processing Units (APUs). The Arm Cortex-R architecture based RPU cores 
are optimised for real-time and safety-critical applications and thus can be programmed in bare metal or using 
a Real Time Operating System (RTOS). The APU cores are based on substantially more powerful Arm Cortex-
A53 architecture, and additionally support full operating systems such as Linux or Android™. 

The following section of the chapter will give a high-level overview of different software stacks and workflows 
available when designing for RFSoC PS. For more in-depth information on the available resources and features 
of the PS, please refer to Chapter 3, and also to our earlier book on the Zynq UltraScale+ MPSoC, which as 
noted above, features a very similar PS [131]. 

13.3.1.  Software Stacks

When designing for RFSoC PS, a suitable software stack has to be chosen to meet the design requirements. A 
software stack is a set of base software that a developer can build upon by adding their own custom software to 
suit the intended application. Depending on whether the defined software system has two or more concurrent 
functions, requires real-time operations to be performed, or has rich user interface requirements, a well chosen 
stack can reduce the development time and increase user satisfaction. 

Different software stacks also offer distinct abstraction layers. In lower abstraction layers, developers need to 
manage more system resources such as memory, I/O and peripherals. Higher abstraction layers provide 
unified Application Programming Interfaces (APIs) to handle system resources, but introduce memory and 
latency costs. 

The remainder of this section reviews some of the candidate software stack options for RFSoC SDR systems. 
For further discussion of software stacks, please also refer to [131].

Bare-Metal

Bare-metal refers to the program instructions being executed directly on hardware, with no intervening OS. It 
is the lowest level of abstraction, and all system resources need to be managed by the programmer. The 
software is executed in a single thread with optional interrupts handling high-priority and urgent processes.

AMD supports bare metal application development for their SoCs containing APU, RPU and MicroBlaze 
processors through the Vitis Unified Software Development Environment [86]. Key libraries for PS and PL 
peripherals, standard C libraries (libc and libm) as well as additional middleware libraries for file system, 
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encryption and networking are supplied within the standalone board support packages (BSPs) [70]. The BSP 
provides a simple, single threaded environment to base your application upon.

Bare-metal is best for designs that have simple requirements: for instance, a software task that involves only a 
single action loop; or a routine which can be driven by interrupts. Bare-metal is also suitable when fine-
grained control is required on the part of the developer, e.g. where low level optimisation of the software 
implementation is needed to achieve a performance metric, such as low latency or power usage. For applica-
tions with greater complexity, more concurrent tasks, or where low-level hand-optimisation is unnecessary, 
other software stacks are preferred.

Real Time Operating System (RTOS)

A Real Time Operating System (RTOS) is a step above bare-metal. It is a relatively simple, OS-like layer that 
defines a unified way of creating, scheduling and managing tasks as well as system resources. The RTOS offers 
deterministic process scheduling, and guarantees that designated critical system tasks will execute in response 
to events and interrupts within a predefined time frame. 

Unlike a full-blown OS such as Linux, RTOS libraries are linked with the application code, which produces a 
single executable that is run when the board boots. Most RTOSs do not support loading or unloading of code 
dynamically, i.e. code cannot be changed at runtime. 

AMD provides an official open-source port of FreeRTOS [29] for APU, RPU and MicroBlaze processors 
implemented on AMD SoCs. Additionally, some third party RTOSs such as Microsoft Azure RTOS [259] or 
The Zephyr Project [369] have deployment examples for selected AMD SoC-based boards. 

Linux OS

Linux is a free and open source operating system kernel originally authored in 1991 by Linus Torvalds [341]. 
The kernel is one of the first programs loaded on system startup, and provides a unified, architecture-
independent API to control and communicate with system hardware resources such as memory, processes, 
network interfaces and device storage. The GNU/Linux distribution (commonly referred to as Linux OS) is a 
general-purpose operating system that includes the Linux kernel [342] as well as supporting system software 
and libraries, many of which come from another Free/Libre and Open Source Software (FLOSS) project called 
GNU [166]. It can run on many different processing architectures, including x86 as found in standard desktop 
PCs and servers, as well as the Arm processors found in RFSoC.

Linux provides the highest abstraction level out of the discussed software stacks, as most of the user applica-
tions run in the Linux userspace, and communicate with the kernel (and in turn with hardware components) 
via System Call Interface [231]. Normally developers do not need to be concerned with the System Calls 
directly, as most applications are written at an even higher level, using libraries such as GNU C library (glibc) 
[177] or musl [273]. This separation of user and kernel space ensures that applications can access shared 
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resources in a safe manner using the higher level interface [220]. Access to a library of OS service APIs for 
most common system resources including file systems, networking, and inter-process communication means 
that developers can focus on their application instead of system management.

By default, Linux provides a Completely Fair Scheduler (CFS) which allocates CPU time fairly to all applica-
tions depending on the total number of runnable processes and the time they have already been active. Real-
time-like capabilities can be achieved using other inbuilt scheduling algorithms or switching to an alternative, 
real-time optimised kernel. Although real-time Linux can be a great choice for many applications, it cannot 
match the deterministic and hard real-time scheduling performance of dedicated bare-metal or RTOS imple-
mentations, due to the significant resource overhead required to run the operating system itself.

13.3.2.  Synchronous Multi Processing (SMP) and Asynchronous Multi Processing (AMP)

Complex heterogeneous processing systems, such as the PS of RFSoC devices, support advanced deployment 
architectures for the previously mentioned software stacks. The PS of the RFSoC can be configured and used 
in two primary modes: Synchronous Multi Processing (SMP) and Asynchronous Multi Processing (AMP) [86]. 
These two modes can be outlined as follows. 

Synchronous Multi Processing

In SMP mode multiple processors are governed by a single instance of an operating system. The OS handles 
most of the complexity of distributing and managing system resources such as processing cores, caches, load 
balancing and peripheral interrupts. The SMP mode is only supported by the Arm Cortex-A53 APUs of the 
RFSoC PS.

Asynchronous Multi Processing

An AMP system has multiple CPUs of the same or different architectures running independent programs. 
Each core has its own address space, and may-or-may-not run an OS. Depending on the design, the system can 
incorporate a communications facility between the cores, or they can run completely independently of each 
other. AMP allows designers to run a mix of Bare-metal, RTOS and Linux OS on the same processing system, 
with each of the PS cores running an independent software stack. For example, a design can use the Arm 
Cortex-R running bare-metal or a RTOS stack for mission-critical software, whilst other cores in the system 
(the Arm Cortex-A application cores) can run user-facing software.

13.3.3.  Tools

A number of software development tools can be used to generate the PS software elements of an RFSoC SDR 
design. In this section, we highlight selected tools that are particularly useful for developing elements of a 
software stack for RFSoC-based systems. 
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PetaLinux

PetaLinux Tools [35], [36] is a free-to-use embedded Linux Software Development Kit (SDK) for AMD SoCs 
and MicroBlaze [34] soft processors. It is based on the open-source Yocto Project® [366], but provides a higher 
abstraction layer focused on development for AMD silicon devices. 

PetaLinux is not a Linux distribution in itself, but provides all the necessary tools to customise, build and 
deploy embedded Linux images tailored to your application. This includes creating and updating Board 
Support Packages (BSPs)7, as well as building the various components of a Linux System, e.g. the kernel, 
bootloader, root file system and so on. Embedded Linux images built with PetaLinux can be deployed on the 
board over network or JTAG interfaces. Simulation is also possible using the bundled QEMU full-system 
emulator when hardware is not available [297].

PetaLinux also integrates with other AMD tools. For instance, hardware platform developed using Vivado can 
be used to configure a PetaLinux project. Vitis can use a PetaLinux project as a base to develop software appli-
cations.

Vitis Software Development Workflows

The Vitis Unified Software Platform is a new AMD tool that combines all SoC development aspects into a 
single unified environment [57],[58]. It includes the features from now-deprecated Xilinx SDK, SDSoC™ and 
SDAccel™ tools, as well as the previously mentioned Vitis HLS, and extends them with the next-generation 
application acceleration development flow. Vitis is the official AMD tool for creating hardware-accelerated 
designs on heterogeneous multiprocessing systems, and supports AMD Alveo™, Versal™ Adaptive Compute 
Acceleration Platform (ACAP), and Zynq-based SoCs.

Vitis Embedded Software Development flow is part of Vitis Unified Software Platform focused on embedded 
software development [60], and provides the following features:

• Workflow to partition the PS resources of the SoC for different SMP and AMP configurations.

• Software development stack and cross-compilers for bare-metal, RTOS and Linux applications targeting 
the APU, RPU and MicroBlaze cores.

• Simulators and debuggers

• Program analysers for profiling application performance.

7. A Board Support Package is a hardware-specific collection of libraries, drivers and information about the hardware [55]. It 
forms the lowest layer of the application software stack that other applications bind to, or run on top of. A BSP is neces-
sary for an embedded application or operating system to boot and function in a given hardware environment.
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• Xilinx Runtime (XRT) – API and low-level drivers for applications to connect with the target hardware 
platform.

• Vitis accelerated libraries [56] – open-source, performance-optimised hardware-accelerated libraries for 
common maths, DSP and statistics functions, as well as domain-specific workflows like Machine 
Learning (ML), image processing and more.

Vitis supports two different embedded design flows, which are summarised as follows [59]:

• The traditional embedded software or fixed-platform design flow, which relies on a completed 
hardware design built using the block-based Vivado IP integrator or HDL system description, exported 
as a fixed platform. In addition to the bitstream, the fixed platform file includes the processor domain 
(AMP/SMP) configuration, OS, boot files and software drivers. This flow is best suited for projects 
where the hardware design has been completed and only the software application part of the design is 
remaining.

• The extensible platform-based flow, illustrated in Figure 13.8. In this flow, the embedded processor 
platform contains the extensible hardware design as well as the project's software components. The 

Figure 13.8:  High level overview of the Vitis extensible platform-based flow.
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creation of an extensible platform starts with a hardware platform (hardware specification file) that can 
either be provided by AMD as a base platform, or a Vivado hardware design created using the traditional 
Vivado IP Integrator or HDL design methods. The hardware platform can be in either a pre-synthesis
form, which does not contain a bitstream but is quicker to build, or a post-implementation form, which 
contains an implemented design together with a final bitstream. Whichever of these hardware specifi-
cation options adopted, the hardware platform is imported into Vitis, and acts as the foundation of the 
hardware design for the Vitis linker to add the software component configuration to (i.e. processor 
domains, DeviceTree, OS), and thus create the custom extensible embedded processor platform. 

The availability of an AMD base platform is an important enabler of concurrent development for heteroge-
neous systems, as the software design can be started without having the finished hardware bitstream. This 
enables teams consisting of multiple engineers to work on their respective parts of the design in parallel. Once 
the extensible embedded processor platform is generated, it can be updated by Vivado (for hardware archi-
tecture changes) and Vitis (for PS software). This enables an iterative design flow without having to rebuild the 
platform from scratch, thus saving development time.

Further information on the integration of AMD Vivado and Vitis workflows is provided in Section 13.4 on 
Hardware-Software Co-Design.

PYNQ

PYNQ is an open-source project from AMD that provides a feature-rich development environment for AMD 
platforms, including ZYNQ, MPSoC, RFSoC, and Alveo. PYNQ is mainly distributed as a Ubuntu-based OS 
image, and it comes with a pre-configured, web-based JupyterLab IDE, along with Python libraries that allow 
convenient interaction with the PL.

PYNQ allows developers to use the high-level Python programming language and its libraries for data analysis, 
scientific computing, data visualisation, image processing, machine learning and other applications. In 
particular, it supports designers to create and evaluate their own custom hardware-accelerated designs.

At the core of PYNQ is the Overlay class, which exposes the PL design and individual IP registers as an acces-
sible Python object. PYNQ provides out-of-the-box drivers for some of the most popular hardware IPs, such as 
AXI DMA, AXI GPIO, AX IIIC, AXI interrupt controller and others. Additionally, MicroBlaze soft processors 
are also supported and can be programmed directly from the Python environment. The provided libraries 
work well as a starting point for most designs, and can be further extended by writing your own custom 
libraries for other IPs included in your PL design.

PYNQ features extensively throughout this book, and as part of the accompanying example notebooks. An 
introduction to the PYNQ framework is provided in Notebook Set A (see page 7). In many of these notebooks, 
we adopt RFSoC-PYNQ, an extension of PYNQ that incorporates support for RFSoC platforms. 
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MathWorks Tools

As discussed in Section 13.2.4, MathWorks provide IP generation capabilities for AMD FPGAs and SoCs 
through their HDL Coder toolbox. MathWorks also develops add-on extensions to target the Arm-based PS of 
the RFSoC and other AMD SoC platforms.

The Embedded Coder toolbox [247] is an extension of MATLAB Coder [252] and Simulink Coder [254] that 
allows developers to generate industry standard-compliant C/C++ code from MATLAB and Simulink projects. 
Embedded Coder can be further extended using hardware support packages to enable greater optimisation 
and extra features. The Xilinx Zynq Support Package (which also has support for MPSoC & RFSoC) can be 
used in conjunction with the HDL Coder toolbox to automatically generate software interfaces for IP cores 
developed using MathWorks tools.

ARM Cortex A Support for Embedded Coder [246] further extends the Embedded Coder toolbox by providing 
Arm Neon [97] Single Instruction Multiple Data (SIMD) accelerator support for select signal processing 
MATLAB System objects and Simulink blocks. This allows compute-intense algorithms such as FFT/IFFT, 
multirate FIR decimation/interpolation, and other filters to be run on optimised and independent execution 
hardware that is capable of multiple operations at the same time.

GNU Radio

GNU Radio is a Free and Open-Source toolkit for SDR design development [178]. It is designed to run on a 
CPU-based processing system, but can be extended with custom Out Of Tree (OOT) modules to utilise GPU, 
DSP, or FPGA acceleration. GNU Radio Companion provides a block-based Graphical User Interface (GUI) 
for GNU Radio that is designed to enable rapid creation of SDR designs, without the need to reinvent funda-
mental components [180]. Figure 13.9 provides an example of the GNU Radio Companion interface: blocks 
are configured and connected together to form a flowgraph that models the functionality of a radio. 

At the time of writing, the only RFSoC-based radio with official GNU Radio support is the Ettus Universal 
Software Radio Peripheral (USRP) X410 model [152]. The USRP Hardware Driver (UHD) allows the board to 
work in a stand-alone mode, with GNU Radio running on the PS or in tandem on an external PC.

On other development boards, a custom OOT module can be written to enable the RFSoC’s features in GNU 
Radio. An embedded python block can be used in conjunction with PYNQ libraries to control the RFSoC 
device [179].
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13.4.  Hardware-Software Co-Design

Now that we understand the tools available for hardware and software RFSoC design, it is possible to examine 
a design methodology that considers both aspects throughout the design process. Hardware-Software Co-
Design (or sometimes simply ‘co-design’) is an umbrella term for techniques that consider embedded systems 
development as an integrated, concurrent process of hardware and software development, rather than two 
individual design processes that eventually come together as a single output [133]. The term originates in the 
1990s, and was first used to describe the partitioning of operations in a multi-core system to target the most 
appropriate microprocessor or application-specific core for the required resource, as in [193]. Such a design 
process therefore reduces power and resource requirements by efficiently allocating tasks.

Figure 13.9:  A screenshot from the GNU Radio Companion environment, showing an example radio flowgraph.
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The concept of co-design may seem second nature to modern sensibilities, and it is readily applicable to 
RFSoC development. For example, logic fabric is an ideal platform for deterministic, parallel algorithms, 
whereas processors are better for implementing sequential algorithms with decision-making and branching. 
Tasks can be appropriately partitioned across the PL and PS of the RFSoC device using a co-design approach. 

13.4.1.  Vivado Workflow as Hardware-Software Co-Design

The co-design methodology can be highlighted by re-examining the Vivado workflow considered previously. 
Figure 13.10 illustrates this integrated design approach within the Vivado and Vitis ecosystem, which encom-
passes partitioned but highly dependent PL and PS design, implementation and hardware verification. 

In such a model, PL and PS elements of a design are partitioned appropriately based on specific tasks, just as 
they were in the 1990s co-design description, with both elements considered throughout the design process. 
The PL design aspect of the co-design process incorporates the hardware design elements discussed in Section 
13.2 — abstraction methodologies such as Vitis Model Composer and HLS are typically used to design the 
required custom IP cores, which are configured alongside library IP cores from AMD (and third party tools, if 
applicable) as an IP Integrator block design. 

As discussed previously in the context of the IP Integrator workflow, aspects of PS functionality can be directly 
configured, such as the peripheral interfaces and PS-PL connections in use. The PS configuration aspect is 
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Figure 13.10:  Hardware-Software Co-Design Overview for the Vivado and Vitis workflow.
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accompanied by software development for the design, whether in Bare-Metal C through Vitis, as part of a 
Linux-based system like PYNQ. 

The Vivado IDE is then used for Synthesis, Implementation and Bitstream generation to program the device. 
Dynamic Function eXchange (DFX) elements can also be incorporated here (coming up in Section 13.5).

The hardware and software elements of a design are usually tested together, as a PS-based driver (for example) 
can only be fully tested if the hardware design is successfully programmed. Equally, functionality in the 
hardware is often configured, enabled and operated via AXI4-Lite interfaces controlled by the PS. Therefore, 
the debugging and error solving process is part of the hardware-software co-design methodology — error 
fixing in the hardware design requires testing in the PS, whilst changes in the PS require to be tested using the 
hardware design. 

Another key part of the co-design process is to ensure that the system as a whole boots correctly and reliably, 
from power-on to bringing up the OS (if used), initialising the various subsystems, and being ready for 
operation.

13.4.2.  Alternative Co-Design Tools

Some third party tools offer alternative approaches to hardware-software co-design than the workflow shown 
in Figure 13.10. These methods typically allow PL and PS design within a single development environment, 
and have a link to a Vivado version that is used “behind the scenes” to perform Synthesis, Implementation and 
Bitstream Generation. Often, the same application offers a method to program the target hardware device and 
control the PS, allowing for full hardware-software co-design. 

MathWorks SoC Builder

As previously discussed in Section 13.2.4, the MathWorks HDL Coder tool can be used as a method of 
abstracting HDL and IP Core generation. By additionally incorporating the SoC Blockset, a model design can 
be created that fully represents a Vivado IP Integrator design, including RFDCs, PS control and memory 
management through DMAs. 

Utilising additional MathWorks tools, the design approach can be expanded further: if a Vivado version is 
linked, the SoC Builder tool can be used to create an HDL-capable design, generate a bitstream, and then 
download and execute it on a target SoC [256]. The tool offers a step-by-step wizard which guides the user 
through the Vivado workflow, without leaving the Simulink IDE. The associated Vivado version operates in the 
background of this process, and as such, an IP Integrator block design can be opened in Vivado following 
completion of the SoC Builder process. 
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Assuming that the target evaluation board is configured correctly, and connected to the host PC running SoC 
Builder, a connection can be made from the wizard via ethernet. The generated bitstream can be loaded to the 
device and the application run directly from the IDE. 

RFNoC for GNU Radio

The RF Network on Chip (RFNoC) project is an open source, third-party software tool from the SDR 
manufacturer, Ettus ResearchTM, which aims to simplify the integration of IP Cores into the signal processing 
chain of its Universal Software Radio Peripheral (USRP) SDR units [150],[151]. RFNoC can be used as an add-
on package to the GNU Radio software, which is primarily a development environment for the PS elements of 
a system design. 

The RFNoC package enables hardware design alongside GNU Radio for hardware-software co-design. The 
package provides selected ‘RFNoC blocks’, which add DSP functionality such as FIR filters and FFTs. These 
blocks can be added to a GNU Radio design alongside Vivado IP catalogue IP cores, as well as any custom IP 
cores that use AXI4 interfaces. As with the SoC Builder tool, RFNoC requires knowledge of an installed Vivado 
version, which is used in the background to perform synthesis, implementation and bitstream generation. 
Uniquely, all IP Cores within an RFNoC design are connected via an AXI4 Crossbar, which means that the 
order of blocks in the processing chain can be altered at runtime, without changing the bitstream. This adds a 
great deal of flexibility to a design. The drawback is increased latency, as samples have to cross this AXI4 
Crossbar between each processing block, meaning that timing requirements become more of an issue. 

13.5.  Dynamic Function eXchange (DFX) 

Dynamic Function eXchange (DFX) is the AMD design flow for dynamic partial reconfiguration of FPGA 
logic fabric. This technology allows an application to swap between different functional blocks implemented in 
hardware, without reprogramming the entire device [63]. The hardware design of the FPGA is split into a static 
portion, and a number of reconfigurable partitions known as DFX Regions. In this way, a bitstream is 
generated to implement the static portion of the FPGA, while several separate ‘partial’ bitstreams are created to 
fill the DFX region with sub-designs known as Reconfigurable Modules (RMs). 

As the PL portion of the RFSoC is equivalent to an FPGA, DFX methods can be applied to SDR systems design 
on RFSoC. In combination, RFSoC and DFX offer the potential for extremely flexible radio implementations. 

13.5.1.  DFX Operation

The concept of DFX regions is illustrated in Figure 13.11. 

The yellow region represents the static logic in the PL design — this is the portion that remains functional and 
is unaffected by the reconfiguration of the DFX region by loading partial bitstreams. 
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The DFX region of the PL (bounded by the blue box within the PL) is the reconfigurable partition. This region 
is reprogrammed with the contents of the RMs, which can be loaded into the design via partial bitstreams. 

The primary bitstream implements the static design, including placing and routing resources around the 
outside of the DFX region. Each partial bitstream can be loaded into the design separately to reconfigure the 
PL within the DFX region while the design is running. As the design surrounding the DFX region is static, the 
interfaces at the boundary between the static design and the DFX region must be kept consistent for all config-
urations. 

By replacing subsets of PL at runtime, designs can be realised more efficiently in terms of resources and power 
budget. For instance, if any two independent sets of functionality do not require to be used at the same time, 
they can be loaded into the design only when needed. This can provide significant savings in power 
consumption, and the hardware resources required to implement the system as a whole. 

13.5.2.  Security and IP Protection

DFX can also be used to bolster the security of a proprietary design. In particular, DFX enables the use of 
Asymmetric Key Encryption (AKE) [63]. The technique uses public and private key pairs, where the static 
portion of the RFSoC houses the private key in the PL. New public keys can be generated at any time that can 
pair with the private key, but the private key is protected. If an attacker intercepts a transmission and obtains 
the public key, they cannot decrypt the message without knowing the private key. 

Using the AKE scheme for PL device configuration, the majority of the design is held within an encrypted 
partial bitstream, combining cryptography with DFX regions to protect the configuration file. The static region 
contains only logic for decryption, and protects the rest of the proprietary design. This system ensures that 
even if there is a hardware attack on the RFSoC while it is powered, the private key is extremely difficult to 
access because it resides in the PL. Further, when the device is not powered, the private key does not exist and 

RFSoC PLStatic Region

DFX Region
"RP_A"

A2_partial.bit
A1_partial.bit

A3_partial.bit
A4_partial.bit

Figure 13.11:  Conceptual overview of DFX.
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therefore cannot be compromised. This use-case differs from that described earlier for swapping the function-
ality implemented by DFX regions in a design, in the sense that there may only be a single partial bitstream for 
the DFX region, and the DFX region may encompass most of the PL. 

DFX techniques also aid in the protection of proprietary IP. In Ultrascale+ devices, including RFSoC, designs 
for RMs can be made while only knowing the details of the DFX region itself — access to the static design is 
not required. This method is known as the Abstract Shell design flow for DFX [63]. It allows the details of a 
proprietary static design to be hidden in accordance with commercial legal agreements, for instance when a 
company subcontracts the design of a subsystem. 

13.5.3.  Advantages of DFX

As well as the benefits of flexibility, and resource and power efficiency outlined earlier, DFX offers benefits for 
ongoing system support. The ability to generate new RMs to partner with an existing static design means that 
updates can be delivered to systems that are already deployed, using relatively small bitstream files. This could 
include new features and bug fixes, as well as more comprehensive new functionality. 

As of Vivado 2021.1, DFX regions can be introduced within an IP Integrator block design using block design 
containers. By applying this method, reconfigurable modules can be contained as sub-block designs within a 
system. Therefore, SoC hardware designs (including RFSoC devices) can include DFX functionality without 
deviating from the Vivado co-design methodology introduced in Section 13.4. 

SDR systems can support a larger set of DSP signal chains, communications protocols, and hardware-accel-
erated algorithms, by exploiting DFX techniques to swap functionality as required, thus greatly improving the 
flexibility of the radio design. This helps to make RFSoC a uniquely powerful platform for SDR applications.

13.6.  Clocks, Timing, and Sample Rates

Clocking is a crucial stage of hardware IP Integrator design, with multiple clocks often required within a 
design to drive its various interfaces. This section will explore AXI4 protocol clocks in particular, set in the 
context of the RFDC IP Core, demonstrating how clocks can be configured in the IP Integrator environment. 
Relationships between clock rates and sampling rates will also be discussed. 

13.6.1.  AXI4 Protocol Clocking

As discussed earlier in this chapter, the majority of IP Cores within IPI designs are connected through AXI4 
protocol interfaces [94],[95]. The three types of AXI4 bus (AXI4, AXI4-Lite and AXI4-Stream) often require 
different types of clocking. If an IP Core that utilises these interface types is included in an IPI design, clock 
ports for each slave and master interface will be available on the IP block in the IPI block diagram. 
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Each of these clock ports requires a corresponding reset signal, driven from an instance of the Processor 
System Reset IP Core (with a clock provided from the same source as that driving the respective AXI4 link).

13.6.2.  RF Data Converter Clocking and Sample Rates

Recall that the RFDCs are hierarchical in nature, and that most RFSoC devices feature a number of RF-ADC 
and RF-DAC tiles. Each tile contains one, two or four RF-ADCs or RF-DACs, with individual RF-ADCs and 
RF-DACs referred to as blocks. 

A high-level overview of the RF Data Converter IP Core is shown in Figure 13.12 (for complete details of the 
RFDC IP Core, see [90]). Note in particular the AXI4-Lite and AXI-Stream clocks on the IP Core; these are the 
subject of discussion later in this section. 

Figure 13.12:  Instance of the RF Data Converter IP Core with clocking highlighted.
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RFDC AXI4-Stream Interface Clocks

AXI4-Stream interfaces are typically used to transfer data between processing blocks in a ‘dataflow’ style 
hardware design, where data is transferred continuously through a number of processing stages, and between 
the output of one IP core block, and the input to the next. Consequently, it is often desirable to match the 
frequency of the clock driving this bus to the desired sample rate of the data passing through the IP Cores. 

For RFSoC designs featuring an RFDC, the AXI4-Stream interface clocks can be provided from an external 
fabric clock or from the output clock of enabled RF-ADC and RF-DAC tiles8. The frequency required for the 
input AXI4-Stream input is determined by the sample rate of the tile, which has a minimum value around 
1GHz and a device-specific maximum value. Use of the mixers within the tile, along with the decimation or 
interpolation factor and SSR options, can reduce the required fabric clock frequency. 

The output clock frequency of a tile can be chosen from selected  divisions of the sampling rate. This 
frequency can be further customised within the PL fabric through the use of the Clocking Wizard IP Core [23], 
which can implement a Mixed-Mode Clock Manager (MMCM) module. In this way, the IP Core can generate 
multiple output clocks with defined phase and frequency relationships to the input clock. This can be particu-
larly useful if the tile output clock is unable to produce the frequency required for the tile AXI4-Stream input 
interface. In such a case, it may be necessary to scale the clock within the FPGA fabric.

Example:

Two AXI4-Stream clocks can be seen within Figure 13.12. The enabled RF-ADC tile provides an output clock 
which drives the AXI4-Stream input to the same tile, as well as AXI4-Stream interfaces of other IPs within the 
design that operate at the same frequency. The enabled RF-DAC tile, on the other hand, has an AXI4-Stream 
clock provided from an external source. It may be assumed that any signal processing IP Cores operating on 
the data prior to RF-DAC transmission would also be clocked by this external source.

RFDC AXI4 and AXI4-Lite Interface Clocks

Figure 13.12 also features an AXI4-Lite clock, s_axi_aclk, which is input to all enabled tiles within the RFDC 
and allows a PS-based driver to reconfigure the RFDCs. Memory-mapped interfaces such as AXI4 and AXI4-
Lite provide connections between the PL and PS. Therefore, these interface types are typically clocked from 
PL-attached pins.

Tile Reference Clock

As shown in Figure 13.12, each tile within the RFDC has its own differential input clock which can be provided 
either from a sample clock (where the clock rate equals the sample rate), or from a lower frequency reference 
clock, which can be upscaled to the sample rate using an internal tile PLL. As the latter reference clock 

8. Note that, in order for a configuration to be valid, the required input frequency for each block within a tile must match!

2n
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approach includes an additional PLL stage, it provides reduced clock jitter, creating a 'smoother' clock. This is 
therefore often the preferred method of clocking the RFDC tiles.

Frequency planning, as discussed in Chapter 12, should be considered prior to designing with the RFDCs, as 
the frequency plan will inform the selection of a suitable sampling rate and PLL reference clock frequency. The 
reference clock can be selected as any integer division of the sample rate and is provided by the reference PLL 
clock (LMK) and RF PLL clock (LMX), both of which were introduced in Chapter 3. 

The LMK and LMX clocks must be programmed using registers prior to operation. This can be done manually 
using the clock programming connector of the board, or controlled from the PS through C or the PYNQ 
Python driver [74]. The necessary register programming configurations for the LMK and LMX clocks can be 
exported from the TICS Pro software [337]. The programmed LMX output frequency should match the RFDC 
tile reference frequency. For certain supported evaluation boards, including the ZCU111 [75] and RFSoC4x2 
[42], select LMX frequencies are provided with the PYNQ RFDC clock driver to reduce the required design 
effort. Within the IP Integrator design, the RFDC is connected to the LMX reference clock through external 
IO. Two such interfaces can be seen in Figure 13.12, labelled as the differential adc1_clk and dac2_clk. 

Certain evaluation boards, particularly those featuring Gen 3 devices, only provide this external LMX clocking 
to certain tiles, and require the clock distribution feature to use additional tiles. For example, the LMK and 
LMX clocks for the ZCU208 evaluation board [77] are provided via the CLK104 add-on card9 [22]. The 
ZU48DR device on this board contains 4 RF-DAC and 4 RF-ADC tiles, however the LMX clocks are output via 
SMA cable to DAC Tile 2 and ADC Tile 1 only. To use other DACs and/or ADCs on the board, these tiles must 
be enabled within the design, and the clock distributed to other desired tiles. This clock distribution method is 
further illustrated in Figure 13.13.     

Synchronisation Clock

The RFDC IP Core can also optionally take a system reference clock sysref as an input. This input signal is 
common to all tiles in the RFDC, and provides the clock for multi-tile and multi-device synchronisation (if it is 
required within the designed system). For multi-tile designs, the sysref signal is an external input that connects 
to a master tile within the RFDC. This tile then acts as the reference to which other tiles are synchronised. 

13.6.3.  Maximum PL Clock Rates

When developing hardware designs in the PL part of an RFSoC device (or in FPGA logic generally), there are 
two maximum clock rates that the designer should be aware of: (i) the potential maximum clock rate of the 
device; and (ii) the (generally somewhat lower) maximum clock rate arising from the user design. 

9. See Chapter 3 (Section 3.4.2) for more details on the CLK104 RF Clock Add-On Card.
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The first of these is a physical constraint of the chip, and is usually published in the product data sheet (there 
can also be speed grade variants of the same chip, each with a different maximum supported clock rates). The 
latter depends on the developed hardware, and the choices that have been made by the designer; in DSP 
systems, factors such as arithmetic wordlength specifications and the use of pipelining can influence the 
achievable clock rate, as well as the percentage utilisation of the PL (the more fully the PL is used, the more 
challenging the task of routing all of the signals, and the lower the maximum clock frequency is likely to be). 

Designs will rarely achieve a clock rate approaching the device maximum, and as such, design-specific timing 
metrics are generally a greater concern to the designer. At a simple level, the maximum clock frequency is 
limited by the critical path delay, , which is the time taken for a signal to propagate along the longest 

Figure 13.13:  Conceptual Diagram of CLK104 Add-On Card Connected to a Single RF-ADC and RF-DAC Source 
Tile. Clock Distribution is required to provide a reference clock to other RFDC Tiles.
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combinatorial logic path between two clocked elements in a design (known as the critical path). The design-
specific maximum clock frequency is approximately10 

. (13.1)

This relationship means that all signals in a design must reach the next clocked input within one clock cycle — 
otherwise, it would appear that a 1-clock-cycle delay had been inserted where none was desired, thus altering 
the implemented algorithm and potentially leading to unpredictable behaviour. Any changes to signal values 
within flip-flop setup and hold periods must be avoided too, in order to prevent metastability issues. Recog-
nising that the number and type of cascaded combinatorial logic elements in a design has a major effect on its 
timing performance, the designer can normally improve the achieved timing results by identifying the critical 
path and making design modifications that shorten it.    

A timing report is generated by Vivado as an output of the Implementation stage. The timing report details the 
timing performance of the developed hardware on the target device, determined by:

• Clock skew and uncertainty: The efficiency of clock implementation, affected by clocking constraints 
and the properties of the input clock(s).

• Logic delay: The delay associated with the logic elements (i.e. combinatorial hardware) that a signal 
passes through within a clock cycle.

• Net or route delay: The delays incurred as a signal traverses PL routing resources. This is dependent on 
the placement and routing of the design (a process undertaken by Vivado with optional user directives).

One or more of these factors can be optimised when the timing performance of a design is crucial. For more 
information, and candidate approaches for optimising results, see [47]. 

After any attempts have been made to optimise timing performance, a continued failure to “meet timing” 
means that the desired clock rate is higher than the PL can support, for a particular design. This implies that 
the clock rate must be reduced. 

In cases where the desired sample rate is very high, e.g. close to the interface between the PL and RFDCs, this 
may prompt a design change, e.g. an increase in the amount of decimation or interpolation undertaken in the 
RFDCs, to permit a lower sample rate to be used in the PL. Where the data rate must remain high, an SSR 
interface may be used to increase the data width. In this way, the clock rate can be reduced whilst maintaining 
the desired data rate. 

10. Other factors such as flip-flop setup and hold times also contribute.

fmax
1

CPD
------------
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CHAPTER 13: Design Tools and Workflows for RFSoC SDR
13.6.4.  Super Sample Rate (SSR)

The Super Sample Rate (SSR) technique involves blocks of consecutive samples being processed in parallel 
using replicated hardware, as opposed to conventional sample-by-sample processing. When SSR is adopted, 
the required sampling rate can be supported at a lower clock frequency. For example, an SSR value of 8 means 
that the clock frequency is reduced by a factor of 8 (compared to a conventional sample-by-sample archi-
tecture), without reducing the overall sampling rate. As a consequence, the resource cost of implementing the 
hardware increases by approximately a factor of 8. 

Example:

An RFSoC design features an RF-ADC tile to PL AXI4-Stream interface. It is desired to pass data through a 
particular custom IP core at a rate of 500 MHz, however the maximum achievable clock rate is 410 MHz. To 
meet these design requirements, an SSR 2 implementation can be adopted. By passing two data samples in 
parallel every clock cycle, the required clock rate can be halved from 500 MHz to 250 MHz, which comfortably 
meets the applicable timing constraints. These two alternative designs are illustrated in Figure 13.14, and SSR 
is further discussed in the next section.

As introduced in Chapter 3, an SSR interface makes the transition between regular and SSR sections of a 
system. SSR is perhaps most likely to be used in an RFSoC at the interface between the RFDCs and PL. Here, it 
can be introduced into a design through the RFDC IP Core: by increasing the 'samples per AXI4-Stream Cycle' 
parameter to an integer value greater than 1, an SSR interface is created between the RFDC and the PL.  

Many commonly required cores, including the FIR Compiler IP core, provide support for SSR. In addition, the 
Model Composer library contains an entire SSR Blockset (through System Generator DSP support) allowing 
for custom IP Core generation with SSR interfaces [69]. Through careful design, the AXI4-Stream interfaces 
throughout a design can be integrated with SSR implementations, greatly reducing the required clock rate. 

13.7.  Antennas, Filters, and Amplifiers

External radio components are often required when prototyping with the RFSoC. For instance, an antenna 
may be necessary to improve signal acquisition, or an external filter is required to suppress spectral aliasing. In 
this section, we will briefly explore a few Commercial Off-The-Shelf (COTS) options that may be useful when 
designing a receiver front-end for the RFSoC. In particular, we will discuss antennas, amplifiers, and external 
filters. Our discussion will be around simple, easy to build, front-end designs. We will not cover specialised 
design of external equipment. Lastly, we will only focus on signal acquisition equipment. Please seek profes-
sional support if you require external equipment for a radio transmitter.
447

Downloaded from www.RFSoCbook.com



CHAPTER 13: Design Tools and Workflows for RFSoC SDR
Figure 13.15 contains a diagram illustrating a simple front-end configuration for an RF-ADC. The antenna is 
used to acquire a signal, the external filter suppresses undesirable frequency bands, and the amplifier improves 
signal acquisition by increasing the power of the signal to a desirable level. 
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CHAPTER 13: Design Tools and Workflows for RFSoC SDR
Antennas

Adding an antenna to the input of the RF-ADC will significantly improve signal acquisition. There are many 
commercial off-the-shelf (COTS) antennas that are useful for general exploration of the radio spectrum. We 
recommend using the following antennas:

• The wide-band antenna bundle known as the NooElec™ NaTLSnake [278] has several antennas that 
operate across several frequencies between 100MHz and 1800MHz.

• There is an application specific antenna known as the ANT-2.4-LCW-SMA from Linx Technologies™ 
[232], which is suitable for Wi-Fi, Bluetooth, and ZigBee communication standards.

Passive and active antennas are available: passive antennas do not amplify the acquired signal, whereas active 
antennas include an integrated amplifier that adds power to the signal. Both of the above highlighted antennas 
are passive. Care should be taken over antenna selection, particularly where active antennas are involved, and 
ensuring operation within the rated values to avoid causing damage to the RFSoC [87]. 

Amplifiers

It may be necessary to add a small amount of amplification at the front-end of your RFSoC platform to acquire 
radio signals at an appropriate power. Adding an amplifier is not completely necessary when prototyping radio 
designs. We recommend only adding an amplifier if absolutely required. The following generic amplifiers are 
useful:

• The NooElec VeGA Barebones - Ultra Low-Noise Variable Gain Amplifier (VGA) module [280].

• The NooElec LaNA - Wideband Ultra Low-Noise Amplifier (LNA) Module [277].

Please be mindful that excessive signal amplification may damage your RFSoC platform. Care should always 
be taken to ensure that signal power is in the appropriate range to be acquired by the RF-ADC input. Attenu-
ators, such as those given in [279], may be useful to safely prevent over-amplification.

External Filtering

There are a range of external filters that can be applied to the input of the RF ADC channel to improve signal 
acquisition and to suppress spectral aliasing. Filtering requirements are determined based on the frequency 
bands that you would like to inspect. We recommend the following:

• The Mini-Circuits® VLF-1800+ low pass filter [262] to inspect frequencies up to 1800MHz.

• There are many filters that are available for particular applications and wireless standards. For instance, 
the Mini-Circuits VBF-2435+ bandpass filter [263] is suitable for acquiring Wi-Fi signals.
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Similarly to antennas, active filters can increase the signal voltage, whereas passive filters do not. Therefore, 
care should be taken if connecting the output of an active filter to the RFSoC. Both of the example filters 
highlighted here are of the passive type. 

13.8.  SDR Design Flow for PYNQ on RFSoC 

So far, this chapter has explored the various methods and software tools available for developing designs for 
the PS and PL portions of RFSoC devices. In this section, we take the reader through the design flow process 
that we (the authors) have used to make the various designs that are featured within the Notebook chapters of 
this book. This includes both the software packages and the design methodology. This is not to say that the 
methods detailed in this section represent the “standard” design approach for the RFSoC, nor is it necessarily 
the best way to do things. We simply present a methodology that has worked for us during our experience 
designing systems for RFSoC. The reader is free to use all, parts, or none of the information we detail here, 
although we hope that at least some of this shared experience is useful!

The design process detailed in this section can be separated into six separate steps, which are shown in Figure 
13.16 and discussed over the next few pages. 

13.8.1.  Initial Design Process

The first step, and arguably the most important, is the initial design process. It is here where the system 
designer has to consider a number of factors, such as the range of frequencies to be received and/or trans-
mitted by the RFDCs, and the bandwidth(s) of these signals. This step is also where frequency planning should 
be used in order to determine if the desired configuration will result in any in-band interference. These factors 
will determine the required sampling rates and clock rates to be used within the design. For example, if the 
signal bandwidth is much less than the required sample rate for the RFDCs, then interpolation or decimation 
stages can be used to reduce the clock rate on the PL. However, if large bandwidths are required then the use of 
SSR may be necessary to meet PL timing constraints.

Another factor to consider is the communication between IPs on the FPGA, as well as communication 
between the PL and PS. Many IPs provided within Vivado are AXI-compliant (as reviewed in Section 13.2.2, 
the three AXI protocols represent ideal interfaces for passing data between IPs), and therefore it tends to be 
beneficial for any custom IPs to also adopt AXI-compliant interfaces. If a large amount of data is to be passed 
between PS and PL, AXI-Stream DMAs will likely be required, whereas for lower-bandwidth signals, such as 
control signals, AXI-Lite interfaces are usually sufficient. 

It is important to consider at this stage how the PS software will be structured and how it will interact with the 
PL hardware. AMD provides a number of drivers for its IPs that can be controlled from the PS, such as the AXI 
DMA. If custom IPs are to be developed, then it may also be necessary to develop custom drivers for them. 
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Additionally, if the design requires the use of AXI-Lite control signals, it is important that the PL hardware 
conforms to AXI-Lite standards and handle them appropriately..

13.8.2.  Development of Custom IPs

The next step is the development and testing of the custom IPs to run on the FPGA. The authors’ preferred 
tools for this stage are Model Composer and HDL Coder, both of which run within the MATLAB/Simulink 
environment. The use of Simulink allows system designers to quickly simulate and test IP functionality before 
integrating it into the Vivado design, e.g. Simulink Source blocks can be leveraged to provide appropriate 
stimulus for simulation, and Sink blocks can be used to visualise results in the time and frequency domains. 
Both tools are able to incorporate AXI-compliant ports in the IPs that they generate. 

An example HDL Coder design is shown in Figure 13.17, highlighting the HDL model that forms the IP core, 
as well as the generation of input stimulus, and inspection of output signals.  

Figure 13.16:  The design flow for creating SDR designs for RFSoC, using PYNQ.
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CHAPTER 13: Design Tools and Workflows for RFSoC SDR
Clocking within Simulink uses the concept of sample time (in other words, sample period), which is the recip-
rocal of the sample rate. As such, the sample time parameter refers to the clock rate required for the IP. 
Generally, a single clock drives all interfaces of the IP, set to match the required sample rate. If any rate changes 
are required within a custom IP, then it is important to note that the IP must be driven by a clock operating at 
the highest sample rate. The tools then generate other clock(s) within the IP, to drive blocks that operate at the 
lower sampling rate(s); required sample rates (and hence clock rates) are normally related by integer factors. 

When designing custom IPs, it is important to consider the inputs and outputs, and how they will interact with 
the wider design. As mentioned previously, the use of the AXI standard is worthy of strong consideration, and 
will allow these IPs to work well with other AXI-compliant IPs within Vivado. AXI-Stream can be used to pass 
RF data through processing chains, while AXI-Lite is useful for control signals, such as enables and resets.

Simulink provides both signal scope and spectrum analyser tools that allow the system designer to test and 
verify the functionality of the model before converting it to an HDL IP. The spectrum analyser is very useful 
for determining that signal data is being processed correctly, while the signal scope can be used to identify 
problems with AXI-Stream interface signals.

13.8.3.  Integrating Custom IPs into Vivado, and Hardware System Design

Once the custom IPs have been developed and tested, they can then be imported into Vivado and integrated 
into a full PL design. This step can be the most critical, as it requires the system designer to have a good under-
standing of the underlying hardware and its capabilities. It is within Vivado where the system designer 
connects the interfaces between the custom IPs designed in MATLAB/Simulink, and the other IPs such as the 
RF data converters; as well as any communication between the PL and PS.

Additionally, this is where clock rates and sample rates are set within the design. Care must be taken to ensure 
that each IP is being driven by the correct clock, as unexpected behaviour can arise otherwise, which can be 

Figure 13.17:  An example HDL Coder block design.
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CHAPTER 13: Design Tools and Workflows for RFSoC SDR
difficult to debug. Most designs featured in this book are run from three independent clock sources: (i) the PL 
clock, which is used to drive AXI-Lite interfaces; (ii) the DAC clock, which drives the IPs associated with the 
transmit path; and (iii) the ADC clock, which drives the IPs on the receive path. In some cases, it may be 
necessary to use clock converters to generate the frequencies that the IPs require.

The most direct method of creating the PL design, and the one that the authors have adopted, is to use Vivado's 
built-in IP Integrator tool. IP Integrator allows the system designer to use a visual, block-based method of 
connecting the IPs together; this is similar to the Simulink environment, and the Model Composer and HDL 
Coder development methods described in Section 13.8.2. Unlike Simulink, however, simulating and testing 
the entire design is non-trivial, and requires the system designer to create suitable stimulus and testbenches for 
all interfaces to verify the operation of the IPs.

An issue that hardware system designers will eventually come across is timing closure, i.e. ensuring that the 
design can support the desired clock rate. This can be especially challenging for designs that use a significant 
amount of hardware resources, and where a high sample rate is required. While the subject of timing closure 
could fill a chapter on its own (if not an entire book!), there are a couple of simple tricks that can make it easier 
for a design to ‘meet timing’. The first is, if possible, to reduce clock rates, especially between long chains of IPs. 
For SDR designs, this may involve decimating the signal earlier in the signal processing chain of a receiver, or, 
conversely, interpolating later in the signal processing chain of a transmitter. Another option is to change the 
Implementation Strategy in Vivado, which defines the approach that is taken to placement and routing. Vivado 
defines a number of different strategies, including some that focus primarily on timing closure (often with 
extended run times, but the potential to achieve better results). With that said, in larger designs this may be 
insufficient, and additional tactics may be required. More information on timing closure can be found in [47].

13.8.4.  Development of PS Software

After the PL design is complete, the software for the PS can be developed. As will be apparent from the various 
designs featured within this book, PYNQ is the authors' preferred framework for developing software on the 
PS. There are many benefits to using PYNQ, including good driver support for standard IPs, as well as simple 
methods to create drivers for custom IPs. The use of Python also enables code to be written quickly and 
efficiently, making it relatively quick to identify any issues on both the PL and PS. Furthermore, the Python 
ecosystem contains a myriad of established libraries, such as Plotly and SciPy, which make it simple to develop 
code used for visualisation and analysis of signals, directly on the PS.

Due to its ease-of-use, PYNQ provides a quick method of confirming that a PL design performs as expected. 
AXI-Lite registers can be read from and written to using the MMIO library, the RFDC driver can be used to 
configure the RF data converters, and the DMA driver makes it simple to pass data between the PS and PL via 
shared memory. If data is only passed between the PL and RFDCs, Integrated Logic Analysers (ILAs) run on 
the PL, or external equipment such as spectrum analysers and/or signal generators, may be required to verify 
the functionality of the transmit and receive paths.
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13.8.5.  Debugging

Debugging is a frustrating process, even for the most experienced engineers, and it can often be difficult to 
determine exactly where a fault lies. Using the design method we have detailed in this section, it is generally 
easier to first check whether the PS software is at fault, as the iteration time for making a change and checking 
whether it fixes the bug is usually much faster than for the PL.

As is common in the debugging process, the solution is usually simple, but determining where the fault is can 
be very time consuming. A useful tool to aid this process is the Python debugger, pdb, which allows the user to 
set breakpoints and methodically step through the PS code. Once the fault is found and fixed, the debugger 
code can be removed from the project.

If the PS software is confirmed to be operating as expected, it may be necessary to revisit the PL design stages 
to solve the problem. Depending on the size of the PL design, it can take a long time to generate a new 
bitstream and, thus, PL debugging can be a time-consuming process, especially if it is necessary to regenerate 
the bitstream multiple times, to attempt different solutions. For this reason, it is beneficial to extensively 
simulate and test the PL hardware before moving to the software development stage.

While there can be any number of different faults within a design, from our experience there are two common 
problems that can occur when developing systems for the RFSoC. As discussed earlier in this section, an 
incorrect clock frequency can result in unpredictable behaviour. The RFDCs are typically driven by external 
clocking infrastructure, and therefore it is important to ensure the correct programming of the clocks, and that 
they are delivering the expected frequency.

Another common problem arises from how AXI-Stream signals are generated and handled within custom IPs. 
Along with the tdata signal, AXI-Stream IPs can also contain various other interface signals, including tvalid, 
tready, and the end-of-packet signal, tlast. If these signals are not synchronised properly with the tdata signal, 
then IPs further along the signal path may not operate correctly. For example, the PYNQ DMA driver requires 
the packet size to be of a specific length when setting up the data transfer. If the tlast signal is pulsed too early 
or too late, indicating the end of the data packet, this will cause the DMA to hang. Similar issues can occur with 
the tready signal, if not handled correctly. More information on the AXI-Stream protocol can be found in [20].

13.8.6.  Project Completion

Once the PS and PL have been verified to work as expected, the software can then be formalised. This may 
include making drivers for the custom IPs, or (if appropriate to the intended use case) creating stimulus or 
visualisation tools, such as the many designs featured in this book. Another possibility that is used extensively 
in these designs, is to abstract away much of the functionality into classes and functions, and then import these 
into the notebook. This allows the code in the Jupyter notebooks to be more streamlined and easier to follow.
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13.8.7.  Further Opportunities

As mentioned at the start of this section, the method we describe here is only one way of designing systems for 
the RFSoC. There are many combinations of software available for both PL and PS to make your own design, 
but this is the method we used to create the various designs featured within this book. Additionally, the source 
code and design files for all these featured designs is available under a permissive license, and may be used as 
is, or as a template to create your own designs.

13.9.  Chapter Summary

This chapter has presented an overview of the design flow for RFSoC, and outlined the design of the hardware 
(PL-based) and software (PS-based) aspects of an RFSoC system. Issues around clocks and timing, and the 
applicability of the flexible DFX method to SDR, were given a special mention. The idea of software-hardware 
co-design, i.e. considering the system design in an integrated manner throughout the process, was highlighted. 

The latter part of the chapter provided some practical guidance on SDR design components that exist outside 
of the RFSoC itself, such as RF connectors, amplifiers, analogue filters, and antennae; as well as discussion of 
the PYNQ-based RFSoC design flow that has been adopted by the authors for system development. 
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Notebook Set G
RFSoC Radio Demonstrator

So far we have used PYNQ for a variety of interesting RFSoC applications, which include the RFSoC spectrum 
analyser and the frequency planner, and we will later investigate an evaluation notebook for the SD-FEC 
blocks. PYNQ is an excellent framework for achieving dynamic user control over RFSoC radio designs. FPGA 
signals and data paths can also be observed and visualised using plots and graphs. In this series of notebooks, 
we will investigate a fully functioning radio system on the RFSoC platform. This includes exploring how 
PYNQ can be used to perform real-time inspection and visualisation of an RFSoC radio design by observing 
different stages of a radio pipeline.

There are three notebooks to investigate throughout this chapter using Jupyter Labs on your RFSoC platform. 
The notebooks and their relative locations are listed as follows:

 RFSoC 01_rfsoc_radio_system.ipynb — rfsoc_book/notebook_G/01_rfsoc_radio_system.ipynb

 RFSoC 02_rfsoc_radio_observe.ipynb — rfsoc_book/notebook_G/02_rfsoc_radio_observe.ipynb

 RFSoC 03_rfsoc_radio_helloworld.ipynb — rfsoc_book/notebook_G/03_rfsoc_radio_helloworld.ipynb

G.1.  The Radio System

The aim of the 01_rfsoc_radio_system.ipynb notebook is to provide users with an overview of the underlying 
radio architecture by exploring the transmitter and receiver radio pipelines. This includes investigating the 
xrfdc Python package, which is responsible for configuring the RFSoC’s data converters. We will also use 
another important package, xrfclk, which configures the RFSoC’s clocking network. Users will also be intro-
duced to the radio dashboard, which is a graphical user interface that controls the system. A diagram illus-
trating the radio system architecture can be seen in Figure G.1.
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This notebook introduces the structure of the data frames used by the transmitter to send data to the receiver, 
which acts as a simple communications protocol. Figure G.2 shows the data frame structure used by the 
RFSoC radio demonstrator. Notice that the data frame has three main sections: the preamble, the header, and 
the payload. Usually the transmitter sends a known sequence of bits (the preamble) that is detected by the 
receiver using synchronisation techniques. Following this, additional information such as the frame number, 
data flags, and frame length are included in a header (these are later extracted and used by the receiver to 
interpret the frame). The payload is the data that is carried by the frame. .

Figure G.1:  Architecture overview of the RFSoC demonstration system.
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G.2.  Observing the Radio Pipeline

After introducing the RFSoC radio design, we will begin observing the transmit and receive radio pipelines 
while the system is operating. This includes performing real-time introspection of the radio system by 
‘tapping-out’ from various stages of the transmitter and receiver pipelines, i.e. drawing out copies of internal 
signals for analysis, without affecting the processing pipelines they originate from. These signals are then used 
to generate waveforms for visualisation (an example plot is shown in Figure G.3). You can begin observing the 
radio pipeline by running the 02_rfsoc_radio_observe.ipynb notebook.

We will also investigate the use of two digital modulation schemes: Binary Phase Shift Keying (BPSK), and 
Quadrature Phase Shift Keying (QPSK). You can swap between BPSK and QPSK during system operation and 
plot the received constellation diagrams, which ideally should resemble those seen in Figure G.4.

Figure G.3:  Example plot of complex time domain data from the RFSoC radio demonstration system.

Figure G.4:  Example plots of BPSK constellation diagram (left) and QPSK constellation diagram (right).
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G.3.  Transmit and Receive: “Hello World!”

At this stage, you will be familiar with the RFSoC radio demonstration system and the digital modulation 
schemes used by the transmitter and receiver. We can now begin sending and receiving more meaningful data 
on our radio platform. To begin, open and run the notebook named 03_rfsoc_radio_helloworld.ipynb.

This example will use the RFSoC radio system to send a “Hello World!” message between the transmitter and 
receiver. We will send this message using three different techniques. The first method uses a simple function 
call to send “Hello World!”. The second method uses Python widgets to allow you to easily enter and transmit 
messages using buttons and a text window (an example of this application can be seen in Figure G.5). The third 
method allows you to broadcast the “Hello World!” message repeatedly using the Python threading library. 

The last part of this notebook series allows you to transmit and receive an image using the RFSoC radio 
demonstration system. The radio system transmits an image repeatedly and rotates the image by 90° after 
every successful transmission. For this demonstration, you can choose between the BPSK and QPSK 
modulation schemes for transmission. An example output of the image transmit and receive RFSoC demon-
stration system is presented in Figure G.6.

Figure G.5:  A collection of Python widgets that allows the user to transmit a message (left) and receive a message 
(right) using the RFSoC radio demonstration system.

Figure G.6:  Transmitting and receiving an image using the RFSoC radio demonstration system.
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Chapter 14
Forward Error Correction
Douglas Allan 

This chapter introduces the fundamental theory of Forward Error Correction (FEC). FEC is used to detect and 
correct errors and thus increase the robustness and reliability of a digital communication system. The term 
forward error correction refers to the fact that errors can be corrected without explicit need for re-transmis-
sions. The ability to detect and correct errors is one of the key advantages of digital over traditional analogue 
communications systems. The use of adaptive Modulation and Coding schemes (MCS) enables robust perfor-
mance across a range of Signal to Noise Ratios (SNRs) at the expense of reduced spectral efficiency, either 
through loss of data rate or a corresponding increase in bandwidth. The implementation of FEC schemes also 
implies increased resource usage and power consumption, due to the additional processing required at both 
transmitter and receiver. As such, practical codes must provide good error correcting performance while also 
ensuring that processing complexity is minimised as much as possible. 

Shannon’s theorem states the maximum possible spectral efficiency that can be achieved by a digital communi-
cations system with error correcting coding for a given , whilst maintaining an arbitrarily small proba-
bility of bit error ( ). This maximum spectral efficiency is known as the Shannon limit, beyond which error 
free communication is not possible. The theory implies the existence of an error correcting code or codes that 
can reach the Shannon limit, but does not specify how these codes would be constructed. In recent years, 
several practical coding schemes have been developed which achieve close to the Shannon limit, including 
Turbo Codes and Low Density Parity Check (LDPC) codes. Different varieties of FEC are found in all modern 
wireless standards including 4G Long Term Evolution (LTE), 5G New Radio (NR) and Wi-Fi 6 (IEEE 
802.11ax), to name a few.

A thorough treatment of FEC would likely require multiple chapters or even an entire book in itself. Since this 
is not the main purpose of the book, we aim to provide the reader with enough detail to appreciate the funda-
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CHAPTER 14: Forward Error Correction
mental role of FEC in digital communications, and its design and implementation in current wireless 
standards. In particular, Hamming codes, Convolutional codes, Turbo codes and LDPC codes are discussed. In 
addition, the design and configuration of the AMD SD-FEC IP Core is described. 

14.1.  Motivation

Error detection and correction schemes play a fundamental role in ensuring the reliable communication and 
storage of digital information. In real world environments, communications and storage systems are subject to 
unwanted noise and other sources of degradation, that contribute to an increase in the error rate and a 
reduction in performance and reliability. Both error detection and correction schemes have been developed to 
detect and attempt to correct errors caused by environmental and other factors.

Due to the utility of FEC schemes, they have become ubiquitous in all modern digital communications 
protocols such as Wi-Fi (IEEE 802.11) and Ethernet which form the backbone of the internet; mobile 
broadband networks (4G/5G); terrestrial and satellite networks for broadcasting of digital radio and television; 
emergency services networks, and deep space communications, to name a few prominent examples. They are 
also widely used in digital storage and media systems such as CDs, DVDs, and both volatile and non-volatile 
computer memory. As an example, error correcting schemes are used in CDs to correct errors resulting from 
scratches and other damage. 

In this book, we are principally interested in error detection and correction schemes used in the context of 
wireless digital communications systems, such as Wi-Fi and 4G LTE / 5G NR. In particular, focus will be 
placed on convolutional codes, Turbo codes and LDPC codes. Hamming codes will also be described as a 
means of introducing the reader to the fundamental principles of error correction coding. 

14.2.  Principles of Forward Error Correction (FEC)

In a wireless digital communication system, information is transmitted in the form of bits, i.e. 0’s and 1’s. The 
bits are grouped into discrete symbols that modulate an RF carrier to transmit information across the wireless 
channel. The discrete nature of a digital communications system is advantageous because the receiver must 
only distinguish between a finite number of possible symbol values, making it easier to successfully decode the 
information in the presence of noise. In contrast, in analogue systems, the receiver must distinguish between a 
potentially infinite number of signal values, making it more difficult to decode information reliably in noise.    

Although digital communications systems do offer better noise immunity than their analogue counterparts, it 
is still possible to have bit errors. The number of bits received in error is proportional to the SNR of the 
received signal. In the context of digital communications, the SNR is defined as, 
462

Downloaded from www.RFSoCbook.com



CHAPTER 14: Forward Error Correction
, (14.1)

where  is the bit rate, B is the bandwidth,  is the energy per bit and  is the noise power per 1Hz of 
bandwidth. The ratio  is colloquially known as the “SNR per bit” and can be used to compare the error 
rate performance of different modulations schemes, since it is independent of bit rate and bandwidth. For each 
modulation scheme, there is a defined mathematical relationship between the Probability of Bit Error, , 
and . 

Figure 14.1 shows the theoretical  vs.  for Binary Phase Shift Keying (BPSK), Quaternary Phase 
Shift Keying (QPSK) and 16-Quadrature Amplitude Modulation (QAM) modulation schemes in an AWGN 
channel. Note,  is expressed in dB, and the BPSK and QPSK curves actually sit on top of each other. 

The theoretical relationship for each modulation scheme places a lower bound on the achievable error rate for 
a given . In other words, for a particular , the error rate on average will not be lower than a 
certain value. For example, considering BPSK at an  of 5dB, , is approximately 0.006, which means 
there will be on average approximately 60 errors in every 10,000 bits. In the case of 16-QAM, there are approx-
imately 400 errors per 10,000 bits. The 16-QAM error rate performance is worse than BPSK / QPSK because 
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CHAPTER 14: Forward Error Correction
there is a larger symbol alphabet, which makes it more difficult for the receiver to distinguish between symbols 
in the presence of noise.

FEC schemes involve generating  coded bits from k data bits, where the group of  bits is called a codeword. 
The coding scheme is designed to ensure that the minimum distance between  bit codewords is greater than 
would be the case for the original  data bits. This means that when errors occur, the likelihood of one 
codeword being confused for another is reduced, allowing the receiver to determine the most likely codeword 
that was transmitted and therefore correct the errors. The ratio  is known as the code rate, and it 
decreases as more redundancy is added. The  redundant bits are known as ‘parity’ bits in reference to the 
most basic error detecting code, which adds a single parity bit to a block of  bits to indicate the evenness or 
oddness of the number 1’s in a data block. 

The relative increase in performance afforded by FEC is known as the coding gain, which is defined as the 
amount  can be reduced while still maintaining a given , measured in dB [176]. In order to illus-
trate coding gain, Figure 14.2 compares  vs.  for uncoded BPSK, and Hamming (7,4) coded BPSK 
with Hard Decision Decoding (HDD). The mechanics of Hamming (7,4) encoding and HDD will be described 
in further detail later on. Looking at the purple curve for the Hamming-coded BPSK example, it can be 
observed that for a  of less than ~  the coding gain is positive, i.e. the Hamming coded BPSK signal 
achieves the same  as the uncoded BPSK signal at a lower . However, for error rates above this 
threshold, the coding gain is actually negative, i.e. a higher is required for the coded signal to achieve 
the same error rate as the uncoded signal. 

The coding gain is not uniform because coding leads to a loss in . As has been established, the process 
of coding involves the addition of redundant bits to the transmitted signal. Although this enables errors to be 
corrected in the receiver and a coding gain to be achieved, it contributes to a loss of  because the bit 
energy is spread across multiple redundant bits [176]. The loss of  is proportional to the code rate, with 
a lower code rate implying a greater loss in  due to the addition of more redundancy. 

Due to the finite error correcting capability of the code, at lower SNRs and higher error rates, it becomes 
impossible to compensate for the loss in  and still achieve a positive coding gain, compared to the 
uncoded case. Improving the coding gain at higher error rates is not very important, since the communication 
is inherently unreliable. However, improving coding at lower values of  e.g. , ensures that reliable and 
robust communication can be achieved at progressively lower values of .  

Shannon’s theorem shows that achieving error free communication (or close to it) at lower and lower values of 
 means sacrificing spectral efficiency. In other words, more redundancy has to be added to ensure 

adequate performance at low values of . The loss of spectral efficiency manifests as a decrease in data 
rate or a corresponding increase in bandwidth. To illustrate this, let us assume that the bit rate allowed by a 
particular channel is  bits per second (bps). In an uncoded system, the maximum data rate would equal , 
since all bits correspond to data. However, when coding is included, the maximum data rate drops to , i.e. 
it drops by a factor of  in order to accommodate the redundant bits. Alternatively, we could retain the 
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CHAPTER 14: Forward Error Correction
same data rate, but this would mean increasing the overall bit rate from  to bps which means 
increasing the required bandwidth [176]. It is usually preferable to accept a reduced data rate since bandwidth 
is an expensive resource. 

It is sometimes possible to jointly design coding and modulation to achieve a coding gain, without having to 
reduce the data rate or increase the required bandwidth [176]. The process of designing both the code and the 
modulation jointly is known as coded modulation, with the most prominent example of this being trellis coded 
modulation, developed in the early 1980s [164], [176].   

Having introduced the fundamental ideas underpinning FEC, we will now move on to discuss the details of the 
encoding and decoding processes for several prominent codes, including Hamming Codes, Convolutional 
codes, Turbo codes and LDPC codes.
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CHAPTER 14: Forward Error Correction
14.3.  Hamming Codes

Hamming codes are examples of linear block codes. In linear block coding, a linear transformation is applied 
to blocks of  bits in succession to produce a series of  bit codewords. The transformation is designed to 
retain a total of  codewords from each of the  possible codewords. Each of the  codewords corre-
sponds to a specific  bit input block. Through the coding process, the minimum distance between codewords 
has been increased to allow one or more errors to be corrected. The block code is typically denoted as an 

 block code.

For binary codes such as Hamming codes, the minimum distance is measured using Hamming distance, which 
is defined as the total number of places where two codewords are different. Figure 14.3 illustrates a Hamming 
distance of 3 between two vectors, where the places with different values are highlighted in red.

In the case of block codes, the number of errors that can be corrected by the code is related to its minimum 
Hamming distance, , which is defined as the minimum Hamming distance between any 
two codewords in the code. The error correcting capability of the code is [176],

 , (14.2)

where  is the number of errors that can be corrected. This relationship is intuitive because the larger  is, 
the more errors that would be necessary for one codeword to be confused with another. A Hamming (7,4) code 
has  = 3, so it can correct one error in a codeword.

The goal of the decoder is to find the most likely transmitted codeword, given the received codeword. In a 
mathematical sense, this corresponds to the codeword which maximises the Conditional Probability Density 
Function (PDF),

, (14.3)

where  denotes the PDF,  is the received and possibly corrupted codeword, and  is the th possible 
codeword. The receiver would compute  conditional PDFs, and the one with the maximum value would 
correspond to the most likely transmitted codeword. Having found the most probable transmitted codeword, 
it would then be possible to determine the most likely -bit data block. 
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CHAPTER 14: Forward Error Correction
The maximum likelihood codeword is the one closest in distance to the received codeword [176]. In HDD 
decoding, this corresponds to the codeword with the minimum Hamming distance from the received 
codeword. Therefore, the receiver does not need to compute a series of conditional PDFs to determine the 
most likely codeword, but rather a series of hamming distances. In SDD, the raw received signal is used, so 
Euclidean distance or Log Likelihood Ratio (LLR) metrics are more common. All of these decoding metrics will 
be discussed in more detail later in this section.

The linear operation used to generate codewords in Hamming codes is a matrix multiplication, and the matrix 
used to generate the code is called the Generator matrix, denoted as . The methods used to derive generator 
matrices are beyond the scope of this chapter, however an example of a generator matrix for a Hamming (7,4) 
code is 

. (14.4)

In this example,  has  rows and  columns. The codeword is generated as, 

, (14.5)

where  is the  codeword,  is the  data block, and  denotes a modulo 2 operation. 
Therefore, the code has added 3 parity bits. 

The Hamming code above is an example of a non-systematic code, because the original data do not appear 
explicitly in the generated codeword, except in the case where the input block is all zeros. This contrasts with 
systematic codes which include the original bits in the coded output. Hamming codes can be either systematic 
or non-systematic. 

The parity check matrix, , for the above Hamming (7,4) code is,

. (14.6)

The parity check matrix has dimensions , and each row represents a different parity check equation. 
Each of these equations must be satisfied for a codeword to belong to a code. If a codeword belongs to the 
code, then the following equality is true, 

, (14.7)
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CHAPTER 14: Forward Error Correction
where 0 denotes an vector with all entries equal to zero, and  denotes transposition. The quantity 
is referred to as the syndrome and is useful in syndrome decoding schemes. In syndrome decoding, the 

decoder computes, 

, (14.8)

where  is the syndrome with dimensions  and  is the received and potentially corrupted 
codeword. If  is an all-zero vector, then the receiver determines that the codeword is error free. However, if it 
is non-zero, the block contains errors. This decoding method has equivalent performance to finding the 
codeword in the code with the minimum Hamming distance from the received codeword. 

As mentioned earlier, HDD involves deciding whether a received symbol corresponds to a 0 or a 1, prior to the 
decoder. This involves passing the received symbols through a decision device, which usually compares the 
received symbols to a threshold to decide if the transmitted bit was a 0 or a 1. This process is illustrated in 
Figure 14.4 for a generic BPSK transceiver with Hamming coding. 

In many cases, the decision device will not make the correct decision and, hence, additional errors will be 
introduced through the HDD process. However, in SDD schemes, no hard decision is made prior to the 
decoder, thus removing this unwanted source of error. 

The simplest SDD scheme relies on computing the Euclidean distance between the received noisy codeword 
and the possible transmitted codewords. The codeword with the minimum Euclidean distance from the 
received codeword is chosen as the most likely transmitted codeword. The Euclidean distance is defined as,

, (14.9)
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CHAPTER 14: Forward Error Correction
where  is the th received symbol and  is the th transmitted symbol and L is the number of symbols corre-
sponding to a single codeword. In general, it is necessary to design the coding scheme in conjunction with the 
modulation to use the Euclidean distance metric. 

An alternative SDD metric is the LLR, 

, (14.10)

where is the probability that the transmitted bit was a 1, given symbol , and  is the 
probability that the transmitted bit was a 0, given received symbol  and  is the natural logarithm. In the 
case of BPSK, only one LLR is calculated due to the fact the each symbol represents one bit. For higher level 
modulation schemes, multiple LLRs care calculated for each symbol since each symbol represents multiple 
bits.

In the case of BPSK in an AWGN channel, the symbols are normally distributed with different mean values, 
depending on whether the original symbol represents a 0 or a 1. This can be understood more clearly by 
observing a noisy BPSK constellation, as in Figure 14.5. 

It is clear that symbols representing 1 are centred around a mean value of 1 and symbols representing a 0 are 
centred around -1. By computing the LLR, the receiver attempts to determine which distribution a given 
symbol is most likely to belong to, i.e. the distribution with a mean of 1, or the distribution with a mean of -1. 
In both cases, the PDFs have the following form, 

, (14.11)
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CHAPTER 14: Forward Error Correction
where  is the random variable (representing individual received symbols in this case),  is the mean of the 
distribution,  is the standard deviation, and  is the base of the natural logarithm. As mentioned previously, 

 will either be -1 or 1, depending on which possibility is being tested. 

The likelihood ratio in (14.10) reduces to the form , which is inconvenient to compute directly in the 
receiver. Therefore, a natural logarithm is applied to the expression, which eliminates the  term and just 
leaves the exponent — hence the name ‘log likelihood ratio’. It can be shown that the LLR expression for BPSK 
reduces to [198], 

, (14.12)

where  is the LLR for the th received coded bit, , and  is an estimate of the noise variance. LLR 
expressions for higher level modulations schemes such as 16-QAM and 64-QAM can be found in [311] and 
[343]. If the received symbol is more likely to represent a 1, the likelihood ratio will be greater than 1 and, due 
to the fact that the natural logarithm of any value greater than 1 yields a positive result, the LLR will be 
positive. Conversely, if the received symbol is more likely to represent a 0, the LLR will be negative. The 
magnitude of the LLR gives an indication of the level of confidence that a received symbol represents either a 1 
or a 0. 

Figure 14.6 compares  vs.  for four different cases: (i) uncoded BPSK; (ii) Hamming (7,4) coded 
BPSK with HDD; (iii) Hamming (7,4) coded BPSK with SDD decoding based on Euclidean distance; and (iv) 
Hamming (7,4) coded BPSK with SDD based on the LLR. 

It is clear that a much more significant coding gain can be achieved when employing soft decisions rather than 
hard decisions in the receiver. Thus is because SDD techniques consider the relative likelihood that a given bit 
is a 0 or a 1 rather than making a sometimes incorrect decision prior to the decoder. As such, they are able to 
determine the correct transmitted codeword with greater accuracy than hard decision decoding, albeit at the 
expense of increased computational cost. There is no performance difference between the LLR and Euclidean 
distance methods, so the LLR approach is preferred — this method is also used heavily in decoding of convo-
lutional codes, Turbo codes and LDPC codes. 

In fading channels, bursts of errors can occur due to deep fading, leading to a significant loss in performance 
in terms of coding gain, even at high SNRs. Therefore, techniques such as interleaving and concatenated 
coding have been developed in order to mitigate the effects of burst errors on error correction performance 
[343]. 
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14.4.  Convolutional Codes

The next important class of linear error correcting codes are convolutional codes. As the name suggests, 
convolutional codes generate codewords through convolution, i.e. the modulo-2 sum of the current bit and a 
finite number of previous input bits. Convolutional codes were first proposed in the 1950s and, in 1967, 
Andrew Viterbi proved that they could be maximum likelihood decoded with moderate complexity, leading to 
their widespread use in wireless communication systems [147],[352]. 

Since their earliest use in deep space communications, convolutional codes have been adopted in many 
wireless standards such as Digital Video Broadcasting – Terrestrial (DVB-T), 4G, and the Wi-Fi family of 
standards. They are also the foundation of more advanced coding schemes such as Turbo codes. 

For convolutional codes, the particular design of the filter structure determines the error correcting perfor-
mance of the code. Unlike block codes, convolutional codes do not use a defined block length, and therefore 
the length of the input data stream can potentially be infinite. In practice though, the input data stream will 
have a defined length, e.g. in packet-based communications protocols such as Wi-Fi. Figure 14.7 illustrates an 
example of a convolutional coder [310]. 
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The first thing to notice about the convolutional coder is the shift register, whose length determines the 
number of past bits which contribute to the current output. In this case, the convolutional code has , 
meaning that two output bits are produced for every one input bit. The code is non-systematic so that the input 
bit does not appear directly in the coded output. 

The output bits are generated by modulo-2 addition (or equivalently, XORing) of current and past inputs. The 
convolutional code is parametrised by its constraint length, , which is equal to the length of the shift register 
plus one, and its generator polynomials, which define how the different bits in the shift register are combined 
to produce the output. In this case, the constraint length is  and the generator polynomials are 

, (14.13)

and, 

. (14.14)

The generator polynomials can be represented as the binary vectors [1 1 1] and [1 0 1], which are 7 and 5 in 
Octal format, respectively. The Octal format is typically used as a shorthand method of describing the 
generator polynomial. Therefore, the convolutional code from Figure 14.7 is parametrised as . 
The terms  and  represent the  data bit and  coded bits respectively.

The error correcting performance of a convolutional code is related to a concept called free distance. This term 
will be described in more detail in Section 14.7, which explores the performance of convolutional codes. Since 
convolutional codes are based on a shift register, they have memory or ‘state’. Hence, the code can be described 
using a state diagram. The number of states is , which in this case is 4, because there are 2 bits in the shift 
register. As a result, the possible states are 00, 01, 10, and 11. The state diagram is shown in Figure 14.8.
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The state diagram shows the encoder behaviour at a single time instant. For example, Figure 14.8 shows that if 
the encoder is in state 00 and the input is a 0, the encoder will remain in state 00 and the output will be 00. 
Conversely, if the input is a 1, the encoder will transition from state 00 to state 10 and the output will be 11. The 
possible state transitions and outputs described in the state diagram are time invariant, i.e. they will be the 
same for any future time instant.

The state diagram does not show how the state transitions evolve with time in response to a given input 
sequence. In order to achieve this, a trellis diagram is employed. The trellis diagram is very important as it 
forms the basis of the decoding method, i.e. the Viterbi decoder and in the MAP decoders described in Section 
14.6. 

Figure 14.9 illustrates the Trellis diagram for the convolutional code described in this section, with a 6-bit 
input sequence, [1 0 0 1 1 1]. 

As can be observed in Figure 14.9, the encoder states are denoted by circles, and the circles are replicated for 
each time step , to reflect the fact that the encoder could be in any one of the states at each time instant. The 
2-bit values along the top of the trellis are the coded bits for each time step, . Together, these bits form the 
transmitted coded sequence, C, corresponding to input sequence, U. For this example, the output codeword is 
C = [1 1 1 0 1 1 1 1 0 1 1 0]. 

In this case, it is assumed that the encoder begins in the 00 state. Therefore, given an input of 1, the next state is 
10 and the encoder output is 11. The transition from state 00 to state 10 at  is drawn as a red line 
connecting the two states. This line is referred to as a branch of the trellis. In this example, there are a total of 6 
branches corresponding to the transitions at each time step. The individual branches combine to form a path
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Figure 14.8:  State diagram for example Convolutional code [310].
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through the trellis. Each possible input sequence, , leads to a unique path through the trellis and the goal of 
the decoding algorithm is to find the most likely path, given knowledge of the encoder structure and the 
received and corrupted coded sequence, . As mentioned, there is technically no limit on the length of U, 
which means that there is a potentially infinite number of possible paths. It is not feasible for a decoder to 
consider all of the possible paths through the trellis. However, the Viterbi decoder addresses this problem by 
retaining only the most likely paths at each time step, and eliminating less likely paths from consideration. 

14.5.  Viterbi Decoder

In order to understand how the Viterbi decoder avoids having to consider all possible paths, let us examine all 
of the possible transitions or branches of the trellis and corresponding outputs, at a single time step. These are 
illustrated in Figure 14.10 for the example Convolutional encoder, introduced in Section 14.7. 

After the initial transient or warm up period, the encoder can be in any one of the four states at time step , in 
the diagram shown in Figure 14.10. After the transient period, the encoder is said to be in steady state. Up until 
this point, some encoder states are not possible, due to the fact that the encoder can only be in one state at 

, and it takes some minimum time for all possible states to be reached. The encoder attains steady state 
at time , i.e. after the transient period of .   

As mentioned earlier, the possible transitions or branches from one state to another are invariant, i.e. they do 
not change. For example, if the encoder is in state 00, it can only ever transition to state 00 if the input is a 0, or 
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Figure 14.9:  Trellis diagram for example convolutional code with input u=[1 0 0 1 1 1].
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CHAPTER 14: Forward Error Correction
state 10 if the input is a 1. This means that there are 8 identical branches to consider at each time step (with two 
emanating from each state). In the general case, there are  branches at each time step (assuming an 

 encoder). Note, this assumption is valid because in practice it is easier to use a convolutional encoder 
with a base rate of 1/2 and employ puncturing to achieve higher code rates [176].

At this stage, you may be asking the question, “How does the Viterbi decoder choose the most likely branches 
at each stage?” Firstly, a path metric is assigned to each state on the left-hand side of Figure 14.7. Having a path 
metric for each state is sufficient, since all paths must originate from either of the four (or  in the general 
case) possible states. At each time step, the Viterbi decoder then computes branch metrics for each of the 
branches. The particular branch metric used differs between decoding methods, but we will assume that it is 
based on Hamming distance. Therefore, the Hamming distance is computed between the received coded bits 
and the outputs for each possible branch. Let us assume that the received bits at time step  are 01. In this case, 
the Hamming distances for each branch are illustrated in Figure 14.11. 

It is clear from the diagram that, for each state, there are two possible branches from current states to next 
states. For example, to arrive at state 00, the branch could have originated from either state 00 (corresponding 
to an input of 0) or from state 01 (also corresponding to an input of 0). We can also observe that for each next 
state, there are two converging branches from current states. 

The Viterbi decoder exploits this fact to eliminate paths by selecting only the most likely of the converging 
paths. To do this, it first adds the branch metrics for the converging paths to their corresponding path metrics. 
For example, for state 00, the branch metric for the path originating from current state 00 is added to its path 
metric. Equally, the branch metric for the path originating from state 01 is added to its path metric up to time 
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Figure 14.10:  All possible branches of trellis at a single time step for convolutional encoder.
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CHAPTER 14: Forward Error Correction
k. The two resulting path metrics are then compared, and whichever has the minimum value (assuming the 
Hamming distance metric), corresponds to the most likely converging path. The other path is then eliminated 
from further consideration. The path metric for the path in question is then updated with its new value. The 
process described here is known as Add Compare Select (ACS) and is expressed mathematically as [245],

, (14.15)

where  denotes the next state,  denotes the first current state,  denotes the second current state, 
denotes branch metric and  denotes path metric. Note, ACS equation can also use the max operator 
depending on the branch metric that is employed. Intuitively, the converging path that is selected corresponds 
to a coded sequence that is closest in Hamming distance to the received codeword, up to time . 

Let us assume for argument’s sake that by time  the path metrics are 5, 7, 6 and 8 for the paths emanating 
from states 00, 01, 10, and 11 respectively. Applying (14.15) to the example, four of the converging paths are 
retained (one for each state) and the other four paths are discarded, as illustrated in Figure 14.12.

As can be observed, the converging paths with the lowest updated path metric were selected as the surviving 
paths. However, for state 01, both converging paths had an accumulated path metric of 8. In the case of a tie, 
the survivor path is chosen randomly, like flipping a coin. 

The remaining paths after ACS are called the survivor paths and these are stored in a matrix. The matrix has 
dimensions  where  is the final time step being considered. Therefore, at each time step, the 

 (4 in this case), survivor paths are stored in one column of the survivor path matrix. The survivor paths 
are recorded as the states from which the surviving paths originated at time, . After the full coded sequence 
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Figure 14.11:  Hamming distances for all branches at time step k, assuming input of 01.
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CHAPTER 14: Forward Error Correction
has been observed at time , the Viterbi decoder simply selects the surviving path with the minimum overall 
path metric (again assuming Hamming distance). This path is judged by the decoder to correspond to the 
coded sequence that is closest in Hamming distance to the received codeword, and therefore the maximum 
likelihood sequence. For SDD techniques such as Euclidean distance and LLR, the metrics are different but the 
same principle applies.

The final stage of the Viterbi decoder is to estimate the original input data sequence. In order to do this, the 
decoder uses a method called traceback. This process starts by indexing the survivor path matrix at the final 
column (corresponding to time ) and the row corresponding to the state where the most likely path ends. 
For example, let us assume that the final state is determined to be 00, corresponding to row 1 of the survivor 
path matrix. Let us then assume that for entry , the value is 01, which tells the decoder that the path 
came from state 01. Since the decoder is aware of the structure of the encoder, it knows that this transition 
must have been triggered by an input of 1. Therefore, it estimates that the last bit in the input sequence is a 1. 
The decoder then proceeds through every column of the survivor path matrix until it has estimated the entire 
input sequence. 

It should be noted that the value of N does not necessarily need to be the equal to the length of the original 
input sequence. This is because for large values of N, the survivor path matrix can be come very large, which 
can lead to prohibitive costs in terms of memory. Instead, a traceback depth that is smaller than the length of 
the input sequence is specified. As a rule of thumb, For r = 1/2 convolutional coders, a traceback depth of 5K 
provides a good trade-off between decoding performance and memory consumption.

00

01

10

11

input: 01
Time step k

85 6

3
7 8

6

6

Current path metrics

3

Updated path metrics
for survivor paths

3

Updated path metrics
for discarded paths

6

8

8

8

10

Figure 14.12:  Survivor paths after performing ACS procedure.
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CHAPTER 14: Forward Error Correction
Determining the state where the most likely path ends requires finding the maximum of all  path 
metrics. which can add latency for large values of K. Moreover, there is a chance that two paths may have the 
same final path metric, which can result in the Viterbi decoder making an incorrect decision on the original 
input sequence. These problems can be resolved by a technique called zero termination which involves 
inputting a sequence to the encoder at the end of the data sequence, which ensures that the encoder ends in an 
all-zero state. Hence, it means the decoder will always choose the path ending in state 00 at the end of the 
decoding process. This technique is applicable to packet based communications systems where a finite length 
input sequence is passed through the convolutional coder. Zero termination involves adding additional redun-
dancy to make the encoder return to the all-zero state after the input sequence has ended, which is not always 
acceptable; this issue can be addressed using the method of tail biting [267]. 

As with the Hamming codes, the Viterbi decoder can use both hard decision and soft decision branch metrics. 
The use of soft decisions avoids the errors introduced by hard decision decoding, leading to improved coding 
gain. Assuming an  encoder, the LLR branch metrics are calculated by correlating the two-bit LLRs at 
each time step with a length 2 vector whose value depends on the coded output associated with a particular 
branch. As such, the LLR approach finds the path whose corresponding output correlates best with the 
received LLR sequence. 

In practice, using raw LLR values in the Viterbi decoder is computationally intensive and costly, because they 
need to be represented by large wordlengths. Therefore, it is typical for the LLRs to be quantised through an 
‘analogue to digital’ conversion process, to 3 or 4 bit values, before being passed into the decoder. This makes 
the decoder much more computationally and resource efficient [250]. The performance of Viterbi decoding 
with both hard and soft decision metrics will be explored further in Section 14.7. Before we reach that 
discussion, the MAP/BCJR, Log MAP and Max Log MAP decoders for convolutional codes will be introduced. 
These decoders are important as they form the basis of Turbo coding, which is reviewed in Section 14.9.

14.6.  The BCJR, Log MAP and Max Log MAP Algorithms

Although the Viterbi decoder is the most common decoding algorithm for Convolutional codes, there is 
another competing approach which applies the concept of a posteriori probabilities, known as the BCJR
algorithm [10],[102]. The BCJR algorithm was first proposed in 1976 and is named after its four inventors: 
Bahl, Cocke, Jelinek and Raviv. It is also known more generically as the Maximum a Posteriori (MAP) decoding 
algorithm [10]. 

Due to its computational complexity and lack of performance advantage compared to the Viterbi decoder, the 
BCJR algorithm is usually not chosen for decoding convolutional codes. However, it does have one clear 
advantage over the Viterbi decoder, namely that it produces soft decision estimates for the original sequence, 
i.e. a series of a posteriori LLRs for each input bit. Since it accepts a soft input (i.e. a series of LLRs for the 
received coded sequence) and produces a soft output (i.e. a series of LLRs for the original bit sequence), it is 
known as a Soft Input Soft Output (SISO) algorithm. In contrast, the traditional Viterbi decoder accepts a soft 
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CHAPTER 14: Forward Error Correction
input and produces a hard output, which means it is a Soft Input Hard Output (SIHO) algorithm. A SISO 
variation of the Viterbi algorithm called the Soft Output Viterbi Algorithm (SOVA) was developed by 
Hagenauer in 1989 [186]. In addition, simplified versions of the BCJR algorithm known as the Log MAP and 
Max Log MAP algorithms were proposed in the 1990s [10]. 

The iterative decoding of Turbo codes leads to near “capacity achieving” performance [107]. More details on 
Turbo codes will be given in Section 14.9. 

14.6.1.   The BCJR Algorithm 

In all cases, the BCJR and its variants compute a series of N a posteriori LLRs for each input bit, uk, noting that 
there is a total of N bits in the original input sequence. This contrasts with the input LLRs (introduced earlier) 
which are computed on the received coded bits, . Therefore, the SISO algorithm accepts LLR inputs and 
produces LLR outputs. The a posteriori LLRs are denoted as [10], 

. (14.16)

It is known as an “a posteriori” LLR because it measures the probability that a given bit, uk, is a 1 or a 0 given 
observation of the full received coded sequence. In decoding of a convolutional code, the signs of the a poste-
riori LLRs are used to determine the original bit sequence.   

In order to gain a level of insight into how this algorithm works, let us first consider how to estimate the condi-
tional probability,  The conditional probability can be re-written as, 

, (14.17)

where  is the joint probability of  and , i.e. the probability that  and the received 
coded sequence is . The same approach can be applied to  and, therefore,  can be 
expressed in terms of joint probabilities, 

. (14.18)

Note, the  terms cancel when formulating the ratio in (14.18). To calculate the joint probability 
, we need to consider all branches of the trellis corresponding to an input of 1. These are illustrated 

in Figure 14.13 for the example encoder, introduced in Section 14.4. 
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P Ĉ 
-------------------------------=

P uk 1= C  uk 1= Ĉ uk 1=
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CHAPTER 14: Forward Error Correction
As we know, each branch corresponds to a transition from one state to another. Since there are four possible 
transitions corresponding to an input of 1 (  in the general case) and the probability of any of them 
occurring is simply the sum of the joint probabilities for each sate transition [10], 

, (14.19)

where  is the joint probability that the encoder transitions from state  to ,  is the received 
sequence, and i indexes the possible transitions associated with an of input 1. An identical expression can also 
be derived for . 

Having derived the expression in (14.19), the question remains as to how to estimate the  terms for 
each possible branch at each time step k. The essential idea underpinning this is to consider the received 
sequence, , to be composed of three sub-sequences: one representing the past components of , one repre-
senting the present value of  and, finally, one representing the future values of  [10]. As such,  is 
further factorised as, 

, (14.20)

where ,  and  are the past, present and future values of  respectively. Through further derivation, 
this expression is reduced to the product of three sub-terms [10], 

, (14.21)
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Figure 14.13:  Branches of trellis corresponding to an input of 1 at time step k.
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CHAPTER 14: Forward Error Correction
where the α, ζ and β terms now relate to the past, present and future sub-sequences of  respectively. Firstly, 
αk(cs) is expressed mathematically as [10], 

, (14.22)

which is the joint probability that the encoder is in current state, cs, at time k and the past values of  are . 
Hence, there are   terms at each time step (one for each possible state). 

Secondly, the ζk(cs,ns) term is, 

. (14.23)

This is the conditional joint probability that value of  at time k is  and the encoder transitions to state  
given that it is in current state . Note, the value  represents two bits because there are two coded bits for 
every time step k. Finally, the term βk+1(ns) is,

, (14.24)

This is the probability that the sequence, , has the future values, , given the encoder transitions to state ns, 
at time k+1. By definition, measuring this probability requires knowledge of what happens at time k+1 from 
the perspective of time k. This is clearly not possible and hence the algorithm must wait until all elements of  
have been received before calculating βk+1(ns). Therefore, α and ζ are calculated on the forward pass of the 
trellis and β is calculated on the backward pass, i.e. once the entire sequence has been received. As such, the 
BCJR algorithm is sometimes known as the forward-backward algorithm. The quantity  can now be 
written in terms of α, ζ and β as, 

. (14.25)

An identical expression can be derived for  except the index j goes through all branches associated 
with an input of 0,

. (14.26)

Therefore, the LLR expression for each bit  is, 
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k 1+ ns  P Ĉf ns =
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. (14.27)

Now that we have an expression for the a posteriori LLRs, the final step is to derive final expressions for α, ζ 
and β. For the sake of brevity, we do not attempt to derive these in this book, but the reader is referred to [10]
for a detailed treatment of the BCJR algorithm. In the case of an AWGN channel, ζk(cs,ns) reduces to [10], 

, (14.28)

where L(uk) is the a priori LLR for bit uk,  is the qth expected output bit associated with the branch in 
question at time k,  is the qth received coded bit at time k, and Lc is called the channel reliability value. 
Note, the L(uk) term becomes important in Turbo decoding, where each decoder passes improved estimates of 
L(uk) to the other decoder over several iterations. It can be observed that the  terms have a form similar to 
the normal probability density function, which is to be expected for an AWGN channel. The correlation on the 
right hand side is identical to the correlation used to calculate the branch metrics in the Viterbi decoder for an 
LLR input. Since there are 2 x 2K-1 P(cs,ns,ċ) terms, i.e. one per possible branch, there are 2 x 2K-1 ζk(cs,ns) terms 
to calculate at each time step k.

 The α values are calculated using the following recursive formula [10], 

. (14.29)

The process of calculating αk(ns) for the example encoder with ns = 00 is illustrated in Figure 14.14.

As can be observed, the  terms are calculated in the forward direction, i.e. αk(ns) is calculated from the 
previous values αk(cs1) and αk(cs2). It is clear that the branches converging to state 00 are mutually exclusive 
(only one can occur at a given time), so αk(ns) is given by the sum of the two products αk(cs1)ζk(cs1,ns) and 
αk(cs2)ζk(cs2,ns). Since there are a total of 2K-1 possible states, there are 2K-1 αk(ns) values calculated at each 
time step, k. Similarly to α, the β values are calculated as,

. (14.30)

L uk Ĉ 
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CHAPTER 14: Forward Error Correction
As described earlier, the β values cannot be calculated until the entire sequence, , has been received. 
Therefore, they are calculated on the backward pass through the trellis, with the β values from the current time 
step being used to calculate the β values at the previous time step. To initialise β, the final state of the encoder 
must be known, and this may be achieved using zero termination. Once all of the α, β and ζ values have been 
calculated through the forward and backward passes of the trellis, the a posteriori LLRs can be calculated using 
(14.27) and the BCJR algorithm is complete. The α and β terms are typically normalised to address numerical 
stability issues [10]. 

14.6.2.  The Log MAP and Max Log MAP Algorithms 

From the previous section, it is clear that the BCJR algorithm is very computationally complex, requiring a 
large number of multiplications and to calculate the ,  and  values for each time step. In order to reduce 
this complexity and make the algorithm more suitable for software and hardware implementation, the Log 
MAP and Max Log MAP variants were proposed. In implementations of Turbo decoders, these algorithms are 
generally preferred over the BCJR algorithm. 

Both of these simplified algorithms are based on the fact that multiplication and division are equivalent to 
addition and subtraction in the logarithm domain. The ,  and  values are replaced by A, B and . The 
natural logarithm also eliminates the e term in (14.28) which simplifies the calculation of the  terms. The  
term is computed by taking the natural logarithm of both sides of (14.28) [10], 

. (14.31)
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CHAPTER 14: Forward Error Correction
In a similar fashion, to get the A terms we take natural logarithms of both sides of (14.29), 

. (14.32)

If we use the fact that , (14.32) can be re-written as, 

. (14.33)

It can be observed that the expression in (14.33) has the form , which is equivalent to, 

, (14.34)

where a and b are just generic exponents. In the Log MAP algorithm, the expression in (14.34) is used directly 
with  and , where  and  are the first and second states that 
can transition to state  at time k. A similar approach can be used to derive the B terms, that are computed on 
the backward pass through the trellis. In the Max Log MAP algorithm, the  correction term is 
dropped, which simplifies the computation since only a max operation is performed. The final LLR compu-
tation for the Log MAP and Max log MAP algorithms is, 

, (14.35)

where  represents all transitions or branches corresponding to an input of 1 and  represents all transitions 
corresponding to an input of 0. As before, the max operator differs between the Log MAP and Max Log MAP 
decoders. In the case of the Log MAP, the max operation involves more than two variables and therefore it 
cannot be computed directly. However, it can be estimated through recursion (See appendix of [10]). It is clear 
that all of the multiplications and divisions associated with the BCJR algorithm have been replaced with 
additions and subtractions and therefore the computational complexity has been reduced significantly, which 
is the purpose of these algorithms. 

Since the Max Log MAP uses an approximation without the correction term, it has slightly poorer perfor-
mance than the Log MAP algorithm in Turbo decoding because it leads to biased extrinsic information. The 
log MAP and BCJR algorithms are indistinguishable in terms of decoding performance. In practical imple-
mentations of Turbo decoding, the Max Log MAP is usually the preferred approach. 
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CHAPTER 14: Forward Error Correction
14.7.  Performance of Convolutional Codes

In this section, the performance of convolutional codes and their various decoding approaches will be 
assessed. As mentioned previously, the error correcting capability of a convolutional code is determined by a 
quantity known as free distance. The number of errors that can be corrected is given by, 

, (14.36)

where fd denotes free distance. The free distance is defined as the minimum Hamming distance between the 
all-zero codeword, and codewords corresponding to paths beginning and arriving in a future all-zero state 
[245]. By definition, the paths that depart and then arrive back at the all-zero state at a future time instant are 
those closest to the path corresponding to the all-zero codeword. The one whose output codeword is closest in 
Hamming distance to the all-zero codeword requires the smallest number of errors to be confused with the all-
zero codeword, and thus defines the error correcting capability of the code. Note, the path whose codeword 
has the minimum Hamming distance from the all-zero codeword does not always correspond to the shortest 
path starting and arriving at a future time in the all-zero state. Figure 14.15 illustrates the free distance for the 
example encoder in Section 14.4. 

It can be observed that the path goes , i.e. the path has three branches corresponding to 6 
coded output bits. In this case, the path with the minimum Hamming distance is the shortest possible path 
leaving and then arriving back in the all-zero state. The Hamming distance from the all-zero codeword, or 
alternatively the path metric for this path (assuming HDD), is 5, and therefore, fd = 5. Substituting into (14.36), 
the convolutional code can fix t = 2 errors in every 6 coded bits. As long as there are no more than 2 errors in 
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every 6 coded bits, the convolutional code can correct all of the errors in a coded sequence [176],[245]. As 
such, convolutional codes do not tend to cope well with bursts of errors. 

The process of designing a convolutional code usually begins by defining a maximum value for K (which 
defines the amount of resources and computation required for encoder and decoder). Assuming r = 1/2 and a 
particular value for K, there are a limited number of possible values for polynomials G1 and G2. Therefore, the 
designer of the code will search for the values of G1 and G2 that maximise the free distance and hence the error 
correcting capability of the code [245]. 

Having described the factors defining the performance of a convolutional code, we will now assess the Pbe vs. 
Eb/N0 performance for the example encoder, with different decoding metrics and algorithms. Specifically, the 
Viterbi decoder with Hamming distance and LLR metrics, and the BCJR, Log MAP and Max Log MAP and 
decoders. As before, BPSK modulation is assumed in all cases. The results are shown in Figure 14.16. 

Firstly, for the case of the Viterbi decoder with HDD, a positive coding gain is achieved for Eb/N0 values greater 
than 4 dB, where it reaches a maximum of just over 1 dB. In contrast, the Viterbi decoder with LLR begins to 
exhibit a positive coding gain above an Eb/N0 of 1 dB and about 2 dB better than the HDD decoder. This clearly 
demonstrates the performance benefit inherent in using soft decision decoding. 
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In addition, it can be observed that the BCJR, Log MAP and Max Log MAP decoders achieve identical perfor-
mance to the Viterbi decoder, based on LLRs. This is consistent with earlier statements that the BCJR and its 
variants do not offer any performance advantage over the Viterbi decoder for convolutional codes. The perfor-
mance difference between Log MAP and Max Log MAP only becomes evident in Turbo decoding. 

14.8.  FEC for Fading Channels

In most cases, codes are designed to deal with a specific number of errors within a given period of time. This 
approach is well suited to AWGN channels and higher SNR conditions, where the probability of a particular bit 
being in error is independent of any previous bits, and thus it is less likely for errors to occur in bursts. In 
multipath fading channels, deep fades occurring due to destructive interference of signal paths can lead to long 
bursts of errors, which leads to a significant loss of performance. This is especially true in slow fading channels 
where the deep fade can last for a long period of time [176]. The resilience of a coding scheme to deep fades 
can be improved through techniques such as interleaving and concatenated coding. 

The basic idea behind interleaving is to spread coded bits across time, such that when a burst of errors occurs, 
it affects bits that were not adjacent to each other in the original bit stream. As such, after de-interleaving in the 
receiver, the error bits are well separated in time, and the decoder is able to correct them more effectively. The 
simplest form of an interleaver is a block interleaver, designed for (n,k) block codes. The block interleaver is 
effectively a matrix with n columns and d rows, where d is known as the depth of the interleaver. Figure 14.17
illustrates a block interleaver for a Hamming (7,4) code with d=4.

At the left-hand side of the diagram, the coded bits are produced by the Hamming (7,4) code. As we know, a 
single codeword constitutes 7 bits, as highlighted in blue. Once the block interleaver is full, the bits are read out 
column-wise instead of row-wise. As such, there is a gap of d - 1 = 3 bits between each bit in a codeword. 
Therefore, assuming an error burst of d bit periods, only 1 bit in the codeword is affected rather than 4 bits 

Block Interleaver

Depth 

c0 c1 c2 c3 c4 c5 c6

c7 c8 c9 c10 c11 c12 c13

c14 c15 c16 c17 c18 c19 c20

c21 c22 c23 c24 c25 c26 c27

c0c1c2c3c4c5c6c27

b0c1c2 c7c14c21c8c15c22

Figure 14.17:  Block interleaver for a Hamming (7,4) code with d = 4.
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CHAPTER 14: Forward Error Correction
without interleaving. This leaves only one error for the code to correct rather than 4, which would be impos-
sible. In general, if the interleaver is designed such that dTs > Tc where Ts is the bit period and Tc is the channel 
coherence time, then each individual bit in a codeword will experience independent fading channels, leading 
to much improved performance in the presence of deep fades. An interleaver that is designed to achieve dTs > 
Tc is known as a deep interleaver [176].

Another approach that provides resilience in fading environments is concatenated coding. In a concatenated 
code, the encoder consists of two constituent encoders — an inner code and outer code. These are usually 
separated by an interleaver to provide additional protection against burst errors. A generic architecture for a 
concatenated code is shown in Figure 14.18.

One of the earliest examples of a concatenated code was used in a deep space application for the Voyager 
unmanned spacecraft [235]. This code was chosen because it gave a better coding gain than the alternative un-
concatenated scheme at the error rate 10-6, which was deemed necessary to support image compression 
algorithms. It was found that the decompression algorithm was very sensitive to bit errors and especially burst 
errors. In the original system, a convolutional encoder was chosen with K = 7 and r = 1/2. Despite the good 
performance of convolutional codes, they still make decoding errors and these tend to occur in bursts. 
Therefore, an RS code was chosen as the outer code due to its burst error correcting capability [235]. In fading 
channels, the outer code and interleaving process can be used to compensate for the sensitivity of the inner 
coder to burst errors, and thus increase the encoder resilience in deep fading channels.

14.9.  Turbo Codes 

Having laid the necessary groundwork it the previous sections, it is now possible to introduce Turbo Codes. 
Turbo codes were first proposed by C. Berrou et al in their landmark 1993 paper “Near Shannon Limit Error-
Correcting Coding and Decoding: Turbo Codes” [107]. It was shown that the parallel concatenated convolu-
tional coding scheme and iterative decoding procedure could achieve a Pbe of 10-5 at an  of 0.7dB, 
which is 0.7dB from the Shannon limit (which specifies a Pbe of at an of 0dB for a binary 
modulation scheme with r = 1/2) [107]. 

As mentioned previously, a Turbo encoder usually consists of two parallel convolutional encoders which 
operate on a data sequence and an interleaved version, respectively. This approach contrasts with the serial 

Outer Encoder
(e.g. RS) Interleaver Inner Encoder

(e.g. conv.)

Generic Concatenated Code

Figure 14.18:  Concatenated coding scheme.

Eb N0
10 5– Eb N0
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CHAPTER 14: Forward Error Correction
concatenation scheme described in Section 14.8, where the output of the first encoder was interleaved and 
then passed to the second encoder.

The constituent encoders of a Turbo encoder are typically identical (in which case the Turbo code is 
symmetric) and are Recursive Systematic Convolutional (RSC) codes [107]. Recall that a systematic encoder 
uses the data bits directly in the coded output, and that a recursive encoder has an IIR structure. RSC encoders 
generally have a greater error correcting capability than their non-recursive and non-systematic counterparts 
[107]. Figure 14.19 shows a high-level architecture for a generic Turbo encoder [10]. 

On the left hand-side, the input stream, U, enters the first RSC encoder which is assumed to have a code rate of 
r = 1/2. Unlike a conventional convolutional encoder, the Turbo code operates on a block of bits with a defined 
length. Before entering the second encoder, the input block, U, is passed through an interleaver denoted by the 
symbol, Π.

As was established earlier, an r = 1/2 convolutional encoder produces 2 bits for every 1 input bit. In a 
systematic architecture, the first bit is simply the original input bit and the second bit is a parity bit. Therefore, 
each constituent encoder in the Turbo encoder produces a systematic bit and a parity bit, leading to a total of 
four output bits for every input bit. However, the systematic bit of the second encoder is discarded and only the 
parity bit is retained. The second systematic bit is discarded because it can be derived from the first systematic 
bit using the interleaver at the receiver (the systematic bits at the output of the second encoder are just an inter-
leaved version of the original bit sequence). 

Having discarded the second systematic bit, the three outputs of the Turbo encoder are the systematic bit, , 
the 1st parity bit, , and the 2nd parity bit  at time k. Therefore, the base rate of the encoder is r = 1/3. 
As with standard convolutional codes, the output can be punctured to achieve higher code rates [10] (the 
details of this process are beyond the scope of this chapter).

∏

U

U(∏)

c
ks

c
kp1

c
kp2

RSC Encoder 1

RSC Encoder 2

Figure 14.19:  Turbo encoder.
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CHAPTER 14: Forward Error Correction
As usual, it is assumed that both encoders begin in the all-zero state. The encoders are also zero terminated to 
ensure that they end in the all-zero state, as required by the BCJR algorithm and its variants. Unlike the non-
recursive convolutional encoder, it is not possible to zero terminate the code by passing  zeros to the 
input because of the presence of feedback. In [137], a method was derived to zero terminate a recursive convo-
lutional code, which is best illustrated with an example, as shown in Figure 14.20 [201].

When the input data is being passed into the encoder, the switch remains in position A. After all data bits have 
been processed, the switch moves to position B. Therefore, the ‘inputs’ are in fact the final  bits stored in 
the shift register. The XOR operation of a bit with itself on the left-hand side results in an output of 0, which 
eventually leads to each element of the shift register returning to zero (i.e. the encoder terminating in an all-
zero state). The  termination bits lead to an additional  bits appended at the end of each 
encoder output, hence a total of  additional bits at the output of the Turbo encoder. Once the final 
output is formed for the input block, U, the bits can be serialised and prepared for transmission over the 
channel.

Due to the fact that each encoder is systematic and uk = cks, it can be shown that [10],[107], 

, (14.37)

where L(uk) is the a priori LLR for bit uk,  is the LLR for the received systematic coded bit, and Le(uk) is 
the ‘extrinsic’ information about bit uk, which is gained through the decoding process. The extrinsic infor-
mation is additional knowledge derived from the parity bits. 

It is clear that  (the output of the MAP decoder), is the sum of two of its inputs (L(uk) and ) and 
the extrinsic information, Le(uk). This means that the only ‘new’ information contributed to the estimate of 
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Figure 14.20:  Zero termination of recursive convolutional code.
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CHAPTER 14: Forward Error Correction
 by the decoding process is the extrinsic information. Therefore, because it represents additional infor-
mation, it is Le(uk) that is passed between the constituent decoders in the iterative decoding process. More 
specifically, the Le(uk) term at the output of each decoder is used as a more accurate estimate of L(uk) at the 
input of the other decoder [10]. 

The underlying concept is that by passing the additional information gained about  at the output of one 
decoder to the input of the other decoder, this will lead to a progressive improvement of the estimate of 

 over several iterations. However, eventually the algorithm will converge to a solution and the infor-
mation passed between decoders will no longer improve the estimate of . The Turbo decoding process 
is usually stopped after a fixed number of iterations, or when a convergence criterion is satisfied. Note, it can 
sometimes take a large number of iterations to converge to a solution, so the former approach is typically 
preferred to ensure that the decoding time is deterministic. The process of passing extrinsic information 
between decoders means that a Turbo decoder is sometimes called a message passing algorithm. Figure 14.21
illustrates the Turbo decoding architecture [10]. 

From the perspective of the first decoder, it can be observed that the inputs are the LLR for the systematic bit, 
, the LLR for the first parity bit, , and L1(uk), which is the improved estimate of L(uk) derived as a 

de-interleaved version of the extrinsic information Le2(uk), from the second decoder. 

The extrinsic information from Decoder 1 is estimated as, 

, (14.38)
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Figure 14.21:  Turbo decoder.
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CHAPTER 14: Forward Error Correction
where  is the estimate of  at the output of the first decoder. A similar equation can be derived 
for the second decoder. 

It can be observed that Le1(uk) is interleaved before being passed into the second decoder as L2(uk). This is 
because the input to the second decoder is an interleaved version of the input to the first decoder. In the event 
that the first decoder makes a burst of errors, the interleaver is able to spread out the errors, thus minimising 
their impact on the second decoder. 

The interleaving process also ensures that the inputs to each decoder are sufficiently uncorrelated to maximise 
the usefulness of the information that each decoder can pass to the other [306]. If each decoder had to use the 
same input information, they would produce the same output, and thus would not be able to exchange any new 
or useful information with each other. The choice of an appropriate interleaver is the most important aspect in 
the design of Turbo codes but does incur significant latency [306]. After all iterations are completed, the output 
LLRs of the second decoder, , are de-interleaved to form the final estimates of and a series of 
hard decisions are made to produce the final estimate of the data bits, .

In order to assess the performance of Turbo codes, we will consider the Turbo coder used in the 4G LTE 
standard. The Turbo coder is used for coding of several transport channels in the LTE standard including the 
Downlink – Shared Channel (DL-SCH), Uplink – Shared Channel (UL–SCH) and the Paging Control Channel 
(PCH) [4]. Both of the constituent RSC encoders have constraint length  and the overall transfer 
function is [4], 

. (14.39)

The ‘1’ in (14.39) represents the systematic bit. The generator polynomials g0(D) and g1(D) are given by, 

, (14.40)

and   ,           . (14.41)

where g0(D) is the feedback polynomial and g1(D) is the feed forward polynomial. The code is expressed in 
Octal format as [13 11]8. The turbo coder is defined for a specific set of input block lengths, K, with the 
maximum size equal to 6,144 bits. The interleaving function is given by, 

, (14.42)

where f1 and f2 are determined by the block length K as defined in Table 5.1.3-3 of [4], and i is the bit index, 
ranging from 0 to K-1. Figure 14.22 shows the achieved Pbe vs. Eb/N0 for the LTE Turbo coder with BPSK 
modulation and an input block length of K = 6,144 bits. The Max Log MAP algorithm is employed for each 
constituent decoder. 
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CHAPTER 14: Forward Error Correction
The plot shows the Pbe vs. Eb/N0 curves for 1, 2, 3, 5 and 10 iterations of the Turbo decoder, respectively. It can 
be observed that the error correction performance improves as the number of iterations increases. However, 
the performance improvement between 5 and 10 iterations is much smaller than between 1 and 5 iterations. In 
general, there will be a negligible improvement in the estimate of  after a certain number of iterations, 
at which point the decoding algorithm can be stopped. This maximum number of iterations is usually set to a 
value between 10 and 20. In the case of 10 iterations, after an initial negative coding gain, Pbe drops off very 
sharply, and a significant coding gain is achieved compared to the uncoded case. This demonstrates the 
excellent performance that can be achieved using Turbo coding. 

14.10.  LDPC Codes

The final important class of codes that will be described in this chapter are Low Density Parity Check (LDPC) 
codes. In recent years, they have found application in several wireless communications standards including 
most recently the 5G NR standard. In similar fashion to Turbo codes, LDPC codes exhibit excellent error 
correcting performance (as close as 0.0045dB from the Shannon limit has been demonstrated [123]) and can 
be near optimally decoded using iterative graph based algorithms, with moderate computational complexity. 
LDPC codes generally outperform Turbo codes at higher code rates and hence are better suited to high 
throughput applications. 
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Figure 14.22:  Performance of LTE Turbo Coder with K = 6,144 block size.
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CHAPTER 14: Forward Error Correction
LDPC codes were discovered by Robert G. Gallager and were first published in his 1960 PhD thesis, “Low 
Density Parity Check Codes” [169]. As such, they are sometimes called Gallager codes. Due to the limited 
computational power available at the time, it was not possible to demonstrate their near capacity achieving 
performance, which lessened their impact. Furthermore, the belief that the concatenated RS and convolutional 
code was the most practical approach for error correction, led to LDPC codes being largely forgotten for the 
next 30 years [111]. One notable exception to this rule was Tanner [111],[333], who first showed that LDPC 
codes could be represented using bipartite graphs and invented the min-sum and sum-product decoding 
algorithms. As such, the bipartite graphs describing LDPC codes are called “Tanner Graphs”. The AMD SD-
FEC IP core employs the normalised min-sum algorithm for decoding [45]. 

In the early 1990s, Turbo coding showed the excellent performance that can be achieved using iterative 
decoding algorithms, which combined with the fact that Turbo codes were patented, created renewed interest 
in LDPC codes [111]. One of the early proponents were Mackay and Neal, who demonstrated the advantages 
of codes with low density parity check matrices and showed that pseudo-randomly generated LDPC codes 
performed within 1.2dB of the Shannon limit [111],[236]. Since then there has been a large amount of research 
and development into the design, construction and implementation of LDPC codes and they have been imple-
mented in numerous wireless standards, with one of the most recent being the 5G NR standard [6]. 

14.10.1.  Encoding 

LDPC codes are linear block codes, that employ a parity check matrix that has a low density of 1’s – hence the 
name Low Density Parity Check. In more formal terms, the parity check matrix is designed to be a sparse
matrix, i.e. one where there is a small number of 1’s compared to 0’s. The sparseness property of the parity 
check matrix has a number of advantages including generation of codes with very good distance properties 
and enabling encoding and decoding algorithms with reasonable complexity. 

Before introducing LDPC codes, let us briefly re-introduce the concept of a parity check matrix. Recall that the 
parity check matrix can be used to determine if a codeword belongs to a specific code. This is expressed 
mathematically as, 

, (14.43)

where H is the (n-k, n) parity check matrix and c is the  codeword. If the above equality is satisfied, then 
the codeword is a member of the code. In decoding, this relationship can be used to determine if a codeword 
has been received with errors. The receiver calculates the syndrome and if the result is non-zero, it can detect 
and then go on to correct errors. In addition, the parity check matrix can be used to derive a generator matrix 
for the code. 

Each row of the parity check matrix corresponds to a different parity check equation, and each equation repre-
sents a different combination of bits which must XOR to zero, if the codeword belongs to the code. To illustrate 
this, let us consider the following parity check matrix for a (8,4) code [228], 

mod cHT 2  0=

1 n
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. (14.44)

For this matrix, the parity check equations are, 

, (14.45)

, (14.46)

, (14.47)

and .      .  (14.48)

The first equation states that for codeword , the bits  and  should XOR 
to 0 for it to belong to the code. The remaining two equations specify different combinations of bits that must 
also XOR to 0. For example, the codeword (1,1,0,0,0,0,1,1) is a member of the code because it satisfies all of the 
parity check equations, i.e (14.45) - (14.48). 

LDPC codes can be divided into two classes; regular LDPC codes and irregular LDPC codes. In a regular 
LDPC code, the number of 1’s per column, wc , is the same for each column of H. Equally, the number of 1’s per 
row, wr , is also constant for every row. Conversely, for an irregular LDPC code, the number of 1’s per row and 
column vary, so wc and wr are dependent on the row or column index, which an be denoted as wr(i) and wc(j), 
where i and j are the row and column indices respectively. Irregular codes generally exhibit better performance 
than their regular counterparts albeit at the expense of increased encoding complexity [237]. 

In order to satisfy the sparseness criterion, it is necessary to have a large parity check matrix. However, this is 
not an issue, because the fundamental idea underpinning LDPC codes is the use of large input block lengths, 
since this leads to codes with a large minimum distance and, therefore, improved error correcting capabilities 
[170]. In Gallager’s initial formulation, he proposed regular LDPC codes and showed that for wc >= 3 and wr
>= 3, the LDPC code had excellent distance properties [169]. 

There are various methods of encoding LDPC codes, but broadly speaking they either involve deriving a 
generator matrix from the parity check matrix or encoding from the parity check matrix directly, such as in 
[302]. The generator matrix approach involves finding a generator matrix, G, that satisfies the equality, 

. (14.49)

H

0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

=

c1 c3 c4 c7   0=

c0 c1 c2 c5   0=

c2 c5 c6 c7   0=

c0 c3 c4 c6   0=

c0 c1 c2 c3 c4 c5 c6 c7        c1 c3 c4  c7

GHT 0=
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A common approach to solving this problem is to make the code systematic, by performing a series of 
Elementary Row Operations (EROs) on H (row permutations, modulo-2 additions of rows and column 
permutations if necessary [298]), such that it has the form, 

, (14.50)

where I denotes an n-k identity matrix and P is a  matrix. Having reduced the parity check matrix 
to this form, G, can be put in the form [298], 

, (14.51)

where I is a k identity matrix. Recall that the codeword, c, is then generated through a vector matrix multipli-
cation, i.e. c = uG. The fact that the first part of G is a  identity matrix, leads to a systematic code where 
the first k bits in the codeword are simply the information bits and the final n-k bits are the parity bits. The 
complexity of performing the necessary EROs to reduce H to the form in (14.50) is O(n3) and, since P is 
generally no longer sparse, the complexity of generating the codeword is similar to matrix multiplication 
which is O(n2) [298]. 

In [302], the authors describe a method of encoding using H directly, i.e. without deriving a generator matrix 
G. The resulting code is systematic and involves dividing H into two parts: a systematic part and a parity part. 
The systematic part, H1, has dimensions  and the parity part, H2, has dimensions . 
Since the code is systematic, the codeword c is expressed as,

, (14.52)

where u is the original  information bit vector and p is the  parity bit vector. Therefore, the 
task of encoding involves finding the parity bits, p. Given H has been split into H1 and H2  and that c is 
expressed as in (14.52), the syndrome can be written as, 

. (14.53)

Note, the additions are all modulo 2 as before. Taking into account the fact that modulo 2 addition and 
subtraction are the same, (14.53) can be re-written as, 

. (14.54)

To solve for p, Gaussian elimination is performed, to put H2 into lower triangular form, as illustrated in Figure 
14.23. 

After this the n-k parity bits p can be computed using forward substitution. In a similar fashion to the generator 
matrix, the pre-processing step of reducing H to the form shown in Figure 14.23 through Gaussian elimi-
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nation, has complexity O(n3) [302]. Again, the matrix H is no longer sparse and so encoding has complexity 
O(n2) [302]. The authors then propose an algorithm that places H into an “approximately lower triangular” 
form, which reduces the encoding complexity to O(n), i.e. the encoding complexity scales linearly with the 
block length. In order to avoid the preprocessing step, it is possible to design codes such that H has the approx-
imate lower triangular form, as required by the algorithm. 

14.10.2.  Decoding 

As mentioned previously, one of the main advantages of the sparseness property of the parity check matrix is 
that it allows the LDPC codes to be decoded using iterative algorithms, with reasonable complexity. As was the 
case for convolutional and Turbo codes, the decoding process is implemented using a graphical approach. 
However, instead of a trellis, the graph in this case is a Tanner graph. 

The Tanner graph is an example of a bipartite graph and consists of three components; variable nodes, check 
nodes and edges. The variable nodes are more commonly known as v-nodes and each represent a different bit 
in the codeword. Similarly, the check nodes are known as c-nodes and each represents a different parity check 
equation. The v-nodes and c-nodes exchange information or messages via the edges. Figure 14.24 illustrates 
the Tanner graph for the parity check matrix in (14.44). 

It can be observed that there are 8 variable nodes and 4 check nodes, corresponding to the 8 coded bits and 4 
parity check equations respectively. Firstly, four edges are connected to the check node f0, corresponding to v-
nodes v1, v3, v4 and v7 which map to bits c1, c3, c4 and c7. Therefore, this represents the first parity check 
equation in (14.45). Secondly, four edges are connected to the second check node, f1, corresponding to v-nodes 
v0, v1, v2 and v5 which map to bits c0, c1, c2 and c5. This represents the second parity check equation. The 
pattern repeats for the remaining c-nodes. 

In the decoding process, both v-nodes and c-nodes perform local calculations based on the exchange of 
extrinsic information (similarly to Turbo codes) between one another, i.e. information that is not already 
known to a given node. This repeats iteratively until the best estimate of the original codeword is determined. 

H1

n-k

k

H2

0

n-k

(lower triangular form)

Figure 14.23:  H matrix, reduced to lower triangular form.
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The decoder can use either hard decision or soft decision decoding methods but, as was the case with previous 
coding schemes, the latter is preferred due to its superior performance. However, in order to illustrate the 
decoding process, we will start by considering a hard decision method. 

On the first iteration, the only information available to v-node, vi, is , i.e. the ith received coded bit. To under-
stand what the check node does, let’s start by considering the first one, f0. As mentioned, this is connected to v-
nodes v1, v3, v4 and v7. The v-nodes in question each send their extrinsic information (which is just comprised 
of the bits , ,  and  in the first iteration) to f0. For each bit, f0 computes the value it should have to 
satisfy the first parity check equation, assuming all other contributing bits are correct [170],[228]. The same 
process occurs for the other c-nodes. 

To illustrate this, let us consider that the codeword (1,0,0,1,0,1,0,1) was transmitted and there was an error at 
bit, ċ1, leading to a received codeword (1,1,0,1,0,1,0,1) [228]. At the start of the decoding process, the bits in the 
received codeword are sent to the relevant check nodes. The check-nodes then perform local calculations that 
are sent back to the appropriate v-nodes as extrinsic information. Table 14.1 shows the received and sent 
messages between the v-nodes and c-nodes for the first iteration [228]. 

Table 14.1: Messages passed between v-nodes and c-nodes.

C-node Received Sent

v0 v1 v2 v3 v4 v5 v6 v7

f1
f2 f3f0

v-nodes

c-nodes

edges

Figure 14.24:  Tanner graph for LDPC code.

ĉi

ĉ1 ĉ3 ĉ4 ĉ7

f0 v1 1 v3 1 v4 0 v7 1   0 v1 0 v3 1 v4 0 v7  

f1 v0 1 v1 1 v2 0 v5 1   0 v0 0 v1 1 v2 0 v5  

f2 v2 0 v5 1 v6 0 v7 1   0 v2 1 v5 0 v6 1 v7  

f3 v0 1 v3 1 v4 0 v6 0   1 v0 1 v3 0 v4 0 v6  
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The messages sent to the v-nodes from each c-node are then used to perform a majority vote and decide the 
most likely transmitted bit, as shown in Table 14.2 [228].   

As can be observed, the v-node v0 receives the input bit c0 and the extrinsic information 0 and 1 from c-nodes 
f1 and f3. This can be understood by inspecting the Tanner graph, which shows that v0 is connected to c-nodes 
f1 and f3. Therefore, it follows that v0 will receive its extrinsic information from c-nodes f1 and f3. The v-node 
v0 receives [1 0 1] (including message bit and extrinsic information), which allows it to decide that 1 is the 
most likely value for the bit c0 through a majority vote. The same process is repeated for all other v-nodes.   

After the v-nodes have made their decisions, the syndrome is calculated and if the result is zero, the decoder 
determines that it has corrected all errors in the received codeword. If not, the decoder continues to iterate 
until the parity check equations are satisfied or a maximum number of iterations is reached. Again, it is usually 
the case that a fixed number of iterations is employed to ensure decoding time is deterministic. Table 14.2
shows that the bit decisions after the first iteration are (1,0,0,1,0,1,0,1), meaning that the error in position c1 is 
corrected. Therefore, in this case, the decoder terminates after one iteration [228]. By applying the sparseness 
constraint on the parity check matrix, a sparse Tanner graph is produced, i.e. one where there are few edges 
connecting v-nodes to c-nodes. This means that the decoding process can be computationally efficient even 
for very large block sizes (which are necessary to achieve error correction capabilities near the Shannon limit). 

Although describing the hard-decoding process is useful for illustrative purposes, it is not implemented in 
practice for the same reasons as other coding schemes, i.e. that hard decisions introduce an additional source 

Table 14.2: Majority Voting scheme for bit decisions.

v-node
Received Bit 

( )
Messages from 

c-nodes Decision

1 1

1 0

0 0

1 1

0 0

1 1

0 0

1 1

ci

v0 f1 0 f3 1

v1 f0 0 f1 0

v2 f1 1 f2 0

v3 f0 0 f3 1

v4 f0 1 f3 0

v5 f1 0 f2 1

v6 f2 0 f3 0

v7 f0 1 f2 1
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CHAPTER 14: Forward Error Correction
of errors. As with the previous coding schemes, LDPC codes can also be soft-decision decoded. One of the 
most prominent soft-decision decoding methods is sum-product algorithm. 

In the sum-product algorithm, extrinsic information is passed from v-nodes to c-nodes and c-nodes to v-
nodes in the form of probabilities rather than binary values. More specifically, the messages are sent as LLRs 
because processing in the logarithmic domain simplifies the update equations for both v-nodes and c-nodes 
(multiplications can be replaced by additions). The messages sent between v-node i and c-node j are calculated 
as, 

, (14.55)

where  is the extrinsic information exchanged between the  v-node and  c-node,  is the LLR 
for received coded bit  and  is the extrinsic information exchanged between the  c-node and  v-
node. Note, the summation in (14.55) includes contributions from all c-nodes connected to v-node i except c-
node j, which is the c-node receiving information. In other words, it only includes extrinsic information which 
is unknown to the c-node in question. The set of all c-nodes connected to v-node i but excluding c-node j is 
denoted by  and this set is indexed by the variable . 

The messages sent between c-node j and v-node i are of the form, 

 . (14.56)

Similarly to before, the c-node computations only include extrinsic information, i.e. information from v-nodes 
other than the v-node in question. The set of all v-nodes connected to c-node j excluding v-node i is defined as 

 and this is indexed by the variable . The terms ,  and  are given by, 

, (14.57)

 and (14.58)

. (14.59)

At each iteration of the algorithm, it computes an estimate of the final LLR for each coded bit denoted as 
 and given by, 

. (14.60)
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CHAPTER 14: Forward Error Correction
In the final decision, the inputs from all c-nodes connected to v-node i are considered to form an estimate of 
the final LLR for each received coded bit. This is effectively the same majority voting system that was used in 
the hard decision method, except that the bit have been replaced by LLRs. The algorithm is essentially 
improving the estimate of  over several iterations. After each iteration, a hard decision is performed on 

, i.e. 

. (14.61)

If after this decision the syndrome resolves to zero, the most likely codeword has been found and the algorithm 
stops. Otherwise, it will continue until a maximum number of iterations is reached. The name sum-product 
algorithm comes from the fact that the v-node update equation in (14.55) involves summations and the c-node 
update equation in (14.56) involves products. 

As can be observed from (14.57), the c-node operation in the sum-product algorithm involves the calculation 
of hyperbolic tan and log functions. This incurs a significant computational burden which is overcome by the 
min-sum algorithm, which utilises a simplified c-node update equation. It is derived based on the following 
approximation [118], 

. (14.62)

In essence, the various summations and products are replaced by the min operator, which is significantly less 
computationally intensive. Similarly to the Max Log MAP algorithm used in Turbo decoding, the min-sum 
algorithm tends to produce biased extrinsic information, which reduces decoding performance. The perfor-
mance is improved in the normalised min-sum algorithm, which applies a scaling factor to the extrinsic infor-
mation between v-nodes and c-nodes at each iteration [194]. The normalised min-sum algorithm is used in 
the AMD SD-FEC IP core.

14.10.3.  LDPC Codes in the 5G NR Standard 

In the 5G NR standard, LDPC codes are used for coding of the DL-SCH, UL-SCH and PCH. Other channels 
such as the Broadcast Control Channel (BCH) and the Downlink / Uplink Control Information (DCI/UCI) 
use polar codes, which are not covered in this chapter. Therefore, the use of LDPC and polar encoding repre-
sents a departure from the Turbo and convolutional codes used in the 4G LTE standard [194]. 

The LDPC codes used in the 5G NR standard are known as Quasi Cyclic LDPC (QC-LDPC) codes. For these 
codes, the parity check matrix is comprised of an array of sub-matrices which are either sparse Circulant 
Permutation Matrices (CPMs) or all zero matrices. In CPMS, each row is equal to the previous row cyclically 
shifted one place to the right, and the first row is a cyclically shifted version of the last row [229]. QC-LDPC 
codes have the property that the codewords are cyclic shifts of each other, which can be exploited for efficient 
encoding [229]. 
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CHAPTER 14: Forward Error Correction
The dimensions of each CPM is known as the lifting size of the code and the full parity check matrix is defined 
using a Base Graph Matrix (BGM). The BGM, HBG, stores the CPMs as integer values which define their 
structure and the parity check matrix H is found by replacing each integer element with an appropriately struc-
tured matrix, where Zc is the lifting size. The use of a base graph matrix reduces the memory require-
ments for storing the parity check matrix. 

The LDPC code in the 5G NR standard encodes a block of bits B, where B>0. If the block to be encoded is 
larger than a specified maximum code block size, Kcb, the block of B bits is segmented into smaller code blocks, 
which are coded individually. The standard specifies two possible LDPC base graphs; LDPC base graph 1 and 
LDPC base graph 2 [6]. In general, base graph 1 is used for larger input block sizes and hence higher code rates 
and base graph 2 is used for smaller block sizes and lower code rates.

The maximum input block sizes for base graphs 1 and 2 are  8,448 and  3,840 respectively, after 
which the blocks are segmented and coded individually. The code block segmentation process ensures that 
potentially very large transport blocks from the MAC layer do not have to be re-transmitted as part of the 
HARQ process in the event of errors being detected at the receiver; rather only the relevant blocks where the 
errors occur need to be re-transmitted. Each segmented code block will contain data bits, a 24 bit Cyclic 
Redundancy Check (CRC) for error detection in the receiver and filler bits to ensure the block size is 

for base graph 1 and  for base graph 2. The numbers 22 and 10 relate to the no. of 
columns of the BGM corresponding to systematic bits, for base graphs 1 and 2 respectively. 

The value of  is chosen by indexing a LUT to find the minimum value of all possible lifting sizes that 
satisfies, 

, (14.63)

where  = 22 for base graph 1,  = 10, 9, 8 or 6 for base graph 2 depending on the block size and  is the 
length of the code block including data bits and CRC. The BGM matrix has dimensions 46  68 for base graph 
1, which leads to an H with dimensions 17,664  26,112 with  Recall that the parity check matrix 
has dimensions (n-k, n) where k is the number of data bits per block and n is the number of coded bits. 
Therefore, for an input block size k = 8,448, the resulting coded block size is n = 26,112, which means that 
17,664 parity bits are added. The code is usually punctured to achieved a specific code rate, e.g. r = 1/3 is 
achieved by puncturing to a codeword size of n = 25,344. The subsequent rate matching process further 
modifies codewords to achieve higher or indeed lower code rates. 

Figure 14.25 shows the Pbe vs. Eb/N0 curve for base graph 1 with a block size of Kcb = 8,448 and Zc = 384, which 
is punctured to a rate of r = 1/3. As before, BPSK modulation is assumed and decoding is performed using the 
normalised min-sum algorithm with a scaling factor of α = 0.75. The maximum number of iterations is 25. It 
can be observed that, as was the case for Turbo codes, after the initial negative coding gain, there is a sharp 
drop off in Pbe. For example, at Pbe of 10-3, the coding gain is approximately 5dB over uncoded BPSK. This 
demonstrates the excellent performance that can be achieved with LDPC codes.  
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CHAPTER 14: Forward Error Correction
14.11.  Chapter Summary

This chapter has introduced the fundamental theory of error correction coding in digital communications and 
storage systems. Error detection and correction schemes are employed in a vast array of communications 
protocols. They are also widely used in other non-IP digital transmission systems including DAB, DVB-T and 
DVB-S, for terrestrial and satellite broadcasting of content such as news, sports and general television 
programming. Furthermore, they are used for reliable storage of digital information in both volatile and non-
volatile computer memory.

Error correction schemes are designed to reduce the Pbe and thus increase the reliability and robustness of 
digital communications and storage systems in the presence of noise and other forms of degradation. In FEC 
schemes, codewords are formed by adding redundancy (in the form of additional bits) to the original data, 
which has the effect of increasing the distance between codewords and allows a receiver to detect and 
ultimately correct bit errors. FEC schemes are designed to correct a finite number of errors within a data block 
or stream and are characterised by their coding gain, which measures the amount SNR can drop while still 
maintaining a given Pbe compared to an uncoded system. There is an inherent trade-off between the coding 
gain provided by a code and the loss of spectral efficiency and SNR incurred by the addition of redundant bits. 
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Figure 14.25:  Pbe vs. Eb/N0 for 5G NR QC-LDPC Code with Kcb = 8448 and r=1/3.
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CHAPTER 14: Forward Error Correction
Therefore, a careful balance must be struck between coding gain and redundancy, when designing FEC 
schemes for practical systems. 

A detailed overview of four linear FEC schemes and their associated decoders has been presented: Hamming 
codes, Convolutional Codes, Turbo Codes and LDPC codes. Both Turbo codes and LDPC codes are examples 
of so-called “capacity achieving” codes. This is because for certain configurations, they have been shown to 
achieve a Pbe within a fraction of a dB from the Shannon limit. The Shannon limit specifies a lower bound, 
beyond which error free communication is considered to be impossible. In general, achieving close to the 
Shannon limit requires increasingly complex encoding and decoding schemes. However, both Turbo codes 
and LDPC codes can be encoded and decoded with reasonable complexity, which makes them suitable for 
practical implementations.

Turbo codes are a form of concatenated code that uses two parallel RSC encoders to generate a coded bit 
stream from a block of data bits and an interleaved version. In the decoder, an iterative decoding process is 
used where “extrinsic” soft information is exchanged between two constituent MAP decoders (for the original 
and interleaved data blocks respectively). The exchange of extrinsic information allows a progressive 
improvement of the estimate of a set of a-posteriori LLRs, each corresponding to a different input bit, uk. In 
general, increasing the number of iterations improves the estimate of the LLRs and therefore leads to a larger 
coding gain [107]. 

LDPC codes are linear block codes which are based on the observation that increasing the input block size 
leads to a larger minimum codeword distance and therefore improved error correction capability [170]. The 
codes are based on the design of a sparse parity check matrix (one with a low density of 1’s), which enables 
large block sizes to be encoded and decoded with reasonable complexity. In a similar fashion to Turbo codes, 
an iterative graphical decoding method is used, based on the Tanner graph. The Tanner graph is a graphical 
representation of the parity check matrix and consist of v-nodes (one for each coded bit) an c-nodes (which 
represent the parity check equations). Extrinsic soft information is passed between v-nodes and c-nodes to 
improve the estimate of a set of LLRs for each coded bit and thus allow errors to be corrected. Due to the 
sparseness of the parity check matrix, the Tanner graph is also sparse allowing the code to be encoded and 
decoded with moderate complexity even for large block sizes. Due to their various benefits, both LDPC and 
Turbo codes have found application in several modern wireless standards including 4G LTE, 5G NR and Wi-Fi 
6. 
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Chapter 15
 Practical SD-FEC Design
Lewis McLaughlin 

Following on from the previous chapter, which provided a theoretical review of FEC techniques, here we turn 
the focus to practical design with the hardened SD-FEC blocks that are available on RFSoC devices. An 
example design is presented to demonstrate how to integrate the SD-FEC blocks into a larger system running 
on the RFSoC.

15.1.  SD-FEC Blocks and IP Core

Selected Zynq Ultrascale+ RFSoC devices contain Soft Decision Forward Error Correction (SD-FEC) 
integrated blocks. Table 15.1 details the number of SD-FEC blocks that are included in each of the available 
RFSoC devices (as at the time of writing).

These SD-FEC blocks are implemented in dedicated silicon within the Programmable Logic (PL), and are 
optimised for performing forward error correction. They can perform both LDPC and Turbo decoding, in 
addition to LDPC encoding. The Turbo decoding is fixed and employs the standard for decoding LTE. The 
LDPC encoding and decoding is flexible, and the block supports both standardised and custom LDPC codes. 

Table 15.1: RFSoC devices and available SD-FEC blocks.

Gen. 1 Gen. 2 Gen. 3 DFE

Device 
(ZUXXDR)

21 25 27 28 29 39 42 43 46 47 48 49 65 67

SD-FEC 8 0 0 8 0 0 0 0 8 0 8 0 0 0
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CHAPTER 15: Practical SD-FEC Design
An IP core is available in Vivado, shown in Figure 15.1, that enables the use of these integrated blocks. The IP 
core can operate in one of two modes: 5G New Radio (NR) and non-5G NR. More information regarding the 
IP core and its operation can be found in PG256 [45]. We will instead focus more on the practicalities of incor-
porating this IP core into a larger system.

15.2.  Hardware Design

The remainder of this chapter will discuss a practical example design of a system which implements LDPC 
encoding and decoding on an RFSoC, using PYNQ to interact with the design at runtime. Figure 15.2 provides 
a high-level block diagram illustrating a generic radio pipeline which employs soft decision forward error 
correction. Section numbers are provided in the blocks to indicate where more information regarding that 
stage can be found.

Figure 15.1:  SD-FEC IP core as seen in Vivado IP Integrator.

Figure 15.2:  Block diagram of generic radio pipeline which employs SD-FEC.
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CHAPTER 15: Practical SD-FEC Design
The example hardware design explored in this section will concentrate on the blocks highlighted in green as 
these are specific to performing SD-FEC on RFSoC and the minimum required to demonstrate the operation 
of the SD-FEC blocks. The whole system will be confined to the PL and Processing System (PS) of the RFSoC, 
as including loopback through the data converters would require pulse shaping to allow for transmission, and 
introduce an unknown latency or phase shift in the channel that would require a synchronisation stage.

Figure 15.3 illustrates the proposed example design. Green blocks will target the PS and blue blocks, the PL. 
Red highlights the two hardened FEC blocks within the PL that will be used in the system to perform the 
encoding and decoding.

AXI Direct Memory Access (DMA) IP cores are used to move data between the PS and PL. A Tx buffer 
containing data blocks of random bits is generated in Python on the PS and input to a custom FEC controller, 
by way of a DMA, which is responsible for transmitting the necessary control word to the SD-FEC encoder for 
each data block. An SD-FEC block is configured as an encoder using the Data-Over-Cable Service Interface 
Specifications (DOCSIS) 3.1 standard available for selection within the IP core. The encoded data blocks are 
then baseband modulated using the 16-QAM scheme and sent through an Additive White Gaussian Noise 
(AWGN) channel. The resulting noisy signal is baseband demodulated into soft bits (log likelihood ratios) 
which is accepted by the SD-FEC block configured as a decoder. Decoded data is then packaged into a data 
packet which is equal to the size of the Rx buffer in the PS where it is received. The Tx and Rx buffers are 
compared and the Bit Error Rate (BER) is calculated in the PS to assess the performance of a given LDPC code.

The following subsections will discuss the design and configuration of each stage of the system outlined in 
Figure 15.3. Each stage targeting the PL will be packaged as an IP core so as to be incorporated with existing IP 
cores (DMA, FIFO and SD-FEC) in Vivado IPI. Some hardware design block diagrams will indicate the fixed-
point data type on signals. The notation employed is <sign:wordlength:fractional> where a 0 or 1 at sign
signifies unsigned and signed respectively. For example, a signed number with 10 integer bits and 5 fractional 
bits would be represented as <1:15:5>. AXI4-Lite register address offsets are specified in square brackets. A 
final section (Section 15.3) will cover the run-time configuration of the IP cores in addition to the BER 
analysis using PYNQ.

Figure 15.3:  Block diagram of example RFSoC design.
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15.2.1.  LDPC Codes

The first design step is to determine the LDPC code(s) that will be used in the system. The SD-FEC core 
supports both standardised and custom LDPC codes. Supported standards include: 5G, LTE, Wi-Fi IEEE 
802.11, and DOCSIS 3.1. These standards can be selected directly when configuring the IP core in Vivado. 
While this example design will use the supported standard DOCSIS 3.1, it is beneficial to understand how to 
create the code definition file for a custom LDPC code.

Custom codes can be used by instead selecting custom from the drop down in the IP core’s configuration 
window and providing a path to a code definition file, which is a YAML formatted file with a *.txt extension. 
The code definition file must contain: the encoded block size, n; the input block size which contains the infor-
mation bits, k; the sub-matrix size, p; and the base matrix definition, sm_array, which itself must contain a list 
of row, column, and shift values. For a full list of the accepted code definition parameters, refer to the SD-FEC 
Integrated Block product guide [45] in the LDPC Code Definition Parameters table. 

These code definition parameters can be derived from a parity check matrix. To illustrate this, the parity check 
matrix for the DOCSIS 3.1 Initial Ranging LDPC code is used as an example, shown in Figure 15.4.

The parity check matrix is a k  n matrix which comprises a number of  sub-matrices. These sub-
matrices can either be an all-zero matrix or a cyclically right-shifted identity matrix. In this case, the parity 
check matrix for DOCSIS 3.1 Initial Ranging is an 80  160 matrix with 50 16  16 sub-matrices. These 
parameters can be taken directly to begin constructing the YAML file. 

Figure 15.4:  Parity check matrix for DOCSIS 3.1 Initial Ranging code.

 p p
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Figure 15.5 shows the YAML file which specifies the code definition parameters. A name is provided in this 
example, however this in not a requirement if only one code is specified in the file. Multiple codes do require 
that each is given a name, however. The block size (n), number of information bits (k) and the sub-matrix size 
(p) are all supplied. The base matrix definition (sm_array) is assembled by taking the sub-matrices which 
contain identity matrices, and then providing their row and column numbers along with the number of right 
shifts undergone by the identity matrix. 

The YAML file is then given a *.txt extension and is available to be sourced during configuration of the SD-
FEC IP core. 

It is important to consider both the number of information bits in a data block, k, in addition to the number of 
bits in an encoded block, n. These numbers can influence how the system is designed. For instance, if we again 
look at DOCSIS 3.1 Initial Ranging parameters, the number of parity bits, n – k, is equal to the number of 
information bits, k. This is said to have a code rate of a half, meaning that the output of the encoder will 
produce double the number of bits that are input to it. Figure 15.6 again illustrates the example design, but this 
time highlights the varying amount of information at particular stages of the pipeline when using this LDPC 
code and a 16-QAM scheme.

YAML

Figure 15.5:  YAML formatted code definition file of DOCSIS 3.1 Initial Ranging parameters.

docsis_init_ranging:

  n: 160

  k: 80
  p: 16

  sm_array:

  - {row: 0, col: 0, shift: 1}
  - {row: 0, col: 1, shift: 11}

  - {row: 0, col: 2, shift: 10}

  - {row: 0, col: 3, shift: 12}
  - {row: 0, col: 4, shift: 7}

  - {row: 0, col: 5, shift: 9}

  - {row: 1, col: 0, shift: 2}
  - {row: 1, col: 1, shift: 1}

  - {row: 1, col: 2, shift: 14}

  - {row: 1, col: 3, shift: 15}
  - {row: 1, col: 4, shift: 14}

  - {row: 1, col: 5, shift: 14}

  - {row: 1, col: 6, shift: 12}

  - {row: 2, col: 0, shift: 0}

  - {row: 2, col: 1, shift: 9}

  - {row: 2, col: 2, shift: 3}
  - {row: 2, col: 3, shift: 2}

  - {row: 2, col: 6, shift: 11}

  - {row: 2, col: 7, shift: 7}
  - {row: 3, col: 0, shift: 6}

  - {row: 3, col: 1, shift: 8}

  - {row: 3, col: 3, shift: 10}
  - {row: 3, col: 4, shift: 3}

  - {row: 3, col: 7, shift: 10}

  - {row: 3, col: 8, shift: 4}
  - {row: 4, col: 0, shift: 12}

  - {row: 4, col: 1, shift: 13}

  - {row: 4, col: 2, shift: 11}
  - {row: 4, col: 4, shift: 0}

  - {row: 4, col: 8, shift: 5}

  - {row: 4, col: 9, shift: 2}

Figure 15.6:  Information growth in system.
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What does this mean for clock rates or wordlengths upstream? For systems that are clocked at a higher rate 
than the sample rate, word growth may not cause much concern as there could be enough slack in the system 
to cope with more data. However, if we are passing large frames of multiple data blocks into the system at the 
same sample rate as the clock rate, such as in our example of moving multiple data blocks of random bits from 
the PS into the PL using a DMA, we must consider more carefully how the system is designed. 

The complication arises from the fact we would like to perform processing (symbol mapping, adding noise, 
soft demodulation) on groups of bits within the wordlength input to the system, as opposed processing the 
wordlength as a whole. We can retain the same input wordlength and sample rate if we perform parallel 
processing. However, this will result in higher resource utilisation. We can separate the wordlength into 
smaller groups and time interleave these at a higher rate to avoid using more programmable logic resources. 
Doing this would require increasing the clock rate and as a result parts of the design may not meet timing 
closure. These are both valid options with their own trade-offs which should be considered for a given appli-
cation. Another option is to insert FIFOs at points to buffer data and then apply back pressure using AXI4-
Stream between stages. Back pressure in AXI4-Stream is when the slave interface indicates that it is not ready 
to accept data from the master interface connected to it and so the master interface pauses further trans-
mission until the slave indicates that it is again ready to receive. Although this might not result in the best 
throughput or indeed resource consumption, it is the simplest to implement and is the methodology adopted 
in this example. 

We will be moving data from the PS to the PL with a wordlength of 8 bits. The SD-FEC IP core supports the 
DOCSIS 3.1 standard which supplies five LDPC codes: Short, Medium, Long, Initial Ranging, and Fine 
Ranging. Table 15.2 details the encoded block sizes as well as the number of information bits for each LDPC 
code. These sizes, k and n, are also divided by our wordlength of 8 bits so we can determine its suitability. 

As evidenced in the table, there is only one code which cannot be divided evenly by our wordlength of 8 bits: 
DOCSIS Medium. What does this mean for our system? If the encoder outputs data with a width of 8 bits, the 
first 742 words would be valid, however the 743rd word would only contain valid data on the four least signif-
icant bits. To accommodate this, we must add some control logic to part of the design which will ignore the bits 
that are not valid. The fact that we are using a 16-QAM scheme which has a symbol size of 4 bits makes the 
symbol mapping stage a suitable point to integrate the control logic. However, depending on the system, this 
control logic could be placed elsewhere.

Table 15.2: Sizes of information and encoded blocks in bits and bytes for five DOCSIS 3.1 LDPC codes.

LDPC Code Information 
Bits (k)

Encoded Block 
Size in Bits (n) k/8 n/8

DOCSIS Short 840 1120 105 140
DOCSIS Medium 5040 5940 630 742.5

DOCSIS Long 14400 16200 1800 2025
DOCSIS Initial Ranging 80 160 10 20
DOCSIS Fine Ranging 288 480 36 60
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15.2.2.  Encoder Configuration

Having decided on an LDPC coding standard, we can configure our encoder. Table 15.3 details the Non-5G 
configuration used in this design.

As mentioned, we are using the DOCSIS 3.1 standard supported by the SD-FEC IP core and have configured 
this IP core as an encoder. In this example design, one 8-bit word is transferred per AXI4-Stream transaction 
on both the data interfaces, DIN and DOUT. Only one lane is used on each interface. A lane has a width of 128 
bits and can accommodate up to 16 8-bit words. Although s_axis_din_tdata and m_axis_dout_tdata have 
widths of 128, only the least significant byte (bits 7:0) is used on each, in this configuration. 

While the SD-FEC IP core can be configured to have 4 lanes, giving a total width of 512 bits, it is important to 
note that only one lane is processed per clock cycle of the core. A small Clock-Domain-Crossing (CDC) FIFO 
exists at the AXI4-Lite and AXI4-Stream interfaces of the SD-FEC block. This converts the input and output 
widths of the DIN and DOUT interfaces between 128 bits for processing inside the block and either 1, 2 or 4 
times this width externally. For high-throughout applications this can allow for large wordlengths of data to be 
processed with a high degree of parallelism outside of and at a lower clock speed than the SD-FEC core, which 
can be advantageous when trying to meet timing closure.

The SD-FEC block is highly flexible and the number of words input and output of the data interfaces can also 
be varied at run time. This is achieved by selecting the option Unconfigured from the drop-down associated 
with the Interface parameter under the DIN and DOUT headings on the Interface tab of the IP core configu-
ration window. Doing so will expose the interfaces DIN_WORDS and DOUT_WORDS which can be used to 
configure the number of bytes transferred on each cycle. This example opts to have fixed word configurations.

Table 15.3: SD-FEC IP core configuration for LDPC encoding.

Function Interface Runtime Loading
Configuration Parameters (S AXI) Physical Utilization N/A

Standard DOCSIS 3.1 Interface Runtime-Configured Throughput Utilization 100
Turbo Decode Code Parameters Code Parameters N/A

Turbo Decode N/A DIN
Algorithm N/A Interface Pre-Configured

Scale N/A Lanes 1
LDPC Decode Code Parameters Word Configuration Fixed

LDPC Decode No Number of Words 1
Support W>1 N/A DOUT

Code Definition N/A Interface Pre-Configured
Overrides N/A Lanes 1

LDPC Encode Code Parameters Word Configuration Fixed
LDPC Encode Yes Number of Words 1

Code Definition N/A
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15.2.3.  SD-FEC Controller

Every data block input to the SD-FEC core through DIN requires a control word input on the CTRL interface. 
A status word is also output for each processed block. This is illustrated in Figure 15.7 which depicts the DIN, 
DOUT, CTRL and STATUS interfaces when an SD-FEC block is encoding data. Decoding is similar however 
the lengths of DIN and DOUT would differ. 

The control word comprises a number of fields within a 32-bit word, when operating in non-5G NR mode, 
shown in Table 15.4. The SD-FEC core only requires certain fields depending on whether it is configured as an 
encoder or decoder. The rows highlighted in red indicate fields used by both configurations. The remaining 
rows are exclusive to the decoder configuration.

The external block identifier can be any integer between 0 and 255. It is passed directly through to the status 
register and helps identify which encoded or decoded block the reported status belongs to. The code number 
relates to the code parameters that have been loaded into the SD-FEC block’s internal memory allowing for 
easy switching between loaded codes. The maximum number of iterations can be a value between 1 and 63. 
This refers to the number of iterations performed when decoding. A higher number of iterations incurs larger 

Figure 15.7:  SD-FEC core interfaces when encoding data.

Table 15.4: Control register for encoding/decoding in Non-5G NR mode.

Field (bits) Type
External Block ID (31:24) uint8

Maximum Number of Iterations (23:18) uint6
Terminate on No Change (17) bit1

Terminate on Pass (16) bit1
Include parity Output (15) bit1

Hard Output (14) bit1
Reserved (13:7) uint7

Code Number (6:0) uint7
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latency. These are ‘maximum’ iterations because the process can terminate earlier if no change in hard bits is 
detected for the whole block between iterations (Terminate on No Change = 1) or if the parity check passes 
(Terminate on Pass = 1). The decoder can also return a hard output (Hard Output = 1) or soft output (Hard 
Output = 0) or include the parity in the output (Include Parity Output = 1). These options will effect the 
amount of data output from the decoder.

If a control word is not supplied, the SD-FEC core will not process data and prevent further data from being 
input. Similarly, the status word must be read from the STATUS interface or this will also cause the SD-FEC 
core to stall. The CDC FIFOs which exist at the interfaces will allow for some blocks to be output, but once the 
STATUS CDC FIFO fills, the core will stall.

We can exploit the fact that our application uses the same settings for processing many blocks of data and 
design a controller that can be updated intermittently over AXI4-Lite, and output a control word using AXI4-
Stream at the rate required by the LDPC code being used. Figure 15.8 shows a suitable controller. Two memory 
mapped registers, aximm_ctrl and aximm_length, provide the control word and the number of words in a 
block, respectively. A counter counts up to the number of words in a block, after which it is reset and begins 
counting from zero again. Every time the count is equal to zero, m_axis_ctrl_tvalid and m_axis_ctrl_tdata are 
driven high if there is also valid data coming in (s_axis_tvalid = 1). Doing this produces a valid, single sample 
AXI4-Stream transaction containing the value of aximm_ctrl on the tdata signal at the start of each block.

Figure 15.8:  Block diagram of SD-FEC controller core.
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We do not use the status value output from the SD-FEC core in this application, but to avoid stalling the SD-
FEC block, the controller keeps s_axis_status_tready high, meaning that status words are accepted by the 
controller but immediately terminated. The s_axis_tvalid and s_axis_tdata signals are passed through the 
controller, delayed and output on the master interface as m_axis_tvalid and m_axis_tdata. The delay ensures 
that the control words arrive at the controller just before the data to be processed, as illustrated in Figure 15.7. 
By reinterpreting the input data from 8 or 32 bits on the slave interface to 128 bits on the master interface, we 
avoid any critical warnings regarding interface mismatches between our controller IP core and the SD-FEC IP 
core in Vivado. Our data byte(s) will be the least-significant byte(s) on the master interface of the SD-FEC 
controller. The two widths come from the fact that the encoder will be accepting wordlengths of 8, output from 
the PS, whereas the decoder will be accepting wordlengths of 32, output from the IP core demodulating the 
data into soft bits which is covered in Section 15.2.6.

Finally, it is important to incorporate a tready signal. The SD-FEC block may not be ready to process new data 
at points and we must ensure that this information is relayed back to the DMA so that it can pause further 
transactions. Otherwise, we would drop samples and this could result in the whole system stalling and 
certainly skew any BER analysis. The tready signal should also prevent the counter from counting further 
when low and hold any data in the two delay registers when low so as not to lose information.

15.2.4.  Symbol Mapping (Baseband Modulation)

The symbol mapping employed in the system uses the 16-QAM scheme and Gray coding, where adjacent 
symbols differ by only 1 bit to improve the BER. Figure 15.9 depicts the symbol mapping used. 

Figure 15.9:  Gray coded symbol mapping for 16-QAM.
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This mapping can be easily realised by taking the two most significant bits to obtain the real value, and the two 
least significant bits to obtain the imaginary value, of a symbol. Figure 15.9 highlights this as the real values are 
shown in red and the imaginary values in green. The block diagram shown in Figure 15.10 demonstrates how 
this translates into hardware. Two multiplexers output symbols depending on the two bits input to the select 
port. The output of the multiplexers are then concatenated together into a byte, where the least significant bits 
contain the real part and the most significant, the imaginary part. When using AXI4-Stream it is important for 
the tdata signal to be an integer multiple of 8 bits, so that it is not removed in the synthesis process. 

The wordlength output from the encoder is 8 bits and one 16-QAM symbol is mapped to four of these bits. We 
must therefore reconcile this difference in wordlengths. One option would be to have two symbol mappers, 
each taking a slice of 4 bits and processing in parallel. This is a good option if throughput is a concern as the 
input and output sample rate would be the same. The following stages would have to be designed to accom-
modate two symbols. Additionally, outputting two symbols would no longer make this stage a suitable point to 
introduce control logic to ignore symbols that are not valid, as in the case of the last byte of a block encoded 
using DOCSIS Medium. Instead, this system opts to use one symbol mapper, meaning that the input rate must 
be halved to allow sufficient time for the mapper to generated two symbols for every word input. 

Figure 15.3 shows how this is achieved. The 16-QAM symbol mapper from Figure 15.10 can be seen in the 
bottom right corner. Back pressure must be applied to halve the data input rate. This is implemented with a 1-
bit counter that toggles s_axis_tready at the rate the IP core is clocked at. A FIFO between the output of the 
encoder and the input to this IP core ensures no samples are dropped. This FIFO will hold tvalid high on its 
master interface when there is valid data ready to be output from it, therefore s_axis_tvalid and s_axis_tready 

Figure 15.10:  Gray coded 16-QAM symbol mapper.
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are input to an AND gate to create a new valid_in signal that can be used within the symbol mapping IP core to 
indicate when new valid data has entered the core.  

The input to the symbol mapper block is created by first splitting s_axis_tdata into two 4-bit words, and then 
time-interleaving these into one signal using a multiplexer. The selection line of the multiplexer is driven by 
the newly created valid_in signal. The multiplexer now outputs two valid 4-bit samples each time the select line 
transitions from one to zero. To reflect this, a further valid signal named valid_symbol is created using a delay 
block and an OR gate. This holds valid_in high for two samples.

The final component of the symbol mapping IP core is the valid symbol control logic that was discussed when 
considering LDPC codes in Section 15.2.1. The purpose of this control logic is to drive m_axis_tvalid low 
when bits do not correspond to a valid symbol. As the number of valid symbols is dependant on the LDPC 
code, an AXI4-Lite memory-mapped register (aximm_valid) allows the control logic to be updated at run-time 
from the PS, depending on the LDPC code that is in use. We know that only one code, DOCSIS Medium, 
requires this logic. Therefore, for all other codes we can set aximm_valid to zero, meaning that the output of 
the rightmost AND gate is high when valid_symbol is high. When DOCSIS Medium is being used, 
aximm_valid is set to one. We then utilise the knowledge that only the last 4 bits in an encoded block are not 
valid and use the s_axis_tlast signal to drive m_axis_tvalid low. The SD-FEC block outputs a tlast signal to 
indicate the last word of an encoded or decoded block. As we are applying back pressure and halving the input 
rate, s_axis_tlast will be two samples long. Therefore, we use a rising edge detector — made from a NOT gate, 
delay block and AND gate — to reduce the high width of s_axis_tlast to one sample and delay this so that it 
aligns with the very last symbol in an encoded block.

Figure 15.11:  Top-level block diagram of the symbol mapping IP core.
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15.2.5.  AWGN Channel

The next stage in the radio pipeline is our AWGN channel. Figure 15.12 shows the top level schematic of this 
IP core. Complex white Gaussian noise is generated and added to the real and imaginary part of each symbol, 
which have been obtained by separating s_axis_tdata into its least and most significant 4 bits. The real and 
imaginary components of the now noisy symbol are concatenated again into a 32-bit word before being output 
on m_axis_tdata. 

The white Gaussian noise is generated from two uniformly distributed random numbers using the Box-Muller 
transform [113]. This transform takes two sources of uniformly distributed random numbers, and , of 
the interval [0, 1] and generates pairs of normally distributed random numbers, and , with mean, , 
and variance, . Equations (15.1) and (15.2) illustrate how the transform is performed.

(15.1)

(15.2)

Figure 15.13 shows a hardware implementation of the Box-Muller transform. 

Figure 15.12:  AWGN generator top level.

U1 U2
z1 z2  0=

2 1=

z0 2 U0ln– 2U1 cos=

z1 2 U0ln– 2U1 sin=

Figure 15.13:  AWGN generator using Box-Muller transform.
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and are generated by concatenating the 1-bit output of multiple Linear Feedback Shift Registers (LFSRs) 
together into larger wordlengths. LFSRs are simple circuits constructed with registers and XOR gates that 
produce pseudo-random outputs when clocked. An example of an LFSR is depicted in Figure 15.14. 

Some register outputs are tapped and XORed with other outputs. The position of the taps affect the output of 
the LFSR and are specified by a generator polynomial. The generator polynomial for the LFSR shown in Figure 
15.5 is . Eventually the numbers output will begin to repeat, as the registers have a finite number of 
states. The time taken before repeating is called the cycle length and is determined by the generator 
polynomial and the initial state, or seed, of the registers. Note that the registers cannot all be initialised to zero, 
as this would result in a constant zero output. 

For instance, the polynomial and seed employed in the LFSR in Figure 15.14 result in a cycle length of only 3. 
The maximum possible cycle length of an LFSR is  where  is the order of the LFSR (the number of 
registers). To achieve this maximum cycle length, one must use a primitive polynomial [357]. 

 is a 12-bit number and is made from 12 independent LFSRs, and  is an 8-bit number made from 8 
independent LFSRs. The primitive generator polynomial used for all LFSRs is  and each 
LFSR is randomly seeded, but ensuring the same seed is not used more than once. 

Each random number is then input to a Look-up Table (LUT) that contain values of functions found in (15.1)
and (15.2). Other methods exist for calculating these equations in hardware, which may be more resource 
efficient and accurate, but employing LUTs is the simplest to implement in practice. 

The result is two normally distributed random numbers which form the real and imaginary parts of our 
complex noise signal. A final product stage that takes a value from the PS, variance_sf, allows for the noise to 
be scaled — thereby changing the resulting SNR. The calculation for this scaling factor will be covered in more 
detail when discussing the PS implementation in Section 15.3.

U0 U1

Figure 15.14:  Linear feedback shift register circuit with polynomial: . z5 z4 1+ +

z5 z4 1+ +

2n 1– n

U0 U1
z13 z12 z11 z8 1+ + + +
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15.2.6.  Log Likelihood Ratio (Soft Demodulation)

When performing LDPC decoding, the SD-FEC core only accepts soft bits in the form of Log Likelihood 
Ratios (LLRs) (see (14.10) on page 469) and so we must demodulate our noisy signal accordingly. Figure 15.15
shows the top level schematic of the LLR IP core.

As this design only employs one modulation scheme, we can reduce the LLR calculations to a series of if-state-
ments [311]. This greatly simplifies the hardware implementation required. Equations (15.3) to (15.6) provide 
the simplified calculations for obtaining LLR values for bit 3 to bit 0 of a symbol, respectively. 

(15.3)

(15.4)

(15.5)

(15.6)

Figure 15.15:  Top level block diagram of LLR IP core.

llr b3  = 
2 yre 1+   :  if yre 2–

yre         :  if  2– y re 2
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llr b2  yre– 2+              yre                 =

llr b1  = 
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The decoder SD-FEC block expects that the LLR values are signed 6-bit wordlengths with 2 fractional bits 
<1:6:2> that have been symmetrically saturated. Where regular saturation of this data type would be outside of 
the lower and upper bounds [-8, 7.75], symmetric saturation produces the lower and upper bounds [-7.75, 
7.75]. If the data exceeds this range often, and is thereby incurring significant saturation, the performance of 
the decoder can be negatively impacted. Therefore, the LLR data can be scaled by a number less that 1 before 
performing the symmetric saturation, facilitated here with the AXI4-Lite register aximm_llr_scale.

Additionally, the LLR value should then be sign-extended to form a byte. Figure 15.16 illustrates how the LLR 
data is structured. The generated LLR data should first be converted to a signed fixed-point value (remem-
bering to saturate to the range -7.75 and 7.75) with 1 sign bit, 3 integer bits and 2 fractional bits. The sign bit 
should then be extended to create an 8-bit fixed point value. 

The schematic shown in Figure 15.17 performs the fixed-point formatting required by the SD-FEC block when 
configured as a decoder. The data output from the scaling multipliers already performs regular saturation to 
[-8, 7.75]. A multiplexer is then used to check if the value drops below -7.75, in which case it outputs -7.75. The 
sign extension is achieved by slicing the most significant bit and performing a concatenation to form a byte. 

The four soft bits of a symbol, each represented by 8-bit words, are concatenated to form the data output to the 
decoder SD-FEC block, m_axis_tdata. 

LSBMSB

IntegerSign Ext. Fractional

4 3 2 1 0

4 3 2 1 07 6 5

5

Figure 15.16:  LLR data format for LDPC decoding.

Figure 15.17:  Block diagram of logic to format LLR values.
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15.2.7.  Decoder Configuration

Table 15.5 presents the SD-FEC core configuration to perform LDPC decoding using the DOCSIS 3.1 
standard. 

This configuration is very similar to the encoder configuration, but is instead set up for decoding; it accepts 
four LLR values per cycle and so the DIN interface is configured for four words. The output of the decoder is 
set to one word, as this makes it easier to compare the Tx and Rx data buffers in the PS.

15.2.8.  Rx Packet Creator

As noted before, the SD-FEC core outputs a tlast signal, indicating the last word of an encoded or decoded 
block. When reading data into the PS using a DMA, a high tlast signal coupled with a high tvalid signal 
indicates the end of a packet. Therefore, if multiple blocks are being grouped together into one larger packet to 
be sent, it is useful to discard the SD-FEC block’s tlast signal and generate our own. Figure 15.18 presents some 
control logic to achieve this.

An AXI4-Lite register, aximm_length, provides a value to compare with a counter output. The counter counts 
the number of valid words output from the decoder. When the value of the comparator is reached, tlast is 
driven high and the counter is reset. In doing this, the number of words to be collected in the Rx buffer can be 
provided on aximm_length, and tlast will strobe accordingly. 

Table 15.5: SD-FEC IP core configuration for LDPC decoding.

Function Interface Runtime Loading
Configuration Parameters (S AXI) Physical Utilization N/A

Standard DOCSIS 3.1 Interface Runtime-Configured Throughput Utilization 100
Turbo Decode Code Parameters Code Parameters N/A

Turbo Decode N/A DIN
Algorithm N/A Interface Pre-Configured

Scale N/A Lanes 1
LDPC Decode Code Parameters Word Configuration Fixed

LDPC Decode Yes Number of Words 4
Support W>1 No DOUT

Code Definition N/A Interface Pre-Configured
Overrides Disable Lanes 1

LDPC Encode Code Parameters Word Configuration Fixed
LDPC Encode No Number of Words 1

Code Definition N/A
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15.2.9.  Vivado Block Design

Having discussed the various stages of the example design, which take the form of separate IP cores with 
AXI4-Lite and AXI-Stream interfaces, these should be connected up as outlined in Figure 15.3. When 
connecting the IP cores together in Vivado, the system has been tested where the SD-FEC IP cores are clocked 
at 666 MHz on core_clk and the rest of the design at 111 MHz. The DMAs should be configured to have 8-bit 
wordlengths and the FIFOs should be made large enough to accommodate the amount of data that is to be sent 
through the system. 

Before generating the bitstream, it is important to constrain the core to achieve optimal timing results, as 
Vivado does not support timing-driven placement for SD-FEC instances. The code snippet in Figure 15.19
illustrates how this is achieved. The available locations are detailed in the SD-FEC Product Guide [45] in the 
Placement Guidelines table. 

Figure 15.18:  Block diagram illustrating the Rx Packet Creator IP core.

    set_property LOC FE_X<x>Y<y> [get_cells */<ipinst_path>/inst/STD_OTHER_G.STD_OTHER_I/FE_I]
XDC

Figure 15.19:  Constraining the SD-FEC instance.
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15.3.  Run-Time PYNQ Interaction

This section will present the Python code for configuring the hardware design, sending data to be encoded, 
receiving decoded data from the system, and performing BER analysis between the Tx and Rx data buffers.

A Python package for interacting with the SD-FEC core ships with PYNQ. Upon downloading an overlay to a 
RFSoC, if an SD-FEC core is detected in the design, a Python SD-FEC driver will bind to it. Upon binding, the 
Hardware Hand-off file (*.hwh) is scraped to obtain the LDPC parameters that are specified in the Vivado 
block design. A *.hwh file is required along with a bitstream (*.bit) when using PYNQ and contains infor-
mation that PYNQ uses to identify various components of the Vivado block design. 

The available LDPC parameters can then be inspected using the available_ldpc_params() function as shown in 
Figure 15.20.  

The supported DOCSIS 3.1 standard that the SD-FEC blocks are configured with has five LDPC codes. We can 
load the code parameters into the SD-FEC block using the add_ldpc_params() function. This function takes 
five arguments: code ID, scale (SC) table offset, layer (LA) table offset, Quasi-Cyclic (QC) table offset, and the 
name of the LDPC code. The core has some configurable shared memory for holding the LDPC table param-
eters and can contain up to 128 different codes at once. 

In the code snippet in Figure 15.21, a function is created that takes an SD-FEC core as an argument and ascer-
tains the available LDPC codes. A loop then adds each of the codes to the SD-FEC block’s internal memory. 
The table offsets are obtained using the share_table_size() function. The names provided must match one of 
the available LDPC codes as the function takes the code information provided in the *.hwh and packs it into a 
C struct to be used with the Bare-metal C code that the SD-FEC Python driver wraps around.

    

    from pynq import Overlay
    from pynq import allocate

    import numpy as np

    import xsdfec
    import math

    ol = Overlay('ldpc_coding.bit')
    ol.sd_fec_enc.available_ldpc_params()

    >>  ['docsis_short_encode',
         'docsis_medium_encode',

         'docsis_long_encode',

         'docsis_init_ranging_encode',
         'docsis_fine_ranging_encode']

Python

Figure 15.20:  Downloading the overlay to the board and inspecting available LDPC codes.
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Using this function, the LDPC parameters are loaded into the encoder and decoder SD-FEC blocks as demon-
strated in Figure 15.22. 

Information about the codes is stored in a dictionary. Figure 15.23 illustrates how to use the dictionary to 
obtain information for a given code. 

  def add_all_ldpc_params(fec):

  ldpc_params = fec.available_ldpc_params()

  fec.CORE_ORDER = 0   # Maintain the order of blocks between input and output

  fec.CORE_AXIS_ENABLE = 0   # Disable all channels

  sc_offset = 0

  la_offset = 0
  qc_offset = 0

 for code_id in range(len(ldpc_params)):

   code_name = ldpc_params[code_id]
   table_sizes = fec.share_table_size(code_name)

   fec.add_ldpc_params(code_id, sc_offset, la_offset, qc_offset, code_name)

   sc_offset += table_sizes['sc_size']

   la_offset += table_sizes['la_size']
   qc_offset += table_sizes['qc_size']

  fec.CORE_AXIS_ENABLE = 63   # Enable all channels

Python

Figure 15.21:  Python function to loop through available LDPC parameters and add them to the SD-FEC core.

  fec_enc = ol.sd_fec_enc

  fec_dec = ol.sd_fec_dec

  add_all_ldpc_params(fec_enc)
  add_all_ldpc_params(fec_dec)

Python

Figure 15.22:  Add all available parameters to encoder and decoder SD-FEC cores.

  code_name = 'docsis_short_encode'

  code_id = fec_enc.available_ldpc_params().index(code_name)

  n = fec_enc._code_params.ldpc[code_name]['n']

  k = fec_enc._code_params.ldpc[code_name]['k']

  p = fec_enc._code_params.ldpc[code_name]['p']

  print('Block Length (bits): %s\nInformation Bits: %s\nSub-Matrix Size: %s' % (n, k, p))

>> Block Length (bits): 1120

Information Bits: 840

Sub-Matrix Size: 56

Python

Figure 15.23:  Accessing the Python dictionary containing LDPC code parameters. 
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The dictionary shows that for the DOCSIS Short LDPC code, the encoded block length in bits (n) is 1120, of 
which 840 are information bits (k). These values will be useful when configuring our hardware design for a 
given code. The variable code_id identifies each of the LDPC codes that have been loaded into the SD-FEC 
blocks. As these codes were loaded in the order given by available_ldpc_params(), we can obtain the ID by 
indexing the output of this function with the name of the desired code. The names given to the codes used by 
the encoder and decoder are not the same, however the order of the codes is the same, and therefore we only 
need to index the LDPC parameters of one of the SD-FEC cores and use the same code ID for both the encoder 
and decoder.

The code ID forms part of the control word that is sent to the SD-FEC block as detailed in Table 15.4. The 
control word comprises a number of fields and so it is worthwhile creating a function that takes in values for 
the fields and uses these to construct the code word. Figure 15.24 presents such a function. It accepts a 
dictionary containing the control word fields and their values as an argument. An additional dictionary is 
created inside the function with values initialised to zero for each of the fields, meaning that only fields with 
values that differ from this need included in the input argument. The control word is constructed by 
converting the field values into binary strings of the exact length of each field, as stipulated in Table 15.4. These 
values are then concatenated together in the correct order before being converted and returned as an integer. 

    
    def create_ctrl_word(ctrl_params_input):

        ctrl_params = {'id' : 0, 

                       'max_iterations' : 0,
                       'term_on_no_change' : 0,

                       'term_on_pass' : 0, 

                       'include_parity_op' : 0,
                       'hard_op' : 0,

                       'code' : 0}

        for key in ctrl_params_input:

            ctrl_params[key] = ctrl_params_input[key]

        id = '{0:08b}'.format(ctrl_params['id'])                                   # (31:24) uint8

        max_iterations = '{0:06b}'.format(ctrl_params['max_iterations'])           # (23:18) uint6

        term_on_no_change = '{0:01b}'.format(ctrl_params['term_on_no_change'])     # (17:17) bit1
        term_on_pass = '{0:01b}'.format(ctrl_params['term_on_pass'])               # (16:16) bit1

        include_parity_op = '{0:01b}'.format(ctrl_params['include_parity_op'])     # (15:15) bit1

        hard_op = '{0:01b}'.format(ctrl_params['hard_op'])                         # (14:14) bit1
        reserved = '{0:07b}'.format(0)                                             # (13:7) uint7

        code = '{0:07b}'.format(ctrl_params['code'])                               # (6:0) uint7

        ctrl_word_bin = id + max_iterations + term_on_no_change + term_on_pass \

        + include_parity_op + hard_op + reserved + code

        return int(ctrl_word_bin,2)

Python

Figure 15.24:  Function to create control word given a dictionary containing parameters and values.
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The two SD-FEC controller IP cores, designed in Section 15.2.3, can be configured by using this function to 
create the control word. Figure 15.25 details the Python code for setting up the controller IP cores. 

For the encoder, we need only provide the code ID, as we will not be using the status word output from the 
encoder, and so can omit the External Block ID field. The length given to the controller dictates the rate at 
which the controller will send the control word to the SD-FEC encoder block. As the encoder takes infor-
mation bits, k, with a wordlength of 8 bits, the length given to the controller is k/8. The control word and 
length are then written to the encoder controller at their address offsets.

The decoder uses more of the fields in the control word. Again, we can omit the External Block ID field. The 
maximum number of iterations is set to 32, and both terminate-on-no-change and terminate-on-pass are set to 
1, meaning that if either of these conditions are met, the decoder will output early. We only want the decoded 
data in the form of hard bits to compare against the input data, and do not require the parity bits be returned. 
The decoder is configured to accept four soft bits per cycle on its DIN interface, and as such the length for the 
decoder controller is set to n/4, the encoded block length divided by the number of soft bits per cycle.

The symbol mapping IP core from Section 15.2.4 requires that a boolean valid signal is set in order to track the 
valid symbols. If the encoded block length divides evenly by 8 (the wordlength output by the encoder), then a 
value of zero is written to the register. If, however, the encoded block length produces a remainder when 
divided by 8, a value of one is written to the register. Figure 15.26 shows the symbol mapping IP core being 
configured in this manner. 

  reg_ctrl = 0x100

  reg_len = 0x104

  # Configure Encoder

  enc_ctrl_params = {'code' : code_id}
  enc_ctrl_word = create_ctrl_word(enc_ctrl_params)

  data_len = int(k/8)

  ol.fec_ctrl_enc.write(reg_ctrl, enc_ctrl_word)

  ol.fec_ctrl_enc.write(reg_len, data_len)

  # Configure Decoder
  dec_ctrl_params = {'max_iterations' : 32,

 'term_on_no_change' : 1,

 'term_on_pass' : 1, 
 'include_parity_op' : 0,

 'hard_op' : 1,

 'code' : code_id}
  dec_ctrl_word = create_ctrl_word(dec_ctrl_params)

  data_len = int(n/4)

  ol.fec_ctrl_dec.write(reg_ctrl, dec_ctrl_word)

  ol.fec_ctrl_dec.write(reg_len, data_len)

Python

Figure 15.25:  Configuring the SD-FEC controllers.
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CHAPTER 15: Practical SD-FEC Design
To configure the AWGN channel IP core, we must provide a scaling factor that, when multiplied with the real 
and imaginary components of the Gaussian noise signal and added to the data signal, results in a specific 
Signal to Noise Ratio (SNR). One way of representing SNR is in terms of signal and noise variance, as 
expressed in (15.7). 

(15.7)

SNR is the variable we would like to change, noise variance is our unknown, and we can calculate the signal 
variance using the formula for variance of a complex signal, i.e. 

(15.8)

where  is the value of the current symbol, is the mean of all symbols (which for our case is zero) and  is 
the number of symbols, which is 16. 

Using this equation, we calculate our signal variance to be 10. Rearranging (15.7), we can substitute in the 
value for signal variance along with a desired SNR, to obtain a value for noise variance. The variance of the 
Gaussian signal produced using the Box-Muller Transform is 1. Therefore our scaling factor is the square root 
of our desired variance divided by two, as our signal is complex. Figure 15.27 shows the Python code for 
configuring the AWGN channel IP core to supply the desired SNR. The variance scaling factor is multiplied by 

 as only integer values can be written to AXI4-Lite registers from Python. We know, however, that the IP 
core will interpret this as an unsigned 32-bit number with 30 fractional bits. Therefore we bit shift our value 30 
places to the left. 

  ol.qam_mapping.write(0x100, int(n % 8 > 0))
Python

Figure 15.26:  Configuring symbol mapping IP core.
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CHAPTER 15: Practical SD-FEC Design
The scaling of the LLR values prior to symmetric saturation can be configured by writing the bit-shifted 
scaling value to the appropriate register, as shown in Figure 15.28.

The scaling factor here should be modified depending on the SNR. Lower SNRs will mean that the conditions 
from (15.3) to (15.6) may exceed the bounds [-7.75, 7.75], and so scaling by a number less than one can reduce 
or prevent any saturation from occurring. 

Having configured most of the IP cores in our system, all that is left to do is create the Tx and Rx data buffers 
for sending data to be encoded, and receiving the decoded data. The code snippet in Figure 15.29 shows how 
this is achieved. As the number of data blocks can be varied here, and therefore the size of the data buffers, this 
is also the where the packet creator IP core will be configured.

    snr = 7                                                  # desired SNR

    signal_var = 10             # variance of signal
    noise_var = signal_var / 10**(snr/10)                    # variance of noise

    var_scale = math.sqrt(noise_var/2)                       # calculate the variance scaling factor

    var_scale = int(var_scale * pow(2,30))                   # fixed-point <0:32:30>

    ol.awgn_channel.write(0x100, var_scale)                  # write the variance scaling factor

Python

Figure 15.27:  Configuring AWGN channel IP core.

    llr_scale = 1

    aximm_llr_scale = int(np.uint32(llr_scale * pow(2,12))) # <0:32:12>

    ol.soft_demodulation.write(0x100, aximm_llr_scale)

Python

Figure 15.28:  Configuring LLR IP core.
528

Downloaded from www.RFSoCbook.com



CHAPTER 15: Practical SD-FEC Design
The number of blocks to be transferred can be changed. From this, the size of the data buffers can be calculated 
by first calculating the number of words in one data block, and then multiplying by the desired number of data 
blocks. This value of total_words is used to create two data buffers using the pynq.allocate() function, which 
allocates contiguous memory and returns a pynq.buffer object where data can be written to or read from.

Random data is generated using the numpy.random.randint() function. The two arguments given indicate the 
minimum and maximum bounds of the random number returned. A maximum limit of 255 is set here as our 
wordlength is 8 bits. The data buffers are then sent and received. It is good practice to initiate the receive 
transfer first as, should the system have very low latency, there is the chance that initiating the send transfer 
first would mean some or all samples arrive at the receive side before the receive transfer is initiated. 

We now have a Tx buffer containing our original data, and an Rx buffer which contains data that has been 
encoded, baseband modulated, introduced to some degree of channel noise, demodulated into soft bits and 
decoded. We can print these buffers out and visually compare by eye to see if they are the same, although this 
may prove more difficult for large data buffers. 

A useful metric to assess our received buffer is BER, which is the rate of bit errors that have occurred as a result 
of channel or other noise. Figure 15.30 provides a code listing containing two functions. The first function, 
serialise_data(), serialises our data. That is, it converts our data buffer from having a wordlength of 8 into a 
larger array of individual bits. The second function, calculate_ber(), compares two buffers of serialised data 
and calculates the BER. 

  num_blocks = 6      # Number of data blocks to be encoded

  K = int(k/8)    # Number of words in one data block

  total_words = num_blocks * K     # Total number of words in a data buffer

 # Generate random input data (Tx)

  tx_buffer = allocate(shape=(total_words,), dtype=np.uint8)
  for i in range(len(tx_buffer)):

   tx_buffer[i] = np.random.randint(0,256)    # Random numbers of the interval [0,256)

 # Setup Rx

  ol.packet_creator.write(0x100, total_words)

  rx_buffer = allocate(shape=(total_words,), dtype=np.uint8)

  # Perform transaction

  ol.axi_dma_rx.recvchannel.transfer(rx_buffer)
  ol.axi_dma_tx.sendchannel.transfer(tx_buffer)

  ol.axi_dma_tx.sendchannel.wait()

  ol.axi_dma_rx.recvchannel.wait()

Python

Figure 15.29:  Transmitting random data to be encoded and receiving decoded data.
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CHAPTER 15: Practical SD-FEC Design
We expect that, as we decrease the SNR, or in other words introduce more noise, the BER should increase. By 
using these functions and collecting the result over a range of SNRs, we are able to plot a BER curve. This is a 
very useful method for visualising the effects of noise in a system for a given LDPC code or modulation 
scheme. 

    

    def serialise_data(data):

        hard_data = data

        hard_binary = ''

        for hd in hard_data:
            h_bin = '{0:08b}'.format(hd)

            hard_binary += h_bin[::-1] # LSB first

        return hard_binary

    def calculate_ber(tx, rx):
        tx_bits = np.asarray(list(serialise_data(tx)))

        rx_bits = np.asarray(list(serialise_data(rx)))

        compare = tx_bits == rx_bits

        error_bits = (compare == False).sum()

        ber = error_bits / len(tx_bits)

        return ber

Python

Figure 15.30:  Calculating BER.
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Using the design outlined in this chapter, bit error analysis can be performed for the DOCSIS LDPC codes 
over a range of SNRs. A plot containing three BER curves for the Short, Medium and Long LDPC codes is 
shown in Figure 15.31. 

15.4.  Chapter Summary

This chapter has reviewed the practical use of the SD-FEC blocks on the RFSoC device, in the context of a 
larger system which simulates an AWGN channel with variable noise. A brief overview of the SD-FEC capabil-
ities has been provided, alongside the IP core that is used to create an SD-FEC design. We have stepped 
through each stage of the hardware design, considering the impact of wordlengths and code rates, and 
configured the encoder and decoder accordingly. Additionally, we have seen how PYNQ can be employed to 
interact with the hardware design at run time, and produce BER plots for analysing the performance of various 
LDPC codes across a variety of SNRs.

Next, we introduce some accompanying practical notebooks that further demonstrate the use of the SD-FEC 
block. 

Figure 15.31:  BER curves for DOCSIS Short, Medium and Long LDPC codes using 16-QAM.
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Notebook Set H
Forward Error Correction 

This series of notebooks investigate Forward Error Correction (FEC) in the context of RFSoC. We will use the 
hardened SD-FEC blocks that are integrated alongside the PL of some RFSoC devices. Although these 
notebooks provide some introductory material regarding FEC, much more detail of the underlying theory and 
practical design can be found in Chapters 14 and 15, respectively.

We begin by introducing FEC and parity check matrices, and then demonstrate how these matrices can be 
converted into the relevant parameters accepted by the SD-FEC block. Data is then generated in JupyterLabs 
and encoded using Low Density Parity Check (LDPC) codes on hardware using the SD-FEC IP core. Trans-
mission of the encoded data is simulated in Jupyter, where the data is demodulated using soft-decision Log 
Likelihood Ratios (LLRs). The soft LLR data is then formatted and sent to an SD-FEC IP core, configured as a 
decoder, where it is decoded and hard values are returned. Finally, Bit Error Rate (BER) analysis is performed 
to illustrate the advantages of employing FEC. 

There are five notebooks to investigate throughout this chapter using Jupyter Labs on your computer or RFSoC 
platform. The notebooks and their relative locations are listed as follows:

    ALL   01_fec_first_principals.ipynb — rfsoc_book/chapter_H/01_fec_first_principals.ipynb

 RFSoC 02_fec_encoding.ipynb — rfsoc_book/chapter_H/02_fec_encoding.ipynb

    ALL   03_fec_channel_simulation.ipynb — rfsoc_book/chapter_H/03_fec_channel_simulation.ipynb

 RFSoC 04_fec_decoding.ipynb — rfsoc_book/chapter_H/04_fec_decoding.ipynb

 RFSoC 05_fec_bit_error_analysis — rfsoc_book/chapter_H/05_fec_bit_error_analysis.ipynb
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Notebook H: Forward Error Correction
H.1.  First Principles FEC

In the first notebook, 01_fec_first_principles.ipynb, the reader is introduced to parity check matrices and how 
they are used for encoding and decoding data. The SD-FEC block supports LDPC coding, using both stand-
ardised and custom codes. This notebook will demonstrate how a parity check matrix, such as the one 
presented in Figure H.1, can be converted into the required YAML format that the SD-FEC IP core accepts, 
which enables the use of custom codes. YAML is a data-orientated language that is often used for application 
configuration files [364] .

H.2.  Using the Hardened SD-FEC Block for Encoding

The 02_fec_encoding.ipynb notebook introduces the RFSoC’s SD-FEC IP core and demonstrates how it can be 
configured to operate as an LDPC encoder. Figure H.2 shows the loop-back configuration of the SD-FEC core 
operating in the RFSoC. Notice that various DMAs are required to transfer data between the SD-FEC encoder 
and JupyterLabs.

The design is very simple and is intended to demonstrate how data input to the SD-FEC core should be 
formatted for Non-5G NR LDPC encoder configuration. In a similar vein, this notebook shows how data 
output from the SD-FEC core should be interpreted. Both of these aspects, formatting and interpreting, are 
achieved by setting up four buffers for transmission of data and control/status registers. The size of the data 
buffers (Tx, Rx) depend on the LDPC code employed. Multiple LDPC codes can be loaded into the SD-FEC 
block’s internal memory and are easily switched between, using a control word.

Figure H.1:  Parity check matrix and its sub-matrices.
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Notebook H: Forward Error Correction
H.3.  Communications Channel Simulation

The data that was encoded by the SD-FEC core in the previous notebook now needs to be modulated using a 
digital communications scheme. The modulated data should then be transmitted through a communications 
channel. To begin modelling and simulating a communications channel, open the notebook named 
03_fec_channel_simulation.ipynb. This notebook applies Additive White Gaussian Noise (AWGN) to the 
signal to introduce noise and simulate a simple communications channel.

In this notebook, we will also highlight the type of data that the SD-FEC expects when configured as a decoder. 
We will specify the LLR values, which are soft decisions made during the demodulation process. A soft demod-
ulator will be applied to the noisy encoded signal.

H.4.  Using the Hardened FEC Block for Decoding

The decoding notebook in 04_fec_decoding.ipynb follows a very similar process to the encoder, in terms of 
initialising the hardware and setting up the required data buffers. The block design is illustrated in Figure H.3. 
A significant difference between the decoder and encoder is the fixed-point representation of the data input to 
the decoder (fixed point formats are introduced in Section 4.4). The decoder expects the data input to be a 
signed 6 bit number with 2 fractional bits. This fixed-point number is symmetrically saturated to a range of -
7.75 to 7.75 and then sign-extended to 8-bits. This notebook demonstrates how data communication is 
achieved using the LLR values acquired from the previous notebook.

Figure H.2:  Functional block diagram illustrating the loop-back implementation of the SD-FEC encoder.
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Notebook H: Forward Error Correction
H.5.   Bit Error Rate and Analysis

The final notebook named 05_fec_bit_error_analysis.ipynb will leverage the interactive JupyterLab 
environment to generate BER graphs, of similar form to Figure 15.31. These plots allow us to analyse the 
performance of various LDPC codes across a range of channel SNRs.

Figure H.3:  Functional block diagram illustrating the loop-back implementation of the SD-FEC decoder.
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Chapter 16
OFDM: Orthogonal Frequency 
Division Multiplexing

Douglas Allan 

This chapter introduces Orthogonal Frequency Division Multiplexing (OFDM), and provides the theoretical 
background to the RFSoC OFDM demonstration Jupyter notebooks that accompany this book. An overview of 
these examples is provided immediately following this chapter.

OFDM is a digital multi-carrier modulation method which allows for very efficient, reliable transmission and 
reception of data over wireless multipath channels. As such, it has become the modulation scheme of choice 
for a variety of wireless communications technologies and standards, including 4G LTE, 5G NR, Wi-Fi and 
both digital audio and video broadcasting, to name a few. 

During transmission through the channel, a radio signal may experience non-linear gain across the frequency 
band that it occupies1. This is particularly true for wide-bandwidth signals, which can be subject to a compli-
cated response across the occupied frequency band. In this case, the channel is said to be ‘frequency selective’ 
because the range of frequency components present within the signal experience different gains. Normally it is 
desirable to equalise the channel response (to achieve approximately linear gain across the entire signal 
bandwidth) by applying a compensating frequency response within the receiver. This equalising response is 
computed by measuring and adapting to the channel environment. Equalisation can be particularly difficult 
when the channel has a complicated frequency response, which changes over time (i.e. is ‘time varying’).

1. This effect can be attributed to multipath propagation, which is introduced in Figure 16.1. 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
OFDM addresses this problem by dividing the wideband, frequency selective channel into several parallel sub-
channels. Each of these sub-channels is sufficiently narrow to ensure that they individually experience ‘flat 
fading’, meaning that the response across a sub-channel is a constant gain, or a simple linear response. As a 
result, sub-channels can be individually equalised using a very simple compensating response. The use of sub-
channels significantly reduces the overall complexity of equalising a time varying multipath channel. 

Figure 16.1 contrasts these two approaches — compare the frequency response of the wide-bandwidth signal, 
with the responses of individual sub-channels in an OFDM signal. 

Figure 16.1:  Frequency response comparison, highlighting use of sub-channels.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
The data transmitted on each sub-channel modulates a different sub-carrier before being combined to form 
the final transmitted signal. The sub-carrier frequencies are orthogonal which allows the interfering sub-
channels to be separated at the receiver, leading to improved spectral efficiency when compared to non-
orthogonal Multi-Carrier Modulation (MCM). The use of orthogonal sub-carriers is equivalent to the Inverse 
Discrete Fourier Transform (IDFT), which means that the modulation and demodulation processes can be 
implemented efficiently using the Fast Fourier Transform (FFT) algorithm. In addition, the Cyclic Prefix (CP) 
maintains the orthogonality of sub-carriers in the multipath channel, provides a mechanism to prevent 
channel induced Inter Symbol Interference (ISI) and facilitates the one-tap equaliser. 

16.1.  Motivation for OFDM

In a wireless channel, the transmitted signal is reflected, refracted, diffracted and scattered by objects in the 
signal path. This leads to several delayed and scaled versions of the signal arriving at the receiver through 
multiple different paths. An example channel is shown in Figure 16.2, comprising a direct Line-of-Sight (LoS) 
path, and two Non-Line-of-Sight (NLoS) paths. The NLoS paths arise because some signal components are 
reflected by objects located between the transmitter and receiver. 

Each resolvable multipath component can be modelled as having a time-varying complex amplitude 
(consisting of magnitude and phase components) and a time varying delay. This is expressed as

, (16.1)

where  denotes time,  is the time-varying amplitude of component i,  is the time-varying phase 
rotation associated with component  ,  is the time varying delay of component  and  is the  
multipath component.  

A resolvable multipath component is associated with one or more objects in the signal path. In general, each 
resolvable component comprises a large set of unresolvable components [176]. The time difference between 
the first and last significant resolvable components is the delay spread, denoted as  and measured in seconds. 

The constructive and destructive interference of multipath components leads to a frequency selective channel, 
with different frequencies experiencing differing amounts of attenuation. The bandwidth over which the 
channel frequency response is approximately correlated is called the coherence bandwidth, denoted as  and 
measured in Hz. The delay spread and coherence bandwidth are approximately inversely proportional, 

. (16.2)
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
The variation of signal power resulting from the multipath channel is known as fading. Depending on the 
characteristics of the transmitted signal, the channel can be classified as either frequency selective fading or flat 
fading. The channel is flat fading when the symbol period, , is long compared to , i.e. 

. (16.3)

From a frequency domain point of view, the channel is flat fading when the signal bandwidth B is small 
compared to , i.e. 

. (16.4)

Due to the fact that the fading is correlated across all frequencies, and there is limited ISI between consecutive 
symbols, a flat fading channel is relatively easy to equalise in the receiver.

The channel is frequency selective when  is small compared to , i.e. 

, (16.5)

or equivalently in the frequency domain, where B is large compared to , 

. (16.6)
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Figure 16.2:  Illustration of a multipath channel.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
In contrast to the flat fading channel, in a frequency selective channel, different signal frequencies experience 
different amounts of fading and ISI is more significant, which makes equalising the channel more difficult. 
However, for high data rate communications in channels with significant delay spread, it becomes necessary to 
equalise a frequency selective channel. 

If the transmitter and/or receiver and/or objects in the signal path are moving relative to one another, the 
channel varies with time. The channel coherence time, , is defined as the time over which the channel 
response remains effectively constant. As the velocity of the transmitter and/or receiver increases,  
decreases. The relative motion also generates a Doppler shift which differs for each multipath component due 
to the fact that each component arrives at the receiver from a different angle. The range of Doppler shifts 
associated with the multipath components is known as the Doppler spread, , which is measured in Hz. 
and  are approximately inversely proportional, 

. (16.7)

If , or equivalently if , the channel is slow fading. Conversely, if  or equivalently 
, the channel is characterised as fast fading [319]. 

In many cases, a channel will be doubly dispersive (i.e. will be characterised as either flat or frequency selective 
and either fast or slow fading). The term doubly dispersive refers to the fact that the channel is both time 
dispersive (due to the various delayed multipath components) and frequency dispersive (due to the Doppler 
shifts of the various multipath components).

At baseband, the multipath channel can be modelled as a discrete time FIR filter with complex coefficients of 
the form shown in (16.1). As such, the channel output is the linear convolution of the input signal and the 
channel impulse response,

(16.8)

where  is the discrete time output signal,  is the input signal,  is the complex impulse response, 
* denotes convolution and n is the sample index. 

Figure 16.3 shows an illustration of the baseband channel filter. If there is no LoS component, the coefficients 
are drawn from a zero mean complex normal distribution, and the channel is said to be Rayleigh fading. 
Conversely, if there is a LoS component, the coefficients follow a complex normal distribution with non-zero 
mean and hence the channel is classed as Rician fading. 

In the receiver, it is necessary to implement an equaliser to compensate for the effects of the channel. In single 
carrier systems such as QPSK and QAM, equalisers are commonly implemented in the time domain using 
adaptive filters, whose weights are updated using a training sequence known to both transmitter and receiver 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
and an adaptive algorithm such as Recursive Least Squares (RLS) or Least Mean Squares (LMS). Figure 16.4
shows the Linear Equaliser in training mode. 

The adaptive algorithm (RLS, LMS etc.) converges towards a set of weights that minimises the error sequence, 
, given by

, (16.9)

where  is the adaptive filter output, and  is the desired signal, i.e. the training sequence. 

Figure 16.3:  FIR filter representation of a multipath channel.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
For the linear equaliser, the adaptive filter  would approximate the inverse of the multipath channel, 

. (16.10)

In adaptive filtering terminology, the linear equaliser performs inverse system identification. The linear 
equaliser is also known as the Zero Forcing equaliser because it attempts to invert the channel and hence 
eliminate ISI. However, its main drawback is that it amplifies the noise at frequencies where there is a deep 
fade, i.e. great attenuation in the channel response, because it applies a large gain to compensate for the loss of 
signal power. As such, the linear equaliser is typically restricted to flat fading channels [248]. 

After the initial training mode, the equaliser is switched into Decision Directed Mode (DDM) to track varia-
tions in the channel between training periods. In DDM, a hard decision is made on the equaliser output, , 
to form the desired signal, . If the equalised symbols, , are close to their ideal values,  is small 
and hence the filter weights do not have to be updated significantly. 

Another common form of equaliser is the Decision Feedback Equaliser (DFE). The DFE uses a form of feedback 
filter whose input is the desired signal, . Figure 16.5 shows the DFE in training mode [324]. 

By feeding  into the adaptive filter, it converges towards the unknown system . Here, the adaptive 
filter performs system identification, rather than inverse system identification. The ideal filter response is

 . (16.11)
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
Since the DFE does not involve inverting the channel, it avoids the noise amplification problem associated with 
the linear equaliser and is therefore more suitable for equalising frequency selective channels. In addition, it 
requires fewer coefficients than its linear counterpart, which reduces the computational cost. 

In general, the computational cost associated with time domain equalisation techniques such as the Linear or 
DFE equaliser increases with the Baud rate (or data rate) and the delay spread of the multipath channel. 
Moreover, as the velocity of the transmitter and/or receiver increases and coherence time decreases, the filter 
weights have to be updated more frequently. 

In order to illustrate the computational cost with an example, consider that a QPSK signal operating at a Baud 
rate of  = 10 Msym/s is passed through a multipath channel with . In this case, the symbol 
period is 5 times smaller then the delay spread, so the channel is frequency selective and ISI occurs. Assuming 
a DFE equaliser with 50 complex weights is used in the receiver, this amounts to  million = 2 
billion Multiply Accumulates per second (MAC/s) (assuming 4 real multipliers to perform one complex multi-
plication). If the Baud rate and hence bit rate were increased by a factor of 2, the cost would increase to 

 million = 4 billion MACs/s. Moreover, if  increased, a larger number of weights would be 
required to properly equalise the channel, leading to an even greater computational cost. 

From this simple example, it is clear that time domain equalisation becomes very expensive even for moderate 
data rates and delay spreads. In order to achieve  = 40 Mbps in a channel with  = 0.5 , the computa-
tional cost for the DFE equaliser was 4 billion MAC/s, assuming a 50 weight filter. In practice, an even longer 
filter would likely be required, which would further increase the computational overhead. 

Since we are interested in achieving data rates on the order of 100’s of Mbps (and approaching Gbps) in high 
delay spread environments, it is clear that more computationally efficient approaches to equalisation are 
necessary. This provides the motivation and rationale for the development of MCM techniques and more 
specifically OFDM. 

16.2.  Multi-Carrier Modulation

In MCM, the high-rate symbol stream is divided into several parallel low-rate streams, which each modulate a 
different sub-carrier. The number of sub-carriers, N, is chosen to ensure that the bandwidth of each sub-
carrier is smaller than the channel coherence bandwidth, . As a result of this, each sub-carrier experiences a 
flat fading channel and can therefore be equalised with low complexity in the receiver as illustrated in Figure 
16.1. In this way, it is no longer necessary to equalise the frequency selective channel directly, reducing the 
overall complexity of the equalisation process. Figure 16.6 illustrates an MCM transmitter. 

At the left hand side, the original symbol stream operating at  Bd is passed into a 1-to-N serial-to-parallel 
converter which produces N parallel output streams, each operating at . These parallel streams are 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
then passed through pulse shaping filters  which limit their bandwidth to  Hz, where k is 
the sub-carrier index. 

The streams then each modulate a different sub-carrier, , where  is the frequency of sub-carrier k, 
before being summed together to produce the final output signal, . The  signal is then up-converted 
to Radio Frequency (RF) and transmitted across the channel. 

The signal  can be expressed mathematically as, 

(16.12)

where  denotes the th lower rate stream. In MCM, the sub-carrier spacing is chosen such that sub-carriers 
do not overlap or interfere in the frequency domain, allowing them to be separated successfully at the receiver. 
In an ideal system, the minimum sub-carrier spacing to avoid overlap is, 

(16.13)

where  is the frequency of the th sub-carrier. As such, the ideal system occupies a bandwidth of  Hz, 
which is equal to the bandwidth occupied by an equivalent single-carrier operating at  Bd. 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
The theoretical bandwidth of  Hz is impossible to achieve, however, as it would require “brick wall” pulse 
shaping filters with infinite length. Achieving an approximately band-limited signal requires filters with a large 
number of coefficients, which is prohibitively costly. Therefore, to keep the cost at a reasonable level and use 
filters with a practical number of weights, we cannot feasibly band-limit the signal to  Hz. As such, another 
method is used to ensure that the signals do not overlap: adding a guard band between sub-carriers, 

(16.14)

where  is the width of the guard band, in Hz. The necessity of adding guard bands between carriers means 
that the total occupied spectrum increases to  Hz, which reduces the spectral efficiency compared 
to an equivalent single-carrier system.  

In the receiver, it is first necessary to recover the individual signals using a set of bandpass filters, each centred 
at frequencies corresponding to the set of sub-carrier frequencies. These individual signals are then demodu-
lated using a complex oscillator and passed through a matched filter, , matched to the pulse shaping 
filters used in the transmitter. Finally, the signals are synchronised in time and frequency, and passed through 
a set of equalisation filters, before being recombined to produce the original symbol stream as shown in Figure 
16.7. The requirement for N parallel bandpass filters, N complex demodulators and N separate baseband 
receive chains makes the generic MCM receiver very computationally complex. 

It is clear that the potential benefits of the MCM scheme are outweighed by the additional overhead in terms of 
computation and spectrum usage. 

Bn

Bn

fk f0 k Bn + +=


N Bn + 

     P/S 
Converter

Symbol 
stream 
@ R

sym

RF
Antenna f

0

m0(t)

m1(t)

m
N-1

(t)

Time / Freq 
synch

Time / Freq 
synch

Time / Freq 
synch

Equaliser

Equaliser

Equaliser

f
1

f
N-1

e 
-j2 f0t

e 
-j2 f1t

e 
-j2 fN-1t

e 
-j2 fct

ADC

Figure 16.7:  Multi-Carrier Modulation (MCM) receiver.

mk t 
546

Downloaded from www.RFSoCbook.com



CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
16.3.  OFDM Principles

In order to produce a more practical implementation of MCM, OFDM employs orthogonal sub-carriers. The 
property of orthogonality allows the sub-channels to overlap in frequency, thereby removing the need for 
guard-bands and expensive filters to keep the sub-channels separated. In addition, the use of orthogonal sub-
carriers can be shown to be equivalent to the IDFT in the digital domain, allowing the modulation and demod-
ulation processes to be implemented using the computationally efficient FFT algorithm.

16.3.1.  OFDM Modulation and Demodulation 

In OFDM, the sub-carriers are chosen to be orthogonal within a period of  seconds, where  denotes the 
symbol period for each sub-channel. Assuming a sampling rate of , this is equivalent to  samples. 
The orthogonality condition is expressed mathematically as, 

(16.15)

where  and  denote two orthogonal frequencies and  is the sample index. In order to understand why 
this is useful, consider an OFDM system that employs two orthogonal sub-carriers. The transmitted signal 

 (before digital to analogue conversion) is given by, 

(16.16)

where  and  denote the symbols transmitted on sub-carriers  and , respectively, within the period 
. Using the relationship in (16.15), we can recover  from the received mixture using the following 

receiver, 

. (16.17)

Expanding (16.17), we arrive at, 

, (16.18)

and if we bring and  to the outside of the summations, (16.18) becomes, 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
. (16.19)

On the left-hand side of (16.19), the complex exponentials cancel to a value of 1, so the summation is simply 
the average of 1 over a period of N samples, which equals 1. On the right-hand side, the expression in square 
brackets is equivalent to (16.15). Therefore, (16.19) reduces to 

. (16.20)

Thus, by employing orthogonal sub-carriers, the signals can overlap or interfere in frequency and be separated 
at the receiver without expensive bandpass filters, unlike in generic MCM. Figure 16.8 illustrates the OFDM 
modulation process. 

As the sub-carriers are orthogonal, it is not necessary to bandlimit the individual symbol streams using 
shaping filters, and they can simply be added together. This reduces the computational overhead significantly, 
and implies a rectangular pulse shape with period . The use of a rectangular pulse shaping filter in the time 
domain results in each of the sub-carriers having a , or sinc frequency spectrum. Figure 16.9 shows 
the spectra of 5 OFDM sub-carriers. 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
Due to the use of orthogonal frequencies, the sub-carriers do not interfere at their centre frequencies, thus 
allowing them to be separated at the receiver. The question remains, how to choose the sub-carrier 
frequencies? As it turns out, the relationship in (16.15) only holds for frequencies that have an integer number 
of periods within  [142]. Therefore, the sub-carrier frequencies are  Hz and its integer multiples 

, (16.21)

leading to a sub-carrier spacing of  Hz. The final OFDM signal can be expressed mathematically 
as 

. (16.22)

Note, there is a DC (0 Hz) sub-carrier, but this is typically not used for data transmission. The expression in 
(16.22) is equivalent to the IDFT (minus the scaling factor), which means that OFDM modulation can be 
performed by taking the IDFT of a block of  complex symbols. The resulting signal, , is called an 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
OFDM symbol, and comprises the sum of  complex symbols, each modulating a different orthogonal sub-
carrier. The overall data payload is carried across the wireless channel as a series of OFDM symbols.

As is well known, performing the IDFT directly requires  complex multiplications. The computational 
complexity can be reduced to  by employing the Radix 2 FFT algorithm, and therefore the 
IFFT is used in practice [141]. As a result, the number of sub-carriers, , is set to a power of 2.

The FFT is used to recover the transmitted symbols in the receiver. In an ideal scenario, this is equivalent to 
sampling the sub-carriers at the optimal frequencies, referred to as the maximum effect points (i.e. where there 
is no inter-carrier interference, and signal to noise ratio is maximised). As such, in OFDM, the transmitted 
pulses are sampled in the frequency domain rather than the time domain. In a realistic channel, however, 
frequency offsets (caused by oscillator mismatches and Doppler) cause the sub-carriers to drift from their ideal 
centre frequencies, meaning that the FFT does not sample them at their true maximum effect points. This 
leads to Inter Carrier Interference (ICI) which manifests as a form of additive noise, leading to an increase in 
symbol and bit errors in the receiver. However, the OFDM system can be designed to minimise the impact of 
ICI, as will be described later.

Now incorporating the IFFT, the OFDM transmitter can be redrawn as shown in Figure 16.10.  

With the replacement of the orthogonal modulation process by the IFFT, the OFDM transmitter is almost 
complete. However, there is one additional ingredient known as the Cyclic Prefix (CP). The CP is required to 
maintain the orthogonality of the sub-carriers through the multipath channel, eliminate ISI between OFDM 
symbols, and facilitate the one-tap equaliser. 

16.3.2.  The Cyclic Prefix 

The purpose of the CP in OFDM can be understood by first analysing the effects of the multipath channel on 
the individual sub-carriers. The channel is equivalent to an -tap FIR filter, and hence the output OFDM 
symbol, , is the linear convolution of the input OFDM symbol, , and the channel impulse response, 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
The filter length, , is dictated by the channel delay spread, , with a longer delay spread requiring a longer 
filter. The linear convolution of an  sample signal with an  tap filter results in an output signal with length 

 samples, which can be divided into three stages: the transient, the steady state and the decay stages. 
These are illustrated in Figure 16.11, along with the duration of each stage. 

The transient stage occurs before the filter is fully occupied by input samples, and hence is  samples long. 
The steady-state stage starts as soon the filter memory is fully occupied by signal samples, and is  
samples long. Finally, the decay stage starts when the filter is only occupied by past samples, and is thus also 

 samples long.

The transient stage distorts the initial portion of each sub-carrier, resulting in a loss of orthogonality and hence 
channel-induced ICI. Conversely, the decay stage causes sub-carriers from one symbol to bleed into sub-
carriers in the next symbol, which causes ISI. Figure 16.12 shows the effects of the transient and decay stages 
on the real part (cosine) of a single unmodulated sub-carrier (note the effects are similar for all sub-carriers 
making up the OFDM symbol).  

Both the transient and decay stages are shown in red, and the steady state stage is shown in blue. In order to 
maintain orthogonality and properly convey the symbol to the receiver, the amplitude and phase of the sub-
carrier must be constant over the duration of  samples. However, due to the transient stage, the first 
samples are distorted, which destroys the orthogonality. Similarly, the decay stage extends the sub-carrier 
beyond the  sample boundary, causing interference to the subsequent symbol. 

Fortunately, both of these problems can be solved by the CP. The CP involves extracting a portion of the end of 
the OFDM symbol and appending it to the front. This has the effect of inserting a guard period between 
OFDM symbols. The length of the guard period is chosen to be greater than  samples, i.e. the duration of 
the transient and decay stages. The use of a CP is possible because the OFDM symbol period, , is large 
compared to , or equivalently the delay spread  of the channel, due to the fact that it comprises many low 
rate sub-carriers. Figure 16.13 illustrates the OFDM symbol with a CP.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
The overall OFDM symbol is now composed of the CP and the useful symbol (i.e. the portion that carries the 
data payload). Therefore, the overall length of the OFDM symbol, , is given by,

(16.23)

where  and  are the lengths of the useful symbol and CP respectively. Note, , is the number of 
samples in the useful symbol which is equivalent to the no. of sub-carriers since . Figure 
16.4 plots the real part of the sub-carrier with the CP attached. 

It can be observed that, as the guard interval is formed using a portion of the OFDM symbol, there is no 
discontinuity between the CP and the beginning of the OFDM symbol. This is advantageous because any 
discontinuities between the CP and OFDM symbol would cause spurious out-of-band frequency components. 

Figure 16.12:  Plot of filtered sub-carrier.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
Note, there are still discontinuities between OFDM symbols, but these can be mitigated to some extent by 
applying windowing techniques, in a similar fashion to the windowing used in spectral analysis. 

Furthermore, if we take the symbol to begin at the start of the CP, this is equivalent to the original symbol 
cyclically shifted to the right by  samples. Therefore, we can take the beginning of the OFDM symbol to be 
anywhere within the CP, provided that we compensate for the resulting phase shift (this is compensated for by 
the equaliser). This is advantageous as it allows a greater margin of error for timing synchronisation in the 
receiver. However, it cannot be taken from any part of the CP affected by ISI. In most practical systems, this is 
achievable because the CP is made to be longer than the expected channel delay spread. 

Figure 16.15 shows the sub-carrier with CP attached, after it has been passed through the multipath channel 
filter. On the left-hand side, the transient stage of the multipath channel now occurs during the CP, and 
therefore does not affect the sub-carriers. This means that the sub-carriers only enter the channel during the 
steady state stage, ensuring that orthogonality is maintained. On the right hand side, the decay stage is 
absorbed by the CP of the subsequent symbol (not shown), thus preventing ISI.

The last major benefit of the CP is that it facilitates the ‘one-tap’ equaliser, arising from the fact that periodic or 
circular convolution in the time domain is equivalent to multiplication in the frequency domain [141]. 

The addition of a CP which is at least L-1 samples long makes the OFDM symbol “appear”  periodic, i.e. 
being periodic with a period of  samples. As a result, after the FFT in the receiver, the received symbols  
are related to the original symbols  as, 

(16.24)

Figure 16.14:  Plot of real part of sub-carrier with CP.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
where  is the complex (magnitude and phase) frequency response at sub-carrier . As a result of this, the 
channel can be equalised as, 

 (16.25)

where  represents the estimated symbols after equalisation. More detail on how the addition of the CP leads 
to the one-tap equaliser can be found in the OFDM Fundamentals Jupyter notebook that accompanies this 
textbook (see the introduction to Notebook I on page 569). 

It is clear that the one-tap equaliser used in OFDM represents a significantly simpler and more computa-
tionally efficient approach to equalisation than the time domain filters used in single carrier systems. 
Returning to the numerical example in Section 16.1, the  of 0.5 s can be addressed with an equivalent 
OFDM system operating at  with  = 64 sub-carriers and  = 16. In this case, the total 
symbol duration is 4 s meaning that the computational complexity of equalisation is  = 64 million 
MAC/s. This is a significant saving compared to the 4 billion MAC/s required for the 50 weight DFE in the 
QPSK system. 

16.4.  OFDM Transmitter

Having introduced the IFFT and CP in the previous sections, we can now draw an updated diagram for the 
OFDM transmitter as shown in Figure 16.10, to include the CP insertion stage. The modified architecture is 
illustrated in Figure 16.16. 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
It should be noted that not all sub-carriers are used for carrying data. In particular, both null sub-carriers and 
pilot sub-carriers are also transmitted. The null sub-carriers contain no data and are typically used at DC and 
the outer sub-carriers to relax the requirements for anti-aliasing and ant-imaging filters. Furthermore, the pilot 
sub-carriers carry special training symbols known as ‘pilots’ or ‘reference signals’ for example in 4G LTE and 
5G NR, which can be used for synchronisation purposes, channel estimation, and signal power and channel 
quality measurements. 

As an example, Figure 16.17 illustrates the composition of an OFDM symbol based on the IEEE 802.11-2012 
standard [207]. The composition of the OFDM symbol is shown in a frequency versus time representation. 
This representation is used frequently in the 4G LTE and 5G NR standards, where it is known as the resource 
grid. These standards employ a multiple access method known as Orthogonal Frequency Division Multiple 
Access (OFDMA), wherein blocks of sub-carriers known as resource blocks are assigned to different users of 
the channel. The assignment of resource blocks to different users (in both the downlink, i.e. basestation to user; 
and the uplink, in the opposite direction) is controlled by a scheduling algorithm that runs in the Medium 
Access Control (MAC) Layer of the basestation (eNodeB in 4G, or gNodeB in 5G) [315]. 

In Figure 16.17, the null sub-carriers are highlighted in gold, the pilots in blue and the data sub-carriers in red. 
The OFDM symbol is drawn with the DC sub-carrier at the centre, with the spectrum extending from 
to  Hz. This structure is repeated for all other OFDM symbols in a frame. It can be observed that the null 
sub-carriers are on the outer edges of the band. As mentioned previously, this relaxes the requirements in 
terms of anti-imaging and anti-aliasing filters at the transmitter and receiver. In this case, the DC sub-carrier is 
a null sub-carrier, in order to avoid interference generated by radio artefacts including Local Oscillator 
Leakage (LOL) associated with Direct Conversion (RF to baseband) front end architectures [363]. Note, in 5G 
NR, the DC sub-carrier can be used for data transmissions [3]. 

There are four pilot sub-carriers per OFDM symbol, which are spread out across the signal bandwidth. In the 
IEEE 802.11-2012 standard, these are intended for phase tracking in the receiver. Channel estimation is 
handled using a special preamble appended to each data packet. This assumes that the channel does not 
change significantly over the duration of a single packet, which is a valid assumption for Wi-Fi, where mobility 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
is usually low. The phase error results from radio impairments such as residual frequency offset, oscillator 
phase noise and sampling frequency offset. Since this phase error varies from symbol to symbol, it has to be 
“tracked”, and hence the pilots are repeated in each OFDM symbol. More details on the phase error will be 
provided in Section 16.5. The pilot arrangement shown in Figure 16.17 is known as comb-type [200]. 

In 4G and 5G, the transmission is continuous, so data is not transmitted in bursts, and consequently the 
channel cannot be assumed to remain constant over the duration of a transmission. Therefore, the channel is 
estimated using pilots or reference signals spread through frequency and time. For the sake of brevity, we will 
only consider the 4G case, since the reference signal configuration in 5G would require a more thorough 
treatment than is possible in this chapter. Figure 16.18 illustrates the pilot arrangement used in 4G. 
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Figure 16.17:  Composition of an example OFDM symbol.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
The pilots are scattered throughout the resource grid, and thus it is referred to as a scattered pilot arrangement. 
The spacings of the pilots in frequency and time are determined by the expected coherence bandwidth and 
coherence time of the channel, respectively. In particular, the spacing in frequency, , must be less than the 
coherence bandwidth , i.e. 

. (16.26)

Similarly, the spacing in time, , must be less than the coherence time , 

. (16.27)

The requirement that  implies that the sub-carrier spacing should be much smaller than . Otherwise, 
a greater number of pilots would be required to estimate the channel, thereby reducing spectral efficiency. The 
channel estimates at the pilot sub-carriers are interpolated (usually linearly) in frequency and time to estimate 
the channel response at the data sub-carriers. These channel estimates can then be used to equalise the channel 
and recover the transmitted data symbols.   

The null and pilot sub-carriers do not carry data, and therefore reduce the spectral efficiency that can be 
achieved in OFDM. However, with careful design, their use can be minimised as much as possible, while still 
guaranteeing the performance of the OFDM system.   

16.5.  Impairments in OFDM 

In addition to the effects of the multipath channel, there are several radio imperfections which impair the 
OFDM signal and must be estimated and corrected for in the receiver. The main impairments are Timing 
Offset, Carrier Frequency Offset (CFO), Residual CFO and Phase Noise, and Sampling Frequency Offset. The 
details of these impairments are described in the following sections. 
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Figure 16.18:  Pilot arrangement in 4G LTE.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
16.5.1.  Timing Offset 

The timing offset can be classified as either fractional or integer, measured in relation to . A fractional timing 
offset is caused by a mismatch in sampling phase between the transmitter and receiver sampling clocks. The 
fractional timing offset causes a frequency dependent phase rotation to each symbol after the FFT [119]. This 
can be appreciated by recalling the following property of the DFT, 

(16.28)

where  is the fractional offset normalised to . The phase rotation is dependent on the sub-carrier index, , 
and so each symbol experiences a different phase shift. This phase error does not vary with time, and is 
corrected by the channel equaliser. 

The integer timing offset relates to an error in the estimated position of the beginning of an OFDM symbol, 
which causes the FFT to be performed over an incorrect block of  samples in the receiver. The impact of this 
error depends on whether the estimated starting position is earlier or later than the actual starting position. 
Figure 16.19 illustrates the two possible integer timing offsets. 

In the early integer timing offset, the FFT window includes a portion of the CP of the current OFDM symbol. 
As described previously, this causes a simple phase shift to each symbol after the FFT, which can be corrected 
by the equaliser if the timing falls within a region of the CP not affected by ISI. Since the CP is typically longer 
than the delay spread, an early integer timing offset does not pose a problem, which relaxes the requirements 
in terms of timing synchronisation. In contrast, a late timing offset causes a portion of the CP belonging to the 
next OFDM symbol to be included in the FFT window for the current OFDM symbol. This leads to both ISI 
and ICI, and must be avoided [192]. 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
16.5.2.  Carrier Frequency Offset

Frequency offsets occur due to local oscillator mismatches between the transmitter and receiver, and Doppler 
shifts. The frequency offset causes the sub-carriers to drift from their ideal frequencies and, if not corrected 
prior to the FFT, results in a loss of orthogonality, and ICI. As mentioned earlier, ICI manifests as a form of 
additive noise which leads to an increase in symbol and bit errors in the receiver. In a similar fashion to timing 
offsets, the CFO comprises integer and fractional components, measured in relation to the sub-carrier spacing, 

.   

The effect of CFO on the received signal is expressed mathematically as, 

(16.29)

where  and  are the transmitted and received time domain OFDM signals, respectively, and  is 
the CFO. The CFO can be estimated using training signals, along with auto-correlation and cross-correlation 
techniques, as will be described in Section 16.6. 

16.5.3.  Residual Frequency Offset and Phase Noise 

In practice, the frequency synchronisation process is not perfect, and therefore there is likely to be a residual 
frequency error after the FFT. This causes ICI, and a phase error which is common to all sub-carriers, but 
varies with time. If the residual offset is small compared to the sub-carrier spacing, the phase error will 
dominate compared to ICI. Since the phase error is common to all sub-carriers, it is known as Common Phase 
Error (CPE) [290]. In the case of residual frequency error, the CPE varies linearly with the OFDM symbol 
index, and therefore must be tracked using the pilot sub-carriers.

Phase noise is caused by oscillator imperfections and jitter in the clock that drives the oscillator. This is 
modelled as the addition of a time-varying phase term to the local oscillator output, i.e.

(16.30)

where  is the time-varying phase term. The phase noise causes the signal to spread in frequency, which 
introduces ICI. In addition, it causes a randomly varying CPE. If the sub-carrier spacing is large compared to 
the bandwidth of the phase noise, the CPE term will dominate compared to ICI [172]. At higher carrier 
frequencies, the phase noise bandwidth increases, which in turn necessitates a larger sub-carrier spacing. This 
is one of the reasons for the mixed numerology or sub-carrier spacing in 5G NR, which allows for a larger sub-
carrier spacing to combat the effects of phase noise at higher carrier frequencies. In Frequency Range 2, or 
mmWave bands, a sub-carrier spacing of 120kHz is sued whereas 30kHz is typically used in mid-band 
(3.5GHz) deployments. 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
16.5.4.  Sampling Frequency Offset 

Sampling offset arises due to a mismatch in the sampling frequency between transmitter and receiver. This is 
equivalent to a sampling phase error that increases with time, and it means that the sub-carrier dependent 
phase error in (16.28) also varies with OFDM symbol index [320]. As with the CPE, this must be tracked using 
the pilot sub-carriers. 

The sampling frequency offset also introduces an ICI term. In OFDM based standards such as IEEE 802.11 
[207], there is often a worst case sampling frequency offset (and CFO) defined, which manufacturers must 
adhere to in order for their devices to be standard-compliant. This ensures that frequency offsets (sampling, 
carrier etc.) are manageable and can be estimated and corrected in the receiver. 

16.6.  OFDM Receiver

The OFDM receiver comprises all of the processing steps required to reverse the effects of the channel and 
radio impairments, and recover the transmitted bitstream. At a high level, the receiver stages are: timing 
synchronisation, frequency synchronisation, FFT demodulation, channel estimation, equalisation, and phase 
tracking. Figure 16.20 shows a high level illustration of an OFDM receiver. 

At the top left of Figure 16.20, the received and digitised baseband signal, , is passed into the OFDM 
receiver. After the synchronisation, demodulation and equalisation stages, an estimate of the original symbol 
stream is generated, , as shown at the bottom left. 

For the purposes of this chapter, which focuses on OFDM techniques, the channel decoding stages will not be 
considered as part of the OFDM receiver. Channel coding and decoding receives its own dedicated coverage, 
elsewhere in the book (please refer to Chapter 14, which covers the topic in detail). 
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Figure 16.20:  High level block diagram of an OFDM receiver.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
It is useful to note, however, that channel coding and interleaving are important parts of many practical OFDM 
transceivers. An OFDM system that incorporates channel coding is known as Coded OFDM, or COFDM — 
this name is often used to refer to OFDM-based standards for broadcasting, such as Digital Video Broad-
casting - Terrestrial (DVB-T). 

The block diagram presented in Figure 16.20 is just intended as a high level overview of the main processing 
steps; the order of operations is not always as shown here, and some of the receiver tasks can be divided into 
several sub-tasks. Each of the main receiver stages will be reviewed over the following sections.

16.6.1.  Timing Synchronisation 

The first task that the OFDM receiver undertakes is to determine the starting point of the OFDM signal in the 
received sample stream. This is achieved using specially designed training sequences that are known to both 
transmitter and receiver, and which can be detected using auto-correlation and cross-correlation techniques in 
the receiver. These timing synchronisation algorithms are required to provide robust performance in 
multipath environments and low SNR conditions, and in the presence of radio impairments. 

A prominent example of an auto-correlation-based timing synchronisation algorithm is the Schmidl & Cox 
(S&C) algorithm [140],[313]. This algorithm was designed for packet based OFDM protocols, specifically the 
IEEE 802.11 family of standards, and features in the RFSoC OFDM implementation accompanying this 
textbook (see page 569). It exploits the auto-correlation properties of a preamble which consists of repeated 
versions of a fixed length sequence. In the IEEE 802.11a/g standard, the preamble comprises 10 repetitions of a 
16 sample sequence. The first seven repetitions are intended for signal detection, Automatic Gain Control 
(AGC) convergence, and diversity selection, while the last three repetitions are used for timing synchroni-
sation and coarse frequency offset estimation [140]. The S&C algorithm itself only requires two repetitions. 

The S&C algorithm computes the following timing metric [313],

 (16.31)

where  denotes a sample index and  is an autocorrelation metric calculated as 

. (16.32)

where  denotes complex conjugation. The auto-correlation is performed at a shift of , because there is a 
gap of  samples between identical samples in the training sequence. The result is then averaged across a 
window of  samples, which is equivalent to passing the auto-correlation through a length-  averaging filter. 
In the case of IEEE 802.11,  = 16. The auto-correlation metric is normalised by , which is given by, 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
. (16.33)

This normalisation factor makes the timing metric, , independent of the signal and noise received power 
level, thus allowing for a fixed threshold to detect the timing metric. Figure 16.21 shows the timing metric for 
an IEEE 802.11a/g OFDM signal with no noise or multipath effects. 

In order to generate this timing metric, a data frame consisting of a preamble with two repetitions of the 16 
sample training sequence, followed by a payload of 5 OFDM symbols, was passed to the Schmidl & Cox 
algorithm. The OFDM symbols were configured with parameters  = 64 and  = 16. 

The timing metric reaches a plateau when both halves of the preamble are aligned in the auto-correlation 
circuit. In an AWGN channel, the plateau has a length of , corresponding to the length of each repetition. In 
multipath channels, the delay spread causes interference between the two halves of the preamble (since there 
is no CP between them) and therefore this reduces the length of the plateau by a factor equal to the delay 
spread [313]. In IEEE 802.11a/g, each repetition is 16 samples long (i.e. the length of the CP), hence the S&C 
algorithm is still effective in multipath environments. 

Once the first OFDM symbol has been located, we automatically have the location of the remaining symbols. 
The location of the plateau can be determined by comparing the timing metric to a pre-defined threshold, such 
as 0.5. This is valid because the auto-correlation is low when the preamble signal is absent, as can be observed 
in Figure 16.21. The probability of a false alarm can be reduced by checking that the timing metric exceeds the 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
threshold for several consecutive samples (say 5 or 10). The fact that a plateau is generated, rather than a clear 
peak, introduces a level of uncertainty, and therefore the S&C algorithm is usually used to provide a coarse 
estimate of the symbol timing. The coarse estimate is then refined with a further fine timing synchronisation 
stage, which makes use of cross-correlation techniques. 

In cross-correlation based timing techniques, the input signal is passed through a filter whose coefficients are a 
locally stored copy of the synchronisation signal, known as a matched filter. The matched filter coefficients are 
a time-reversed and conjugated version of the synchronisation signal, since correlation is equivalent to convo-
lution with the filter coefficients time-reversed. Once the synchronisation signal occupies the matched filter, a 
positive peak will be produced at the output, which can be compared to a threshold to detect the OFDM signal. 
Figure 16.22 illustrates the concept of a matched filter.   

Figure 16.23 shows the matched filter output for the Legacy Long Training Field (L-LTF) used in the IEEE 
802.11 standards [207]. It can be observed that two main peaks are generated, which can be detected to refine 
the coarse timing estimate found using the S&C auto-correlation metric. It should be noted that matched 
filtering is sensitive to an uncorrected CFO (unless the matched filter contains a frequency shifted version of 
the synchronisation signal), and therefore it is necessary to perform frequency synchronisation prior to fine 
timing synchronisation.  

In 4G LTE and 5G NR, a matched filter is used to detect the Primary Synchronisation Signal (PSS) to obtain 
downlink frame synchronisation during the initial cell search procedure. The PSS is based on a special 
sequence known as a Zadoff-Chu Sequence. A key property of these sequences is that they have zero corre-
lation with cyclically shifted versions of themselves. As a result, multiple orthogonal sequences can be 
generated from a single base sequence, allowing them to be used for different purposes in the standard 
including PSS, the Physical Random Access Channel (PRACH) and certain reference signals [340]. 

There are three different PSS sequences, each corresponding to a unique cell identity within a cell identity 
group [340]. In the mobile User Equipment (UE), there will be three matched filters, each matched to one of 
the three PSS signals. When the PSS is received, only the filter matched to this particular PSS will produce a 
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Figure 16.22:  Matched filter for timing synchronisation.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
positive correlation, since the correlation with the other PSS sequences is zero, due to the orthogonality of the 
cyclically shifted Zadoff-Chu sequences. The UE can then use this information to select a cell identity within 
the cell identity group. The cell identity group is determined using the Secondary Synchronisation Signal (SSS) 
which allows identification of the final Physical Cell Identity (PCI). It is usually necessary to perform 
frequency synchronisation prior to PSS detection to reduce the vulnerability to CFO. However, the particular 
Zadoff-Chu sequences that are used for the PSS have a low sensitivity to an uncorrected CFO [340]. 

16.6.2.  Frequency Synchronisation 

The process of frequency synchronisation involves estimating the frequency offset between the transmitter and 
receiver local oscillators, and then frequency shifting the received signal in order to compensate for this offset. 

The frequency offset can also be estimated with a preamble and an auto-correlation method such as the S&C 
algorithm. The auto-correlation,  of the received signal, , at a lag of  samples is given by, 

 (16.34)

In the presence of a frequency offset, , the auto-correlation becomes, 

. (16.35)

Expanding and re-arranging (16.35), we obtain, 

, (16.36)
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Figure 16.23:  Matched filter output for L-LTF in IEEE 802.11 standards.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
and the first two complex exponential terms cancel, leaving 

 . (16.37)

In the noiseless case, when the two halves of the preamble are aligned in the auto-correlation circuit, the 
expression reduces to, 

. (16.38)

This is because multiplying a complex signal by its complex conjugate is equivalent to taking its magnitude 
squared. The frequency offset can be estimated as, 

(16.39)

where the arg operation denotes taking the argument or phase of  and  is the sampling period. In the 
presence of noise,  can be averaged over  samples to improve the estimate of . 

In the RFSoC OFDM implementation (introduced in Notebook I, see page 569),  is calculated 
using a Co-ordinate Rotation Digital Computer (CORDIC) processor operating in vectoring mode. CORDIC 
is a very computationally efficient method of computing trigonometric functions in hardware [354]; the details 
are beyond the scope of the current discussion. 

Since the auto-correlation is performed between samples that are separated by  seconds, it is only possible 
to unambiguously resolve frequencies offsets in the range, 

. (16.40)

In the case of IEEE 802.11a/g, this is equivalent to offsets between  Hz. In systems without a preamble, 
such as 4G and 5G, autocorrelation can be performed at a shift of  to exploit the fact that the CP and 
the end of the OFDM symbol are identical. This method is useful as it avoids the need to include a preamble in 
the OFDM signal, which increases spectral efficiency, although it limits the estimation range to  Hz.

In order to estimate integer frequency offsets beyond the limit of autocorrelation methods, the received signal 
can be cross-correlated with different frequency shifted versions of the synchronisation signal, i.e. the L-LTF or 
the PSS. The frequency shift that produces the largest positive correlation corresponds to the integer frequency 
offset. Due to the computational complexity of performing several different correlations for different 
frequency shifts, it is usually only feasible to test a limited range of integer frequency offsets. However, as 
alluded to previously, standards often specify a worst case frequency offset, which makes correcting for a large 
integer frequency offset unnecessary. 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
Once the CFO has been estimated, a correction is applied to shift the signal  to baseband, where the 
shifted version is given by 

. (16.41)

The complex sinusoid in (16.41) can be generated on an FPGA using a Numerically Controlled Oscillator 
(NCO) or a CORDIC processor operating in rotation mode. As mentioned earlier, in practice the frequency 
synchronisation process is not perfect, which leads to a residual frequency error that causes ICI and CPE. This 
is usually small enough that the CPE is the dominant effect, and therefore the performance degradation is not 
significant. 

16.6.3.  Channel Estimation and Equalisation 

The channel is estimated using either a preamble for packet-based protocols, such as the IEEE 802.11 
standards, or using pilots or reference signals in continuous transmission systems such as 4G and 5G. In 
packet-based protocols, the length of the packet is designed to be less than the expected coherence time (based 
on a maximum velocity assumption), which means that a channel estimate made at the beginning of the packet 
is usually valid for the entire packet. In continuous systems, it cannot be assumed that the channel will remain 
constant over the duration of a transmission, so the channel estimates need to be updated at regular intervals. 

Regardless of the method employed for channel estimation, the channel estimate is calculated as, 

(16.42)

where  is the training or pilot symbol transmitted on sub-carrier ,  is the received training or pilot 
symbol on sub-carrier , and  is the channel estimate at sub-carrier . This channel estimation procedure 
is possible because the CP turns the linear convolution of the channel into an  periodic convolution, which is 
equivalent to multiplication after the FFT.

Once channel estimates are available for the data sub-carriers, the channel is equalised as, 

(16.43)

where  is the received data symbol on sub-carrier  and  is the estimated data symbol at sub-carrier . 
As mentioned, this is known as the one-tap equaliser. Since it is equivalent to inverting the channel estimate 
and multiplying the received symbol  by the result, it is essentially performing the same task as the linear or 
zero forcing equaliser described in Section 16.1. As a result, the equaliser suffers from noise enhancement in 
channels with deep fades, which can lead to a significant degradation in performance. This problem is 
alleviated to some extent by the Minimum Mean Square Error (MMSE) equaliser. More information on this 
can be found in the OFDM Transceiver Jupyter notebook introduced in Notebook I on page 569. 
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
16.6.4.  Phase Tracking 

The final synchronisation stage to consider is phase tracking. This corrects for the phase error resulting from 
residual frequency offset, phase noise and sampling frequency offset. The phase error for each OFDM symbol 
is a straight line, which is a function of the sub-carrier index , 

(16.44)

where  denotes the phase error,  is the gradient of the phase error, and  is the CPE. The gradient results 
from the sampling frequency offset and the CPE results from the residual frequency offset and phase noise. 
The m and c values vary with OFDM symbol index and therefore must be tracked continuously using the 
pilots. The phase error is illustrated in Figure 16.24. 

The linear phase error is estimated and corrected in two stages. In the first stage, we estimate the gradient of 
the straight line. By estimating the gradient of the line, the sub-carriers can then be rotated such that the phase 
error (straight line) is flat, i.e. has a gradient of zero as shown in Figure 16.25. After the first correction stage, 

, (16.45)

meaning that it just comprises the CPE term. This is estimated and corrected in the second stage, which 
reduces the phase error to zero (or as close as possible to zero), i.e. . 

In packet-based systems, where the channel is assumed to remain constant over the duration of a transmission, 
the equaliser only compensates for the channel (and any constant phase error terms). This is because the 
channel estimate is performed once at the beginning of the packet. Therefore, an explicit phase tracking stage 
is required after the equaliser. In contrast, for continuous systems, the channel estimate is updated regularly 
and thus the phase error is also tracked and compensated by the equaliser. In 4G, the phase error has to be 
estimated through interpolation for symbols without reference signals. However, in 5G, a dedicated Phase 
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Figure 16.24:  Phase error on a single OFDM symbol.
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CHAPTER 16: OFDM: Orthogonal Frequency Division Multiplexing
Tracking Reference Signal (PTRS) has also been introduced to improve phase tracking performance. This is 
especially important for Frequency Range 2, where frequency offsets and phase noise effects are more 
pronounced.   

The estimation and correction of phase errors during phase tracking in the FPGA requires CORDIC operating 
in vectoring and rotation modes [354]. 

16.7.  Chapter Summary 

This chapter has introduced the fundamental theory behind Orthogonal Frequency Division Multiplexing. 
OFDM is a digital multi-carrier modulation method that divides a high rate symbol stream into several 
parallel lower rate streams, which each modulate a different orthogonal sub-carrier. The use of orthogonal 
sub-carriers allows them to tightly overlap, which improves spectral efficiency compared to generic MCM, and 
makes the OFDM modulation and demodulation processes equivalent to the IDFT and DFT operations, 
respectively. These can both be implemented efficiently using the FFT algorithm.

The number of sub-carriers is chosen such that the bandwidth of each sub-carrier is small compared to the 
channel coherence bandwidth, and hence each experiences a flat fading channel, which can be equalised with a 
single complex tap after the FFT. This significantly reduces the computational complexity of equalisation when 
compared to the time domain equalisers used in traditional single-carrier systems. The use of many 
independent sub-carriers also gives rise to an efficient multiple access method, wherein several users are 
assigned different blocks of sub-carriers within a shared channel. The addition of a CP maintains the orthogo-
nality of the sub-carriers, prevents ISI, and facilitates the one-tap equaliser. Due to its many advantages, 
OFDM has been deployed in the physical layer of many modern standards, including DAB, DVB-T, the IEEE 
802.11 family of standards, 4G LTE, and most recently 5G NR. 

Sub-carrier k

Phase error y

phase error

Figure 16.25:  Phase error after the first correction stage.
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Notebook Set I
Practical OFDM Design

The final notebook series of this book explores the design of an Orthogonal Frequency Division Multiplexing 
(OFDM) transceiver on RFSoC. These notebooks cover advanced OFDM topics and theory. Therefore, it is 
important that you have read Chapter 16, which motivates the need for OFDM in radio systems and describes 
the modulation scheme and theoretical background.

We will begin by exploring the design of an OFDM transmitter and receiver in Python and then investigate 
OFDM channel estimation and equalisation. Lastly, we will examine an OFDM transceiver implemented on 
RFSoC. We will be able to observe and plot various data paths in the OFDM radio design using PYNQ.

The are three notebooks to investigate throughout this chapter using Jupyter Labs on your RFSoC platform. 
The notebooks and their relative locations are listed as follows:

   ALL   01_ofdm_fundamentals.ipynb — rfsoc_book/notebook_I/01_ofdm_fundamentals.ipynb

    ALL   02_ofdm_python_transceiver.ipynb — rfsoc_book/notebook_I/02_ofdm_python_transceiver.ipynb

 RFSoC 03_rfsoc_ofdm_transceiver.ipynb — rfsoc_book/notebook_I/03_rfsoc_ofdm_transceiver.ipynb

I.1.  OFDM Fundamentals

This notebook explores the practical side of OFDM design using Python and can be accessed by opening the 
notebook named 01_ofdm_fundamentals.ipynb. Several topics are covered including OFDM baseband 
symbol generation, Inverse Fast Fourier Transform (IFFT) modulation, multipath channel effects, and the 
Cyclic Prefix (CP).
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Notebook I: Practical OFDM Design
The notebook begins with an overview of the OFDM transmission process, which involves digital modulation 
and symbol mapping. The role of the IFFT / FFT for modulation and demodulation is established, and a brief 
summary of multipath channels is provided. Lastly, the purpose of the CP is discussed.

I.2.  Channel Estimation and Equalisation

The next notebook in this series named 02_ofdm_python_transceiver.ipynb explores an OFDM transceiver 
implemented in Python. In particular, an OFDM transmitter and receiver is designed from first principles and 
a wireless channel is also created to model multipath channel effects. The notebook includes a demonstration 
of channel estimation and investigates the one-tap, or Zero Forcing (ZF), equaliser.

Channel estimation is necessary to evaluate the properties of a wireless channel so that it is possible to adapt 
signal transmissions and improve communication data rates and reliability. It is important to perform channel 
estimation periodically as wireless channel conditions are rarely consistent over time. Channel estimation can 
be used to produce important information on channel effects such as scattering, fading, and the deterioration 
of signal power as it propagates through the channel.

When a signal is transmitted through a wireless channel and acquired at a receiver, it is subject to channel 
effects that distort the originally transmitted signal. The information produced from channel estimation can be 
used to suppress and remove the effects of fading and interference. This process is known as equalisation and 
can be used to restore the originally transmitted signal after it has undergone the effects of a wireless channel. 
Figure I.1 presents two constellation diagrams produced using a QPSK modulation scheme. The diagram on 
the left was created before equalisation, while the diagram on the right was created after equalisation (note the 
different scales). It is clear that channel estimation and equalisation are necessary to prevent signal distortion 
and bit errors.

Figure I.1:  The received constellation before applying equalisation (left) and after applying equalisation (right).
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I.3.  RFSoC OFDM Transceiver

The final notebook named 03_rfsoc_ofdm_transceiver.ipynb presents an RFSoC OFDM transceiver design 
that is capable of transmitting and receiving OFDM waveforms. The radio system simply uses random data to 
demonstrate its OFDM transmission and reception capabilities. A simplified diagram of the OFDM radio 
system architecture is present in Figure I.2.

The OFDM transmitter consists of symbol generation logic that modulates random data using a digital 
modulation scheme. The symbols are then grouped into blocks and mapped to data sub-carriers. The final 
OFDM symbol is created by performing the IFFT and inserting the CP onto the resulting signal. The RF-DAC 
then transmits the signal, where it is received by the RF ADC using a loop-back connection.

Timing and frequency synchronisation are performed in the OFDM receiver. These processes acquire symbol 
timing and correct frequency offsets. The FFT is then performed to demodulate OFDM symbols and recover 
the underlying data symbols. Channel estimation is then performed to determine the frequency response of 
each sub-carrier, which allows the received data to be equalised. Phase tracking is then implemented to correct 
phase errors that remain in the signal. Lastly, the data is then passed to Jupyter for plotting and visualisation.

The RFSoC OFDM radio system provides users the opportunity to observe and plot various data paths and 
waveforms in real-time. This functionality is similar to the RFSoC radio demonstrator example presented in 
Notebook Set I. For example, Figure I.3 contains time and frequency domain plots of the received OFDM 
waveform after decimation. Introspection techniques such as observing the received waveform using plots are 
useful to validate the operation of the radio design.

Figure I.2:  Simplified architecture of the RFSoC OFDM demonstration system.
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The OFDM radio demonstration system also allows the user to select between different modulation schemes 
including BPSK, QPSK, 8-PSK, 16-QAM, 32-QAM, 64-QAM, 128-QAM, and 256-QAM. Transmitted symbols 
can be received using a loop-back connection between an RF DAC and RF ADC. The received symbols can be 
plotted on a constellation diagram for visual inspection. An example of plotting 16-QAM and 256-QAM 
symbols using the OFDM demonstration system is presented in Figure I.4. 

Figure I.3:  RFSoC OFDM demonstration system time domain plot (left) and frequency domain plot (right).

Figure I.4:  16-QAM constellation diagram (left) and 256-QAM constellation diagram (right).
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Chapter 17
RFSoC Applications in 
 Cellular Networks

Kenny Barlee

One of the primary use cases for the RFSoC family of products is in cellular networks. The high bandwidth, 
high performance and multi-channel RFDC SDR interfaces on products such as the RFSoC DFE [81] are well 
suited to the current 5G basestation implementations, and indeed as we evolve to 6G these RFSoC SDR inter-
faces will be even more important and prevalent. The RFSoC T1 and T2 Telco Accelerator cards [72],[73] can 
facilitate L1 (PHY layer) acceleration, and additionally, the T1 features high speed interfaces for use in 
OpenRAN networks which are becoming a key part of 5G deployments and setting new standards for inter-
operable components that will form part of the emerging and in-planning 6G standards and networks.

In this chapter, we review the evolving cellular network context, and discuss how both traditional and next-
generation implementations can be enabled by RFSoC devices.

17.1.  Introduction to 4G/5G Radio Access Networks (RANs)

A Radio Access Network (RAN) is the main part of the cellular network. It features the cellular basestations 
and a backhaul network that provides connectivity for remote User Equipment (UE, such as smartphones or 
mobile broadband modems) through to the core network and Wide Area Network (WAN), e.g. the Internet. 
4G/5G UEs attach to basestations via 4G Long Term Evolution (LTE) and 5G New Radio (NR) air interface 
radio links. Figure 17.1 illustrates the primary components in a cellular network architecture. 
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For 4G LTE, long-term-evolution to current 5G networks a key term is ‘evolution’. The new standards need to 
evolve from previous standards and equally importantly need to co-exist with other generations (2G and 3G 
are still out there) or indeed these radios might even be supported on the same RFSoC as 5G. Although 5+ 
years still in the future 6G as a standard that can enable a new set of applications, higher speeds, more 
efficiencies in spectrum usage, power and so on, will have many common features that will ‘evolve’ from 5G 
and current standards and designs. Therefore as we design and deploy for 5G, for OpenRAN, and for 
standalone and private SDR networks in the early to mid 2020s, this is in fact implementing with the baseline 
technologies on which we will now start to build 6G.

17.1.1.  Traditional 4G/5G Basestation

A typical ‘traditional’ 4G/5G basestation site is depicted in Figure 17.2. It consists of a Baseband Unit (BBU), at 
least one Remote Radio Head (RRH), and an Antenna; alongside backhaul network components such as a cell 
site router. The primary components of the RAN are described in the following subsections. 

Baseband Unit (BBU)

The BBU is fundamentally a high-performance computer or server, connected over the backhaul to the core 
network. The backhaul network carries control and user plane data packets (which are known as the S1-MME 
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4G/5G Core
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Mobile Network

SIM SIM

LTE / NR
Air Interface

National
Telephone
Network

Connection

(These parts of the core are generally distributed
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Figure 17.1:  Basic components in a cellular network include the Basestation, the Backhaul, and the Core. 
The Radio Access Network (RAN) comprises the Basestation and Backhaul parts. 
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and S1-U interfaces in 4G LTE; and the N2 and N3 interfaces in 5G NR). This connection is either made 
wirelessly (e.g. point-to-point microwave radio, Low Earth Orbit (LEO) satellite radio) or via cabling (e.g. 
copper line, fibre). The BBU is also connected to the RRH over a proprietary fronthaul fibre link, commonly 
using a CPRI interface. (The Common Public Radio Interface is a high speed serial communication interface 
used in fronthaul that carries radio control and management messages, radio synchronisation information, 
and raw IQ samples of radio signals [128]). The fronthaul fibre is typically short, running from the cabinet at 
the base of the mast up to the RRH, but can be up to 10km in length in certain circumstances. 

The BBU runs the radio stack software (e.g. the LTE/NR software), and undertakes conversion of data between 
IP-encapsulated control and user plane data packets received from the core network, and digital baseband 
samples of modulated LTE/NR signals. The latest vRAN (virtualised RAN) radio stack software can be run on 

Backhaul Fibre

} }
Basestation Site Backhaul = RAN+

RRH BBU/ vBBU
S1-MME (4G) / N2 (5G)
Control Plane Interface

S1-U (4G) / N3 (5G)
User Plane Interface

DFE

Fronthaul Interface
(CPRI-based proprietary)

LTE/NR Air
Interface PDCP

RLC

MAC

RRC

PHYL1

L2

L3
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Interface

Remote Radio
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(carried over fibre)
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Backhaul-U

Interface

Backhaul-C

Interface

Baseband
Unit (BBU)

Backhaul
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router)

Regional
Backhaul
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Backhaul from

other sites...

Figure 17.2:  Basestation sites in ‘traditional’ 4G/5G RAN configurations feature a Baseband Unit (BBU), 
at least one Remote Radio Head (RRH), and an Antenna. The BBU will commonly reside in a cabinet at 

the base of the mast alongside backhaul network equipment such as a Cell Site Router. 
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COTS (commercial off the shelf) computer hardware and does not need special computer hardware provided 
by the stack vendor. LTE and NR stacks are very similar (considering NR is an extension of LTE). 

Like most other communication protocols, there are multiple layers to the 4G/5G stack. From top to bottom, 
the stack layers in the BBU are: RRC, PDCP, RLC, MAC and PHY. The PHY implements an OFDMA modem, 
and contains a series of DSP components tasked with converting a stream of 1s and 0s to and from complex 
baseband modulated samples, as presented in Chapter 16 on OFDM.

Remote Radio Head (RRH)

The RRH is connected to the BBU over fronthaul fibre, and to the antenna over short RF coaxial cables. It 
converts the digital baseband samples to analogue RF modulated signals, and outputs them on a high powered 
RF carrier; and vice versa. This final stage of the basestation is known as the Digital Front End (DFE). 

It is common for a basestation site to feature multiple RRHs, each operating in a different frequency band. 
Because RRHs feature high power amplifiers and appropriate analogue RF signal conditioning stages, they are 
fundamentally band locked. For instance, a RRH designed to operate in LTE Band 3 (1800MHz) cannot be 
used for LTE Band 28 (700MHz). 

Depending on the standard specifications of the band, the RRH transmits and receives in either Frequency 
Division Duplex (FDD) or Time Division Duplex (TDD) mode. RRHs will generally use MIMO (Multiple 
Input Multiple Output) technology. MIMO essentially increases the throughput of the radio by adding more 
transmit and receive paths (MIMO is discussed further in Chapter 18). Most RRHs are configured as at least 
2x2 MIMO (2 Tx, 2 Rx), but at the time of writing, 4x4 and 8x8 MIMO radios are also common. A 2x2 MIMO 
RRH uses two RF coaxial cables to connect to the antenna, while a 4x4 RRH uses four. 

Standard bandwidths are defined for LTE and NR signals, and the radio will be configured to broadcast with 
one of these bandwidths. A base station site with one RRH has a single cell, while a site with 'n' RRHs has 'n' 
cells. Where multiple bands (and cells) are used simultaneously at a base station, subject to UE support, it is 
possible to use the technique of carrier aggregation to combine the cells together for greater throughput.

Antenna

The antenna is a passive object that is connected to the RRH, which radiates (transmits) and receives the 
electromagnetic waves that enable wireless communication. The radiation pattern and performance depends 
on the antenna size, shape, and band optimisations. The type of antenna chosen varies upon the RF band in 
use and the network use-cases. 

It is common for a site to feature multiple RRHs, and these are either attached to individual antennae; or a 
multi-band (multi-port) antenna that serves multiple RRHs can be used. In line with the RRH MIMO point 
above, MIMO antennae are required when these features are used. The elements in a 2x2 MIMO antenna are 
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offset by 90 degrees, giving one transmit path on a vertical plane, while the other is on a horizontal plane. 
Doing this increases the throughput, and helps to increase the signal strength and resilience. Increasingly, 
hardware vendors are supplying ‘Active Antennae’ for higher order MIMO systems (e.g. 64x64 MIMO). These 
are essentially all-in-one units comprising the RRH and (passive) antenna elements.

17.1.2.  4G and 5G Network Technology

4G networks are very capable; much more so than many people believe. A well kitted out 4G basestation site, 
with multiple high bandwidth RRH cells offering carrier aggregation, should be able to deliver real-world 
aggregate downlink data speeds in excess of 1Gbps. Of course, this total capacity must then be divided between 
all User Equipment (UE — i.e. phones, etc.) attached to the mast (as is also true for 5G networks). There are 4G 
networks in most countries around the world, and thousands of unique models of UE have been created to 
work on them. The heart of a 4G LTE network is the Evolved Packet Core (EPC). This features a control and a 
user plane, and is tasked with managing subscriber records, subscriber authentication, session management, 
mobility, charging etc.; and processing and outputting user data packets to the WAN.

The transition stage between 4G and 5G has resulted in a hybrid generation called 5G Non-StandAlone (NSA). 
5G NSA networks combine 4G and 5G radios together, and can offer far higher aggregate data speeds than 4G 
alone could manage. In contrast, 'true' 5G is called 5G StandAlone (SA). This requires a 5G Core (5GC), and 
only uses the 5G radios for connectivity. 5G cells used for both NSA and SA networks run the upgraded 
version of LTE known as 5G NR. At the time of writing, the majority of NSA basestations connect to a 4G EPC, 
although with upgraded 4G components, it is possible to connect NSA basestations to a 5GC. The 5GC 
performs very similar tasks to the EPC, with the main architectural difference being that the network functions 
communicate with each other using different interfaces.

Another 4G/5G hybrid technology also exists, confusingly called Dynamic Spectrum Sharing (DSS). This is 
not spectrum sharing, but rather, radio resource sharing. A DSS radio can simultaneously output 4G LTE and 
5G NR signals, in the same frequency channel, on a time division basis. The biasing between LTE and NR 
changes in real-time depending on UE demand. This makes it possible to run 4G and 5G SA networks simul-
taneously from single cell basestations. New 5G SA features and capabilities can be rolled out in areas where 
4G is also required, and it costs less to implement compared to a two cell approach; which would also require 
two radio spectrum licences. DSS-enabled cells achieve lower overall throughputs than if they were configured 
for 4G alone, due to an increase in control signalling. DSS cells cannot be configured to operate in NSA mode 
with themselves; however, the 5G component could be connected with another local 4G cell to offer NSA (i.e. 
it would be possible to offer NSA at a site with x1 LTE cell and x1 DSS cell).

Finally, it is worth mentioning that some 5G radios can be connected both in 5G NSA and 5G SA at the same 
time. Therefore, on a base station site with x1 LTE cell and x1 NR cell, it would be possible to simultaneously 
support 4G, 5G NSA and 5G SA, and connect back to both an EPC and 5GC.
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17.2.  Evolution to 4G/5G OpenRAN Networks

OpenRAN (also referred to as Open RAN, O-RAN and ORAN) is a variant of the traditional RAN network 
architecture discussed in the previous section. It was brought about by supply chain diversification efforts and 
sees the layers of the LTE/NR stack ‘split’ into pieces. The new components are called the Centralised Unit 
(CU), the Distributed Unit (DU), and the Radio Unit (RU). New interfaces are introduced in a midhaul stage 
(a control plane interface F1-C, and a user plane interface F1-U), and what was a proprietary fronthaul in the 
‘traditional’ RAN has been replaced with Open Fronthaul (control plane interface F2-C, and user plane 
interface F2-U). 

The idea behind OpenRAN is that different vendors can provide hardware / software for each of the compo-
nents, thanks to new standardised open interfaces. The open ideology also means that the software compo-
nents in the CU and DU can be virtualised for maximum computing efficiency, and run on COTS computer 
hardware. 

17.2.1.  OpenRAN Architecture

The OpenRAN architecture is illustrated in Figure 17.3, and its major components are summarised as follows. 

Centralised Unit (CU)

The CU software encompasses the RRC and PDCP stages of the 4G/5G stack. It is commonly split into two 
parts, with control plane CU-C and user plane CU-U components, linked by the E1 interface. These are not 
always co-located, and the CU-U may be deployed to the edge, alongside an edge 4G/5G core user plane 
server. CUs act as aggregators, and are connected to multiple DUs over the F1-C and F1-U midhaul interfaces. 
It is envisaged that the CU-C is hosted in the Telco's private cloud, next to the core network, potentially 
operated by a service provider. 

Distributed Unit (DU)

The DU software normally exists on a server in the cabinet at the basestation site, but it can run on a server up 
to 10km away if desired. Each DU is connected to the (shared) CU over midhaul, and a single RU over the 
open eCPRI fronthaul F2-C and F2-U interface. (Enhanced-CPRI (eCPRI) fronthaul can be carried over 
routed packet switched networks[148], while the previous form of CPRI only supported direct dedicated 
point-to-point links). Multiple DUs can coexist on one server, using virtualisation software. The DU software 
features the RLC, MAC and PHY parts of the LTE/NR stack. Depending on the exact OpenRAN configu-
ration, either the full PHY is implemented in the software and digital baseband samples are output over the 
fronthaul link to the RU; or only the High part of the PHY, denoted as PHY-H, is implemented in software. In 
this latter case, the Low part of the PHY, otherwise known as PHY-L, is implemented on the RU. 
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Figure 17.3:  Basestation sites in a 4G/5G OpenRAN network feature a cell site router, at least one Radio 
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Centralised Units (CUs) in centralised hubs; i.e. co-located with the core control and user plane servers.
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Radio Unit (RU)

Akin to the RRH, the RU is tasked with converting the digital baseband samples to analogue RF modulated 
signals, and outputting these on a high powered RF carrier; and vice versa. In other words, it is the DFE. With 
some OpenRAN configurations, the RU also implements parts of the PHY (this will be discussed in the next 
section). The RU is often configured to operate in a MIMO mode, with 4x4 or 8x8 common for 5G NR cells. 

17.2.2.  OpenRAN Splits

There are various splits (implementations) that can exist in OpenRAN networks, which refer to the parti-
tioning of functionality across the RU, DU and CU. There are a number of different defined ways to perform 
the split of the stack, and these have been numbered 1-8, as shown below. (Note the RLC, MAC and PHY have 
-H High and -L Low components).

Splits are commonly combined. For example, if the network was being designed with distinct CUs and DUs 
rather than an all-in-one CUDU processing unit, Split 2 will likely be used. Another split is used between the 
software stack and RF stage. Split 8 can support traditional RRHs, and therefore can be used as a convenient 
‘stepping stone’ during OpenRAN network upgrades. Compared to Split 8, Split 7 offers a distinct advantage, 
as part of the PHY-L is pushed onto the RU. As will be talked about in the next section, this will reduce the 
throughput requirements on the fronthaul link. There are three variants of Split 7, each with a minor difference 

Figure 17.4:  Diagram showing the numerous OpenRAN Splits.
Industry favourites are indicated by the blue text.
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in the location of the PHY-H / PHY-L split. Split 7.2 (the industry favourite variant) sees the symbol mapping, 
iFFT/FFT, cyclic prefix, synchronisation and Digital Pre-Distortion (DPD) stages implemented on the RU; and 
these DSP operations are perfectly suited to FPGA acceleration.

The most commonly discussed OpenRAN implementations are Split 7.2 (all-in-one CUDU + RU), and the 
disaggregated RAN model with Split 2 + Split 7.2 (CU + DU + RU). The latter is the architecture presented in 
Figure 17.3.

17.2.3.  Disaggregated RAN: Motive for OpenRAN Split 7.2

As described above, OpenRAN Split 7.2 is where the Low PHY is implemented in the RU. The primary reason 
for doing so is to achieve reduced data rates on the fronthaul connection between the DU and RU. The best 
way to explain this is with an example:

Imagine a traditional RAN configuration with a RRH broadcasting a 20MHz LTE cell. The RRH receives a 
continuous feed of complex digital baseband samples from the BBU. Each sample has a digital wordlength, and 
both I and Q components. These complex samples are normally stored in a 32-bit binary word. As the sample rate 
for a 20MHz cell is 30.72Msps, this means the throughput on both the uplink and downlink paths from BBU to 
RRH is equal to 983.04Mbps per SISO channel. Therefore, if the cell operates in 4x4 MIMO mode, the throughput 
on the fronthaul paths would be 3,932.16Mbps in each direction.

An OpenRAN 20MHz LTE cell operating with Split 7.2 is fed a stream of QAM symbols from the DU, rather than 
complex digital basesband samples. The maximum Modulation Coding Scheme (MCS) supports 256 QAM, so 
each symbol can be represented in an 8-bit binary word. The iFFT in the RU has 2048 bins. Only 1334 data 
symbols are required for each iFFT operation (as the remaining 714 are for a guard band), and the iFFT sample 
rate remains at 30.72MSps. Therefore, the overall data throughput per SISO path from DU to RU is equal to 
160.08Mbps per SISO channel; a fronthaul capacity reduction of around 80%! (Additional OpenRAN control 
signalling is required, however this is insignificant in the overall context). For complete comparison, if the cell was 
to operate in 4x4 MIMO, the data rate on the fronthaul paths would be 640.32Mbps in each direction. 

This all plays into the disaggregated RAN model, where there are DU ‘hubs’ distributed geographically, 
connected into centralised CUs, as presented in Figure 17.3. Each of the virtualised DU software stacks (vDU) 
serve an RU in the area around them. A small number of high performance servers can be used to run the 
numerous vDU software stacks, and eCPRI fronthaul connections carried over high speed packet switched 
networks will connect the vDUs to the basestation sites. Due to the significant reduction in fronthaul capacity 
requirements per vDU to RU link, it is possible to aggregate multiple 4G/5G RU fronthaul eCPRI connections 
onto a single Ethernet connection (e.g. a Tx/Rx fibre). This can greatly reduce the cost of deploying basestation 
sites, as fewer 'pipes' are required for fronthaul connections. Cell site routers are installed at each basestation 
site, and these then connect to each of the RUs to complete the routed eCPRI fronthaul interfaces.
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With this eCPRI aggregation, it would be possible to connect a basestation site with a fibre connection at a line 
speed of 10Gbps, and simultaneously support five 4x4 MIMO 20MHz LTE cells, a 4x4 MIMO 50MHz NR cell, 
and an 8x8 MIMO 50MHz NR cell (and have capacity to spare!). To achieve a similar ‘basestation hotel’ style 
configuration in a traditional Split 8 Centralised RAN (C-RAN, where BBUs are grouped together, away from 
the basestation sites), six 10Gbps fibres and one 25Gbps fibre would likely be required. As the aggregated 
eCPRI link is carried over a packet switched network, it would be possible to use point-to-point microwave 
radios, or even LEO satellite radios instead of fibre in the fronthaul, for example in rural scenarios where laying 
kilometres of fibre in trenches to connect remote sites is not economically viable.

Another advantage of removing compute-intensive DU software from the basestation site and virtualising it in 
a distributed ‘hub’ configuration is a large power requirement reduction at the site. In place of a multi-kW 
electricity grid connection (which can cost $15,000+ to install and commission in rural areas, with ongoing 
energy costs), it may be possible to run the RUs, cell site routers and any backhaul radios from renewable 
energy sources, without a mains connection; e.g. with some solar panels, a small wind turbine, an inverter and 
a bank of batteries. This can greatly reduce the cost to deploy and run greenfield rural basestation sites.

17.3.  RFSoC Products for Applications in Cellular Networks

As mentioned in the introduction to this chapter, one of the primary use cases for the RFSoC family of 
products is in cellular networks. Example product placements for the AMD Zynq RFSoC DFE and T1/T2 Telco 
Accelerator cards are shown in Figure 17.5.

17.3.1.  RFSoC DFE for RRH and RU Applications

The RFSoC DFE has high performance, high bandwidth, multi-channel (8T8R) RFDC SDR interfaces that 
support Direct RF conversion for all FR1 bands up to 7.125 GHz [81]. It features a number of Hard IP cores 
that can efficiently accelerate PHY-L and DFE operations, such as: FEC cores, iFFT/FFT, programmable filters, 
Crest Factor Reduction (CFR), complex equalisation, DPD, DUC/DDC and mixers. These are highlighted in 
Figure 17.6. The remaining stages of the 4G/5G PHY-L stack (such as the cyclic prefix, windowing, synchroni-
sation, AGC) can be implemented using Soft IP cores on the adaptable logic fabric. This RFSoC DFE product, 
therefore, is designed to accelerate the development and deployment of next generation RRHs and OpenRAN 
RUs for 4G/5G networks [114].

RRH/ RU Implementation

An example RFSoC DFE based RU hardware implementation is presented in Figure 17.6. As illustrated, the 
transmit and receive chains of an OpenRAN RU OFDMA modem implemented on the DFE comprise a 
mixture of Hard and Soft IP core components, alongside software management and control systems running 
on the processor. Some of the Soft IP components required in the OFDMA modem are provided pre-
assembled with the DFE, while others require custom implementation. Many individual basestation radio 
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Figure 17.5:  RFSoC DFE and T2 Telco Accelerator use in Traditional RAN Networks,
RFSoC DFE and T1/ T2 Telco Accelerator use in OpenRAN Networks
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CHAPTER 17: RFSoC Applications in Cellular Networks
manufacturers have ‘value add’ features (such as novel synchronisation systems, neighbour discovery, or 
unique implementations of components they own patents for), so the flexibility to implement custom IP is 
very attractive in this regard, and likely offers significant advantages over fixed ASIC-based solutions.

As has been highlighted, an RF signal conditioning stage is required after the RFDCs. When the RFSoC DFE 
performs Direct RF conversion and outputs analogue RF signals on their RF carriers, the signal has an 
extremely low power level. If this was connected directly to an antenna, the ‘radio’ would not provide any 
significant coverage; and would probably be limited to a few metres at most. Therefore, RF Power Amplifiers 
(PAs) are needed to increase the signal power. In turn, analogue RF Bandpass Filters are required in order to 
ensure the PAs do not transmit unwanted energy at other frequencies. And finally, in order to combine pairs of 
transmit and receive ports together, RF Duplexers are used. 

These components are band specific. A wideband RF PA, for example, might only offer a ‘linear’ power gain of 
20dBm over a 200MHz window of the spectrum, between 3800-4000MHz. (Note that in practice, the PA will 
not be perfectly linear, and there will be slight amplitude and phase distortions across the 200MHz window). 
Outside this frequency range, the performance of the amplifier is likely to rapidly decline. The gain here will be 
‘non-linear’, which would cause problems when used for wideband multicarrier waveforms such as LTE/NR; 
and high power harmonics may be introduced, affecting the signal quality. Therefore, this PA could not be 
used for a radio broadcasting at 3700MHz, as the signal being amplified by the PA would be ‘damaged’ in the 
process.

The frequency response of a PA is similar to that of a bandpass filter. There is a linear pass band, with 
transition bands above and below it. (Normally a digital FIR bandpass filter is designed to have tight transition 
bands and high attenuation in the stop bands; and this is easy to achieve by using a large number of filter coeffi-
cients). The difference is that the non-linear ‘transition bands’ in the analogue PA can be hundreds of MHz 
wide, and a significant amount of power will be applied throughout them. Therefore, an accurately designed 
RF Bandpass Cavity Filter is required to isolate only the band of interest.

Cavity Filters are large, slightly strange-looking units, generally 
manufactured by accurately milling holes into a block of aluminium. 
These holes are ‘cavities’, and they contain rods referred to as 
‘resonators’. Well designed Cavity Filters have a low insertion loss in 
the passband, and excellent frequency selectivity (extremely tight 
transition bands, and sometimes >100dB rejection in the stopband). 
Furthermore, they can operate with very high signal power levels, as 
would be found in a macro basestation radio. In the world of cellular 
standards, spectral emissions limits have been specified that state 
acceptable levels of Adjacent Channel Leakage Ratio (ACLR, a 
measure of relative power) — for example, in the TS 38.104 specifi-
cation for 5G NR basestations [155] — and the Cavity Filters must be 
designed so that the radio as a whole meets these requirements.

Figure 17.7:  Illustration of a cavity filter, 
milled from a block of Aluminium
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CHAPTER 17: RFSoC Applications in Cellular Networks
Figure 17.8:  An RF signal conditioning stage is required to amplify and ‘clean up’ the output of the SDR, 
and ensure that it only transmits energy in the band of interest. This is a common requirement for 

radio spectrum licence applications. 

-60

20

0

-20

-40

-80

-60

20

0

-20

-40

38
00 Frequency (MHz)

R
el

at
iv

e 
R

F 
Si

gn
al

 P
ow

er
 (d

B
)

O
ut

pu
t f

ro
m

 1
4-

bi
t R

F-
D

A
C

40
00

36
00

34
00

42
00

44
00

38
00 Frequency (MHz)

Si
gn

al
 P

ow
er

 (d
B

) a
fte

r
20

dB
 R

F 
Po

w
er

 A
m

pl
ifi

er

40
00

36
00

34
00

42
00

44
00

38
00 Frequency (MHz)

Si
gn

al
 P

ow
er

 (d
B

) a
fte

r
R

F 
B

an
dp

as
s 

C
av

ity
 F

ilt
er

40
00

36
00

34
00

42
00

44
00

20

10

15

R
F 

Po
w

er
 A

m
pl

ifi
er

G
ai

n 
(d

B
)

-80

0

-60

-40

B
an

dp
as

s 
R

F 
C

av
ity

Fi
lte

r A
tte

nu
at

io
n 

(d
B

)

-60

20

0

-20

-40

-80

100MHz wide 5G NR waveform,

modulated by RFSoC RF-DAC

into target band

14 bit D
AC = 2^14

Dynamic Range

RF output contains

harmonics and

other spurs

Wideband 20dB gain RF PA,

‘lin
ear’ o

ver 3800-4000MHz

(not perfectly lin
ear,

  but close enough)

Amplifie
s ~800MHz

of spectrum...

RF bandpass cavity filt
er, h

ighly

tuned to prevent le
akage

into neighbour bands

(note this is not perfecly

linear either)

-80
-120

-100

-130

+
+

+

586

Downloaded from www.RFSoCbook.com



CHAPTER 17: RFSoC Applications in Cellular Networks
Commonly, RF Duplexer functionality is integrated into the cavity filter. Duplexers are components which 
enable bi-directional communication (Tx, Rx) over a single RF path and antenna element. (As highlighted in 
Figure 17.6, an 8T8R RU RF interface will likely only feature 8 physical RF ports — the duplexers allow each of the 
ports to transmit and receive simultaneously). The Cavity Filter/ Duplexer designer will ensure there is a signif-
icant attenuation between transmit and receive ports, so that the transmit path does not saturate the receive 
path of the SDR. This is especially important in FDD radios, which operate Tx and Rx paths simultaneously.

Each of these stages is presented in Figure 17.8. All of these components: the RFSoC DFE with the RF-DCs, the 
RF PA, and the RF Cavity Filter/ Duplexer, generate a significant amount of thermal energy. As a result, a 
cooling system is required in order to keep components operating within temperature tolerances. Radios 
designed for outdoor installation (e.g. at the top of a radio mast) must be watertight, and as a therefore need to 
be passively cooled. As illustrated in Figure 17.3, this is achieved using radiator ‘fins’ on the radio chassis; heat 
is lost by cold air falling vertically through the fins. Radios designed for indoor use, or installation in water-
tight cabinets, may use active cooling systems with fans and vents.

Multicarrier Transceiver

A single 8T8R RFSoC DFE chip can support multiple cells across multiple 4G and 5G cellular bands at the 
same time, as shown in Figure 17.9. All of these cells could be used simultaneously by an operator to allow 
greater throughputs by leveraging 4G/5G carrier aggregation, or 5G NSA dual connectivity. 

Alternatively, an interesting model here is a multi-operator basestation, where each of the cells is connected 
back to a different cellular network. This “neutral host” radio configuration can enable very cost and power 
efficient multi-operator deployments, and could have applications in both indoor small cell networks (e.g. 
airports, train stations, sports stadiums, high rise office blocks) and macro outdoor networks. 

mmWave Modulation

While the RFSoC DFE supports Direct RF conversion for all FR1 bands, it is also possible to use it in an Inter-
mediate Frequency SDR configuration, as part of an FR2 mmWave radio. (The FR2 bands span from 24.25 
GHz to 52.6 GHz). This architecture is presented in Figure 17.10. 

Additional RF hardware is required to achieve this. Instead of outputting an analogue RF signal from the RF-
DAC to the RF signal conditioning stage, as with the FR1 mode of operation, the analogue IF signal (i.e. the 
mmWave signal on a sub 7 GHz IF carrier) is mixed up to the correct carrier frequency, then amplified, filtered 
and output from the transmitter. The wide carrier bandwidths that can be achieved with RFSoC mean that the 
radio can support the headline 400MHz Ultra Wideband (UWB) FR2 waveforms.
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17.3.2.  RFSoC Telco Accelerator Cards for vBBU and vDU

The most compute-intensive processes in the PHY-H stack are the real-time Channel Encode and Decode 
stages. With the transition to using General Purpose Processors (GPPs) and standard server hardware to 
implement vBBU and vDU software, these stages are a significant bottleneck when it comes to achievable 
throughputs, and the number of visualised stacks that can simultaneously run on each server.  

The T1 and T2 Telco Accelerator cards have been designed to facilitate high speed L1 PHY-H CPU offload and 
hardware acceleration in the vBBU/vDU. Additionally, the T1 features SFP28 eCPRI interfaces for use in 
OpenRAN fronthaul. An example vDU implementation is presented in Figure 17.11. The components 
highlighted in red are the parts of the stack that can be accelerated by the reference design provided with the 
board.

Figure 17.9:  A single 8T8R RFSoC DFE based radio can be used as a multi-cell 4G/5G basestation; or even be 
combined with other DFE chips to create massive MIMO systems
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7.2 RU (mmWave)
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Figure 17.10:  RFSoC DFE can be used as an Intermediate Frequency SDR stage in FR2 mmWave radios

Figure 17.11:  Compute intensive L1 PHY-H  functions in the vDU can be accelerated by the T1/T2 Telco 
Accelerator cards. The T1 features an eCPRI fronthaul interface, while the T2 has a larger L1 accelerator.
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Tests have shown that shifting the Encode and Decode stages onto a T1/T2 Telco Accelerator card drastically 
increases performance, freeing up GPP resources to run further virtualised vBBU and vDU stacks in parallel. 
(Test results demonstrating T1 Encode/Decode acceleration are highlighted in Table 17.1).

The T1 card is capable of accelerating and terminating (via eCPRI) a total of 16 TRx layers with 100MHz 
bandwidth, and supports IEEE 1588 PTP timestamping of radio packets with sub-ns accuracy. The T2 card 
offers roughly double the L1 acceleration throughput, although this card does not feature the fronthaul eCPRI 
interfaces. With both, it is possible to connect and use multiple cards simultaneously on a single high perfor-
mance host server, increasing visualisation efficiencies and scalability.   

17.3.3.  Power and Thermal Considerations 

From a network installation and operation perspective, costs are generally categorised as Capital Expenditure 
(CapEx) and Operational Expenditure (OpEx). These refer to the costs of purchasing and installing all of the 
network infrastructure and related components, and the continuing cost of running the network, respectively. 

One of the major contributions to OpEx is the energy consumed by network equipment, which translates 
directly into electricity bills for the network operator. Any saving in power consumption will reduce the cost of 
running each basestation, and when scaled up to an entire network, the savings may be significant. A 2019 
report indicated that energy costs accounted for 21% of the OpEx of 4G/5G network operators in the UK and 
developed Asia-Pacific regions [91]. It has also been established that the majority of mobile network energy 
consumption is in the RAN (approximately 73%, with the remainder attributed to the network core, data 
centres, and other operations [184]). As well as costs, naturally there are also environmental reasons for 
seeking to reduce energy consumption [276]. 

With these factors in mind, there is a clear motivation to optimise the power efficiency of each component 
within the network infrastructure; even though the electronics might not be the biggest power-consumer 
(power amplification and radiated power being more significant), savings are still worthwhile. Therefore, the 

Table 17.1: Live measurement results of T1 hardware acceleration

L1 Stage
GPP only 1

1. Single thread performance measured on Intel® Xeon® Gold processor;

GPP + T1 Telco Accelerator 2

2. Single thread performance measured on Intel Xeon Gold processor with T1 Telco Accelerator 
card; both running FlexRAN software on Dell™ R740 server [71].

Throughput Latency Throughput Latency

Channel Encode 0.718Gbps 45μs 17.7Gbps
(x24 higher)

14.15μs
(x3.2 lower)

Channel Decode 0.183Gbps 62.7μs 7.8Gbps
(x42 higher)

16.21μs
(x3.8 lower)
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CHAPTER 17: RFSoC Applications in Cellular Networks
power-saving attributes of the RFSoC previously discussed in Section 3.5.5 (i.e. savings due to integration, 
hardening of computationally intensive blocks, support for DPD to linearise power amplifier gain, and the 
power management features of the PMU) are extremely relevant to cellular network operations. The RFSoC 
DFE is particularly optimal in terms of hardening, with its functionality tailored to the requirements of 5G NR 
mobile networks [82]. 

Improving the thermal performance of the network infrastructure, particularly at the RRH, is significant both 
in terms of CapEx and OpEx. The RRH is situated close to the antenna and is exposed to the weather, and 
therefore requires to be in a sealed unit; pushing hot air out via fans is therefore not practicable, and instead, 
heatsinks must be used to dissipate heat. The use of lidless packaging for RFSoC devices (mentioned in Section 
3.5.5) helps to achieve a lower operating temperature than with a conventional package [300], and this implies 
that smaller heatsinks can be used, which is beneficial in terms of materials and manufacturing costs, as well as 
ease of installation. In terms of OpEx, lower operating temperature is advantageous because components can 
typically enjoy longer lifetimes, easing maintenance requirements and reducing downtime.

17.4.  Chapter Summary

This chapter has introduced the general architectures of current and next-generation OpenRAN cellular 
networks, and introduced the various components that comprise a RAN. We have also highlighted candidate 
cellular use case cases for some of the products in the RFSoC family, and commented on the energy and cost 
considerations.
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Chapter 18
MIMO and Beamforming
James Craig and Blair McTaggart 

One of the most significant features of RFSoC is its multiple RF-ADCs and RF-DACs, which enables systems 
with several transmit and receive channels to be implemented. As noted in Chapter 3, most RFSoC devices 
have either 8 or 16 RF-DACs and RF-ADCs, which can either be used individually (for real signals) or in pairs 
(for complex signals). This multi-channel capability enables applications such as multi-standard radio systems, 
wherein several different bands and protocols are serviced on the same chip — for instance, an access point 
serving cellular, Wi-Fi, GPS, and Bluetooth connectivity. Two other notable applications, which form the basis 
of this chapter, are Multiple-Input-Multiple-Output (MIMO) systems, and beamforming. 

In MIMO systems, the transmitter and receiver both have multiple signal paths and antennas, which contrasts 
with the conventional single transmitter, single receiver configuration (also known as Single-Input-Single-
Output, or SISO1). As will be reviewed over the coming pages, MIMO creates a more diverse set of signal paths 
through the radio channel, which can be exploited to increase overall data rate.

Beamforming involves the use of multiple antennas at either the transmitter or receiver. By applying DSP 
techniques to the set of input/output signals, the beam can be electronically steered in a desired direction. This 
has the advantage that a transmitter can concentrate its transmitted power towards a desired target, or that a 
receiver can be most sensitive in a particular direction, all without any mechanical steering of antennas. 
Beamforming and MIMO are key technologies for 5G networks, and will be even more prevalent for 6G.

Both of these topics would be worthy of books on their own — the intent of this chapter is to provide an intro-
ductory overview of each, noting RFSoC implementation aspects, with suggested sources for further reading. 

1. Multiple-Input-Single-Output (MISO) and Single-Input-Multiple-Output (SIMO) are two (less common) variations.
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CHAPTER 18: MIMO and Beamforming
18.1.  Introduction to MIMO Systems

MIMO is a technique that improves the data throughput and reliability of communication systems by using 
multiple (typically two to eight) transmit and receive antennas each to simultaneously send several data 
streams. Since there are many different paths between each set of transmitter and receiver antennas, the signals 
experience different channel effects. By using the various transmitter and receiver processing techniques 
discussed later in this chapter, the impact of these channel effects can be mitigated and even exploited, 
providing a significant improvement over SISO systems in many cases.

The concept of MIMO can be traced as far back as the 1970’s, with research papers discussing digital trans-
mission systems using multiple channels [223], and now it has become an essential technique in 4G Long Term 
Evolution (LTE) and 5G New Radio (NR) communications. Mobile data traffic is increasing at an exponential 
rate [266], and to keep up with this growth, there must be a corresponding increase in the achievable 
throughput of wireless networks. Network throughput is a measure of the data per second in a given area, and 
can be split into three main factors, i.e. 

Area throughput [bits/s/km2] = Bandwidth [Hz]  Density [cells/km2]  Spectral Efficiency [bits/s/Hz/cell]

In the past, approaches to increasing capacity (or throughput) have focused on allocating more bandwidth and 
the densification of base stations; however, further growth in either sense is unlikely to be practical, or indeed 
sufficient. The amount of RF spectrum that can be used for mobile communications is limited, for both 
physical and regulatory reasons, and therefore allocating more bandwidth is not generally possible. When 
considering the base station costs for site acquisition, backhaul links, and construction, as well as maintenance 
and environmental factors, and the elevated interference levels implied, then it is clear that increasing the 
density of basestations is not a viable solution in the long term either. 

Attention then turned to improving the spectral efficiency of cells, which can be achieved in a variety of ways, 
such as increasing the transmit power or modulation order [109]. One of the key technologies in enhancing 
spectral efficiency is the use of multiple antennas to simultaneously transmit over the same band of 
frequencies, but with spatial or directional separation. For example, via the use of sectored antennas pointing 
away from the mast at regular angles. Another approach is to use arrays of transmitters and receivers to 
generate diversity in the transmission paths taken through the radio channel — in other words, MIMO. This 
usually causes interference or degradation of SNR, but by exploiting the concepts of spatial multiplexing and 
spatial diversity then the individual transmission paths can be resolved at the receiver to improve the data 
throughput and reliability of the system, and thus improve spectral efficiency. 
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CHAPTER 18: MIMO and Beamforming
18.2.  Spatial Multiplexing and Spatial Diversity

MIMO can provide many benefits, depending on the configuration of transmit and receive antennas, and the 
processing undertaken in the transmitter and receiver. Broadly speaking, there are two approaches: spatial 
multiplexing and spatial diversity.

In the most basic spatial multiplexing case, the data to be transmitted is demultiplexed into several lower-rate, 
independent data streams, which are transmitted simultaneously from the set of transmit antennas, and subse-
quently arrive at the set of receive antennas, having taken different paths. An example of such a configuration 
(in this case,  MIMO) is shown in Figure 18.1. 

Alternatively, we can consider that the baud rate at each transmitter antenna path remains the same. Therefore 
with multiple transmit antenna paths, the overall data rate is increased. In both cases, however, there is no 
improvement in the reliability of the transmission. 

Turning to spatial diversity, it is possible to employ transmitter diversity and receiver diversity. These 
techniques provide enhanced reliability by combining copies of the same data stream that travel different paths 
between the transmitter and receiver antennas. Transmitter diversity is where the same data stream is sent 
from multiple transmit antennas, whereas receiver diversity is when the same data stream is combined across 
multiple receive antennas. Due to the diverse paths taken by the various copies of the data stream, they 
experience different channel effects, which can be cancelled out to recover the original data stream. This can 
provide an increase in reliability, but offers no throughput benefit compared to a SISO system. 

Examples of transmitter and receiver diversity systems are shown in Figure 18.2. 

Depending on the channel conditions, a focus on either spatial multiplexing or spatial diversity may be 
preferable, or a hybrid solution combining both approaches can be adopted. 

4 4

Figure 18.1:  A simple example of spatial multiplexing for a 4 x 4 MIMO system.
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18.3.  MIMO Channel Representation

As mentioned previously, in MIMO systems the transmitter and receiver comprise an array of antennas, and so 
the transmitted and received signals can be represented by vectors. These vectors are composed of symbols, 
expressed as complex values. Since there can be a different path between every transmit and receive antenna, 
the channel can be represented as a matrix, where each matrix element corresponds to the channel gain for a 
distinct path. Figure 18.3 clarifies how these quantities relate to the MIMO system. 

By including the effect of noise on the channel as an additional vector, the equation for a basic MIMO channel 
can be expressed as

(18.1)

where  is a vector of the received symbols,  is a vector of the transmitted symbols,  is the channel matrix, 
and  is the noise vector. 

Figure 18.2:  (a) transmitter diversity; and (b) receiver diversity.
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CHAPTER 18: MIMO and Beamforming
To gain an estimate of the transmitted symbols at the receiver, processing must be undertaken to remove the 
effects of the channel and noise from the received symbols. This can be done at either the transmitter, receiver, 
or both. Over the next two sections, we will consider receiver and transmitter processing techniques, respec-
tively, in a little more detail. 

18.4.  Receiver Processing Techniques

To obtain the greatest benefit from having multiple antennas, MIMO receiver processing techniques must be 
employed to recover the transmitted information. Various forms of receiver processing are discussed in this 
section, focusing on simple techniques such as Switch Diversity, and linear receivers such as Zero Forcing (ZF) 
and Linear Minimum Mean Square Error (L-MMSE) detectors. A brief overview is provided of techniques 
beyond these three examples, covering non-linear processing techniques such as Maximum Likelihood (ML) 
and Sphere decoders, as well as extensions of the basic techniques mentioned previously, with references to 
further reading on these topics.

Figure 18.3:  Matrix-vector representation of a 2 x 2 MIMO system.
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CHAPTER 18: MIMO and Beamforming
18.4.1.  Switch Diversity

Switch diversity is a simple form of receiver processing which uses the multiple receive antennas as a form of 
redundancy to increase the chance that the transmitted signal will be correctly received.

The simplest form of receiver processing is switch diversity, which aims to increase channel reliability through 
the use of MIMO. In a SISO system experiencing fading, there are short periods of intense attenuation known 
as deep fades, and during these periods it can be difficult to acquire the transmitted symbol. The benefit of 
using MIMO is that, since each path from transmitter to receiver is slightly different, they experience these 
deep fades at slightly different times. The core concept behind switch diversity is to only accept the signal at the 
receiver with the highest gain at a given moment, so it will switch to the best receive antenna [124]. A simple 
switch diversity system is sketched in Figure 18.4. 

MIMO switch diversity is a very limited technique because it discards all other received signals, which may still 
contain useful information. 

18.4.2.  Zero Forcing

The technique of Zero Forcing (ZF) seeks to position nulls at the incident direction(s) of other transmissions 
that are received by the system, to minimise interference. It achieves this by simply multiplying the received 
symbols by the inverse of the channel to cancel its effects. This requires an estimate of the channel at the 
receiver, which can be obtained through the transmission of pilot symbols. The ZF technique can be described 
mathematically as

, (18.2)

Figure 18.4:  MIMO switch diversity.
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CHAPTER 18: MIMO and Beamforming
where  is the estimated transmitted symbol vector. 

The ZF technique gives a good estimate of the transmitted symbols if there is minimal noise present, however, 
there are a few potential drawbacks. The channel inverse is computationally difficult to calculate, and it may 
not even exist! Additionally, the channel inverse can be ill-conditioned, meaning that it is highly sensitive to 
small errors such as those caused by noise. This can cause the effects of noise to be greatly amplified when 
multiplied by the channel inverse [124].

18.4.3.  Linear Minimum Mean Square Error (L-MMSE)

An alternative approach is to use Minimum Mean Square Error (MMSE) processing at the receiver. This 
method builds upon the Zero Forcing receiver by adding a regularisation term, which reduces the sensitivity of 
the receiver to the conditioning of the channel matrix. When this regularisation term is equal to , 
where  is the number of transmit antennas, this is known as the Linear MMSE (L-MMSE) detector, and 
generates an estimate of the transmitted signals given by

, (18.3)

where  represents the conjugate transpose of the channel matrix, , also known as the Hermitian 
transpose,  is the identity matrix, and all other symbols are as previously defined. When the SNR increases 
then the regularisation term is reduced, and the solution approaches the Zero Forcing receiver [238].

18.4.4.  Additional Receiver Processing Techniques

In addition to the previously mentioned methods, non-linear processing techniques can also be used. 
Maximum Likelihood (ML) techniques enable optimal detection to be achieved by finding the minimum 
Euclidean distance between the transmitted and received signal vectors. This method is more demanding than 
linear approaches, but can result in higher data rates for a given channel and is more resilient to antenna corre-
lation (where correlation refers to the degree of independence between signals received at adjacent antennas). 
The complexity of this ML approach increases exponentially with the number of transmit antennas, which 
makes it impractical for most applications.

To reduce the complexity, the Sphere Decoding algorithm confines the search range of the ML algorithm to a 
sphere of set radius, which can still achieve comparable performance [124]. This radius can be adjusted to 
achieve a point in the trade-off between complexity and performance, with increasing radius approaching the 
ML solution.
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CHAPTER 18: MIMO and Beamforming
18.5.  Transmitter Processing

As well as receiver-based processing, signals can also be processed in the transmitter to help mitigate the 
effects of the channel. Systems which feed back channel information to the transmitter are known as closed-
loop MIMO, and this approach can greatly simplify the processing required in the receiver, which is very useful 
for wireless mobile applications. Just as in the receiver, Zero Forcing can be performed in the transmitter, 
which removes the risk of noise amplification. Alternatively, Singular Value Decomposition (SVD) can be used 
to split the channel into subchannels, which can then have individual gains applied to them. These two 
techniques are discussed further in the following sections, with references provided for further reading. 

18.5.1.  Zero Forcing

If an estimate of the channel is available at the transmitter, either through feedback or channel estimation, then 
precoding can be performed in the transmitter to negate the effects of the channel at the receiver. Similar to ZF 
in the receiver, ZF can be performed in the transmitter by precoding the transmitted signal with the inverse of 
the channel. The outcome is to cancel out the effects of the channel, leaving only the transmitted signal at the 
receiver. 

Unlike ZF at the receiver, this method does not amplify additive noise from the channel, since only the trans-
mitted symbols are multiplied by the inverse channel matrix, however, it still experiences a problem if the 
inverse does not exist. Further, the technique requires the channel estimate to be available at the transmitter, 
necessitating some form of feedback. 

Transmitter-based ZF can be expressed as

. (18.4)

18.5.2.  Singular Value Decomposition

Another method is to use Singular Value Decomposition (SVD) to split the channel into three matrices, which 
are labelled , , and , i.e. 

(18.5)

The matrix  contains the singular channel gain values, ordered highest to lowest, as a diagonal matrix, 

(18.6)
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CHAPTER 18: MIMO and Beamforming
The matrices  and  are unitary matrices which represent rotations in the matrix space, however, these 
can be negated using careful processing choices in the transmitter and receiver. By interpreting the channel 
using SVD, the symbols can be precoded with  in the transmitter and with  in the receiver. Since  
and  both equal the identity matrix, , the effect is to negate the rotation in the transmitted symbols, 
leaving only the scaling factor of . 

This can be expressed as

(18.7)

The SVD technique essentially splits the communication channel into subchannels with gains listed as the 
diagonal values in the matrix , which can then be adjusted by adding a power matrix. A different gain can be 
applied to each subchannel in order to improve performance. For cases when there is minimal noise, it is 
preferred to apply equal power across each subchannel, which is known as waterfilling [317]. Alternatively, 
where there is a low SNR, it is better to focus power into the subchannel with the highest singular value. This is 
also known as beamforming, which will be discussed further in the second part of this chapter. 

Codebook Selection

The problem with using SVD is that the precoding matrix, , must be known at the transmitter, but the 
channel estimation is only available at the receiver, having been developed from the received pilot signals. The 
overhead to transmit the entire matrix would be excessive, and therefore to combat this problem, the concept 
of codebooks was introduced as part of the 4G LTE 3GPP standard [2]. Codebooks are a set of predefined 
matrices that are known at both the transmitter and receiver; the receiver must simply select the closest matrix 
and send only the index of that matrix back to the transmitter.

The concept of codebooks was developed further in the 5G NR 3GPP standard with the introduction of Type-
I and Type-II codebooks. Type-I uses the same logic as the 4G LTE codebooks but with a more diverse range of 
matrices to choose from. Type-II codebooks can select a linear combination of matrices and then use 
amplitude scaling for improved precision.

18.6.  MIMO Performance Metrics

Despite all of the benefits it can provide, not all scenarios are ideal for MIMO deployment. For example, using 
spatial multiplexing in situations with a strong Line of Sight (LoS) component will not provide any capacity 
benefit, as there is no rich scattering environment. Since the MIMO channel is represented by a complex 
matrix, then continuous analysis of this entire matrix would be extremely computationally challenging, 
especially for larger MIMO deployments. However, performance metrics such as Rank Indicator and 
Condition Number can be used to gain a simple mathematical understanding of the channel matrix, and so 
evaluate MIMO performance [312]. 
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CHAPTER 18: MIMO and Beamforming
18.6.1.  Rank Indicator

The Rank Indicator (RI) is a representation of how many independent communication channels are available 
in a MIMO system. It is based on the mathematical term rank index, referring to how many linearly 
independent vectors make up a matrix. For effective MIMO communications, a high RI is desirable, since it 
implies that the MIMO system is successfully spatially multiplexing the data into independent channels. On 
the other hand, if a User Equipment (UE) reports a RI of 1, this means that the system operation is equivalent 
to a SISO system. When using SVD for a MIMO channel, the RI is simply the number of non-zero elements in 
the singular matrix,  [317].

18.6.2.  Condition Number

The Condition Number (CN) is measure of how easily the received symbols can be reconstructed, and is based 
on the mathematical concept of condition, which indicates how easily the linear vectors that make up a matrix 
can be solved. Ideally, the CN should be as close to 1 as possible, however, if the CN is high, this may imply that 
the channel is ill-conditioned, which can make it very difficult to recover the transmitted symbols. 

CN can be expressed as

, (18.8)

where  and  are the maximum and minimum singular channel gain values, respectively. Together 
with the RI, these can be used to analyse all configurations of MIMO channels, regardless of the number of 
transmit and receive antennas [317].

18.7.  MIMO Communications

MIMO has been vital in improving the throughput and reliability of wireless systems for years and is included 
in numerous wireless standards such as Wi-Fi, 4G, and 5G. It can be used in various configurations, and in 
conjunction with other communications waveforms and protocols. In this section, we briefly review some of 
the notable use-cases for MIMO. 

18.7.1.  MIMO OFDM

In cases where the delay spread is high relative to the symbol length, such as in outdoor transmissions, 
frequency selective fading can occur. This is a type of multipath interference where the attenuation experi-
enced by a signal varies with frequency, and therefore the frequency response of the channel is not flat. 
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CHAPTER 18: MIMO and Beamforming
The presence of a frequency selective channel would normally require channel equalisation, which may be 
relatively complex in a computational sense. To achieve the high bandwidth communications that MIMO 
enables, OFDM can instead be used to split the channel into subchannels that each have an approximately flat 
frequency response. When MIMO is combined with OFDM in this way, the MIMO aspect partitions the signal 
in the spatial domain, while OFDM distributes the signal components across the frequency domain, thus 
providing the benefits of both techniques [124]. An overview of this scheme is provided in Figure 18.5. 

18.7.2.  Massive MIMO

Massive MIMO, as the name implies, is a type of MIMO that uses a large number of antennas. The use of large 
MIMO arrays is attractive because they provides greater control and flexibility than a smaller array. There is no 
strict definition of how many antennas are needed for a MIMO system to be designated “massive”; however, 
Massive MIMO systems typically have 64, 256, or more transmit and receive antennas, as compared to more 
traditional MIMO systems which may have 2, 4, or 8 transmit and receive antennas. An example 64-element 
beamformer is depicted in Figure 18.6, demonstrating that it can steer the azimuth and elevation of the beam.  

The main motivation behind Massive MIMO lies in the frequencies used. Low frequencies (which here we will 
consider as < 1 GHz) are favoured for their wide coverage. However, limited bandwidth is available at these 
frequencies, and therefore with increasing demand for high data rates, wireless data communications systems 
generally adopt higher frequencies (for instance, Wi-Fi at 2.4 GHz and 5.8 GHz, with systems using even 
higher frequencies, such as ‘mmWave’ bands, under development). 

As the transmission frequency increases, the optimal size of a radiating element decreases. As such, the power 
that each antenna element can emit becomes limited, and consequently more antennas must be added, thus 
leading to Massive MIMO [109], [308]. The major benefit of Massive MIMO is that the large number of 
antennas available allows much more precise control over signal directionality, as well as access to advanced 
techniques such as MU-MIMO, which is covered next.

Figure 18.5:  Simplified MIMO OFDM block diagram.
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18.7.3.  Single-User MIMO and Multiple-User MIMO

Single-User MIMO (SU-MIMO), introduced in the 802.11n wireless standard, allows multiple data streams to 
form a link between a single transmitter and receiver pair, providing the benefits discussed earlier (such as 
increased data rates and reliability). Multiple-User MIMO (MU-MIMO) was then incorporated in the Wi-Fi 5 
(802.11ac) standard, enabling multiple data streams to target multiple different users simultaneously in the 
downlink. Uplink support was later added in the Wi-Fi 6 (802.11ax) standard. Both SU- and MU-MIMO are 
also supported as part of the 4G LTE and 5G NR standards.

Figure 18.6:  Massive MIMO array, showing directions of beam steering.
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The number of data streams, or layers, that can be created is limited by the number of antennas (typically one 
stream can be generated per antenna). As the number of antennas increases, such as in Massive MIMO, the 
number of supported layers also increases, allowing more data streams and more users to be supported, and 
resulting in a great improvement in wireless network throughput. MIMO can also be combined with OFDM to 
separate transmissions to different users across the frequency and spatial domains [109].

18.8.  Phased Array Beamformers

Next, and for the remainder of this chapter, we switch the focus from MIMO to beamforming. This section will 
give a brief overview of phased array antennas and beamforming, and establish the context for why they are 
necessary in many modern digital communications systems. 

18.8.1.  Antenna Directionality

With traditional forms of signal transmission and reception, a singular omnidirectional antenna would be used 
to radiate or detect radio signals uniformly across all directions [103]. For many applications such as FM radio, 
this is a perfectly viable method as each radio station is modulated to its own frequency band. This allows for 
one antenna to transmit the FM radio signal containing all radio stations, modulated to different frequency 
bands, and one antenna to receive the FM radio signals and perform digital filtering to demodulate the signal 
and listen to the chosen radio station [326]. 

As technology advances, more and more applications (such as Wi-Fi, RADAR and 5G) require the transmitter 
and receiver antennas to transmit or receive signals from one or more specific directions, and filter out signals 
from all other directions [115]. These modern antennas must also enable the chosen ‘look’ direction to be 
easily and quickly adapted in response to a dynamic wireless environment. 

Figure 18.8 presents an intuitive comparison between omnidirectional and directional transmit antennas. In 
this diagram, the viewpoint is from above: the ideal omnidirectional antenna emits energy equally in all direc-
tions, whereas a directional antenna concentrates its energy within one particular range of angles. For a given 
power output, directional antennas can transmit further than omnidirectional ones, because they concentrate 
the emitted power within a limited angular range.    

One method of an antenna producing a narrow beam that can be directed in a specific direction is with a dish 
antenna, an example of which is illustrated in Figure 18.9. These antennas use a parabolic reflector, whose size 
must be larger than the signal wavelength in order to reflect the signal into a singular focal point. In this way, 
these dish antennas can produce a narrow beam or region of sensitivity that can be oriented in a desired 
direction for transmission or reception. The downside to these types of antennas is that they need to be physi-
cally moved in order to change the sensitive direction. Depending of the wavelength of the signals, dish 
antennas can also become very large and heavy, making them difficult and slow to reorient [339].
605

Downloaded from www.RFSoCbook.com



CHAPTER 18: MIMO and Beamforming
18.8.2.  Array Antennas

Another method of producing a directional signal is through the use of an array antenna, and the technique of 
beamforming. An array transmit antenna has two or more antenna elements, and the signals emitted by these 
elements intersect and combine to form a relatively narrow beam in a particular direction. Each of the antenna 
elements in the array transmits the same signal, causing constructive or destructive interference to occur, 
depending on the angle with respect to the array. 

In the example shown in Figure 18.10, identical copies of the signal are transmitted simultaneously, and a 
narrow beam is generated. This occurs because constructive interference combines the signal energy perpen-
dicular to the array, while destructive interference cancels out the signals emitted in other directions [361]. 
More formally, we note that the sensitivity (gain) of the array antenna varies with angle, and this is known as a 
beam pattern or radiation pattern. 

Figure 18.8:  Transmitter radiating signal: (a) uniformly across all directions, (b) in one specific direction.

(a) (b)

Figure 18.9:  Illustration of a parabolic dish antenna.
606

Downloaded from www.RFSoCbook.com



CHAPTER 18: MIMO and Beamforming
The technique of beamforming exploits the interference generated by antenna arrays to control the radiation 
pattern, and in particular the narrow beam where constructive interference occurs (the main lobe). Our initial 
example considered the simple case where all transmit array elements emit identical and synchronised signals, 
however the radiation pattern can be customised by controlling the phases of signals emitted from the array 
elements, thus ‘steering’ the beam in a desired direction. 

Note that beamforming is equally applicable to array receivers, in which case it defines the direction(s) that the 
receiver is most sensitive to.   

18.8.3.  Phased Array Antennas

As depicted in Figure 18.11, a phased array includes an electronically controlled phase shifter for each antenna 
element. By applying individual phase offsets to the signals emitted by the array elements, the pattern of 
constructive and destructive interference can be controlled, thereby steering the main lobe to a desired angle. 
As the phase offsets are applied digitally and can be reprogrammed, the phased array antenna becomes 
dynamically steerable, and the look direction can be altered as quickly as new phase offsets can be calculated. 

The main benefit of using a phased array is that the direction of the narrow beam can be digitally steered 
without the need for any physical movement of the array. Another advantage is response time: the phase delays 
required for the set of antenna elements can be readily re-calculated and applied digitally, and therefore the 
beam can be steered incredibly quickly [99]. 

Figure 18.10:  Signals from a linear array: (a) overlapping and causing interference, (b) forming a narrow beam.

(a) (b)
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18.8.4.  Phased Array Antenna Orientations

Phased array antennas can be categorised into three main types: linear arrays, planar arrays and frequency 
scanning arrays. These categories are determined by the positioning of each antenna element and the number 
of phase shifters used. Each type is now briefly reviewed. 

Linear Array

The antenna elements of a linear array are arranged in a straight line with a progressive phase shift applied to 
them. The antenna elements are supplied with increasing multiples of a base phase shift to accurately perform 
the required beam steering. A linear array is the simplest and cheapest form of a phased array that allows for 
the steering of the antenna array to be dynamically controlled. The disadvantage is that beamforming can only 
take place in a two-dimensional plane that is perpendicular to the line of antenna elements. 

Planar Array

A planar array is composed of antenna elements arranged in a two dimensional pattern, which is typically 
square or rectangular, but can also be another shape, e.g. circular or triangular. As illustrated in Figure 18.13, 
each antenna element has its own individual phase shifter, which allows beam steering to operate in three-
dimensional space, and thus the planar array exhibits more beamforming flexibility than the linear array. 
However, with a greater number of antenna elements, each requiring a unique phase shifter and independent 
phase offset calculation (rather than multiples of the same phase offset), the planar array is considerably more 
complex and expensive to implement than a linear array.

Figure 18.11:  Signals from a linear array with phase delay: 
(a) overlapping and causing directed interference, (b) forming a directed narrow beam.

(a) (b)
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Figure 18.12:  Linear array.
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Frequency Scanning Array

A frequency scanning array uses the signal frequency to perform the beamsteering, instead of phase shifters. 
The signal is fed along a serpentine feed connecting the elements in the antenna array, as illustrated in Figure 
18.14. These feed lines are designed to apply a full 360° phase shift for a specific frequency. Thus, the transmit 
signal must travel along a wire with a specific length between each antenna element, with the length calculated 
to delay that specific signal frequency by a full period. This results in the signal arriving at each antenna 
element being completely in phase, which produces a narrow beam perpendicular to the antenna array. 

In the frequency scanning array, the beam direction can be steered by altering the frequency of the signal. If 
the signal frequency is different than that used to calculate the length of the feed lines, the signal arrives at each 
antenna element with a phase offset (i.e. it deviates from the ideal 360°), giving the narrow beam a direction 
that is not perpendicular to the antenna array. This type of phased array is very simple, but it lacks flexibility as 
it is limited to only a few predetermined frequencies, which in turn provide only a few predetermined beam 
steering directions. 

18.8.5.  Passive and Active Antenna Arrays

Phased array antennas have played a huge part in meeting the ever-increasing capacity and coverage demands 
of modern wireless communications. Early adaptations of this technology, in the form of “passive” antenna 
arrays, combined multiple antenna elements to create directional beams through phase shift manipulation. 
Passive antenna arrays allow for bespoke radiation patterns to be designed based on specific applications, 
however, these patterns are static, and unable to adapt or manoeuvre in response to a dynamic environment. 
This is where “active” antenna arrays offer a distinct advantage, as they have the ability to electronically alter 

Figure 18.14:  Frequency scanning array.
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their radiation patterns. The active antenna array gives a higher degree of flexibility and control than the 
passive array, and in particular, offers the ability to dynamically steer the direction of the beam in response to 
changing parameters [9]. 

Passive Electronically Steered Arrays

Passive antenna arrays are seen as the first generation of phased arrays, and are typically used in radio commu-
nications. All antenna array elements are connected to a single Transmit / Receive Module (TRM), as illus-
trated in Figure 18.15, with the amplitude and phase delay needed to achieve beamforming being applied in a 
passive manner. 

Early iterations of the passive antenna array were constructed using a common feed, with transmission line 
technology applying the amplitude and phase needed at each antenna element to form a narrow beam. 
However, the resulting radiation pattern has fixed characteristics (such as gain and beam width) as well as a 
fixed direction.

More dynamic iterations of the passive antenna array were then introduced, integrating variable phase shifters 
into the design to allow the phased array direction to be electronically steered. This can be done directly at the 
antenna, or wirelessly through the use of a Remote Electrical Tilt (RET) actuator.

The number of variable phase shifters implemented varies according to the design requirements. A phase 
shifter can be applied to each antenna element individually, or to a group of elements in a sub-array. There is a 
trade-off in terms of performance versus cost: the fewer phase shifters used, the lower the cost, but at the 

Figure 18.15:  Passive electronically steered array.
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expense of performance (the number of sub-arrays determines the overall beamforming degrees of freedom 
and flexibility).

For passive antenna arrays to be implemented efficiently, they need to be designed with the specific application 
requirements and characteristics in mind. On the other hand, an active antenna array is more flexible and can 
adapt to dynamic environments. 

Active Electronically Steered Arrays

Active antenna arrays are considered to be the second generation of phased array antennas. They are designed 
with active components that deliver a flexible antenna, capable of producing a wide variety of radiation 
patterns. These characteristics make active antenna arrays a much more suitable solution for a dynamic 
wireless environment than the static characteristics of a passive antenna array.

The phase and amplitude manipulation for these active antenna arrays are controlled from a singular 
beamforming unit, capable of electronically calculating the phase/amplitude values needed at each transceiver 
to produce the desired radiation pattern. These electronically calculated values can be reapplied continuously, 
such that the radiation pattern is dynamically adjusted.

The optimal implementation of an active antenna array is to have a TRM for every antenna element, as 
depicted in Figure 18.16, giving the maximum amount of control. This enables the antenna array to have the 
highest degrees of freedom and flexibility, allowing for the narrowest beams to be formed with the widest 
range of steerability. The disadvantage is that this approach can be very costly (and for some applications, 
perhaps even infeasible) due to manufacturing constraints such as space, weight, heat dissipation, and so on. If 

Figure 18.16:  Active electronically steered array.
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CHAPTER 18: MIMO and Beamforming
these are limiting factors, then a more viable solution can be implemented by reducing the number of trans-
ceivers and connecting them to a group of antenna elements. This method retains the “active” characteristics of 
the antenna array, but with a reduced degree of flexibility. 

18.9.  Beamforming Techniques

There are three broad categories of beamforming techniques used in phased array antennas: analogue, digital 
and hybrid beamforming [187], all of which are illustrated in Figure 18.17. These three techniques provide 
methods for steering an antenna array with differing levels of control, complexity and cost [222]. 

18.9.1.  Analogue Beamforming

In an analogue beamformer, all processing relating to the beamforming operation is undertaken in the 
analogue domain. All antenna elements are driven by a singular RF source that is split and passed through 
analogue phase shifters that apply the appropriate phase offset to steer the antenna array in a desired direction. 

The original analogue beamformer used phase shifters with fixed delays to produce a static radiation pattern. 
Improvements on this design saw multiple phase shifters with different fixed delays, selectable via a switch, 
which added the option to select different radiation patterns. Eventually, adjustable phase shifters were intro-
duced at each antenna element to create a flexible antenna array.

The limitation that comes with analogue beamforming is the inability to produce multiple beams. An analogue 
beamformer is only capable of producing a single directional beam. For multi-beam applications, such as 
MIMO, a digital or hybrid beamforming implementation is required.

18.9.2.  Digital Beamforming

In digital beamforming, all signal processing operations required to steer an antenna array are performed in 
the digital domain. Each antenna element has its own RF signal chain that is electronically controlled via a 
digital beamforming unit, and therefore analogue phase shifters are not required.

The digital beamforming unit implements a beamforming algorithm that calculates the appropriate adjust-
ments to phase and amplitude, in the form of complex weight values, at each antenna element. Doing so allows 
the radiation pattern of the antenna array to be electronically shaped and steered.

A fully digital beamformer is able to produce multiple directional beams at multiple frequencies simultane-
ously, and these can each be independently controlled. The number of beams that can be produced is directly 
related to the number of RF chains applying complex weight values (calculated by the beamforming unit). For 
a truly digital beamformer, each antenna element has its own digitally controlled amplitude and phase shift, 
thus maximising the degree of flexibility and control available.
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Figure 18.17:  Three categories of beamformer implementation: (a) analogue, (b) digital, and (c) hybrid.
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CHAPTER 18: MIMO and Beamforming
Digital beamforming can be very complex and costly to implement, however, requiring significant hardware 
resources and computation, and resulting in a higher power consumption than analogue beamformers. With 
the AMD RFSoC platform, fully digital beamforming implementations can be achieved due to the integration 
of ADCs and DACs inside the chip, and the vast amount of PL resources available. If however, there are limited 
PL resources available for beamforming in a specific application (perhaps due to the demands of other parts of 
the system), an alternative solution is hybrid beamforming, where a combination of analogue and digital 
beamforming is used to reduce hardware complexity.

18.9.3.  Hybrid Beamforming

Hybrid beamforming provides a flexible antenna array, capable of generating multiple directional beams, at a 
reduced hardware resource and processing power cost compared to digital beamforming. It achieves this by 
grouping antenna elements into sub-arrays and using a combination of analogue and digital beamforming 
techniques.

As in analogue beamforming, each antenna element is connected to an analogue phase shifter. However, all 
elements are not driven by the same RF signal chain. Instead, multiple pairs of antennas and phase shifters are 
grouped together in subsets of arrays (sub-arrays), with each sub-array driven by its own RF chain and data 
converter. Every individual RF chain requires a level of digital precoding to achieve multi-beam functionality, 
in a similar manner to a digital beamformer but to a lesser degree.

The advantages and limitations of hybrid beamforming both arise from the number of RF chains and data 
converters used. The advantage being the ability to produce a radiation pattern of more than one beam at a 
reduced cost to digital beamforming. The limitation is the number of beams that can be produced, and 
therefore the overall degree of flexibility of the antenna array being less than that of a digital beamformer. 

18.10.  Beamforming Implementations

Beamforming is a versatile technique that can be applied to many different applications to electronically steer a 
phased antenna array. If the direction in which the phased array is to be steered is known, then a conventional 
beamformer can be used, as it calculates the phase shifts based on a known direction. If the direction is not 
known, then an adaptive beamformer is required. With an adaptive beamformer, a replica of the received 
signal should be available, or at least a portion of that signal should be known in advance. The beamformer 
then uses an adaptive algorithm to calculate complex weight values that, when applied to the phased array 
antenna data, will best recover the desired signal. We will now go on to discuss how conventional and adaptive 
beamformers are implemented. 
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18.10.1.  Conventional Beamforming

In conventional beamforming, shown in Figure 18.18, the phase shifts are electronically calculated based on a 
known signal direction or location. Meaning the conventional beamformer needs to be manually steered 
towards a desired signal. This is a simpler beamforming implementation and is ideal for applications where the 
positioning of both transmitter and receiver are known.  

Conventional Beamformer Example

In conventional beamformers, the phase shift value applied to each antenna element of a phased array antenna 
can be calculated using simple mathematics, provided that specific information relating to the phased array 
and RF signals are known. 

Figure 18.19 gives a simplified diagram for a phased array receiver antenna with the antenna elements 
arranged in a linear array. It is worth noting here that even though this example is of a receiver antenna, the 
same properties apply to a transmitting antenna, due to the principle of reciprocity. The principle of reciprocity 
states that the direction of sensitivity of a receiver antenna is the same as the radiation pattern direction of a 
transmitting antenna. 

The signals incident at the phased array antenna originate from a far field signal, so it can be assumed that a 
plane wave arrives at each antenna. Each antenna element has been spaced at the optimal separation distance,

, (18.9)

for this example scenario, where  is the wavelength of the incoming RF signal. 

Figure 18.18:  Conventional beamformer implementation.
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CHAPTER 18: MIMO and Beamforming
Each signal arrives at an antenna element at a slightly different time ( ) due to the angle at which the far field 
signal is positioned relative to the antenna array ( ). By applying the appropriate phase shifts to each antenna 
element, the antenna arrays sensitivity can be steered towards the far field signal, aligning the received signals. 

Figure 18.20, overleaf, provides a visualisation of how the phase shifts are used to steer the antenna array in the 
direction of the desired signal. 

The signal received at the second antenna element, A2, can be represented by 

(18.10)

where  is the centre frequency of the desired signal. Eq. (18.10) can be simplified to 

(18.11)

where .

The value of  can be calculated if the angle of the received signal relative to the phased array ( ) and the 
distance between antenna elements ( ) are both known, i.e. 

(18.12)

where  is the RF signal propagation speed, which is equal to the speed of light. 

Figure 18.19:  Example of a signal arriving at a phased array.
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CHAPTER 18: MIMO and Beamforming
The phase delay, , can now be calculated using the value of , 

. (18.13)

Given the relationship between the antenna spacing and signal wavelength expressed in (18.9), we can 
substitute for , yielding

. (18.14)

A further simplification then arises from the relationship , which gives

. (18.15)

Having determined the phase delay needed to steer the phased array in the direction of the desired signal ( ), 
it can be applied to the receiver antennas as seen in Figure 18.20. Note that since each antenna element is 
equally spaced, antenna elements are applied with integer multiples of the same phase shift. 

Figure 18.20:  Example of steering a phased array with phase shifts.
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CHAPTER 18: MIMO and Beamforming
18.10.2.  Adaptive Beamforming

Adaptive beamforming calculates the phase shifts without explicit knowledge of the desired signal direction or 
location, instead using information derived from the received signal itself. Adaptive algorithms are used to 
find the optimal phase shifts needed to steer a phased array antenna towards a desired signal and attenuate any 
interfering signals. 

In order to achieve this, the adaptive algorithm requires prior knowledge of some aspect of the desired signal. 
A common approach is to embed a signal component that is known to the both transmitter and receiver, and a 
local copy of the desired signal is stored at the receive side to act as an input to the adaptive beamforming 
algorithm. Such a configuration is shown in Figure 18.21.  

18.10.3.  Adaptive Beamforming Example

For an adaptive beamformer, the phase shift values needed to steer the antenna array in a specific direction are 
calculated without knowing the direction required. They are instead calculated using known information 
about the desired signal and applied with complex weight values. There are several different methods of 
performing adaptive beamforming, but for the purposes of this example, a QR Decomposition (QRD) based 
adaptive beamforming algorithm will be discussed [181].

QRD is a method of performing matrix inversion to solve a set of simultaneous equations that is optimised for 
FPGA implementation. An advantage of the QRD method is that it maintains a limited dynamic range 
between values, allowing the arithmetic wordlengths to be kept within a reasonable range, and resulting lower 

Figure 18.21:  Adaptive beamformer implementation.
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CHAPTER 18: MIMO and Beamforming
FPGA resource consumption than other methods [93]. The QRD splits a data matrix ( ) into two separate 
matrices, an upper triangular matrix ( ), and an orthogonal matrix ( ).

To provide an illustrative example for a data matrix of dimensions , the QRD can be expressed in matrix 
notation as

(18.16)

(18.17)

Since  is an orthogonal matrix (meaning that , where  is an identity matrix) the equation can be 
rearranged in terms of  without the use of matrix division. 

(18.18)

This is significant because division is a costly operation to implement, particularly for complex numbers, and 
can add considerably to the critical path. The complex weight values needed to steer the antenna array in the 
direction of a desired signal can thus be computed using the transpose operation and matrix multiplication 
implied by (18.18). 

As shown in Figure 18.22, the far field signal arrives at the antenna array from an unknown angle. The data 
collected at each antenna element forms the data matrix , and is passed into the QRD-based adaptive 
algorithm along with a copy of the originally transmitted desired signal ( ). The aim of the adaptive 
algorithm is to calculate a weight vector ( ) which, when applied to the antenna data, will reproduce the 
desired signal with the least degree of error.

(18.19)

Therefore, to calculate the weight values, the desired signal, , is simply divided by the data matrix, .

(18.20)

Unfortunately, it is not as simple as it sounds, as matrix division is a complex and costly operation to perform. 
Instead, the QRD can be applied to the data matrix , turning the weight value calculation into a more 
convenient operation.

(18.21)

(18.22)
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CHAPTER 18: MIMO and Beamforming
Eq. (18.22) can be expressed in matrix form as

(18.23)

which can be simplified by substituting , giving

. (18.24)

Figure 18.22:  QRD-based adaptive beamforming example.
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CHAPTER 18: MIMO and Beamforming
The matrix equation from (18.24) can be expressed as a set of four simultaneous equations, i.e.

(18.25)

(18.26)

(18.27)

(18.28)

These equations can be solved using the method of backward substitution. Using this method, the value of  
is calculated first, using (18.28), as it is the only unknown in this equation: 

(18.29)

The calculated value of  is substituted into (18.27), which is then solved for . The process repeats by 
substituting both  and  into (18.26) to calculate , and finally (18.25) is solved to find  in a similar 
manner. 

The calculated weight values ( , . , and ) are then applied to the receiver antenna data to recover 
the desired signal and steer the antenna array in the required direction. 

18.10.4.  QR Decomposition Implementation

The QRD of an adaptive beamformer can be implemented as a signal systolic array architecture, which maps to 
the PL of the RFSoC device. As mentioned earlier, the QRD method keeps the numerical values bounded 
within a limited numerical range, and therefore the implementation can use fixed-point arithmetic in 
preference to floating-point, which is required for numerically less-well-conditioned approaches (floating-
point provides larger dynamic range, but at the cost of more resource-intensive operations, and so the fixed-
point arithmetic of the QRD approach is advantageous).

The systolic array architecture used to implement the QRD is built using two types of repeating cells (denoted 
as Boundary and Internal cells, that in combination perform complex-valued Givens rotations [134], [358]. 
Figure 18.23 provides a diagram of this systolic array structure, highlighting the Boundary and Internal cells, 
for a QRD implementation with four antenna inputs. All input data is assumed to be complex valued.  

The systolic array takes in the data received from each antenna element ( ) along with a replica of the 
desired signal ( ). The triangle formed from Boundary and Internal cells (highlighted in red in Figure 18.23) 
is used to construct the upper triangular matrix , while the column of Internal cells (highlighted in blue in 
Figure 18.23) is used to construct the  vector, as in (18.24). The set of operations performed by the 
Boundary and Internal cells will now be described. 
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Boundary Cells

A boundary cell begins each row and performs three main operations: a pre-rotation, a cell local memory 
update, and a Givens rotation calculation. These operations are performed on the data sample input to each 
individual cell, which we denote here as .The first step is the pre-rotation which calculates the magnitude 
and angle of the complex input data sample, and a new data sample, denoted by , is then assigned with the 
computed magnitude. These operations can be expressed as

(18.30)

, (18.31)

where  and  denote the real and imaginary parts, respectively. 

The purpose of the pre-rotation is to remove the imaginary component of the input data by rotating it in the 
complex plane, as the values on the diagonal of the upper triangular  matrix should be real-valued. 
Therefore,  is the input data sample, , after rotation to remove its imaginary component, and  is the 
angle of this rotation.

Figure 18.23:  QR Decomposition systolic array architecture.
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CHAPTER 18: MIMO and Beamforming
The next step is a memory update. Each Boundary and Internal cell stores a local  value which is updated on 
each new input data sample. With reference to the architecture shown in Figure 18.23, these values are indexed 
in the form , where  and  represent the row and column position of the cell in the systolic array structure, 
respectively. The  values correspond to elements of the  matrix and  vector of the QRD, as given in Eq. 
(18.24). 

The local memory update calculation performed by the Boundary cell is given by

(18.32)

where  is the input data sample after pre-rotation,  is the forgetting factor, and  is the value of  
from the previous iteration.

The forgetting factor is an exponential weighting factor that emphasises the most recent data, i.e. it gradually 
‘forgets’ previous data. This is an important aspect of the QRD adaptive beamforming algorithm as it enables 
the antenna array to respond to changes in observed signal characteristics; without it, the antenna array would 
not be able to automatically adapt to a changing environment. For example, the beamformer can track a 
moving signal effectively because information arising from its previous positions is gradually forgotten, and 
the calculated beam pattern is weighted towards the most recent data. More generally, the beamformer can 
constantly update to adapt its radiation pattern in response to dynamic environments.

The final Boundary cell operation is to calculate the Givens rotations angle ( ). This angular value is used to 
set an individual elements of a data matrix to zero, thus forming the  and  matrices.

(18.33)

The Givens rotations angle, , and the pre-rotation angle, , are passed on to all of the Internal cells in the 
same row. The  value is stored locally in the cell, as well as being passed into the Backward Substitution 
Unit (BSU) to update the complex weight values.

Internal Cells

After the Boundary cell, the remainder of each row in the systolic array is composed of Internal cells, as shown 
in Figure 18.23. Each Internal cell also performs three operations, and these are: a pre-rotation, a local memory 
update, and an application of the Givens rotation calculated by the Boundary cell. 

The first operation, as in the Boundary cell, is the pre-rotation. However, unlike the Boundary cell, this pre-
rotation does not remove the imaginary component, but instead applies the same rotational value calculated by 
the Boundary cell to the input of the Internal cell. 
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The real and imaginary component are calculated as follows:

(18.34)

. (18.35)

Like the Boundary cell, the Internal cell also performs a local memory update. However, unlike the Boundary 
cell, the Internal cells holds a complex value in local memory, meaning that the update is performed on both 
the real and imaginary components, i.e.

(18.36)

. (18.37)

Similar to the Boundary Cell,  is the input to the Internal cell input after pre-rotation,  is the forgetting 
factor, and  is the value of  calculated at the previous iteration. Also,  represents the Givens rotations 
value calculated by the Boundary cell at the beginning of the row. The  value is stored locally within the 
cell for use at the next iteration, and is also passed into the BSU.

The final operation of the Internal cell is to apply the Givens rotation to the pre-rotated input data, .

(18.38)

(18.39)

The complex sample, , calculated in (18.38) and (18.39) is passed as input data to the Boundary and 
Internal cells in the row below.

QR Systolic Array Implementation

Systolic arrays are named as such because of the regular pulsing of data through the architecture, in a manner 
similar to blood pumping through a heart. The regular cell structure of the QR systolic array, and its inherent 
parallelism, means that it is ideally mapped to the PL portion of the RFSoC device, with its arithmetic support, 
vast routing resources, and concurrent processing capabilities.

The significance of using this method of implementing the QRD-based adaptive beamforming algorithm is 
that all of the Boundary and Internal cell calculations (Eq. (18.30) to (18.39)) can be performed entirely using 
the CORDIC (CoOrdinate Rotation DIgital Computer) technique [354]. CORDIC is able to perform a variety 
of trigonometric functions almost entirely using shift and add operations, which are inexpensive to implement. 
This is ideal for PL hardware implementation on the RFSoC, as the QRD can be fully implemented using 
efficient methods, using the logic fabric. A further benefit is that the systolic array is constructed of repeating 
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cells that perform the same operation. Therefore, the potential exists to reduce the footprint of the design using 
a scheduling algorithm to time-share a smaller number of Boundary and Internal cells.

With this systolic array implementation of the QRD, backward substitution needs to be performed separately. 
The dynamic range of values begins to increase at the backward substitution stage, resulting in larger 
wordlengths and thus greater FPGA resource utilisation for arithmetic implementation and storage. However, 
the BSU can only calculate new weight values as fast as it is presented new data, meaning that its rate is limited 
to the throughput of the QR systolic array. The BSU can also be configured to run at a much slower rate than 
the QRD array, if application requirements allow, which can be exploited to reduce the FPGA resources needed 
(recall from Section 18.10.3 that backward substitution involves the hardware intensive operations of division 
and complex multiplication).

18.11.  RFSoC Support for MIMO and Beamforming

RFSoC platforms are well suited for tackling the design problems introduced by MIMO and beamforming, 
both in 5G NR and other applications, and can eliminate the need for many components. Traditional architec-
tures require several different ICs for processing tasks such as transmission and calibration, however, by 
handling all tasks on a single chip the RFSoC can provide a cost effective and low footprint solution for 
massive MIMO designs. This is due in large part to the integration of ADCs and DACs inside the RFSoC chip, 
negating the need for communication with external data converters (e.g. via a JESD204 interface). The 
integration of data converters not only reduces the overall component footprint, but also the total power 
consumption required for a phased array implementation. The reduction in form factor and power 
consumption also extends the frequency operating range, as antenna elements can be placed physically closer 
together — this accommodates smaller antenna element separations, corresponding to the shorter 
wavelengths of high frequency carrier signals [325].

Another advantage of using RFSoC for applications such as 5G NR massive MIMO systems is its Multi Tile 
Synchronisation (MTS) functionality [90]. Using this feature, each RFSoC device can synchronise all of its 
channels from a single clock, and multiple RFSoC devices can be synchronised via a single external clock. A 
single RFSoC can implement up to 16 channels of RF-ADCs and RF-DACs, meaning that a single RFSoC chip 
can be used for a 16-element MIMO antenna. Designs combining multiple RFSoCs are required to achieve 
larger MIMO configurations, and this is directly supported using MTS functionality. 

For massive MIMO antennas, RF path alignment is very important, especially if the antenna needs to deploy 
beamforming algorithms, and therefore it is important that all elements in the array are accurately time 
synchronised. To achieve a tightly synchronised MIMO system involving multiple RFSoCs, a SYSREF signal is 
interfaced to all devices to provide a common timing reference. This method can be used to support MIMO 
arrays of various sizes [46]. The example shown in Figure 18.24 depicts four RFSoC chips, all synchronised 
from one reference clock, with each supporting 16 antenna elements to create a 64-element MIMO array. 
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18.12.  Chapter Summary

This chapter has reviewed two important technologies for modern communications systems such as 5G and 
beyond-5G. MIMO exploits spatial diversity to improve the spectral efficiency of wireless transmissions, and 
this can be used to improve reliability and/or increase capacity. Beamforming — the ability to electronically 
steer the transmit beam, or the sensitive region of a receiver, in a desired direction — can be used to optimise 
transmitter and receiver performance in the spatial domain, and is also a key capability for military and radar 
systems. The fundamental principles of both techniques were reviewed, and the multi-channel support 
provided by the RFSoC was highlighted as being particularly relevant for implementation of MIMO and 
beamforming systems. 

Figure 18.24:  Four RFSoC devices synchronised to a common clock and supporting a 64-element antenna array.
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Chapter 19
Dynamic Spectrum Access 
and Cognitive Radio

Tawachi Nyasulu, Graeme Fitzpatrick, Andrew Maclellan, 
Ehinomen Atimati, and David Crawford 

As wireless applications evolve and the demand for RF spectrum grows, it is becoming increasingly important 
to develop new spectrum access methods that make better use of spectrum resources. For example, the oppor-
tunities and benefits of private, pop-up networks are expected to lead to widespread deployment by industry 
and community organisations large and small, and this will require flexible and adaptive access to spectrum for 
a wide variety of use cases in different locations and operating environments. With the competition for 
spectrum from 5G, satellite, private networks and the expectation of frequencies being assigned for the future 
6G, its very clear that efficient management, sensing, and sharing of spectrum is very important.

In this chapter, we review relevant background in spectrum regulation and the emergence of Dynamic 
Spectrum Access (DSA) as an alternative, agile method of accessing spectrum. The motivations and drivers for 
DSA are outlined, and the frameworks that have been developed in the UK and USA are presented as 
examples.

We also investigate ways in which the effectiveness of DSA may be enhanced by Cognitive Radio, where radio 
terminals have built-in intelligence which allows them to alter their behaviour in response to observed condi-
tions. Following a brief review of the underpinning fundamentals, we explore why the RFSoC is a suitable 
platform for implementing DSA and cognitive radio, and we take a look forward to new challenges and oppor-
tunities in this area.
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19.1.  Spectrum Regulation 

Radio spectrum is a natural resource that requires regulation to control access and enforce rules for its use. 
This is mainly because, at any given time and place, when a portion of spectrum is in use by one transmitting 
station, another radio station cannot be allowed to transmit at the same frequency, otherwise the transmissions 
would interfere with one another. Spectrum regulation refers to the process of overseeing the usage of RF 
spectrum in a given location, with the goal of preventing radios from interfering with one another while 
allowing optimum usage of the spectrum.

19.1.1.  Hierarchy of Spectrum Regulation

The International Telecommunication Union Radio Communication Sector (ITU-R) of the United Nations 
(UN) is the global regulator of RF spectrum. It ensures coordination of spectrum management among member 
states to avoid interference between countries. The ITU-R has divided the world into three ITU regions for the 
purposes of managing global radio spectrum: Region 1 covers Africa, the Middle East and Europe; Region 2 
covers the Americas and Greenland; Region 3 comprises Asia (see Figure 19.1). 

Figure 19.1:  Hierarchy of spectrum management and regulation.
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At country level, every nation has its own national regulator to oversee spectrum management within its 
borders and to coordinate interference management with its neighbouring nations. For example, the Office of 
Communications (Ofcom) and the Federal Communications Commission (FCC) are the national regulators 
for the United Kingdom and the United States of America, respectively. National regulators coordinate their 
spectrum regulation activities at ITU regional level and at continental level to ensure technical interoperability 
of radio systems. For example, in Europe, national regulators work together through the European Telecom-
munications Standards Institute (ETSI).

19.1.2.  Spectrum Allocation

Spectrum allocation involves the allocation of portions of RF spectrum to specific radio usage in line with 
international radio regulations, such as ITU-R rules, and in accordance with technical propagation character-
istics and the potential for interference.

National development priorities and policies are also taken into consideration during spectrum allocation.

19.1.3.  Spectrum Licensing

Spectrum licensing involves authorising access to spectral resources for exclusive use by radio communication 
stations under conditions that are specified in the licence. The goal of spectrum licensing is to ensure proper 
use of the radio spectrum and to achieve efficient use of spectrum through spectrum reuse, etc. Compliance is 
enforced by the regulator through monitoring of the radio spectrum and implementation of measures to deter 
unauthorised use. 

The frequencies in a spectrum band can be assigned to different licensees; for example, spectrum reserved for 
mobile phone use can be allocated to different Mobile Network Operators (MNOs) to serve subscribers (i.e. 
mobile phone users). The assignment of frequencies is done in such a way as to avoid harmful interference 
between the radios of different users. Traditionally, spectrum assignment is static: regulators assign a licence 
which guarantees “exclusive rights” to use the assigned frequencies for a large geographical area and for a 
specific term, e.g. 15 years. This means that no other operator is allowed to use the assigned frequencies in the 
specified geographical location, even where and when the licence holder is not using them. This results in 
wastage of spectrum resources.

19.1.4.  Spectrum Engineering

Spectrum engineering is a regulatory function that is responsible for the development of technical standards 
for radios to access a particular spectrum band for a particular communication service. Technical standards 
can be broadly divided into two categories: 1) Spectrum operating standards, which describe procedural rules 
for how spectrum is to be used; 2) Radio equipment standards, which specify the minimum requirements of 
radio hardware, such as transmit power, operating centre frequency, bandwidth, adjacent channel leakage 
ratio, and so on. 
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Specifications contained in the radio equipment standard form the basis for certification of radio equipment to 
determine compliance. There are various standards development organisations. In Europe, for example, ETSI 
produces harmonised technical standards for the EU single market. The Institute of Electrical and Electronics 
Engineers Standards Association (IEEE SA) develops global standards for various industries, including 
wireless communications under the 802 LAN/MAN standards committee. The 3rd Generation Partnership 
Project (3GPP) is a global consortium of standards organisations which develop protocols for mobile telecom-
munications.

19.1.5.  Improving Spectrum Utilisation through Spectrum Sharing

Use of wireless-based technologies and applications is continuously increasing, owing to growth in the sales of 
smart phones, tablets, and other connected devices, and to the socio-economic development opportunities 
that these devices provide. To support this increasing demand for wireless connections, there is need for 
efficiency in the use of spectrum. While more efficient radio transceiver technologies have been developed to 
improve spectrum utilisation by sending more information per unit of spectrum, further improvement can be 
realised through efficient spectrum management approaches. Exclusively licensed spectrum guarantees 
certainty of spectrum availability for sizeable long-term investment in communications infrastructure and for 
the provision of services at a guaranteed Quality of Service (QoS) level. However, spectrum occupancy 
measurements have shown that most licensed spectrum is not in use at all times and in all places [349]. 
Therefore, some regulators have moved towards implementing regulatory frameworks for the sharing of 
spectrum. 

Spectrum under-utilisation can result if, for example, a national licence holder chooses not to roll out a 
network to the entire geographical area covered by the licence at once, or chooses not to cover areas that are 
deemed not to be economically viable. This type of wastage could be addressed through shared spectrum, by 
offering affordable short-term leases of unused spectrum to small-scale network operators, e.g. for up to 3 
years. This is illustrated in Figure 19.2 where, for example, a local licence-holder (User 1), has been granted 
rights to Band 1 in Area A, whereas another local licence-holder (User 3) has been granted a licence for the 
same band (Band 1), but in a different area (Area C). 

The spectrum sharing approach will support deployment of private 5G/6G mobile networks, such as private 
voice and data networks and machine-to-machine (M2M) communications [283]. For example, in the UK, 
some spectrum bands have been allocated for use under a Shared Access Licence (SAL) framework introduced 
by Ofcom in 2019, allowing SAL licence holders to share spectrum geographically.

Additionally, the Local Access Licence (LAL) framework allows for shared use of mobile spectrum (i.e. 
spectrum that is listed in the Mobile Trading Regulations) in geographical areas where the national licensee (a 
mobile operator) is not using the spectrum and has no immediate plans to use it.

Another ‘sharing’ spectrum utilisation approach can be seen in New Zealand, where the Interim Maori 
Spectrum Commission manage allocated bands as part a government allocation (2022) to Maori for 5G radio.
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19.2.  Dynamic Spectrum Access (DSA)

Spectrum holes, or spectrum opportunities, are frequency bands that are allocated to a particular type of 
spectrum use but are under-utilised by licence holders in some locations and/or at certain times. Spectrum 
utilisation could be improved by identifying the vacant spectrum and allowing other users to make use of it, 
perhaps even for a service that is different from that which is allocated to the band.

In this section, an overview of the developments towards regulation of dynamic spectrum management is 
given. Figure 19.3 illustrates dynamic spectrum access. The user who holds the long-term licence to a 
particular frequency is referred to as the Primary User (PU), while the opportunistic user is called a Secondary 
User (SU). In period 2T, SU1 can choose to occupy any of the vacant spectrum, in this case either Band 2 or 
Band 3. In period 3T, PU2, which is assigned Band 2, begins transmission and SU1 moves to the vacant 
spectrum in Band 3. 

Figure 19.2:  Illustration of geographic spectrum sharing through short-term leasing in specific areas.
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The terms ‘white space’ and ‘grey space’ have been used to classify the occupancy status of spectrum. White 
space refers to spectrum that is not in use at a particular location, while grey space refers to spectrum that is in 
use only some of the time, e.g. by a radio that transmits only when there is payload or control data to be 
conveyed, resulting in the assigned spectrum not being occupied continuously. Spectrum can also be referred 
to as grey space in areas which are ‘blind spots’ for the radio transmitter that has been assigned that frequency. 
While spectrum utilisation can be improved through spectrum sharing as discussed in Section 19.1.5, it can be 
improved even further if radios can access spectrum dynamically to exploit spectrum usage needs in both 
space and time. This can be achieved via a combination of techniques which may involve additional radio 
capabilities such as spectrum awareness and frequency-agile modulation techniques.

19.2.1.  ‘Dynamic vs Static’ and ‘Automated vs Manual’

Experience has shown that the nuances of ‘dynamic’ vs ‘static’ spectrum access and ‘automatic’ vs ‘manual’ 
mechanisms for providing access to spectrum are, in general, not understood in a consistent manner, even 
amongst those directly involved in spectrum policy discussions. With this in mind, it is worth clarifying the 
terminology and concepts in this regard.

Dynamic vs Static

The IEEE Standards Association defines Dynamic Spectrum Access (DSA) as the process of making continu-
ously-changing spectrum assignments to radio access networks within a composite wireless network that is 
operating in a given location and time [205]. The frequency assignments are adapted in near-real-time in 
response to: changes in the environment, such as changes in spectrum availability and types of application; 
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Figure 19.3:  Illustration of Dynamic Spectrum Access between primary and secondary users.
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changes in the radio state, such as its geolocation; and changes in objectives and external constraints, such as 
operational policies for spectrum usage, QoS, and energy conservation. The physical aspects of spectrum utili-
sation that can be adjusted include the frequency range that can be accessed and transmission characteristics 
such as transmission power. Thus, the DSA model enables flexibility in spectrum allocation and licensing, 
since the user and the type of use can be changed dynamically. This contrasts with ‘static’ spectrum allocation 
in which assignments are made on a relatively long-term basis with fixed conditions in force during the term of 
the licence.

Automated vs Manual

Traditionally, access to licensed spectrum is managed on a manual basis: a licence application gets submitted to 
the regulator, who manually reviews it and makes a decision about whether or not to issue a licence. (This does 
not happen for access to licence-exempt spectrum such as Wi-Fi or car key fobs, of course, where the regulator 
stipulates device compliance requirements but does not get directly involved in specific spectrum usage 
decisions.)

If the radio network operating environment, radio states, or policy objectives change slowly enough, then a 
manual approach to licensing may suffice. This has typically been the case for traditional applications such as 
TV broadcasting and public mobile services. However, as the use of pop-up private networks becomes more 
widespread, it is increasingly likely that spectrum access decisions will need to be made more quickly for each 
radio involved in the network, and the use of adaptive, automated spectrum access mechanisms will be 
required. Figure 19.4 illustrates the potential relationship between manual and automated spectrum 
management, and the temporal characteristics of the radio network.

Figure 19.4:  Spectrum access management approach vs temporal characteristics.
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19.2.2.  DSA Regulation

Implementation of spectrum sharing using dynamic spectrum access techniques requires certain conditions to 
be met through spectrum regulation. These can be summarised as:

• The spectrum allocation function is responsible for drawing up regulations to authorise spectrum 
sharing in specified bands and the types of use, with the objective of improving spectrum availability for 
current and future demands. The spectrum allocation function may also outline commercial incentives 
for the spectrum sharing initiative.

• The spectrum licensing function, in consultation with all stakeholders, has the role of determining a 
suitable framework for implementing spectrum sharing. The key component of the framework is the set 
of measures that must be implemented to ensure users share the spectrum effectively, according to the 
spectrum access priorities and rules, and without causing harmful interference to each other. This 
includes specification of the method used to determine the availability of spectrum. The spectrum 
licensing function also provides the rules for implementation of spectrum analysis to determine the 
spectrum holes, such as the sensing threshold requirements in spectrum sensing.

• The spectrum engineering function is responsible for developing the technical specifications required 
for radio hardware to operate effectively within the spectrum sharing framework. Besides the traditional 
specifications for control and data communication functions, DSA requires specification for the 
cognitive functions in all layers of the protocol stack.

19.2.3.  DSA Frameworks

Initiatives towards regulation of spectrum sharing using dynamic spectrum access started in 2008 when the 
FCC voted to approve licence-exempt use of unused spectrum in the Television (TV) band [162]. DSA frame-
works have so far been approved by regulatory bodies in some frequency bands, such as the TV band. New 
DSA models for spectrum sharing in 5G networks have also been proposed in the literature. The following are 
some of the approaches for implementation of dynamic sharing. 

Concurrent Shared Access

In concurrent shared access, also known as commons-use, the spectrum band is open to any user as long as 
they use certified equipment in accordance with prevailing regulations. All users have equal rights to access the 
shared spectrum and are covered by general licence-exemption. This model is already in use in the Industrial, 
Scientific, and Medical (ISM) band which is used for Wi-Fi and Bluetooth applications and car keyfobs, etc. 
Medium Access Control (MAC) protocols that are inherent in the radio system are used to coordinate access to 
the shared medium.
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Tiered Shared Access

Tiered Shared Access is used to implement spectrum sharing among users that are allocated to the same 
spectrum band but have different spectrum access rights. Implementation of tiered access requires a coordi-
nation system to enforce spectrum access priorities, to establish where and when spectrum is available, and to 
determine the technical usage conditions such as transmission power levels, so that the likelihood of inter-
ference is minimised.

When licence-exempt users are allowed to make opportunistic use of licensed spectrum when it is not in use 
by licence holders, a two-tiered spectrum access system can be used in which the licence holder operates in the 
top tier and must be protected from any harmful interference that may be caused by licence-exempt users, 
whereas licence-exempt users operate in the bottom tier and are not guaranteed any interference protection 
from the licence holder or from other licence-exempt users.

A three-tier access system can also be implemented as follows: licence-holders operate in the top tier and must 
be protected at a given location and time; users that acquire a short-term licence for priority and exclusive 
access in a given location and time operate in the middle tier and are protected from other priority users and 
licence-exempt users. Licence-exempt users operate on the bottom tier and are not guaranteed any inter-
ference protection. (For note, CBRS operates on such a three-tier model.)

Dynamic Licensed Shared Access

In traditional Licensed Shared Access (LSA), a licence-holder is given exclusive rights for a geographical area, 
which is considered as an exclusion zone in which the licensee is protected, usually in the form of a circular 
area defined by its radius as measured from the geolocation of the base station [154]. However, for light users, 
the spectrum could be wasted during periods of time when the spectrum is unused. Spectrum utilisation can 
be improved if spectrum is shared temporally through DSA methods. This is illustrated in Figure 19.5, which 
shows temporal sharing of Band 1 by four users in Area A.  

In this regard, proposals have been made for architecture for LSA-type spectrum sharing that is based on DSA, 
and targeted for 5G mobile networks [269],[287]. Spectrum auctioning and licensing can be implemented 
using an automated Real-Time Secondary Spectrum Market (RTSSM) [112]. The users' radio equipment 
would communicate directly with the RTSSM system to request spectrum access, and the RTSSM system 
would grant spectrum access rights to the radio equipment. 
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19.3.  DSA Frameworks in Practice

‘Fully dynamic’ spectrum access is where spectrum usage is shaped to permit fully flexible access: shared both 
intelligently and automatically. A number of DSA frameworks have already been defined and implemented in 
various parts of the world. In this section, we review the two foremost examples: TV White Space, and the 
Citizens Broadband Radio Service (CBRS).

19.3.1.  TV White Space

Traditional access to TV services is via terrestrial broadcast, in which TV signals are transmitted from a 
national network of high-power TV transmitters distributed across the entire country. This results in large 
bands of fixed (static) licensed spectrum being reserved for television broadcasting. The transition to Digital 
TV resulted in more spectrally efficient TV broadcasts, revealing considerable portions of unused TV 

Figure 19.5:  Illustration of Dynamic Licensed Shared Access.
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spectrum in different locations. These large chunks of unused TV spectrum (so-called 'White Space' 
spectrum) can be used by other applications in those geographical areas. In 2010, the FCC proposed the use of 
dynamic access to TV White Spaces (TVWS) through automated frequency coordination using a centralised 
database. This allows for the operation of localised, licence-exempt networks — on the condition that they do 
not interfere with licensed TV transmissions in the same spectrum band [145].

One of the main attractions of TV White Space is that it has a longer wavelength than other commonly used 
spectrum (such as Wi-Fi at 5 GHz); this means that TVWS signals can travel further, and can better penetrate 
trees, buildings, and other obstacles, and can diffract better around/over objects such as hills. For example, a 
200MHz TVWS signal used for Wi-Fi can cover an area over five times larger than that of a 5 GHz Wi-Fi 
signal, while having improved resilience to obstacles. In many circumstances, using TVWS can replace the 
need for additional cabling or infrastructure. As well as reducing the cost of deploying connectivity to rural 
areas and remote IoT networks, another potential benefit is faster deployment [145].

Implementation

Figure 19.6 shows a high-level overview of a typical TVWS system. In most, if not all, TVWS implementations, 
fixed 'basestation' devices register with a geolocation spectrum database, which provides the GPS location 
along with other relevant information. Once registered and authenticated, they submit regular spectrum avail-
ability requests to the database, which uses various pieces of information to perform calculations and provide a 
list of currently available channels to the TVWS device. Using these available channels, the TVWS 'basestation' 
device can set up its own wireless network with a number of 'user' devices connected to it. 

The frequency of spectrum availability requests depends on the implementation and regulations in the area. In 
the UK, TVWS devices must poll the database every 15 minutes, while in the USA the interval can be as long 
as every 24 hours [163]. 

19.3.2.  Citizens Broadcast Radio Service (CBRS)

In 2015, the FCC took some key concepts associated with TV White Space and applied them to establish the 
Citizens Broadband Radio Service (CBRS) band. This is an example of a tiered shared access DSA framework. 
It makes use of the 3.5 to 3.7 GHz band, which was previously completely reserved for military use across the 
entire country, despite being used predominantly in coastal areas. CBRS allows tiered access to this spectrum 
as long as there is no interference to higher priority users, the highest priority still being reserved for the US 
Military [145].

Neutral Hosts Capability

Another advantage of CBRS is that it allows for ‘Neutral Hosts’. These are single LTE deployments that can 
serve subscribers from different operators, letting mobile network operators share certain infrastructure and 
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spectrum to improve user experience and coverage. This is particularly useful for places where many people 
who subscribe to different network operators are gathered, such as airports and public stadiums.

The ability to provide the same QoS, regardless of which MNO provides a particular customer's broadband, 
could be an attractive selling point for public events [174]. From the perspective of an MNO, instead of each 
MNO having to manage its own individual network infrastructure to provide service, several MNOs can 
leverage a single antenna and single access point (basestation) to provide mobile service to their subscribers. 
This has multiple benefits, such as reducing infrastructure costs, and offloading some of the indoor traffic 
from their own traditional infrastructure onto some of the newly introduced CBRS infrastructure [272].

Implementation

CBRS has a three-tier, priority-based system which allows lower tier users to access spectrum in a particular 
location where higher priority users are not using it. Highest priority (Tier 1) users are the incumbent users — 

Figure 19.6:  High level overview of TVWS networks.
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those such as the military who have existing licences to use these frequencies. Tier 2 is for Priority Access 
License (PAL), which gives users a higher priority service for a relatively small price. Tier 3 is for General 
Authorized Access (GAA), which is the default and represents free-to-use public access to the CBRS band 
[349].

The tiered nature of the CBRS framework means that its implementation becomes relatively complex, as there 
is a need to ensure that higher-priority users experience little to no interference or disruption in their services 
due to lower priority users. This is made difficult as each potential user has information only about the inter-
ference they can potentially cause to other users, and not necessarily about the interference other individual 
users can cause. If a higher priority user is experiencing relatively small amounts of interference from multiple 
parties, this can add up to produce unacceptable levels. Therefore, as in TV White Space — a centralised 
system is required, with the additional computational requirement to calculate and manage the level of inter-
ference that is experienced by each user. A centralised system can manage how each user is allowed to transmit 
(e.g. at which frequencies in the spectrum, and how powerful their signal is allowed to be) in order to 
maximise efficient use of the band and the QoS provided for each priority of user.

Previously, this kind of system would have been complex and costly to implement, but with the advent of 
services such as cloud computing — which is scalable and provides immense information management 
capability — we can rely on such services to provide sufficient computational power to manage spectrum in 
this way. The cloud computing service that manages the CBRS band is known as the 'Spectrum Access System' 
(SAS). All users give information to the SAS, which then ensures that the interference experienced by higher 
priority users is minimal, and access to the spectrum is shared efficiently and effectively [117].

Spectrum Sensing in CBRS

Another key component of CBRS is Environmental Sensing Capability (ESC), which is depicted in Figure 19.7. 
This feature uses spectrum sensing to ensure that if any incumbent (Tier 1) users or PAL (Tier 2) users are 
detected, then the SAS can be alerted to clear those channels and protect higher priority users. In practice, ESC 
tends to be deployed around the coast to account for the possible usage of navy radar systems under the 
incumbent license priority [145]. 

Effective spectrum sensing entails capturing and monitoring the entire CBRS band, and measuring the power 
of different signals in the band accurately. Currently, due to the bandwidth occupied by the CBRS band, this is 
done by inspecting slices of spectrum, one at a time, and combining the data. However, recent technological 
advancements have enabled the direct digital sampling of much larger signal bandwidths. A prime example of 
this is the RFSoC spectrum analyser application presented in Notebook Set C. This application shows that 
RFSoC Devices can be used to directly inspect the radio spectrum up to 6 GHz (i.e. with no external analogue 
demodulation stage), which is well suited to CBRS applications [329]. 
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19.4.  Deployment of Fully Dynamic Spectrum Access

Fully dynamic DSA requires flexibility of radio resource usage and coexistence management, which is 
supported by intelligent and adaptive wireless transceivers. A Cognitive Radio (CR) is a wireless communi-
cation system that is aware of its ambient environment, is able to learn from the environment and to adapt its 
operation parameters according to changes in the environment, operating conditions, or user requirements, in 
order to improve utilisation of spectrum and to achieve reliable and efficient wireless communication [199]. 
Spectrum agility, that is, the ability to transition quickly from one operating frequency to another, is a key 
component in implementing cognitive radio architectures. This is achieved through SDR — wireless commu-
nication systems in which the transmission parameters can be controlled and reconfigured dynamically 
through software-controlled signal processing algorithms.
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Figure 19.7:  High level overview of CBRS.
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It is clear from the definitions of DSA and CR that the effective design of dynamic access methods for cognitive 
radio networks requires technical knowledge and skills spanning science, engineering and economics. It also 
requires mathematical optimisation to implement efficient radio resource allocation, machine learning and 
Artificial Intelligence (AI) to implement cognitive capabilities, and economies of scale to control spectrum 
costs and/or revenue.

In this section, we will review methods of operating DSA techniques with reference to SDR technology, and 
specifically the capabilities of the RFSoC. Spectrum sensing for shared spectrum is introduced, and CR 
techniques for more efficient spectrum management are discussed. The concepts of Machine Learning (ML) 
and intelligent radio are outlined as enablers for the next stage of CR evolution.

19.4.1.  Software Defined Radio for Dynamic Spectrum Access

DSA, discussed in Section 19.2, can improve the overall spectrum utilisation of a wireless communication 
network. DSA techniques include smart wireless spectrum access techniques where multiple users can share 
the same portion of the spectrum with minimal interference. To facilitate fully dynamic spectrum access, radio 
transceivers must evolve to scan a spectrum and make decisions based on these observations.

Traditional radio communication systems typically comprise hardware components, such as mixers, filters, 
amplifiers, etc., which are configured to perform a specific task without the flexibility to change their operation 
or to make decisions. SDR devices, however, implement and/or control core aspects of a radio communication 
system using software running on an embedded processor, or an externally-connected processing device 
(recall the discussion of SDR architectures from Chapter 8). This coupling of a processor to a radio communi-
cation system allows for an SDR device to make dynamic decisions, given the observation of signals received 
via the antenna(s). Therefore SDRs are a great fit for DSA applications. 

RFSoC Capabilities

The RFSoC device is well-suited for SDR implementations, including those for DSA-based applications. The 
RF front end supports the entire 5G sub-6GHz band, and its multi-GHz ADCs facilitate wideband spectrum 
sensing (for instance, the entire TVWS and CBRS bands can be simultaneously digitised). 

As reviewed in Chapter 3, the RFSoC's onboard features include a processing system equipped with a quad-
core Arm Cortex processor and DDR memory, FPGA programmable logic, and multiple channels of RF data 
converters (ADCs and DACs, with associated DDCs and DUCs, respectively). Of particular note to spectrum 
sensing, up to 16 channels of ADCs are available, and likewise up to 16 DACs. The PS provides plenty of 
resources for implementing software control of the radio, including decision-making algorithms for DSA. 
There is also scope to hardware-accelerate algorithms that work with radio data close to the DACs and ADCs, 
by leveraging the PL. The tight coupling between the PL and PS enables flexible radio operation, with low 
latency spectrum sensing and decision making, while maintaining high data throughput characteristics.
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The RFSoC platform provides the necessary resources for implementing DSA applications, particularly as 
flexible software can be developed that benefits from hardware acceleration assistance from the PL. The ADCs 
that interface directly into the PL enable broad sensing of the frequency spectrum, while mixing frequency and 
decimation factor can be programmatically changed — this enables spectrum sensing even in very dynamic 
scenarios where frequency bands over a broad range of frequencies must be monitored. The extensive 
resources on the chip can also allow for the development of CR systems where the radio device takes decisions 
to maximise the throughput on the channel. In a DSA scenario, CR techniques could be used to allocate 
channels based on a selection of performance metrics rather than following a rigid set of rules.

19.4.2.  Cognitive Radio

Traditional radio communications systems transmit and receive data on allocated channels of the spectrum in 
order to minimise collisions with one another and to ensure consistent transmissions. With the number of 
connected devices growing exponentially, and the RF spectrum being increasingly allocated, the spectrum 
resources available to support more devices are quickly diminishing [271],[284],[362]. Some spectrum users 
are faced with expensive licence fees even though they want to transmit only intermittently. However, studies 
have shown that allocated spectrum is not consistently occupied by primary user transmissions, and that 
actually some portions of the spectrum are extremely under-used [349]. For radio devices to exploit vacant 
spectrum opportunities, they must evolve to dynamically change their transmission parameters based on 
knowledge of other devices that are transmitting around them.

CR techniques can enable radios to manage access to spectrum in a dynamic manner, with the aim of 
improving the overall quality of transmissions within a communications network. A CR has the ability to sense 
the spectrum and identify possible ways to optimise its own transmissions via various metrics, discussed in the 
following sections. CR and DSA techniques can be integrated into wireless communications networks to 
improve the overall spectrum performance of the network, as well as maximise bandwidth utilisation. These 
can be ideal tools for SU radios — which do not have priority access to the spectrum but aim to transmit 
around idle PU radios.

The Cognitive Cycle

The cognitive cycle, illustrated in Figure 19.8, refers to the tasks performed by CRs [271],[367]. It consists of 
several stages, which include: 

• Spectrum Sensing — The CR scans the available spectrum and captures usage and vacancies.

• Spectrum Decision — The CR chooses the best vacant channel for the SU's communication given prior 
analysis.

• Spectrum Mobility — The CR detects a change in the channel conditions. Either the quality of the 
channel has degraded, or the PU has appeared, and the CR must change its channel of operation to a 
different vacant portion of the spectrum.
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• Spectrum Sharing — The CR coordinates with other CR user’s transmissions to avoid collisions when 
accessing the same portion of vacant spectrum.

The radio makes decisions, typically through finite state machine or ML-based techniques, based on infor-
mation obtained during both the sensing and mobility stages of the cycle. 

Spectrum Sensing Techniques

The spectrum sensing task aims to identify the PUs and other SUs of the spectrum while also seeking out 
unused portions of spectrum. There are several ways to sense signals in the spectrum. These include:

• Energy detection

• Matched filter detection

• Cyclostationary detection

• Covariance based detection

Figure 19.8:  The cognitive cycle.
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Energy detection is the most basic form of signal detection, and it simply compares the magnitude of received 
samples, when scanning, to a prior known noise floor. If the sample magnitudes are above the threshold, then 
a signal is assumed to be present; otherwise, it is assumed that no signal is present [368]. This method of 
detection assumes that the CR has knowledge of the noise level prior to sensing; however, even with a prior 
estimate, the actual noise level may vary due to other channel factors, and this could cause misdiagnosis of the 
spectrum and could lead to interference occurring.

Matched filter detection is an alternative technique that can be more robust. This method of detection requires 
prior information about the transmitted signal, such as pilot sequences, modulation schemes, spreading codes, 
preambles and packet formats. Such knowledge is required because the matched filter technique correlates one 
or more of these known patterns with the observed signal to detect the presence of the PU transmissions. For 
example, an SU radio could aim to transmit on a channel that is known to be allocated to a 5G NR signal, and 
uses the matched filter detection technique to correlate known synchronisation signals with the observed 
signal while searching [5]. If the matched filter detects a correlation, the 5G NR signal is assumed to be 
present; otherwise, it is assumed to be absent. This technique does not require knowledge of the noise floor 
and can be a faster and more robust way to detect signals than energy detection [271].

Cyclostationary detection is another option, and this technique exploits the periodic nature of many trans-
mitted signals. Wireless communications signals are loaded with repeating codes, sinusoidal signals, cyclic 
prefixes, and hopping sequences, giving them cyclostationary characteristics, i.e. some of their statistical 
properties exhibit periodicity. Cyclostationary detectors are able to identify communications signals by 
measuring these periodic statistics and comparing them to thresholds.

Finally, covariance-based detection was introduced to overcome the dependency on prior knowledge of the 
noise level or signal parameters [368]. This method takes advantage of the statistical covariances between 
signals and noise, which are usually different. Through manipulation of covariance matrices, this method can 
compare the statistical differences between noise (assuming no signal presence) and signals to determine 
whether a PU is occupying the channel space.

The detection techniques described here represent a few of the more popular ways to detect PU activity on a 
channel. They range from simple implementations (energy detection) to more complex deployments (matched 
filter and covariance-based detection) where an SDR capable of performing complex algorithms can be used. 
Furthermore, these detection techniques will require their parameters to be altered depending on what type of 
signal is being detected (synchronisation patterns, pilot symbols, etc.), and therefore a reprogrammable archi-
tecture is required for processing these algorithms. 

Exploiting Vacancies in All Dimensions

PU vacancies in the spectrum can occur within frequency channels, but can also occur in the form of temporal 
and spatial gaps. Towards achieving optimal spectral usage in the future, SU radios can find ways to use an 
already occupied channel but exploit the empty space in time and spatial separation. The detection algorithms 
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mentioned in the previous section can be taken a step further and used in conjunction with estimation models 
to predict gaps in temporal signals — the CR can then transmit with a good level of confidence that the PU will 
not also transmit at the same time [350]. SU radios could also learn to exploit the spatial separation between 
the PU and SU, and transmit at power levels that are low enough to avoid causing interference to PU activity 
[138],[355].

Common Cognitive Radio Problems

In a wireless communications network, the PU radio is usually part of a separate system, and therefore will 
probably not be cooperating with SU radios. A possible problem is that, when a PU is transmitting, the SU CR 
may not correctly sense the presence of a PU transmitter, for instance if it is outside the SU detection range. 
This could result in an SU transmission that interferes with PU network activity. The problem is known as the 
‘hidden node problem’ and it can become an issue for SU radios if they repeatedly interfere with PU radios. 

Many factors can contribute to the hidden node problem, including extreme multipath fading, and shadowing 
from nearby structures [149],[271],[299]. Possible solutions include cooperative spectrum sensing, where two 
SU radios share the same channel and cooperatively sense the PU activity and relay the information to each 
other [171]. This cooperation can scale to more devices while increasing the robustness of PU transmission 
sensing. Similarly, the hidden node problem extends to networks with extremely unstable channel conditions 
where transmitted signals may fade faster than expected at unpredictable times, resulting in the SU mis-
sensing the PU. Again, cooperative sensing can assist in mitigating this issue.

The flexibility of CR is promising for achieving improved spectral utilisation via DSA; however, this flexibility 
is not possible with traditional hardware-based radios. For a radio to sense, analyse, and change its own 
parameters dynamically, a more adjustable radio architecture must be used. SDRs are an excellent resource for 
implementing CR because of their reconfigurable architectures: parameters such as operating frequency, 
modulation scheme, number of antennas used, bandwidth, and transmit power are among the many param-
eters that can be dynamically adjusted on SDRs.

19.4.3.  Intelligent Radio

CR is a promising paradigm for SUs spectrum access. Using CR techniques, SU terminals can access spectrum 
without the need for a licence, and share vacant spectrum with the PUs through sensing transmitter activity 
and transmitting opportunistically. DSA using CR does have pitfalls, however; the possibility of mis-detection 
in the spectrum can result in interference and disruption of service for both PU and SU radios. As the number 
of devices using the radio spectrum grows, the likelihood of collisions and interference also increases, and it 
becomes more difficult to successfully detect vacant spectrum. Smarter solutions for CR must be adopted and 
basic sensing techniques, such as energy detection, may not suffice. CR can integrate Artificial Intelligence 
(AI) into its sensing and decision making to address these more complex scenarios [239].
647

Downloaded from www.RFSoCbook.com



CHAPTER 19: Dynamic Spectrum Access and Cognitive Radio
Introducing Artificial Intelligence to Cognitive Radio

AI is the study of building machines capable of performing tasks that typically require human intelligence. 
This can entail building machines to perform tasks that were typically designed by humans; it can also be taken 
even further, to state that AI machines can perform tasks that humans are unable to design for.

The terms Artificial Intelligence, Machine Learning, and Deep Learning (DL) can at times seem confusing, 
especially as they may even be used interchangeably. To clarify what we mean when using each of these terms, 
it can be useful to think of them as encompassing one another, as illustrated in Figure 19.9. Artificial Intelli-
gence (AI) is the term given to the science of developing and deploying intelligent systems. Machine Learning 
(ML) is a subset of AI, and involves the design and training of mathematical algorithms to learn how to make 
decisions based on data features, observations, and experiences provided to a model during training. Deep 
Learning (DL) is a subset of ML wherein the mathematical models used to train the ML model receive raw, 
unprocessed data which gets passed into a DL model to learn decision-making tasks alongside feature 
extraction techniques. 

DL techniques typically seen in research areas such as image processing and natural language processing have 
made their way into the wireless communications field, and have been demonstrated as capable of solving 
problems that were otherwise difficult to design for. DL differs compared to ML, which uses more classical 
statistical techniques such as Bayesian ML and statistical algorithms, and has removed the need to pre-process 
the input data and pass features into the AI model. Instead, DL allows for the AI model to learn how to extract 
features from raw data, leading to smarter and more efficient feature extraction methods. This approach to 
learning has greatly assisted in the research areas of image processing and natural language processing, where 
features within an image or a word may not be immediately obvious, and it now provides benefits in wireless 
communications as DL algorithms can act directly upon the received data. 

Artificial Intelligence

Machine Learning

Deep Learning

Figure 19.9:  AI/ML/DL distinction.
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The benefits of DL for CR can be seen in many areas of PHY layer wireless communications, ranging from 
channel estimation and signal detection, to a whole PHY layer radio stack built from a Neural Network (NN) 
[139]. Additionally, the field of wireless communications has an abundance of accurate simulation and gener-
ation tools that make it possible to produce an infinite amount of labelled data for use in DL. With this benefit, 
DL models for wireless communications can be trained more easily, without the laborious effort normally 
involved in building datasets (such as labelling the content of photographs in image processing applications).

Basic Deep Learning Architectures

The forthcoming review of DL in CR requires that the reader has a basic understanding of common DL archi-
tectures, and therefore as a precursor, this section introduces the building blocks of NNs and their layers, and 
outlines how models can be trained to operate on cognitive tasks.

The Neuron is a fundamental building block of all Deep Neural Network (DNN) architectures. The artificial 
'neuron' originated from the biological concept of human neurons within the brain. An artificial neuron is a 
mathematical construct that sums all connected weighted inputs, before passing them to the output via a non-
linear activation function. Connecting a network of neurons together is known as an Artificial Neural Network 
(ANN), where every neuron has its own connected weighted inputs and activation function. 

Figure 19.10 illustrates an artificial neuron. Its output can be expressed as

(19.1)

where  is the total number of weights,  represents the nth input, and  represents the nth weight. The 
terms used in this equation are further defined and described next. 
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Figure 19.10:  An artificial neuron.

b

w
0

x
0

x
1

x
n

yw
1

w
n

649

Downloaded from www.RFSoCbook.com



CHAPTER 19: Dynamic Spectrum Access and Cognitive Radio
The Bias (b) is an addition made alongside the summed weighted inputs to provide a means of shifting the 
decision boundary of a neuron.

An Activation Function (f) is the non-linear function applied at the output of each neuron in an NN. They are 
essential in assisting DNNs in learning non-linear data structures during training. Figure 19.11 shows the 
formulae and resulting plots for the most common activation functions.  

Multi-layer Perceptron (MLP) is a term that can loosely mean any feed-forward ANN that consists of multiple 
layers of connected neurons. MLPs, historically, were some of the first NN structures, and gave way to other 
architectures such as Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).

Convolutional Neural Networks (CNN) are structured similarly to MLPs, but some layers in the network are 
replaced with convolutional layers. These types of networks are primarily used within image and video 
processing, due to their ability to pass a kernel of weights across an input image/frame. Kernels in convolu-
tional layers can find local correlations between input samples without the need to weight every sample to each 
neuron. This not only allows for larger inputs without exponentially increasing the number of weighted 
connections, but also focuses learning on identifying features in locally placed samples. Convolutional layers 
only store the weights required for the kernels, which are independent of the number of input samples.

For a given input sample in the convolutional layer at location , the kernel  of dimensions  corre-
lates each kernel weight with the samples that the kernel overlaps, and forms a sum. Finally, the bias, , is 
added to the result. The following formula is an example of a two-dimensional cross-correlation and is 
repeated over the entire input, . 

Figure 19.11:  Plots of common activation functions.
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(19.2)

This is how most DL libraries implement 2D convolutional layers [182]. 

Figure 19.12 illustrates how a CNN operates for a given input image. The first convolutional layer passes its 
kernels over the input image and calculates the output for each kernel in the convolutional layer. This output is 
then passed to the second layer, where the same operation occurs with its respective kernels. The output from 
the second convolutional layer is flattened and passed through the first and second fully-connected layers to 
obtain an output classification.  

For extended coverage of DL concepts, the reader may be interested to follow up with a popular textbook such 
as [182]. There are also DL-focused chapters in our previous book on Zynq UltraScale+ MPSoC, which are 
directly relevant to RFSoC implementations [131].

Deep Learning in Cognitive Radio: Intelligent Radio

DL is a tool that has been shown to perform well in the areas of image and video processing due to its ability to 
self-learn decisions and feature extraction methods purely on the labelled data that it receives. For DSA, DL 
could further enhance CR operations to improve tasks such as identifying spectrum vacancies, learning the 
transmit patterns of PU radios, correcting channel degradation affecting received signals, and implementing 
smarter decoding algorithms. DL provides a powerful means for radios to make smart decisions and adapt to 
complex transmission scenarios.

Yi j Xi m+ j n+  Km n  b+

n 0=

N 1–


m 0=

M 1–

=

Input Image Convolutional Layer
5x5 Kernel

Convolutional Layer
3x3 Kernel

Flatten

Fully-Connected
Layer

Figure 19.12:  Depiction of a CNN operation on an input image.
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Signal Detection with Deep Learning

The purpose of signal detection and classification is to accurately maintain an understanding of the current 
spectrum environment. This involves: detecting other users of the spectrum, isolating sources of interference, 
learning PU radios' transmission patterns, and identifying spectral vacancies around PU activity. Signal 
detectors can loosely fall into two categories of detector:

• General Method of Detection — This does not require prior information about the signal being 
detected; an example is energy detection (previously mentioned in Section 19.4.2). However, these 
detectors have poor Constant False Alarm Rate (CFAR) performances and do not provide information 
about the signal type that is present [149],[362].

• Specialised Method of Detection — These are detectors for specific signal types. Examples of 
specialised methods of detection include matched filters, cyclostationary detectors, and machine 
learning models. These detectors provide insight into the signal type being detected; however, they are 
not very scalable as the detector would require updating for any new signal types that are introduced 
[149].

A task of DSA is to reliably detect signals while also identifying the signal type, which would enable practical 
and reliable transmission decisions to be made (bearing in mind that an SU cognitive radio has to avoid inter-
fering with any priority user of the spectrum). If this problem were to be approached from a non-ML 
perspective, the statistical properties of each signal would need to be analysed to build a reliable detector, 
which could make deploying such a detector laborious and difficult. 

A new class of ML-based radio waveform detectors that leverages the power of NNs has the potential to 
improve signal detection and classification performance. The ability of CR to identify and differentiate 
between radio broadcasts, mobile phone carriers, and other sources of potential radio interference is a 
powerful tool for approaching the spectrum access problem, where each transmission has different behaviours 
and requirements. Modulation recognition is a step towards understanding what transmission sources exist in 
the vicinity, by recognising and classifying the modulation type of each radio signal. This can be approached as 
an -class decision problem where an input of complex-valued time samples is input to the ML model, and a 
classification vector of size  is generated, indicating which modulation scheme was detected. Figure 
19.13 illustrates the modulation classification setup for CRs. 

Digital modulation is a method of applying discrete modulation levels onto an carrier signal, such that digital 
data is conveyed. A variety of different digital modulation schemes are available, including phase modulation 
(BPSK, QPSK, 8-PSK etc.), and quadrature amplitude modulation (e.g. 16-QAM, 64-QAM, etc.), as was previ-
ously reviewed in Chapter 6. If a cognitive radio can classify and understand the modulation scheme that a 
transmitter in the vicinity is using, it can better understand what kind of transmission the source is emitting 
[149],[362].

N
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In Figure 19.13, a DL model trained to classify  modulation schemes has been implemented as part of a CR. 
The radio receives signals from the air through the antenna and converts them into the digital domain through 
an ADC. The digitised signal is then mixed with an oscillator to bring it down to baseband, before the signal of 
interest is decimated (low-pass filtered and down-sampled). The resulting samples are then passed into the 
trained CNN, where the model deduces the modulation scheme that has been used. This information can then 
be used further to improve understanding of spectrum usage in the vicinity of the radio. Combining 
modulation classification with other spectrum sensing tasks provides a detailed outlook of the spectrum usage 
in the area, and this can further help in making optimal transmission decisions.

We will return to the topic of modulation classification again a little later, in Section 19.5.1.

Primary User Activity Monitoring with Deep Learning

A further example of intelligent radio for DSA is in the case of PU radio monitoring and prediction. Tradi-
tionally, feature-based detection techniques such as cyclostationary detection and matched filtering, although 
accurate and reliable methods for detecting PU signals, require prior knowledge of the PU transmission 
characteristics for the method to work properly. In a real spectrum sensing scenario, it is not practical to know 
the characteristics of all possible PUs, and therefore such traditional methods would require careful implemen-
tation for very specific monitoring scenarios. For a vision of fully autonomous DSA, CRs would have to evolve 
to intuitively detect PU activity without prior knowledge of their transmission characteristics. Intelligent radio 
advancements using DL can provide a tool towards implementing fully autonomous DSA [362].

The task of sensing a signal without prior knowledge of its characteristics is known as 'blind sensing', and a 
DL-based system can be trained to perform well in these types of scenario. The self-learning of feature 
extraction methods that DL is capable of would otherwise be difficult to implement if designed by a human.
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Figure 19.13:  Modulation recognition DL block diagram.
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In the following example, a DL model is used for spectrum sensing, and specifically the task of detecting the 
presence or absence of a PU transmission. Spectrum sensing can be simplified to a classification problem with 
two classes: the PU is active, or the PU is inactive. This can be modelled as a binary hypothesis problem for a 
set of  samples during a detection period, , where  is the set of all samples recorded during the detection 
period, i.e. 

. (19.3)

The decision  by the DL model states that the PU is not transmitting during observation period , while 
 states that the PU is transmitting:

(19.4)

Figures 19.14 and 19.15 show the DL model in two modes of operation: Figure 19.14 represents the training 
mode, where the NN processes off-line training samples and compares its result y with label Z; Figure 19.15
shows the trained NN deployed at the output of an ADC and decimation chain, predicting the PU activity 
through analysis of real-world samples received by the antenna.   

For the DL model to successfully detect the PU with no prior knowledge of the signal characteristics, it must 
first be trained to do so. The DL model in this example is therefore trained with synthetic data off-line before it 
is deployed in a real-life scenario. As mentioned previously, functions that exist in wireless communications 
software development tools can be used to generate data for training the DL models and to provide the 
associated label for each sample. Additionally, these tools can also mimic interference and degradation effects 
introduced by the radio channel, which can include: multipath fading, Doppler effects, frequency offset, phase 
noise, AWGN, and channel attenuation. Training the DL model with these impairments can teach it to detect 
not only a PU transmission in an ideal environment, but also where there are channel impairments, while 
avoiding mis-classification.

In the example shown in Figure 19.14, the DL model contains three distinct parts: convolutions, BiLSTM and 
Self Attention, and Dense layers. 

The convolutions portion of the model allows it to learn feature extraction techniques through localised kernels 
that pass over the input data to extract local features. These features are then concatenated with the input to 
compensate for some of the features lost during transmission. Convolutional layers are good at finding features 
in a local ‘instantaneous’ set of data, but lack the ability to detect temporal features that extend over long time 
periods. Long Short Term Memory (LSTM) refers to layers that can effectively identify hidden connections 
among a sequence of features captured by the convolutional layers. Typically, LSTM layers can only analyse 
features in one direction, from current to past samples, so instead the example DL model uses a BiLSTM layer
that analyses connections between features that extend both forward and backward in time. 
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Figure 19.14:  Block diagram representation of PU monitoring DL in training mode.

ADC

NCO

Decimation Buffer

Radio Receiver System

C
o
n
v
o
lu

ti
o
n
s

C
o
n
v
o
lu

ti
o
n
s

C
o
n
c
a
te

n
a
ti
o
n

B
iL

S
T

M

S
e
lf
 A

tt
e
n
ti
o
n

D
e
n
s
e
 L

a
y
e
rs

Deep Learning Model

Decision: 
H0
H1

Figure 19.15:  Block diagram representation of PU monitoring DL in deployed mode.
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The Self Attention (SA) layer allows the inputs to interact with each other (‘self’) and work out what other 
samples they should be more associated with (‘attention’). The output of the layer is the aggregation of these 
attention scores. 

The dense layers (also known as fully-connected layers) form the classification stages of the model. The dropout 
layers help the network avoid overfitting during training and the softmax layers convert the output classes into 
a propability distribution. The dense, dropout, and softmax layers use the local, temporal, and dependant 
deatures from the previous layer to calculate the likelihood of the PU being present or absent.

Deploying Deep Learning on SDRs

While computer-created DL models are proving successful in spectrum sensing applications, actually running 
them on an SDR and deploying them in a real-life scenario can be challenging. DNNs require parallelised 
computational resources, typically trained using GPUs due to their vector processing capabilities, and devices 
that are able to pass a great number of samples quickly between layers. 

An RFSoC-based SDR can implement receiver PHY layer processing such as filtering on the PL, in parallel 
form. Where DL models are deployed for wireless communications applications, and they complement 
existing SDR functions, the DL models should be implemented on the same logic fabric. This ensures that 
bottlenecks due to data transfers (for instance, passing samples to / from a separate device) can be avoided, 
thus optimising throughput and latency.

The RFSoC contains ample PL resources for the implementation of DL models alongside other CR functions. 
To support such designs, AMD provides the Vitis AI development environment, a development platform for 
AI inference on AMD hardware devices [66]. The platform consists of optimised IP, libraries, models, and 
example designs. Vitis can convert existing DL models made with various deep learning frameworks such as 
PyTorch, Tensorflow, and Caffe into Quantised Neural Networks (QNNs) that are deployable on hardware 
through architectures like the Deep Learning Processor Unit (DPU) [26]. Vitis also assists with identifying 
bottlenecks in the implemented design to help with optimising the DL model inference speed [27].

Another notable project supported and maintained by AMD is the FINN framework [110],[347]. This experi-
mental framework explores DNN inference on FPGAs by designing and deploying QNNs. Furthermore, it has 
an emphasis on generating dataflow-like architectures. The framework is not intended to generate generic 
DNN models, but rather highly optimised architectures for specific networks. For wireless communication, 
streams of samples are already processed and filtered in a dataflow manner (i.e. where samples flow sequen-
tially through a series of processing stages); therefore FINN can complement such architectures by also 
deploying the NN in a dataflow style. FINN translates NNs built using a PyTorch library, ‘Brevitas’, that has 
additional functions for quantisation-aware training.
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19.5.  Advancing DSA Networks

The architecture of DSA networks can be made more intelligent by enabling the network to learn from itself. 
This has been termed by some as Intelligent Networks. Intelligent networks can be referred to as a group of 
intelligent radios or cognitive radios capable of learning from their environment, and an intelligent network 
can be established using cooperative or distributive learning. In the former, there is a central control system 
that coordinates learning, while in the latter, individual smart radios learn and decide on network properties 
independently. A network can combine both methods to improve its overall performance. 

Intelligent networks have become important as the demand for wireless communication such as the internet of 
things, wireless devices, and services are on the increase. Therefore, the learning ability of a network can be 
used to optimise spectral resources, predict network behaviour, and optimise the use of resources [365]. Key 
DSA network coordination functions that have been improved by learning algorithms are channel allocation 
and prediction, spectrum sensing and predictions, device clustering, adaptive routing, and resource 
management. Improvements range from more efficient spectral utilisation, effective detection of spectrum 
availability, forecasting of network behaviour, and the selection of optimal network parameters. A major 
benefit of learning algorithms in DSA networks is the level of flexibility and adaptability it gives to the network 
such as mobile user equipment, heterogeneous networks, and dense networks. Therefore, simulated and 
implemented intelligent DSA networks are explored in this section. 

In most of these cases, the centralised architecture of the DSA network is replaced with the individual learning 
of nodes or access points in making resource-sharing decisions. A decentralised system therefore needs a very 
good view of the network environment through sensing and a means of sharing decisions made by nodes in 
the network. A close example is the environment sensing module in a CBRS network. Both centralised and 
decentralised architectures are shown in Figure 19.16.  

Figure 19.16:  Centralised network management (left) and decentralised network management with ML (right).
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Nodes or cognitive radios, therefore, need excellent sensing abilities in detecting the presence of incumbent or 
SU signals and provide the Spectrum Access System (SAS) with real-time information on spectral usage. 
Suggested improvement and learning have been to use a semi-centralised system like the CBRS or a fully 
decentralised system where each cognitive radio autonomously makes spectral occupancy decisions without 
consulting a centralised network or controller. 

Each type of network architecture has its own challenge: decentralised systems suffer from hidden node issues, 
while centralised systems have considerable packet overheads for network control. DSA's future of better 
network resource management is such that the information generated from different base stations and nodes 
in real-time is used for resource allocation and network assessment and to inform the adaptable reconfigu-
ration of the network. 

19.5.1.  Supervised, Unsupervised and Reinforcement Learning

Machine Learning refers to the use of algorithms to make sense of, or extract knowledge from, data. It provides 
outstanding results in the prediction of future events based on learned patterns. Adopting Samuel's idea of 
machine learning, 'it is the field of study that gives computers the ability to learn without explicit 
programming' [309]. Thus, a machine or device or an algorithm can learn from a set of data fed to it. It extracts 
sequences, trends, or patterns from this information and can make better decisions by correctly predicting 
future occurrences of such patterns. 

ML has been successfully explored extensively in facial recognition, text completion, image classification, 
gaming, and robotics. Each of these broad applications makes use of different kinds of learning algorithms to 
achieve their aims. Some make use of multiple learning structures; it may therefore prove difficult to categorise 
all machine learning algorithms into classes. However, generally, they have been categorised into three very 
broad groups: Supervised, Unsupervised, and Reinforcement Learning, with each group comprising multiple 
algorithms that are the subject of ongoing research and development. Supervised and Reinforcement learning 
are very popular in predicting and controlling wireless networks, hence these are discussed extensively. 
Unsupervised learning has been scarcely used to date, and as such a brief introduction is presented. 

Supervised Learning

The term supervised learning refers to learning from large data sets that have already expected outcomes. That 
is to say, the algorithm is trained with a large set of observed features with known results, and the trained 
model is used to predict the outcomes for newly observed features. It is termed ‘supervised’, as the patterns in 
the input data (with its labelled outcomes) guide the model in making future predictions. 
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A general workflow for supervised learning (irrespective of the algorithm) is shown in Figure 19.17. In this 
example, labelled images1 of four modulations schemes are used to solve a modulation classification problem 
similar to that presented in Section 19.4.3. 

As shown in Figure 19.17, the data preparation phase entails, proper labelling (data cleaning) and augmenting 
of the dataset. It also includes the partitioning of the entire dataset to training and testing sub sets. The model 
extracts signal features automatically (with DL) or manually (using mathematical tools) from the training data 
subsets, and uses this to generate an error function that tunes its weights until the output is similar to the 
results from the training data subset, as detailed in Section 19.4.3. 

The trained model's prediction performance is evaluated by feeding the unseen test data subset through the 
model. The model's prediction of the test dataset (in the prediction phase) is compared with the ground truth 
of the test data subset in the prediction assessment phase. When deployed in a DSA network, the image of a 
PU's waveforms can be correctly classified, and used to train a model that can later be used to determine the 
presence of PUs when any sensed waveform is presented to it [116].  

The overall performance of a model is judged by its ability to generalise effectively (in other words, the extent 
to which the model can adapt to predict new and unseen data). A model that achieves a prediction accuracy of 
80% on a training data subset may exhibit better generalisation than an algorithm that appears to have very 
high accuracy, but which has memorised the training data points (overfitting) and cannot correctly predict 
new examples. 

Supervised learning algorithms include:

• ML algorithms: -Nearest Neighbour, Linear Regression, Logistic Regression, Support Vector 
Machines (SVM), Decision Trees and Random Forests;

• DL algorithms: NNs: Artificial, Convolutional, and Recurrent, etc.

Unsupervised Learning

In unsupervised learning there is no prior knowledge of outcomes. There are no results or ground truths with 
which to label a dataset, as was the case in supervised learning. Unsupervised learning creates its own outcome 
based on the perceived structure in the dataset. An unsupervised learning algorithm extracts data patterns 
with no prior knowledge of what they ought to be. Therefore, it searches for similarities in the features of the 
input data and categorises them into clusters. 

Clustering involves the grouping of unsorted data into sets based on similarity indices, such that elements in a 
cluster have similar features, and dissimilar features from other clusters. Clustering has been used in DSA 

1. Modulation classification can also be undertaken based directly on received samples, rather than by working with images.

k
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systems to group network nodes based on certain criteria such as distance from a transmitter [199]. It is also 
used for dimensionality reduction of state space in reinforcement learning algorithms. 

Examples of unsupervised learning algorithms are:

• Clustering: k Means, Hierarchical Cluster Analysis, and Expectation Maximisation; 

• Dimension reduction algorithms: Principal Component Analysis (PCA), Kernel PCA, Locally Linear 
Embedding (LLE), and t-distributed Stochastic Neighbour Embedding (t SNE). 

Figure 19.17:  Multiple level classification of modulation signals showing supervised learning workflow.
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This type of learning algorithm is necessary for reducing large datasets, or grouping datasets that were not 
labelled. Thus, unlabelled large datasets can be classified and labelled using an unsupervised learning 
algorithm. However, evaluating the correctness of these classifications becomes an issue due of the absence of 
ground truth in the unstructured dataset. Techniques to measure the correctness or closeness of cluster 
elements are used to assess the performance of such algorithms.

Reinforcement Learning

Reinforcement Learning (RL) is a type of learning that seeks to find a set of optimal decisions or policies. The 
first two categories of machine learning algorithms (supervised and unsupervised) are trained by labelled or 
unlabelled data, respectively. They are also used predominantly for classification, pattern recognition, and data 
reduction. These use cases are quite different from an RL algorithm, which is implemented by an agent, to 
assist in creating a policy that guides the agent's actions to obtain the best cumulative reward. The RL 
structure, therefore, needs an agent and an environment which the agent acts upon. The effect of these actions 
on the environment is measured by a reward function, and may trigger a change in the environment's state, as 
illustrated in Figure 19.18.  

RL consists of two elements: trial and error, where different actions are tried/explored in the environment; and 
the optimisation stage, where the best trial and error actions are chosen [330]. The kinds of problems that are 
based on trial and error can be optimised by formulating them as Markov Decision Problems (MDPs). Each 
trial is assessed by a reward system that measures how good or bad the trial was. The manner of conducting 
these trials and errors over the entire environment can be categorised as exploration or exploitation. 

In exploration, trials are conducted on the entire environment. Different actions are tested on the entire 
environment to keep track of all possible reactions, or rewards the agent will receive from the environment for 
its actions. However, if the agent is constantly exploring, it will never decide on a sequence of actions to 
optimise. On the other hand, if it performs more exploitation, and is fixed on optimising these set of actions 

Figure 19.18:  Reinforcement learning workflow.
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only, it may overlook actions that it may have taken on other parts of the environment (and which could have 
led to a better-accumulated reward). 

It is desirable to find a trade-off between exploitation and exploration that achieves an optimal result, and this 
can be defined by choosing an appropriate policy. Training an RL algorithm requires a timed sequence of data, 
which makes it suitable for a DSA network. Hence in training an RL algorithm, framed as an MDP, mathe-
matical MDP solutions are used to achieve optimisation and fast convergence. 

One such popular solution is Bellman's equation, which assigns a value to an action ( ), state ( ) pair [330]. 
An extension of this solution is the Temporal Difference (off policy) control or Q-Learning algorithm, which is 
known for its fast convergence when solving optimization problems. The Q-learning update equation, 

. (19.5)

updates a state action matrix which stores these values as q-values ( ), such that for each action  taken 
by an agent from a state , a reward ( ) is obtained. This reward, the previously stored q-value from the 
q-table for a state-action pair , the next state's maximum rewards for all future actions ( ), 
the learning rate ( ) and the discount rate ( ) are used to update the q-table with a set of new q-values. The q-
table, therefore serves as a matrix of learned weights that enable the agent to choose the right action from any 
state. 

The Q-learning algorithm is independent of the policy adopted [5]. Thus (19.5) provides a set of , 
which maps the value of taking a certain action from a specific state in a state-action matrix. 

We have seen that in a DSA system, several levels of problems can be framed and solved using RL algorithms. 
Decision-making applications in wireless networks have employed RL algorithms such as Q-learning, Deep Q-
learning algorithms, Double Deep Q-learning algorithms, Temporary Difference, and State-Action-Reward-
State-Action (SARSA) methods. The use of these algorithms is well explained in [330]. 

A pre-requisite for applying RL to solve problems is formulating such a problem into an MDP. The following 
questions can serve as a guide to aid achieving this:

1. What decisions/actions does the agent or decision-maker need to learn?

2. What indices or indicators can the agent use to make these decisions?

3. Criteria for knowing that the right decision was made.

The first question above can be used to determine the actions that the agent would need to take, or learn to 
take. The second question reveals the observable states that can either be influenced directly by an agent's 
action or follow a predefined sequence. Finally, question three provides a reward function that helps the agent 
know that the sequence of actions taken resulted in achieving the right outcome. In each of the RL applications 
discussed next, understanding how these questions were used to fix specific DSA network issues is addressed.
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19.5.2.  Applications of Machine Learning in Advancing DSA

The database's role of spectrum detection, access, and allocation in a DSA network can been improved upon 
using ML or DL algorithms. Some examples of published research in this area are:

• Intelligent Channel Access — Access to available channel slots can be managed by ML-based DSA 
control systems. These algorithms learn from the historical usage of channel slots, the demand from 
SUs, and the current state of the available channels, to predict future channel slot availability [307]. 
Decentralised secondary users can learn to select unoccupied channels using reinforcement learning 
algorithms [270].

• Channel sensing, allocation, and security — Channel availability and sensing for PU signals are funda-
mental aspects of DSA systems. The assessment of a channel can be aided by training ML techniques to 
identify PU signals (even in the presence of impairments). By extending this idea to train on a larger 
dataset of modulated signals, it can be determined whether a channel is occupied by a PU, an SU, or an 
unidentified / potentially malicious user, or is available for use [318].

• Interference Mitigation — It is vital to protect the communications of incumbent users, or PUs, in a 
DSA system, and this is achieved by ensuring the level of interference is managed appropriately. ML 
methods can help to achieve this goal, by learning the transmission patterns of incumbent transmitters, 
and sharing these learned patterns with other SUs, enabling them to avoid PUs active periods [116].

• Power Control in Interference Mitigation — Interference between SUs and PUs can further be 
managed through power control, i.e. appropriate selection of a transmit power level, in conjunction with 
channel selection. RL based methods, together with other ML techniques, can be applied to this problem 
[168],[175],[360].

• Spectrum Mobility — In DSA systems, spectrum handoff refers to the transfer of a transmission from 
one channel to another, based on changing conditions. If interference worsens, a decision must be made 
to transfer channel to another available channel, or to stay in the existing channel and wait for condi-
tions to improve, or adjust transmission parameters. The decision making process can be implemented 
using RL techniques [224].

19.5.3.  Challenges of Machine Learning in Network Management

The application of ML to network management provides new and exciting opportunities, and is an area of 
active research. There are a number of challenges, as outlined as follows.

Data Collection and Cleaning

Prediction of PU patterns requires a large amount of data to train a supervised learning algorithm. Storage 
space for the volume of data remains a huge challenge in developing an intelligent network. Labelling and 
cleaning data automatically without much human intervention becomes necessary in a constantly varying 
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environment, and sometimes relies on error-prone unsupervised clustering for labelling. Further, missing or 
incomplete data can impede the efficacy of predictions [120]. Another challenge is the collation of data from 
different network components (sensors, PUs, SUs), in real time, for automatic network management and 
coordination. 

Computational Power and Time

ML algorithms can be computationally expensive, especially NNs with several layers. The backward propa-
gation for updating the weights of each of the many neurons requires high computational power and long 
training time. A proffered solution is the use of pre-trained models whose weights can be seldom updated. 
These models can then be stored on the cloud for DSA networks to use; this however, may not be convenient 
for low latency communication networks. In such low latency communication networks, intelligent CRs may 
be preferred, however, they too will struggle with the power and time consumption required for training 
models.

Convergence Issues

When RL is applied to a problem with a large set of actions or observations (states), it may exhibit poor or slow 
convergence behaviour. The environment for optimisation should be defined carefully in order to manage the 
optimisation state space; there is a tendency for the algorithm to struggle to achieve convergence when there 
are a large number of nodes / access points. Deep RL offers a possible solution, but requires very high compu-
tational power (a typical issue with NNs).

Real-time Updates

Signals are time and space dependent. While RL and RNN can handle time-dependent data, they each have 
different issues that have to be addressed if adopted. RNNs require a level of memory to retain previous key 
features, while RL may suffer convergence issues when they have a large state space. Implementing supervised 
learning in managing DSA networks requires that trained models are retrained/updated with real-time data 
from the deployed network after a period of time. Determining the frequency of these updates can be 
challenging, especially in dynamic networks with mobile SUs [14],[116]. 

19.6.  Chapter Summary

This chapter has reviewed the topics of DSA and CR, and provided the necessary regulatory and theoretical 
background. 

Firstly, the motivation to develop new spectrum access paradigms was established; namely, to make better use 
of the radio spectrum, which is a finite resource under pressure from growing demand for wireless connec-
tivity. DSA principles were described and existing frameworks were reviewed, in particular TVWS and CBRS. 
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We noted that the ability to sense the ambient radio environment and make spectrum access decisions are both 
important enablers for DSA — a combination of capabilities that RFSoC can support due to the integrated 
nature of the device. 

Taking DSA a step further requires advanced radio terminals with cognitive capabilities. A CR has the ability 
to sense and understand its local radio environment, including the types of transmissions emitted by other 
terminals in the vicinity. We discussed the importance of AI, and in particular DL, as a means for radios to 
generate such understanding, and considered how these algorithms would be implemented, and integrated 
into an RFSoC-based SDR. 

Finally, the potential applications of DL at the wireless network level were considered, for instance in managing 
the interference that is generated by transmitting nodes. The potential of RL for network management tasks 
was highlighted. 
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“The wireless telegraphy is one of the most 
wonderful inventions the world has ever seen. 

I think it will be of great commercial use 
some day and as I have seen it demonstrated 
on the ship in which I have just arrived I can 

say that it is very marvellous indeed.”

— WILLIAM THOMSON, LORD KELVIN
(1824 - 1907)
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Sum to Difference Trigonometric Rules:

(a.1)

(a.2)

(a.3)

Product to Sum Trigonometric Rules:

(a.4)

(a.5)

(a.6)

(a.7)

u v cos u cos v  u  v sinsincos=

u v sin u  v  u cos v sincossin=

u v tan u  v tantan
1 u  v tantan
-------------------------------------------=

u cos v cos 1
2
--- u v–  u v+ cos+cos=

u  v sinsin 1
2
--- u v–  u v+ cos–cos=

u  v cossin 1
2
--- u v+  u v– sin+sin=

u cos v sin 1
2
-- u v+  u v– sin–sin=
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, where (a.11)

Complex Representations of Trigonometric Functions

(a.12)

(a.13)

Discrete Fourier Transform Pair:

(a.14)

(a.15)

u cos2 1
2
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u sin2 1
2
-- 1 2u cos– 
 =
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e jt t cos j t sin+= j 1–=

 t cos e e jt e jt e jt–+
2

-----------------------------= =

 t sin m e jt e jt e jt––
2j

-----------------------------= =

X k  x n W N
nk

n 0=

N 1–

= k 0 1 2 ... N 1–   =

x n  1
N
----- X k W N

n– k
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N 1–
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