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Administrative

• Last Lecture
• Finish Week 6’s material (the RFSoC stu9) by 

Friday please.
• Then projects (we’ll be having meetings)
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Left o0 in last lecture…

• Wrote a skid bu9er 
and then were trying 
to test it with a 
variety of inputs,
• But also get a sense 

of how well we were 
testing it
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Cocotb Coverage

• Cocotb variant Library
• Provides some 

structure and tracking 
for coverage
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CoverPoint and 
CoverCross 
and Cover… 
Group/Section

10/23/24 6.S965 Fall 2024 5

• We started to classify existence into various bins 
of coverage.  Each dimension was called a 
Coverpoint
• We started to lump them together.
• We at first looked at how well we were testing the 

FSM portion of the skid bu9er and its state 
transitions



Results

• The FSM was in all of 
its states pretty 
regularly during the 
test
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Results

• The FSM was in all of 
its states pretty 
regularly during the 
test
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Makes sense

Makes sense

Doesn’t exist

Doesn’t exist



If you know things shouldn’t happen
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ignore_bins



Can now target 100% coverage
• If you can prove through some 

mechanism or another which bins 
should be reachable and which are false 
or unachievable, then you can view your 
coverage more as a milestone
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Di2erent tests but still you can see we got 100% coverage

nice



Further Pushing on this System

This simple FSM description…glossed over 
the potential complexity of the 
implementation: 3 states, each connected to 
2 signals (valid/ready) per interface, for a total 
of 16 possible transitions out of each state, or 
48 possible state transitions total. 
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So let’s do state and input
• Come up with STS 

covergroup (State and 
Signals)
• I want to look at the 

di9erent states of my 
module as well as its 
exposure to di9erent 
signal combinations 
on both S00 and M00 
side
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Just Start Throwing Stu0 at it…

• Depart for a 
moment and just 
start using random 
numbers to set 
values on these 
four lines and see 
what patterns 
emerge
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Resulting Waveform
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Results
• It does seem to 

have some 
“coverage” of the 
input space
• but how much of 

that is relevant or 
not relevant.
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At the naïve level…

• Yes there are 48 possible state transitions and 
things, but as Jordan confidently pointed out on 
Monday, the state controls some of these 
signals, so that seems maybe a little excessive.
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Change the Crosses

• There’s likely no reason 
(at least at this point) to 
have the signals on both 
sides mixed together in 
one large coverage cross
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Only cross the state and 
values at each interface



Result
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(STATE, VALID, READY)

Master Cross:

Slave Cross:

(STATE, VALID, READY)



Look at our design

• Some of these cross 
values should not be 
achieved :
• s00_axis_tready 

never 0 in EMPTY
• m00_axis_tvalid 

never 0 in FULL
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Result
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(STATE, VALID, READY)

Master Cross:

Slave Cross:

(STATE, VALID, READY)

Legit/Might Occur:✅

Should Not Occur:🚫

‼

‼

‼
‼

✅

s00_axis_tready never 0 in EMPTY
m00_axis_tvalid never 0 in FULL

🚫
✅

✅
🚫

✅

✅

✅
‼
wtf



Look at our design

• Some of these cross 
values should not be 
achieved :
• s00_axis_tready never 0 

when was EMPTY
• m00_axis_tvalid never 0 

when was FULL 
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Should these be 
achievable?
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Master Cross:

Slave Cross: (OLD_STATE, VALID, READY)

(OLD_STATE, VALID, READY)

Legit/Might Occur:✅
Should Not Occur:🚫

✅
🚫
✅
🚫
✅
✅
✅
✅
✅
✅
✅
✅

✅

🚫

✅

🚫

✅
✅
✅
✅
✅
✅
✅
✅

If I was previously EMPTY 
there’s no way READY would 
be 0 now

If I was previously FULL there’s 
no way VALID would be 0 now



Ignore those…

• Run again:
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Tests are doing 
100% of coverage 
now



Another Big Issue

• AXI is about more than just the value at any point 
in time.
• As pointed out in class on Monday, AXI as a 

protocol has rules and those are rules are 
inherently stateful.
• Just throwing random values at the busses with 

no regard for history/meaning could be wrong:
• Giving it illegal values
• Wasting cycles testing stu@ that shouldn’t be tested
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Generalized Transaction
• All Channel Interactions follow same high-level 

structure
• Data is handed o9 IF AND ONLY IF VALID and 

READY are high on the rising edge of the clock
• If that happens, both parties must realize that 

data transfer has happened
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Keep in mind this 
could be 64 parallel 
wires of 1’s and 0’s of 
info or 8 bytes for 
example…
Or it could be 
something else



VALID then READY
• Valid can be high first
• Then ready can show up later
• Only when both are high is data exchanged
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Data transferred on this edge



READY then VALID
• Ready can be high first
• Then Valid can show up later
• Only when both are high is data exchanged
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Data transferred on this edge



READY WITH VALID
• Ready and Valid come high at the same time
• Totally allowed
• Data is exchanged on that clock edge
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Data transferred on this edge



IMPORTANT
• the VALID signal of the AXI interface sending 

information must not be dependent on the 
READY signal of the AXI interface receiving that 
information
• an AXI interface that is receiving information may wait 

until it detects a VALID signal before it asserts its 
corresponding READY signal.
• In other words READY can depend on VALID, but not 

the other way around.
• Once VALID is asserted, it cannot be deasserted 

until READY has also been asserted for at least 
one cycle
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Skid Bu(er
ready
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ready
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In/S Out/M



Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer
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Our Current Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard
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Quasi-
Driver



Right now…

• Kind just fudging 
the ready signal, 
but really we 
should try to 
more intelligently 
probe this thing
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Our Current Testing Framework

DUTQuasi-
Driver

Monitor
(output)

Monitor
(input) Scoreboard
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Quasi-
Driver



What we’d really like is something 
to coordinate 
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Improved 
Testing 
Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard
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Driver
Sequencer



Protocol Tree

10/23/24 6.S965 Fall 2024 36

AXIS Bus

Master

Write Don’t Write

Slave

Read Don’t’ Read

Wait until valid Immediatesingle burst



So let’s maybe rewrite our Driver

• Driver can now be for a Master or a Slave
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Add an output_driver to our Tester 
class
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Now feed in random, legal 
transactions to both the valid and 
ready side
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Make a New “higher level” Cover 
section
• This one will track 

cycle-to-cycle 
transitions of the 
valid and ready 
signals on both ports
• No reason to 

combine the two 
ports really…there’s 
nothing about the 
spec anyways
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Make support 
functions
• Track and Label 

transitions of all 
four signals over 
time.
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Run it
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Run it and you get…
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Let’s Consider Slave Side
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Legit/Might Occur:✅

Should Not Occur:🚫
✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅

Both these are 
situations where 
the Valid is de-
asserting before a 
handshake 
occurred 



So what should we be concerned 
about?
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Legit/Might Occur:✅

Should Not Occur:🚫

‼

‼

‼
‼

✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅



Similarly on Master Side:
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Legit/Might Occur:✅

Should Not Occur:🚫

‼
‼

This is actually pretty 
reassuring since our DUT 
would be the device that 
would actually be causing 
these violations

✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅



Conclusions?
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‼

‼

‼
‼

✅
✅

✅

✅

✅
✅

✅

✅

🚫

🚫
✅
✅

✅
✅

✅
✅

‼
‼

✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅

So probably more read 
toggling in our testbench 
would be good to be honest.


