
6.S965
Digital Systems Laboratory II

Lecture 12

10/22/24 6.S965 Fall 2024 1

Administrative

• Last Lecture
• Finish Week 6’s material (the RFSoC stu9) by

Friday please.
• Then projects (we’ll be having meetings)

10/22/24 6.S965 Fall 2024 2

Left o0 in last lecture…

• Wrote a skid bu9er
and then were trying
to test it with a
variety of inputs,
• But also get a sense

of how well we were
testing it

10/23/24 6.S965 Fall 2024 3

Skid Bu(er
ready
valid
data*

ready
valid
data*

In/S Out/M

Cocotb Coverage

• Cocotb variant Library
• Provides some

structure and tracking
for coverage

10/23/24 6.S965 Fall 2024 4

CoverPoint and
CoverCross
and Cover…
Group/Section

10/23/24 6.S965 Fall 2024 5

• We started to classify existence into various bins
of coverage. Each dimension was called a
Coverpoint
• We started to lump them together.
• We at first looked at how well we were testing the

FSM portion of the skid bu9er and its state
transitions

Results

• The FSM was in all of
its states pretty
regularly during the
test

10/23/24 6.S965 Fall 2024 6

Results

• The FSM was in all of
its states pretty
regularly during the
test

10/23/24 6.S965 Fall 2024 7

Makes sense

Makes sense

Doesn’t exist

Doesn’t exist

If you know things shouldn’t happen

10/23/24 6.S965 Fall 2024 8

ignore_bins

Can now target 100% coverage
• If you can prove through some

mechanism or another which bins
should be reachable and which are false
or unachievable, then you can view your
coverage more as a milestone

10/23/24 6.S965 Fall 2024 9

Di2erent tests but still you can see we got 100% coverage

nice

Further Pushing on this System

This simple FSM description…glossed over
the potential complexity of the
implementation: 3 states, each connected to
2 signals (valid/ready) per interface, for a total
of 16 possible transitions out of each state, or
48 possible state transitions total.

10/23/24 6.S965 Fall 2024 10

Skid Bu(er
ready
valid
data*

ready
valid
data*

In/S Out/M

So let’s do state and input
• Come up with STS

covergroup (State and
Signals)
• I want to look at the

di9erent states of my
module as well as its
exposure to di9erent
signal combinations
on both S00 and M00
side

10/23/24 6.S965 Fall 2024 11

Just Start Throwing Stu0 at it…

• Depart for a
moment and just
start using random
numbers to set
values on these
four lines and see
what patterns
emerge

10/23/24 6.S965 Fall 2024 12

Resulting Waveform

10/23/24 6.S965 Fall 2024 13

Results
• It does seem to

have some
“coverage” of the
input space
• but how much of

that is relevant or
not relevant.

10/23/24 6.S965 Fall 2024 14

At the naïve level…

• Yes there are 48 possible state transitions and
things, but as Jordan confidently pointed out on
Monday, the state controls some of these
signals, so that seems maybe a little excessive.

10/23/24 6.S965 Fall 2024 15

Skid Bu(er
ready
valid
data*

ready
valid
data*

In/S Out/M

Change the Crosses

• There’s likely no reason
(at least at this point) to
have the signals on both
sides mixed together in
one large coverage cross

10/23/24 6.S965 Fall 2024 16

Only cross the state and
values at each interface

Result

10/23/24 6.S965 Fall 2024 17

(STATE, VALID, READY)

Master Cross:

Slave Cross:

(STATE, VALID, READY)

Look at our design

• Some of these cross
values should not be
achieved :
• s00_axis_tready

never 0 in EMPTY
• m00_axis_tvalid

never 0 in FULL

10/23/24 6.S965 Fall 2024 18

Result

10/23/24 6.S965 Fall 2024 19

(STATE, VALID, READY)

Master Cross:

Slave Cross:

(STATE, VALID, READY)

Legit/Might Occur:✅

Should Not Occur:🚫

‼

‼

‼
‼

✅

s00_axis_tready never 0 in EMPTY
m00_axis_tvalid never 0 in FULL

🚫
✅

✅
🚫

✅

✅

✅
‼
wtf

Look at our design

• Some of these cross
values should not be
achieved :
• s00_axis_tready never 0

when was EMPTY
• m00_axis_tvalid never 0

when was FULL

10/23/24 6.S965 Fall 2024 20

Should these be
achievable?

10/23/24 6.S965 Fall 2024 21

Master Cross:

Slave Cross: (OLD_STATE, VALID, READY)

(OLD_STATE, VALID, READY)

Legit/Might Occur:✅
Should Not Occur:🚫

✅
🚫
✅
🚫
✅
✅
✅
✅
✅
✅
✅
✅

✅

🚫

✅

🚫

✅
✅
✅
✅
✅
✅
✅
✅

If I was previously EMPTY
there’s no way READY would
be 0 now

If I was previously FULL there’s
no way VALID would be 0 now

Ignore those…

• Run again:

10/23/24 6.S965 Fall 2024 22

Tests are doing
100% of coverage
now

Another Big Issue

• AXI is about more than just the value at any point
in time.
• As pointed out in class on Monday, AXI as a

protocol has rules and those are rules are
inherently stateful.
• Just throwing random values at the busses with

no regard for history/meaning could be wrong:
• Giving it illegal values
• Wasting cycles testing stu@ that shouldn’t be tested

10/23/24 6.S965 Fall 2024 23

Generalized Transaction
• All Channel Interactions follow same high-level

structure
• Data is handed o9 IF AND ONLY IF VALID and

READY are high on the rising edge of the clock
• If that happens, both parties must realize that

data transfer has happened

10/23/24 https://fpga.mit.edu/6205/F24 24

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

VALID then READY
• Valid can be high first
• Then ready can show up later
• Only when both are high is data exchanged

10/23/24 https://fpga.mit.edu/6205/F24 25

Data transferred on this edge

READY then VALID
• Ready can be high first
• Then Valid can show up later
• Only when both are high is data exchanged

10/23/24 https://fpga.mit.edu/6205/F24 26

Data transferred on this edge

READY WITH VALID
• Ready and Valid come high at the same time
• Totally allowed
• Data is exchanged on that clock edge

10/23/24 https://fpga.mit.edu/6205/F24 27

Data transferred on this edge

IMPORTANT
• the VALID signal of the AXI interface sending

information must not be dependent on the
READY signal of the AXI interface receiving that
information
• an AXI interface that is receiving information may wait

until it detects a VALID signal before it asserts its
corresponding READY signal.
• In other words READY can depend on VALID, but not

the other way around.
• Once VALID is asserted, it cannot be deasserted

until READY has also been asserted for at least
one cycle

10/23/24 https://fpga.mit.edu/6205/F24 28

10/23/24 6.S965 Fall 2024 29

Skid Bu(er
ready
valid
data*

ready
valid
data*

In/S Out/M

Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

23 October 2024 6.S965 Fall 2024 30

Our Current Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

23 October 2024 6.S965 Fall 2024 31

Quasi-
Driver

Right now…

• Kind just fudging
the ready signal,
but really we
should try to
more intelligently
probe this thing

10/23/24 6.S965 Fall 2024 32

Our Current Testing Framework

DUTQuasi-
Driver

Monitor
(output)

Monitor
(input) Scoreboard

23 October 2024 6.S965 Fall 2024 33

Quasi-
Driver

What we’d really like is something
to coordinate

10/23/24 6.S965 Fall 2024 34

Improved
Testing
Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

23 October 2024 6.S965 Fall 2024 35

Driver
Sequencer

Protocol Tree

10/23/24 6.S965 Fall 2024 36

AXIS Bus

Master

Write Don’t Write

Slave

Read Don’t’ Read

Wait until valid Immediatesingle burst

So let’s maybe rewrite our Driver

• Driver can now be for a Master or a Slave

10/23/24 6.S965 Fall 2024 37

Add an output_driver to our Tester
class

10/23/24 6.S965 Fall 2024 38

Now feed in random, legal
transactions to both the valid and
ready side

10/23/24 6.S965 Fall 2024 39

Make a New “higher level” Cover
section
• This one will track

cycle-to-cycle
transitions of the
valid and ready
signals on both ports
• No reason to

combine the two
ports really…there’s
nothing about the
spec anyways

10/23/24 6.S965 Fall 2024 40

Make support
functions
• Track and Label

transitions of all
four signals over
time.

10/23/24 6.S965 Fall 2024 41

Run it

10/23/24 6.S965 Fall 2024 42

Run it and you get…

10/23/24 6.S965 Fall 2024 43

Let’s Consider Slave Side

10/23/24 6.S965 Fall 2024 44

Legit/Might Occur:✅

Should Not Occur:🚫
✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅

Both these are
situations where
the Valid is de-
asserting before a
handshake
occurred

So what should we be concerned
about?

10/23/24 6.S965 Fall 2024 45

Legit/Might Occur:✅

Should Not Occur:🚫

‼

‼

‼
‼

✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅

Similarly on Master Side:

10/23/24 6.S965 Fall 2024 46

Legit/Might Occur:✅

Should Not Occur:🚫

‼
‼

This is actually pretty
reassuring since our DUT
would be the device that
would actually be causing
these violations

✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅

Conclusions?

10/23/24 6.S965 Fall 2024 47

‼

‼

‼
‼

✅
✅

✅

✅

✅
✅

✅

✅

🚫

🚫
✅
✅

✅
✅

✅
✅

‼
‼

✅
✅

✅

✅

✅
✅

✅
✅

🚫

🚫
✅

✅

✅
✅

✅
✅

So probably more read
toggling in our testbench
would be good to be honest.

