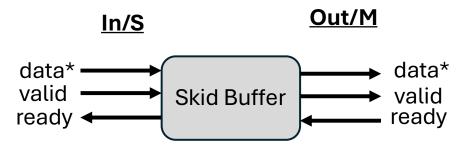
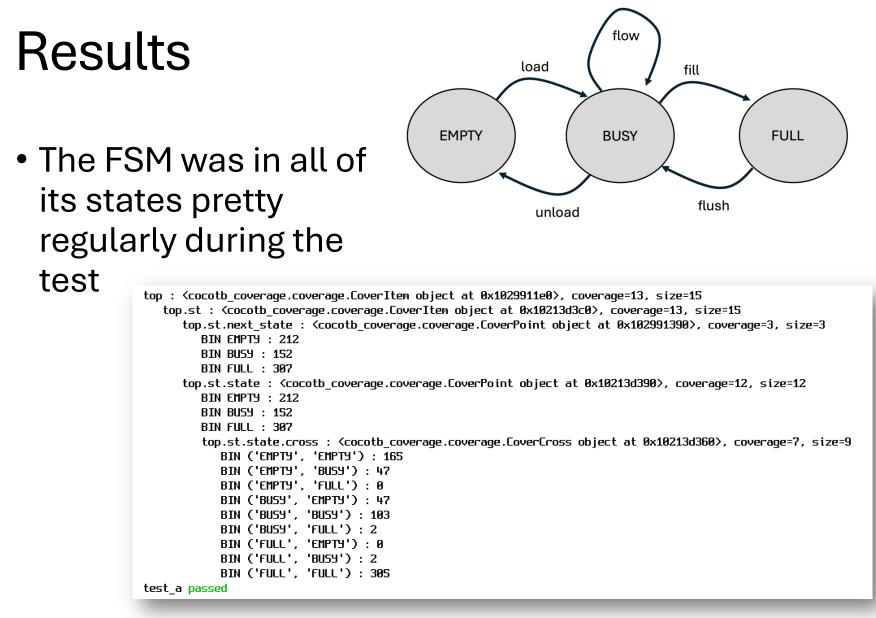
6.S965 Digital Systems Laboratory II

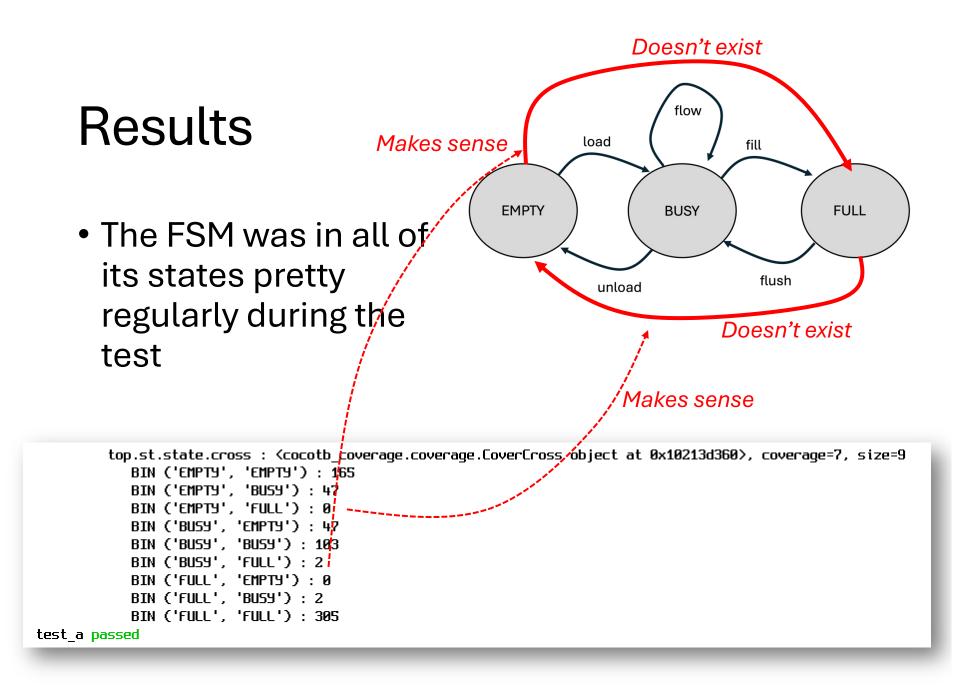
Lecture 12


Administrative

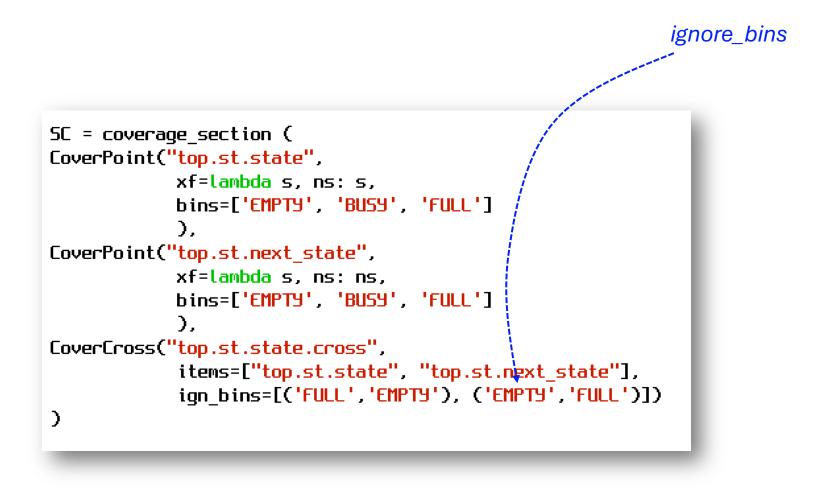
- Last Lecture
- Finish Week 6's material (the RFSoC stuff) by Friday please.
- Then projects (we'll be having meetings)

- Wrote a skid buffer and then were trying to test it with a variety of inputs,
- But also get a sense of how well we were testing it


Cocotb Coverage


- Cocotb variant Library
- Provides some structure and tracking for coverage

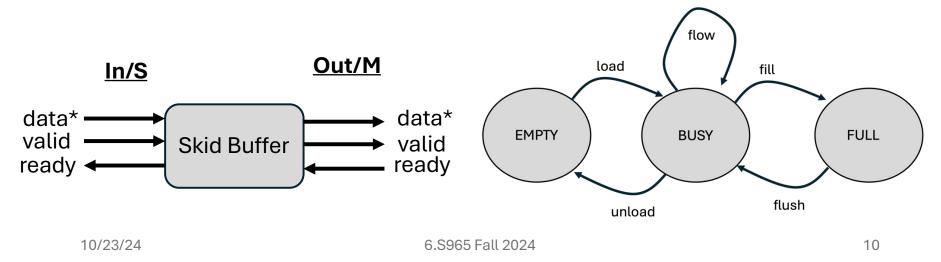
cocotb_coverage 1.0 documentat	ion » Introduction
O C Constrained Random Verification Features in Constrained Random Verification Constrained Random Verification Features in Constrained Random Verifi	Introduction Functional Coverage in SystemVerilog In SystemVerilog a fundamental coverage unit is a coverpoint. It contains several bins and each bin may contain several values. Every coverpoint is associated with a variable or signal. At sampling event, the coverpoint variable value is compared with each defined bin. If there is a match, then the number of hits of the particular bin is incremented. Coverpoints are organized in covergroups, which are specific class-like structures. A single covergroup may have several instances and each instance may collect coverage independently. A covergroup requires sampling, which may be defined as a logic event (e.g. a positive clock edge). Sampling may also be called implicitly in the testbench procedural code by invoking a sample() method of the covergroup instance. A bin may be also defined as an ignore_bins, which means its match does not increase a coverage count, or an illegal_bins, which results in error when hit during the test execution. Another coverage construct in SystemVerilog is a cross. It automatically generates a Cartesian product of bins from several covergoints. It is a useful feature simplifying the functional coverage generation. As it may be difficult or unnecessary to cover all the cross-bins, some of them may be excluded from the analysis. This is possible using the bins d intersect syntax. The most important limitations of the SystemVerilog functional coverage features are: • straightforward bins matching oriteria – only satisfied by equality or inclusion relation; • bins may be only constants or transitions (possibly wildcard); • lat coverage structure – cover groups cannot contain other cover groups, which would correspond better to a verification plan scheme); <
	not possible to get the detailed coverage information in real time (e.g. when a specific bin was hit).
	Functional Coverage with cocotb-coverage
	The general assumptions for the architecture of the functional coverage features are as follows: functional coverage structure should better match a real verification plan; its syntax should be more flexible, but a separation between coverage and executable code should be maintained; features for analysing the coverage during test execution should be added or extended; coverage primitives should be able to monitor testbench objects at a higher level of abstraction.
	The implemented mechanism is based on the idea of decorator design pattern. In Python, a decorator syntax is


CoverPoint and CoverCross and Cover... Group/Section

- We started to classify existence into various bins of coverage. Each dimension was called a Coverpoint
- We started to lump them together.
- We at first looked at how well we were testing the FSM portion of the skid buffer and its state transitions

If you know things shouldn't happen

Can now target 100% coverage


 If you can prove through some nice mechanism or another which bins should be reachable and which are false or unachievable, then you can view your coverage more as a milestone

> top.st : <cocotb coverage.coverage.CoverItem object at 0x105f2a260>, coverage=13, size=13 top.st.next state : <cocotb coverage.coverage.CoverPoint object at 0x106885500>, coverage=3, size=3 BIN EMPTY : 9365 BIN BUSY : 307 BIN FULL : 328 top.st.state : <cocotb coverage.coverage.CoverPoint object at 0x105f2a230>, coverage=10, size=10 BIN EMPTY : 9365 BIN BUSY : 307 BIN FULL : 328 top.st.state.cross : <cocotb_coverage.coverage.CoverCross object at 0x106885690>, coverage=7, size=7 BIN ('EMPTY', 'EMPTY') : 9343 BIN ('EMPTY', 'BUSY') : 22 BIN ('BUSY', 'EMPTY') : 22 BIN ('BUSY', 'BUSY') : 247 BIN ('BUSY', 'FULL') : 38 BIN ('FULL', 'BUSY') : 38 BIN ('FULL', 'FULL') : 290

Different tests but still you can see we got 100% coverage

Further Pushing on this System

This simple FSM description...glossed over the potential complexity of the implementation: 3 states, each connected to 2 signals (valid/ready) per interface, for a total of 16 possible transitions out of each state, or 48 possible state transitions total.

So let's do state and input

- Come up with STS covergroup (State and Signals)
- I want to look at the different states of my module as well as its exposure to different signal combinations on both S00 and M00 side

```
STS = coverage section(
CoverPoint("top.st sig.state",
            xf=lambda state,sig: state,
            bins=['EMPT9', 'BUS9', 'FULL']
            ).
CoverPoint("top.st sig.s00 tvalid",
            xf=lambda state,sig: sig.get('s00 tvalid'),
            bins=[True, False]
            ).
CoverPoint("top.st sig.s00 tready",
            xf=lambda state,sig: sig.get('s00 tready'),
            bins=[True, False]
            ).
CoverPoint("top.st sig.m00 tvalid",
            xf=lambda state,sig: sig.get('m00 tvalid'),
            bins=[True, False]
            ),
CoverPoint("top.st sig.m00 tready",
            xf=lambda state,sig: sig.get('m00 tready'),
            bins=[True, False]
            ).
CoverCross("top.st sig.cross",
            items=[ "top.st sig.state",
                    "top.st sig.s00 tvalid".
                    "top.st sig.s00 tready".
                    "top.st sig.m00 tvalid".
                    "top.st sig.m00 tready"]
            )
)
```

Just Start Throwing Stuff at it...

 Depart for a moment and just start using random numbers to set values on these four lines and see what patterns emerge

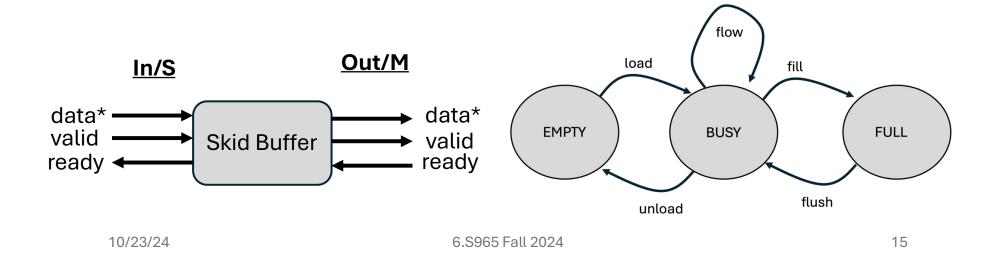
```
def rando_assign(signal, size):
    if random.random()>0.5:
        signal.value = random.randint(0,2**size-1)
        else:
            signal.value = 0
```

```
for x in range(1000):
    await FallingEdge(dut.s00_axis_aclk)
```

rando_assign(dut.s00_axis_tvalid,1)
rando_assign(dut.s00_axis_tlast,1)
rando_assign(dut.s00_axis_tdata,32)
rando_assign(dut.m00_axis_tready,1)

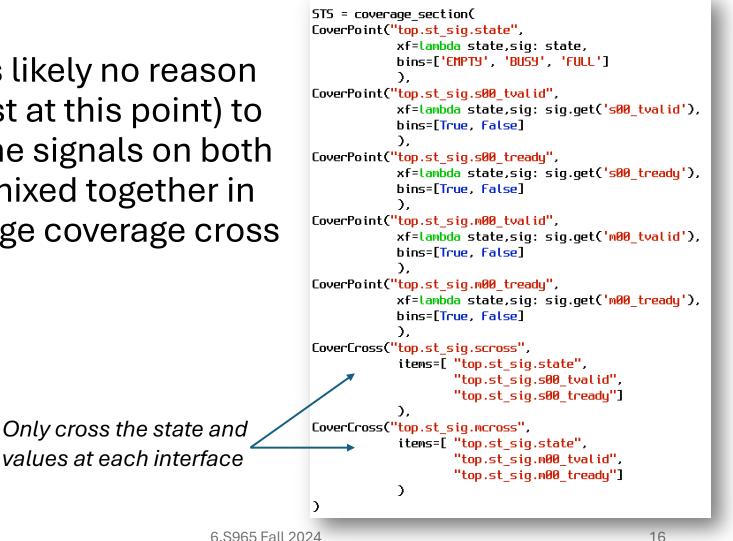
Resulting Waveform

C_M00_AXIS_TDATA_WIDTH	00000020
C_S00_AXIS_TDATA_WIDTH	00000020
data_buffer_wren	
data_out_wren	
fill	
flow	
flush	
insert	
load	
remove	
m00_axis_aclk	
m00_axis_aresetn	
m00_axis_tdata [31:0]	
m00_axis_tlast	
m00_axis_tvalid	ע ערביים באריינים איני איני איני איני איני איני איני
m00_axis_tready	
m00_axis_tstrb [3:0]	
s00_axis_aclk	
s00_axis_aresetn	
s00_axis_tdata [31:0]	
s00_axis_tvalid	
s00_axis_tready	ביין היה הדיין ווידין המוכידה בממורה וראלי המוכידה במורה או המוכידה המוכידה היה הדיין היה הדיין היה ה
state [31:0]	
s00_axis_tlast	
s00_axis_tstrb [3:0]	
tdata_buffer [31:0]	
tlast_buffer	
tstrb_buffer [3:0]	
unload	
use_buffered_data	


Results

- It does seem to have some "coverage" of the input space
- but how much of that is relevant or not relevant.

top.st sig : <cocotb 0x106ce9b40="" at="" coverage.coverage.coveritem="" object="">, coverage=23, size=59</cocotb>
top.st sig.cross : <cocotb 0x106cea200="" at="" coverage.coverage.covercross="" object="">, coverage=12, size=48</cocotb>
BIN ('EMP19', Irue, Irue, Irue, Irue) : 0
BIN ('EMPTY', True, True, True, False) : 0
BIN ('EMPTY', True, True, False, True) : 178
BIN ('EMPTY', True, True, False, False) : 541
BIN ('EMPTY', True, False, True, True) : 0
BIN ('EMPTY', True, False, True, False) : 0
BIN ('EMPTY', True, False, False, True) : 0
BIN ('EMPTY', True, False, False, False) : 0
BIN ('EMPTY', False, True, True, True): 0
BIN ('EMPTY', False, True, True, False) : 0
BIN ('EMPTY', False, True, False, True) : 854
BIN ('EMPTJ', False, True, False, False) : 1645
BIN ('EMPT', False, False, True, True): 0
BIN ('EMPT', False, False, True, False) : 0
BIN ('EMPT'), False, False, False, True) : 0
BIN ('EMPT3', False, False, False, False) : 0
BIN ('BUS', True, True, True, True, 1:233
BIN (BUSS', True, True, False) : 761
BIN ('BUSY', True, True, False, True) : 0
BIN ('BUSY', True, True, False, False) : 0
BIN (1905), True, False, True, True, 1:0
BIN ('BUSY', True, False, True, False) : 0
BIN ('BUSY', True, False, False, True) : 0
BIN ('BUSS', True, False, False, False) : 0
BIN ('BUSS', False, True, True) : 719
BIN ('BUSY', False, True, True, False) : 2335
BIN ('BUSY', False, True, False, True) : 0
BIN ('BUS', False, True, False, False) : 0
BIN ('BUSY', False, False, True, True) : 0
BIN ('BUSY', False, False, True, False) : 0
BIN ('BUSY', False, False, False, True) : 0
BIN ('BUSY', False, False, False, False) : 0
BIN ('FULL', True, True, True, True) : 0
BIN (FULL', True, True, True, False) : 0
BIN (FULL', True, True, False, True) : 0
BIN ('FULL', True, True, False, False) : 0
BIN ('FULL', True, False, True, True) : 190
BIN ('FULL', True, False, True, False) : 563
BIN ('FULL', True, False, False, True) : 0
BIN ('FULL', True, False, False, False) : 0
BIN ('FULL', False, True, True, True): 0
BIN ('FULL', False, True, True, False) : 0
BIN ('FULL', False, True, False, True) : 0
BIN ('FULL', False, True, False, False) : 0
BIN ('FULL', False, False, True, True) : 571
BIN ('FULL', False, False, True, False) : 1711
BIN ('FULL', False, False, False, True) : 0
BIN ('FULL', False, False, False, False) : 0


At the naïve level...

• Yes there are 48 possible state transitions and things, but as Jordan confidently pointed out on Monday, the state controls some of these signals, so that seems maybe a little excessive.

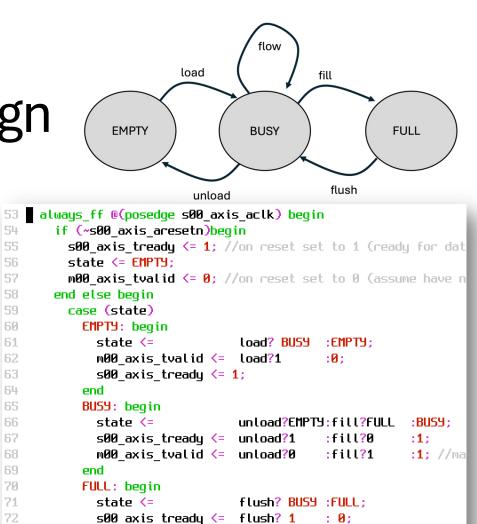
Change the Crosses

• There's likely no reason (at least at this point) to have the signals on both sides mixed together in one large coverage cross

Result Slave Cross:

(STATE, VALID, READY)

top.st_sig.scross : <cocotb_coverage.coverage.CoverCross object at 0x103275810>, coverage=6, size=12
 BIN ('EMPTY', True, True) : 11
 BIN ('EMPTY', True, False) : 0
 BIN ('EMPTY', False, True) : 711
 BIN ('EMPTY', False, False) : 0
 BIN ('BUSY', True, True) : 103
 BIN ('BUSY', True, False) : 0
 BIN ('BUSY', False, True) : 35
 BIN ('BUSY', False, False) : 0
 BIN ('FULL', True, True) : 0
 BIN ('FULL', True, False) : 12


Master Cross:

(STATE, VALID, READY)

top.st_sig.mcross : <cocotb_coverage.coverage.CoverCross object at 0x103276350>, coverage=6, size=12
 BIN ('EMPTY', True, True) : 0
 BIN ('EMPTY', False, True) : 485
 BIN ('EMPTY', False, False) : 237
 BIN ('BUSY', True, True) : 67
 BIN ('BUSY', True, True) : 67
 BIN ('BUSY', False, True) : 0
 BIN ('BUSY', False, True) : 0
 BIN ('FULL', True, True) : 47
 BIN ('FULL', True, False) : 94
 BIN ('FULL', False, False) : 0
 BIN ('FULL', False, False) : 0

- Some of these cross values should not be achieved:
 - s00_axis_tready never 0 in EMPTY
 - m00_axis_tvalid never 0 in FULL

m00 axis tvalid <= 1;

54 55

57

59

60

61

62

63

64

69

70

71

72

73

74

75

76

77

78

79

80

end

end

endcase

end

end

default: begin

state <= EMPT9;</pre>

Result

Should Not Occur:

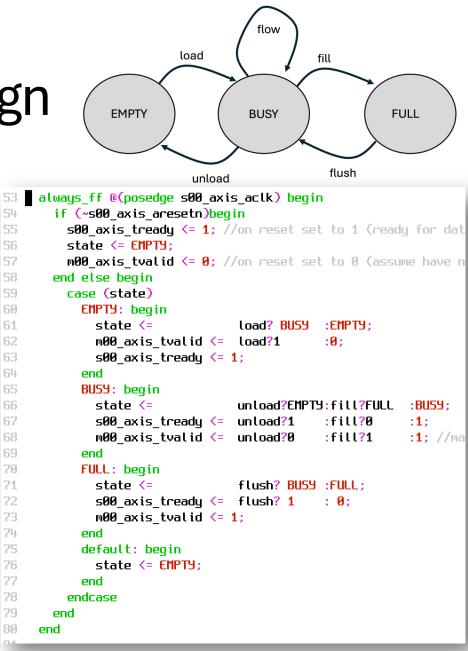
Slave Cross:

s00 axis tready never 0 in EMPTY m00 axis tvalid never 0 in FULL

(STATE, VALID, READY)

top.st sig.scross : <cocotb coverage.coverage.CoverCross object at 0x103275810>, coverage=6, size=12 🔽 BIN ('EMPTY', True, True) : 11 🚫 BIN ('EMPTY', True, False) : 0 🔽 BIN ('EMPTY', False, True) : 711 🚫 BIN ('EMPTY', False, False) : 0 🔽 BIN ('BUSY', True, True) : 103 🔽 BIN ('BUSY', True, False) : 0 BIN ('BUSY', False, True) : 35 🔽 BIN ('BUSY', False, False) : 0 BIN ('FULL', True, True) : 0 BIN ('FULL', True, False) : 129 🔽 BIN ('FULL', False, True) : 0 II BIN ('FULL', False, False) : 12

wtf


Master Cross:

(STATE, VALID, READY)

top.st sig.mcross : <cocotb coverage.coverage.CoverCross object at 0x103276350>, coverage=6, size=12 BIN ('EMPTY', True, True) : 0 BIN ('EMPTY', True, False) : 0 BIN ('EMPTY', False, True) : 485 BIN ('EMPTY', False, False) : 237 BIN ('BUSY', True, True) : 67 BIN ('BUSY', True, False) : 71 BIN ('BUSY', False, True) : 0 BIN ('BUSY', False, False) : 0 BIN ('FULL', True, True) : 47 BIN ('FULL', True, False) : 94 BIN ('FULL', False, True) : 0 BIN ('FULL', False, False) : 0

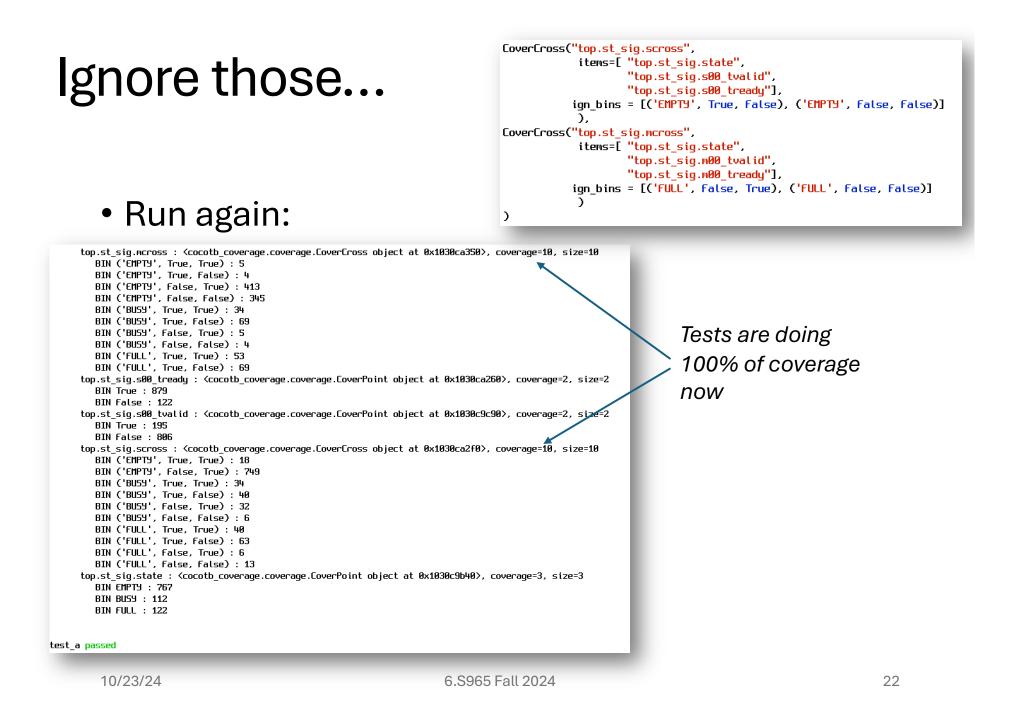
Look at our design

- Some of these cross values should not be achieved :
 - s00_axis_tready never 0
 when was EMPTY
 - m00_axis_tvalid never 0
 when was FULL

Should these be achievable?

Legit/Might Occur: Should Not Occur:

(OLD STATE, VALID, READY)


Slave Cross:

top.st_sig.scross : <cocotb_coverage.coverage.CoverCross object at 0x105555810>, coverage=10, size=12 V BIN ('EMPTY', True, True) : 15 🚫 BIN ('EMPTY', True, False) : 0🔨 🔽 BIN ('EMPTY', False, True) : 815 🚫 BIN ('EMPTY', False, False) : 0 ┥ 🔽 BIN ('BUSY', True, True) : 23 If I was previously EMPTY 🔽 BIN ('BUSY', True, False) : 29 there's no way READY would 🔽 BIN ('BUSY', False, True) : 18 🔽 BIN ('BUSY', False, False) : 4 be 0 now 🗸 BIN ('FULL', True, True) : 29 🗸 BIN ('FULL'. True. False) : 53 🗹 BIN ('FULL', False, True) : 4 🗹 BIN ('FULL', False, False) : 11

Master Cross:

(OLD_STATE, VALID, READY)

top.st_sig.mcross : <cocoth_coverage.coverage.CoverCross object at 0x105556350>, coverage=10, size=12
V BIN ('EMPT9', True, True) : 7
BIN ('EMPT9', False, True) : 740
BIN ('EMPT9', False, False) : 82
BIN ('BUS9', True, True) : 20
BIN ('BUS9', True, False) : 46
BIN ('BUS9', False, True) : 3
BIN ('BUS9', False, True) : 3
BIN ('BUS9', False, False) : 5
BIN ('FULL', True, True) : 40
BIN ('FULL', True, False) : 57
BIN ('FULL', False, True) : 0
BIN ('FULL', False, False) : 6
BIN ('FULL', Fals

Another Big Issue

- AXI is about more than just the value at any point in time.
- As pointed out in class on Monday, AXI as a protocol has rules and those are rules are inherently stateful.
- Just throwing random values at the busses with no regard for history/meaning could be wrong:
 - Giving it illegal values
 - Wasting cycles testing stuff that shouldn't be tested

Generalized Transaction

- All Channel Interactions follow same high-level structure
- Data is handed off IF AND ONLY IF VALID and READY are high on the rising edge of the clock
- If that happens, both parties must realize that data transfer has happened

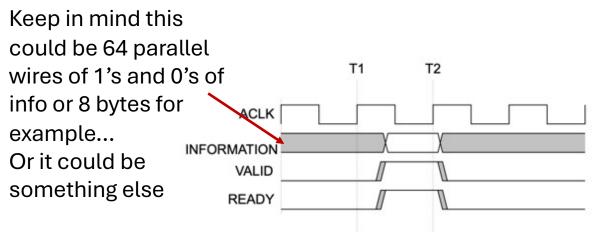


Figure A3-4 VALID with READY handshake

VALID then READY

- Valid can be high first
- Then ready can show up later
- Only when both are high is data exchanged

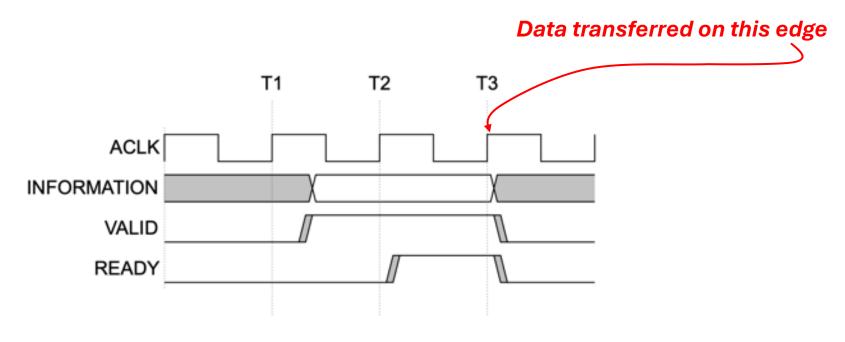


Figure A3-2 VALID before READY handshake

READY then VALID

- Ready can be high first
- Then Valid can show up later
- Only when both are high is data exchanged

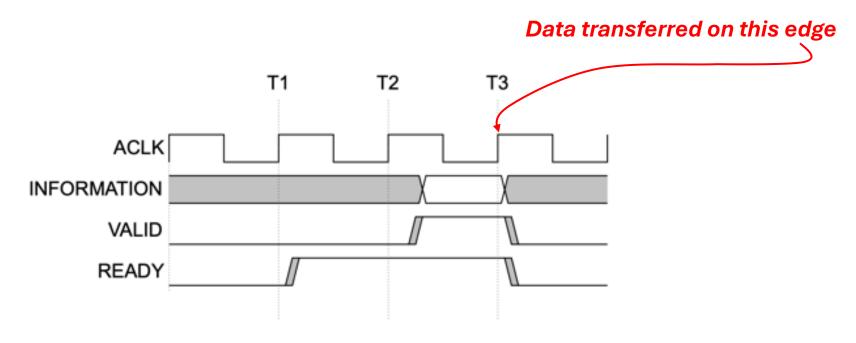
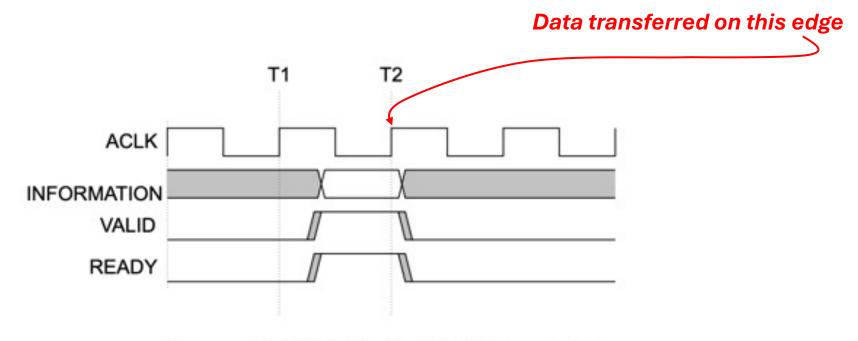



Figure A3-3 READY before VALID handshake

https://fpga.mit.edu/6205/F24

READY WITH VALID

- Ready and Valid come high at the same time
- Totally allowed
- Data is exchanged on that clock edge

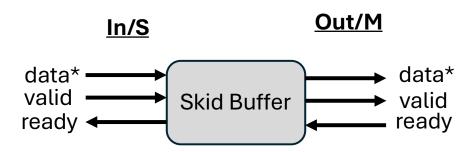
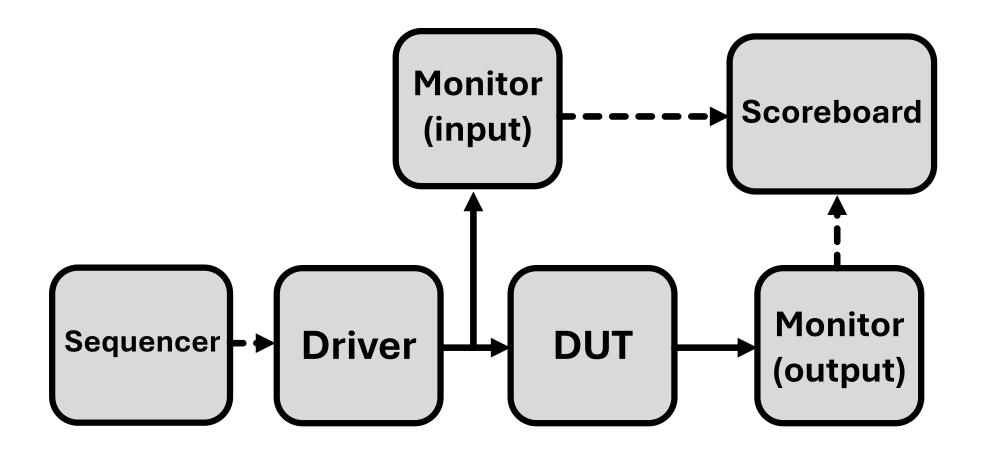
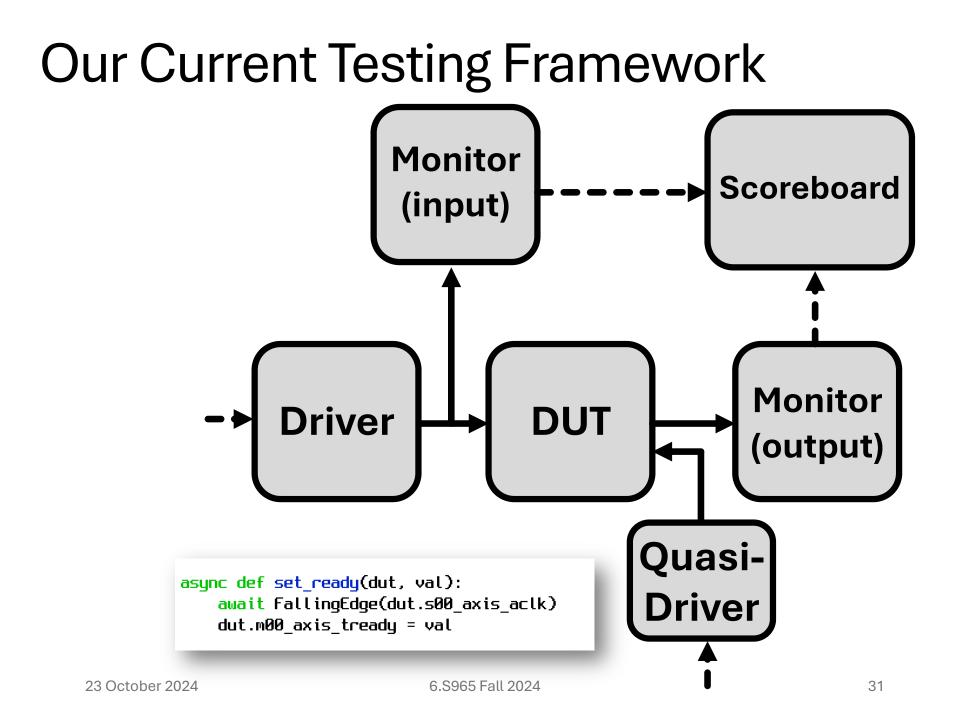


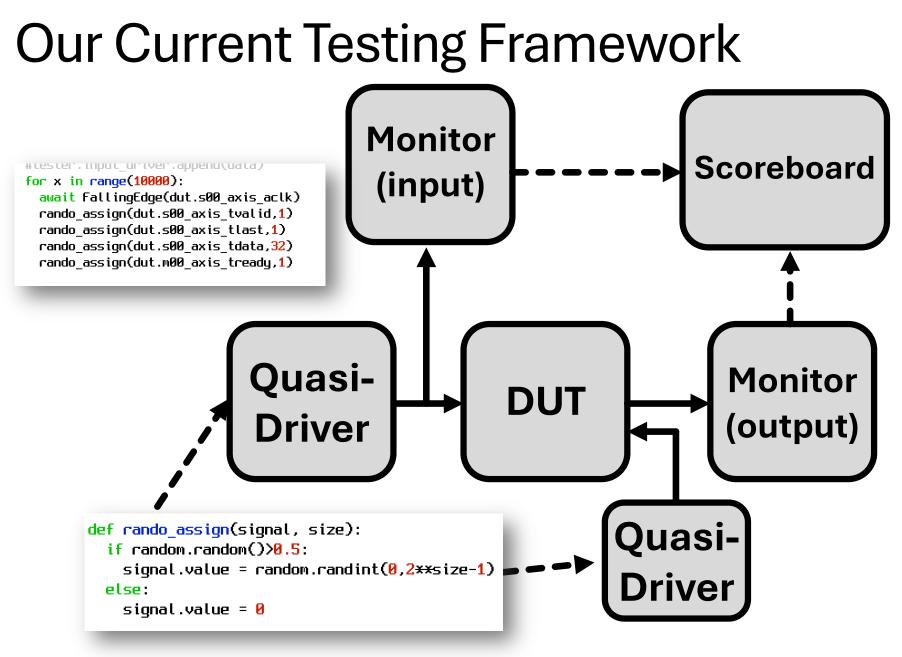
Figure A3-4 VALID with READY handshake


https://fpga.mit.edu/6205/F24

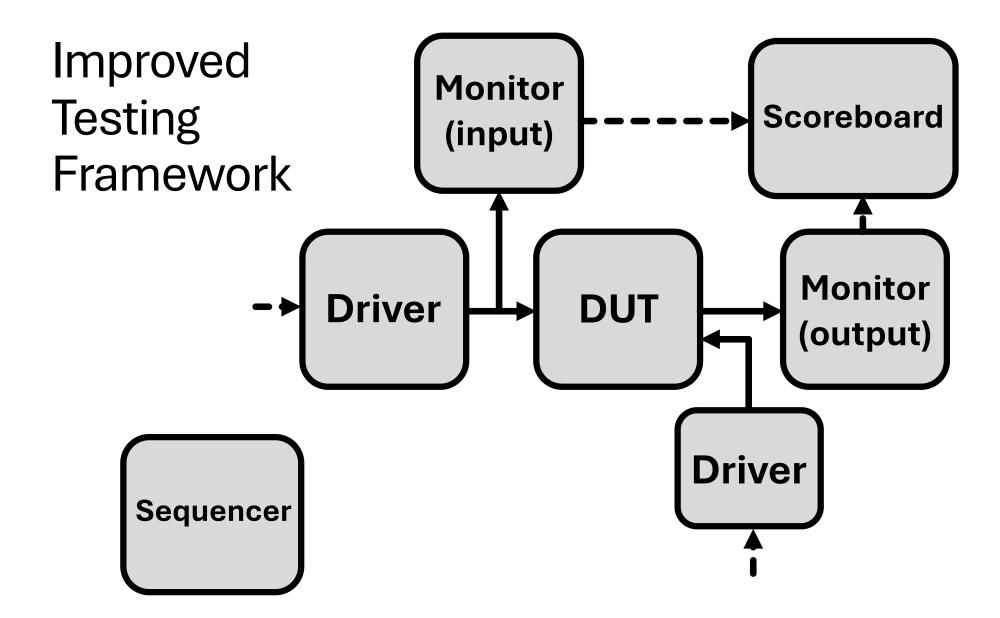

IMPORTANT

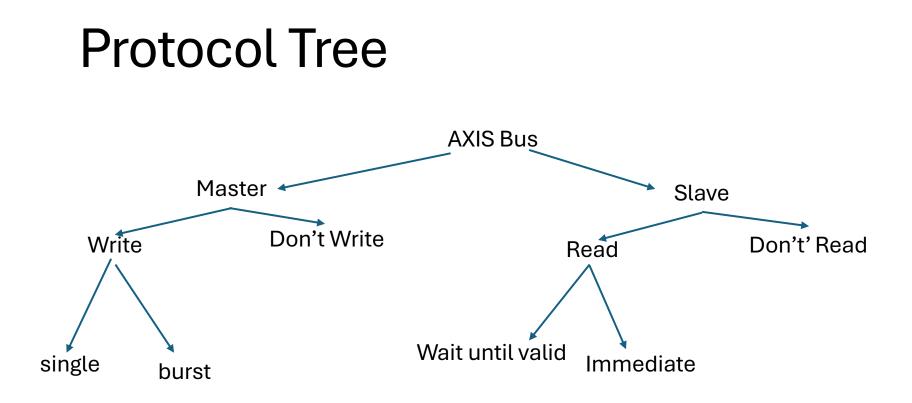
- the VALID signal of the AXI interface sending information *must not be dependent* on the READY signal of the AXI interface receiving that information
 - an AXI interface that is receiving information *may* wait until it detects a **VALID** signal before it asserts its corresponding **READY** signal.
 - In other words **READY** can depend on **VALID**, but not the other way around.
- Once **VALID** is asserted, it cannot be deasserted until **READY** has also been asserted for at least one cycle

Standard Testing Framework


Right now...

 Kind just fudging the ready signal, but really we should try to more intelligently probe this thing @cocotb.test()
async def test_a(dut):
 """cocotb test for averager controller"""


```
tester = SBTester(dut)
tester.start()
cocotb.start_soon(Clock(dut.s00_axis_aclk, 10, units="ns").start())
cocotb.start_soon(state_monitor(dut))
cocotb.start_soon(sts_monitor(dut))
await set_ready(dut,1)
await reset(dut.s00_axis_aclk, dut.s00_axis_aresetn,2,0)
```


feed the driver: for i in range(50): data = {'type':'single', "contents":{"data": random.randint(1,255),"last": tester.input_driver.append(data) #data = {'type':'burst', "contents":{"data": np.array(20*[0]+[1]+30*[0]+[-2] data = {'type':'burst', "contents":{"data": np.array(list(range(100)))}} tester.input_driver.append(data) await ClockCycles(dut.s00_axis_aclk, 50) await set_ready(dut,0) await set_ready(dut,0) await set_ready(dut,1) await ClockCycles(dut.s00_axis_aclk, 10) await set_ready(dut,0) await set_ready(dut,0) await set_ready(dut,0) await set_ready(dut,0) await set_ready(dut,1)

await ClockCycles(dut.s00_axis_aclk, 300)

What we'd really like is something to coordinate

So let's maybe rewrite our Driver

• Driver can now be for a Master or a Slave

```
class RXISDriver(BusDriver):
    def __init__(self, dut, name, clk,type='M'):
        self._signals = ['axis_tvalid', 'axis_tready', 'axis_tlast', 'axis_tdata', 'axis_tstrb']
        BusDriver.__init__(self, dut, name, clk)
        self.clock = clk
        self.type = type
        if self.type=="M": #set data, strb, last and valid)
        self.bus.axis_tdata.value = 0
        self.bus.axis_ttata.value = 0
        self.bus.axis_tstrb.value = 0
        self.bus.axis_tlast.value = 0
        self.bus.axis_tvalid.value = 0
        else: #must be slave (only set ready)
        self.bus.axis_tready.value = 0
```

Add an output_driver to our Tester class

```
class SBTester:
    .....
    Checker of a Skid Buffer instance
    Args
      dut_entity: handle to an instance of skid_buffer
    .....
    def init (self, dut entity: SimHandleBase, debug=False):
        self.dut = dut entity
        self.log = logging.getLogger("cocotb.tb")
        self.log.setLevel(logging.DEBUG)
        self.input mon = AXISMonitor(self.dut,'s00',self.dut.s00 axis aclk, callback=self.model)
        self.output mon = AXISMonitor(self.dut,'m00',self.dut.s00 axis aclk)
        self.input driver = AXISDriver(self.dut,'s00',self.dut.s00 axis aclk,tupe='M')
        self.output driver = AXISDriver(self.dut,'m00',self.dut.s00 axis aclk,tupe='5')
        self. checker = None
        self.calcs sent = 0
        # Create a scoreboard on the stream out bus
        self.expected output = [] #contains list of expected outputs (Growing)
        self.scoreboard = Scoreboard(self.dut,fail immediately=False)
        self.scoreboard.add interface(self.output mon, self.expected output)
```

Now feed in random, legal transactions to both the valid and readv side

```
async def test a(dut):
  """cocotb test for averager controller""
  tester = SBTester(dut)
  tester.start()
  cocotb.start soon(Clock(dut.s00 axis aclk, 10, units="ns").start())
  cocotb.start soon(state monitor(dut))
  cocotb.start soon(sts monitor(dut))
  cocotb.start soon(os monitor(dut))
  #await set ready(dut,1)
  await reset(dut.s00 axis aclk, dut.s00 axis aresetn,2,0)
  #feed the M driver:
  for i in range(100):
   wtype = 'write' if random.random()<0.5 else 'no write'</pre>
    duration = random.randint(0,100)
    tlast = random.random()>0.5
    length = random.randint(1,10)
    data = [random.randint(0,65535) for i in range(length)]
    w data = {'type':wtype, "duration":duration, "contents":{"data": data},"tlast":tlast}
    tester.input driver.append(w data)
  for i in range(1000):
    rtupe = 'read' if random.random()<0.5 else 'no read'</pre>
    immediate = random.random()<0.5</pre>
    duration = random.randint(0,2)
    wait duration = random.randint(0,3)
    r_data = {'type':rtype, "immediate": immediate, "wait_duration":wait_duration, "duration":duration}
    tester.output driver.append(r data)
  data = {'type':'read', "immediate": True, "wait duration":0, "duration":500} #just to empty it
  tester.output driver.append(data)
```

Make a New "higher level" Cover section

- This one will track cycle-to-cycle transitions of the valid and ready signals on both ports
- No reason to combine the two ports really...there's nothing about the spec anyways

```
CoverPoint("top.os.s00 tvalid",
            xf=lambda sig: sig.get('s00 tvalid'),
            bins=['V:0->0', 'V:0->1', 'V:1->0', 'V:1->1']
             ).
CoverPoint("top.os.s00 tready",
            xf=lambda sig: sig.get('s00 tready'),
            bins=['R:0->0', 'R:0->1', 'R:1->0', 'R:1->1']
             ),
CoverPoint("top.os.m00 tvalid",
            xf=lambda sig: sig.get('m00 tvalid'),
            bins=['V:0->0', 'V:0->1', 'V:1->0', 'V:1->1']
             ),
CoverPoint("top.os.m00 tready",
            xf=lambda sig: sig.get('m00 tready'),
            bins=['R:0->0', 'R:0->1', 'R:1->0', 'R:1->1']
            Э.
CoverCross("top.os.s cross",
            items=[ "top.os.s00 tvalid",
                     "top.os.s00 tready"]
            Э.
CoverCross("top.os.m cross",
            items=[ "top.os.m00 tvalid",
                     "top.os.m00 tready"]
            )
)
```

Make support functions

• Track and Label transitions of all four signals over time.

```
async def os monitor(dut):
 read only = ReadOnly()
  falling edge = FallingEdge(dut.s00 axis aclk)
 rising edge = RisingEdge(dut.s00 axis aclk)
  await read only
 olds = get rv(dut)
  while True:
    await falling edge #when module would change
    await read only
    news = get rv(dut)
    siq = {}
    for i in ['s00 tvalid','s00 tready','m00 tvalid','m00 tready']:
      if 'v' in i:
       sig[i] = 'V:'+match(olds[i],news[i])
      else:
        sig[i] = 'R:'+match(olds[i],news[i])
    os sampling function(sig)
    olds = news # remember for future compare
```

```
def match(old,new):
    outstr = ''
    if old:
        outstr+='1'
    else:
        outstr+='0'
    outstr += '->'
    if new:
        outstr+='1'
    else:
        outstr+='1'
    return outstr
```

def get_rv(dut):

Run it

▶ ▶ ₩ I← →I └─ O Ħ ⊑	しつ ひ		
C_M00_AXIS_TDATA_WIDTH	(00000020		
 C_S00_AXIS_TDATA_WIDTH	(00000020		
lata_buffer_wren			
lata_out_wren			
u			
low			000 00
ush			
isert			
ad			
nload			
se_buffered_data			
emove			
100_axis_aclk			
100_axis_aresetn			
n00_axis_tdata [31:0]	3	7 🛛 🗶 3 🗶 1 🗶 44714 🗶 61898	8 33027
n00_axis_tlast			
n00_axis_tvalid			
n00_axis_tready			
n00_axis_tstrb [3:0]	(f		
00_axis_aclk			
00_axis_aresetn			
00_axis_tdata [31:0]	3	3 1 44714 61898	8 33027
00_axis_tvalid			
00_axis_tready			
tate [31:0]			XXX0 XXX0
00_axis_tlast			
00_axis_tstrb [3:0]	(f		
data_buffer [31:0]	(1) (X) 5465 (X) () (X) 39875 (X)) (X) 38049 (28976 (49) 1653 (X) (X) 7677	7 39452	
last_buffer			
strb_buffer [3:0]	(f		

10/23/24

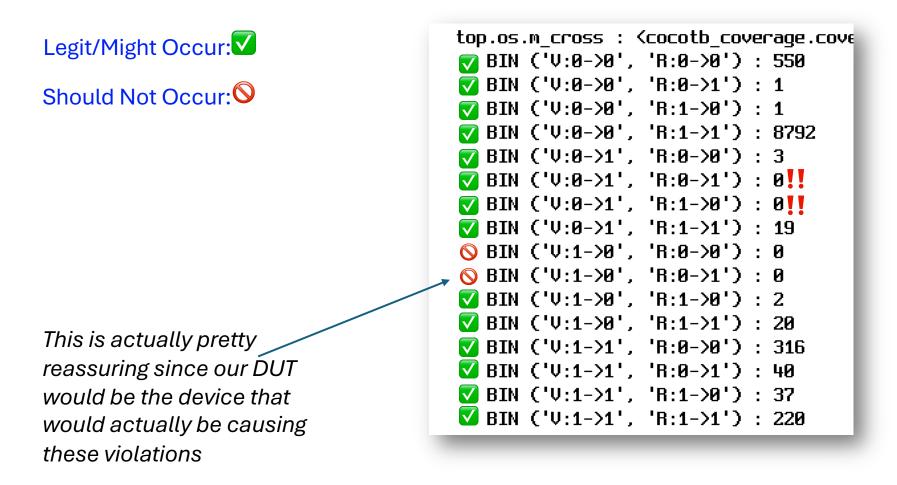
Run it and you get...

top.os.s_cross : <cocotb_coverage.coverage.covercross 0x1068863b0="" at="" object="">, coverage=10, size=16</cocotb_coverage.coverage.covercross>
BIN ('V:0->0', 'R:0->0') : 10
BIN ('V:0->0', 'R:0->1') : 3
BIN ('V:0->0', 'R:1->0') : 0
BIN ('V:0->0', 'R:1->1') : 9372
BIN ('V:0->1', 'R:0->0') : 0
BIN ('V:0->1', 'R:0->1') : 0
BIN ('V:0->1', 'R:1->0') : 0
BIN ('V:0->1', 'R:1->1') : 22
BIN ('V:1->0', 'R:0->0') : 0
BIN ('V:1->0', 'R:0->1') : 0
BIN ('V:1->0', 'R:1->0') : 3
BIN ('V:1->0', 'R:1->1') : 19
BIN ('V:1->1', 'R:0->0') : 280
BIN ('V:1->1', 'R:0->1') : 35
BIN ('V:1->1', 'R:1->0') : 35
BIN ('V:1->1', 'R:1->1') : 222
top.os.m_cross : <cocotb_coverage.coverage.covercross 0x106886710="" at="" object="">, coverage=12, size=16</cocotb_coverage.coverage.covercross>
BIN ('V:0->0', 'R:0->0') : 550
BIN ('U:0->0', 'R:0->0') : 550 BIN ('U:0->0', 'R:0->1') : 1
BIN ('V:0->0', 'R:0->0') : 550 BIN ('V:0->0', 'R:0->1') : 1 BIN ('V:0->0', 'R:1->0') : 1
BIN ('V:0->0', 'R:0->0') : 550 BIN ('V:0->0', 'R:0->1') : 1 BIN ('V:0->0', 'R:1->0') : 1 BIN ('V:0->0', 'R:1->1') : 8792
BIN ('V:0->0', 'R:0->0') : 550 BIN ('V:0->0', 'R:0->1') : 1 BIN ('V:0->0', 'R:1->0') : 1 BIN ('V:0->0', 'R:1->1') : 8792 BIN ('V:0->1', 'R:0->0') : 3
BIN ('V:0->0', 'R:0->0') : 550 BIN ('V:0->0', 'R:0->1') : 1 BIN ('V:0->0', 'R:1->0') : 1 BIN ('V:0->0', 'R:1->1') : 8792 BIN ('V:0->1', 'R:0->0') : 3 BIN ('V:0->1', 'R:0->1') : 0
BIN ('V:0->0', 'R:0->0') : 550 BIN ('V:0->0', 'R:0->1') : 1 BIN ('V:0->0', 'R:1->0') : 1 BIN ('V:0->0', 'R:1->1') : 8792 BIN ('V:0->1', 'R:0->0') : 3 BIN ('V:0->1', 'R:0->1') : 0 BIN ('V:0->1', 'R:1->0') : 0
BIN ('V:0->0', 'R:0->0') : 550 BIN ('V:0->0', 'R:0->1') : 1 BIN ('V:0->0', 'R:1->0') : 1 BIN ('V:0->0', 'R:1->1') : 8792 BIN ('V:0->1', 'R:0->0') : 3 BIN ('V:0->1', 'R:0->1') : 0 BIN ('V:0->1', 'R:1->0') : 0 BIN ('V:0->1', 'R:1->1') : 19
BIN ('V:0->0', 'R:0->0') : 550 BIN ('V:0->0', 'R:0->1') : 1 BIN ('V:0->0', 'R:1->0') : 1 BIN ('V:0->0', 'R:1->1') : 8792 BIN ('V:0->1', 'R:0->0') : 3 BIN ('V:0->1', 'R:0->1') : 0 BIN ('V:0->1', 'R:1->1') : 0 BIN ('V:0->1', 'R:1->1') : 19 BIN ('V:0->1', 'R:0->0') : 0
BIN ('V:0->0', 'R:0->0') : 550 BIN ('V:0->0', 'R:0->1') : 1 BIN ('V:0->0', 'R:1->0') : 1 BIN ('V:0->0', 'R:1->1') : 8792 BIN ('V:0->1', 'R:0->0') : 3 BIN ('V:0->1', 'R:0->1') : 0 BIN ('V:0->1', 'R:1->0') : 0 BIN ('V:0->1', 'R:1->1') : 19 BIN ('V:1->0', 'R:0->0') : 0 BIN ('V:1->0', 'R:0->1') : 0
BIN ('V:0->0', 'R:0->0') : 550 BIN ('V:0->0', 'R:0->1') : 1 BIN ('V:0->0', 'R:1->0') : 1 BIN ('V:0->0', 'R:1->1') : 8792 BIN ('V:0->1', 'R:0->0') : 3 BIN ('V:0->1', 'R:0->1') : 0 BIN ('V:0->1', 'R:1->0') : 0 BIN ('V:0->1', 'R:1->1') : 19 BIN ('V:1->0', 'R:0->0') : 0 BIN ('V:1->0', 'R:0->1') : 0 BIN ('V:1->0', 'R:0->1') : 0 BIN ('V:1->0', 'R:0->1') : 2
BIN (¹ U:0->0', 'R:0->0'): 550 BIN (¹ U:0->0', 'R:0->1'): 1 BIN (¹ U:0->0', 'R:1->0'): 1 BIN (¹ U:0->0', 'R:1->1'): 8792 BIN (¹ U:0->1', 'R:0->0'): 3 BIN (¹ U:0->1', 'R:0->1'): 0 BIN (¹ U:0->1', 'R:1->1'): 0 BIN (¹ U:0->1', 'R:1->1'): 19 BIN (¹ U:1->0', 'R:1->1'): 0 BIN (¹ U:1->0', 'R:0->1'): 0 BIN (¹ U:1->0', 'R:1->1'): 2 BIN (¹ U:1->0', 'R:1->1'): 20
BIN (¹ U:0->0', 'R:0->0'): 550 BIN (¹ U:0->0', 'R:0->1'): 1 BIN (¹ U:0->0', 'R:1->0'): 1 BIN (¹ U:0->0', 'R:1->1'): 8792 BIN (¹ U:0->1', 'R:0->0'): 3 BIN (¹ U:0->1', 'R:0->1'): 0 BIN (¹ U:0->1', 'R:1->0'): 0 BIN (¹ U:0->1', 'R:1->1'): 19 BIN (¹ U:1->0', 'R:0->1'): 0 BIN (¹ U:1->0', 'R:0->1'): 0 BIN (¹ U:1->0', 'R:0->1'): 2 BIN (¹ U:1->0', 'R:1->1'): 20 BIN (¹ U:1->1', 'R:0->0'): 316
BIN (¹ U:0->0', 'R:0->0'): 550 BIN (¹ U:0->0', 'R:0->1'): 1 BIN (¹ U:0->0', 'R:1->0'): 1 BIN (¹ U:0->0', 'R:1->1'): 8792 BIN (¹ U:0->1', 'R:0->0'): 3 BIN (¹ U:0->1', 'R:1->0'): 0 BIN (¹ U:0->1', 'R:1->1'): 19 BIN (¹ U:0->1', 'R:1->1'): 19 BIN (¹ U:1->0', 'R:0->0'): 0 BIN (¹ U:1->0', 'R:0->1'): 0 BIN (¹ U:1->0', 'R:0->1'): 2 BIN (¹ U:1->0', 'R:0->1'): 2 BIN (¹ U:1->0', 'R:0->1'): 20 BIN (¹ U:1->1', 'R:0->1'): 316 BIN (¹ U:1->1', 'R:0->1'): 40
BIN (¹ U:0->0', 'R:0->0'): 550 BIN (¹ U:0->0', 'R:0->1'): 1 BIN (¹ U:0->0', 'R:1->0'): 1 BIN (¹ U:0->0', 'R:1->1'): 8792 BIN (¹ U:0->1', 'R:0->0'): 3 BIN (¹ U:0->1', 'R:0->1'): 0 BIN (¹ U:0->1', 'R:1->0'): 0 BIN (¹ U:0->1', 'R:1->1'): 19 BIN (¹ U:1->0', 'R:0->1'): 0 BIN (¹ U:1->0', 'R:0->1'): 0 BIN (¹ U:1->0', 'R:0->1'): 2 BIN (¹ U:1->0', 'R:1->1'): 20 BIN (¹ U:1->1', 'R:0->0'): 316

6.S965 Fall 2024

Let's Consider Slave Side

Legit/Might Occur:	top.os.s_cross : <cocotb_coverage.cove ▼ BIN ('V:0->0', 'R:0->0') : 10</cocotb_coverage.cove
Should Not Occur:	<pre>✓ BIN ('V:0->0', 'R:0->1') : 3</pre> ✓ BIN ('V:0->0', 'R:1->0') : 0 ✓ BIN ('V:0->0', 'R:1->1') : 9372
	<pre>✓ BIN ('V:0->1', 'R:0->0') : 0</pre> ✓ BIN ('V:0->1', 'R:0->1') : 0
	<pre>✓ BIN ('V:0->1', 'R:1->0') : 0 ✓ BIN ('V:0->1', 'R:1->1') : 22 ♦ BIN ('V:1->0', 'R:0->0') : 0</pre>
Both these are situations where	<pre> Solution Set ('V:1->0', 'R:0->1') : 0 Solution BIN ('V:1->0', 'R:1->0') : 3 Solution BIN ('V:1->0', 'R:1->1') : 19 </pre>
the Valid is de- asserting before a	✓ BIN ('V:1->1', 'R:0->0') : 280 ✓ BIN ('V:1->1', 'R:0->1') : 35
handshake occurred	<pre>✓ BIN ('V:1->1', 'R:1->0') : 35</pre> ✓ BIN ('V:1->1', 'R:1->1') : 222


So what should we be concerned about?

Legit/Might Occur:

Should Not Occur:

top.os.s_cross : <cocotb_coverage.cove< th=""></cocotb_coverage.cove<>
☑ BIN ('V:0->0', 'R:0->0') : 10
☑ BIN ('V:0->0', 'R:0->1') : 3
☑ BIN ('V:0->0', 'R:1->0') : 0 👖
▼ BIN ('V:0->0', 'R:1->1') : 9372
▼BIN ('V:0->1', 'R:0->0') : 0 !!
☑ BIN ('V:0->1', 'R:0->1') : 0 👖
☑ BIN ('V:0->1', 'R:1->0') : 0 👖
▼ BIN ('V:0->1', 'R:1->1') : 22
⊗ BIN ('V:1->0', 'R:0->0') : 0
⊗ BIN ('V:1->0', 'R:0->1') : 0
☑ BIN ('V:1->0', 'R:1->0') : 3
▼BIN ('V:1->0', 'R:1->1') : 19
▼ BIN ('V:1->1', 'R:0->0') : 280
▼BIN ('V:1->1', 'R:0->1') : 35
▼BIN ('V:1->1', 'R:1->0') : 35
▼ BIN ('V:1->1', 'R:1->1') : 222

Similarly on Master Side:

Conclusions?

So probably more read toggling in our testbench would be good to be honest.

ton.os.s cross : «	<pre><cocotb_coverage.cove< pre=""></cocotb_coverage.cove<></pre>	top.os.m_cross : <cocotb_coverage.cove< th=""></cocotb_coverage.cove<>
▼ BIN ('V:0->0',		▼ BIN ('V:0->0' <mark>, 'R:0->0') : 55</mark> 0
V BIN ('V:0->0',		✓ BIN ('V:0->0', 'R:0->1') : 1
V BIN ('V:0->0',		✓ BIN ('V:0->0' <mark>, 'R:1->0') : 1</mark>
▼ BIN ('V:0->0',		▼ BIN ('V:0->0', 'R:1->1') : 8792
▼ BIN ('V:0->1',		✓ BIN ('V:0->1', 'R:0->0') : 3
▼ BIN ('V:0->1',	'R:0->1') : 0 !!	☑ BIN ('V:0->1' <mark>, 'R:0->1') : 0</mark>
▼ BIN ('V:0->1',	'R:1->0') : 0 !!	☑ BIN ('V:0->1' <mark>, 'R:1->0') : 0</mark> !
▼ BIN ('V:0->1',	'R:1->1') : 22	▼ BIN ('V:0->1', 'R:1->1') : 19
Ŏ BIN ('V:1->0',	'R:0->0') : 0	◇ BIN ('V:1->0', 'R:0->0') : 0
⊗ BIN ('V:1->0',	'R:0->1') : 0	◎ BIN ('V:1->0', 'R:0->1') : 0
V BIN ('V:1-≻0',	'R:1->0') : 3	✓ BIN ('V:1->0', 'R:1->0') : 2
🔽 BIN ('V:1->0',	'R:1->1') : 19	▼ BIN ('V:1->0', 'R:1->1') : 20
▼ BIN ('V:1->1',	'R:0->0') : 280	☑ BIN ('V:1->1', 'R:0->0') : 316
🔽 BIN ('V:1->1',	'R:0->1') : 35	☑ BIN ('V:1->1', 'R:0->1') : 40
V BIN ('V:1->1',	'R:1->0') : 35	☑ BIN ('V:1->1', 'R:1->0') : 37
▼ BIN ('V:1->1',	'R:1->1') : 222	☑ BIN ('V:1->1', 'R:1->1') : 220