
6.S965
Digital Systems Laboratory II

Lecture 11

10/21/24 6.S965 Fall 2024 1

Administrative Stuff

• Last week of stuff (week 6) content was released
Friday
• Try to do by the end of the week.
• No idea why the RFSoC samples at half the

specified rate.
• Anybody figure that out they’ll get three US Dollars

• I’m going through projects and things now. Sorry
6.205 delayed me. Feel free to also reach
out/post ideas on Piazza if you are looking for a
team

10/21/24 6.S965 Fall 2024 2

Coverage
What is it? What does it mean?

10/21/24 6.S965 Fall 2024 3

Coverage

• Is concerned
with how
much have
you tested a
DUT

10/21/24 6.S965 Fall 2024 4

Some n-dimensional blob of possible module existence

tests=

The issue…

• Consider a device that adds two 32 bit numbers.

• There are 1.84×10!" input possibilities, each
with a correct output.
• If you verified 1 billion input/output

combinations per second it would take ~600
years to fully verify the design
• And this is just a simple adder…

10/21/24 6.S965 Fall 2024 5

32

32

33

+
a

b
c

And this gets astronomically worse as
modules get more complicated
• …especially as they get more stateful
• …and with more inputs
• …and with multiple sets of ports and things

10/21/24 6.S965 Fall 2024 6

Can anything ever be fully
covered?
• Some modules should be able to be almost fully

covered
• Others maybe not, so you have to structure what

you’re looking for and zero in on important edge
cases like:
• Max/min values, edge cases, overflow cases,

10/21/24 6.S965 Fall 2024 7

What do you ”cover”?

• If a module has clearly defined states, you
should check to see those
• Maybe check to see how those states transition?
• Maybe check to see different sequences of input

and/or output signals
• Check certain output signals against input

signals
• Check sequences of inputs

10/21/24 6.S965 Fall 2024 8

Coverage is not necessarily about
the verification of correct results
• I mean it is an adjacent topic
• But really the notion of coverage is meant to say
how much was tested…with the assumption that
it tested correctly.

• It is also about exploring what/where your design
can get to and can’t get to.

10/21/24 6.S965 Fall 2024 9

So let’s look at an example…

• We’ll revisit the issue of TREADY propagation and
build a module to handle that properly.

• This plagued some people in earlier weeks.

10/21/24 6.S965 Fall 2024 10

Week 4 Split-Square-Sum

• Any Problems?

10/21/24 6.S965 Fall 2024 11

Add into a feedback path or
something…

10/21/24 6.S965 Fall 2024 12

Combinational loop

Actually we should do

• Add a register
on the TREADY
pipe

• Any problems
with this?

10/21/24 6.S965 Fall 2024 13

Delaying TREADY

• Delaying the ability to convey a halt (via TREADY)
to any upstream device means that there’s a
delay in stopping that data.
• It has to go somewhere/get absorbed

somewhere
• Need a buffer/some sort of very short-form fifo
• You’ll hear these called “skid buffers” or “Carloni

Buffers”

10/21/24 6.S965 Fall 2024 14

https://ptolemy.berkeley.edu/projects/embedded/research/hsc/class.F02/ee249/lectures/lipClass.pdf

What is a Skid Buffer?

• A device that “eats”/temporarily holds data in
the event of the data pipeline having to suddenly
slam on the brakes.
• Therefore the system “skids” to a halt.

10/21/24 6.S965 Fall 2024 15

More complicated than that
• Need something that

will selectively let
data through or store
it based on output

10/21/24 6.S965 Fall 2024 16

Nice Writeup

• Kind of an old-school FPGA writeup of a skid
buffer found here:

https://fpgacpu.ca/fpga/Pipeline_Skid_Buffer.html

• I wrote my own version based on this discussion.
I put up with lecture page for reference.

10/21/24 6.S965 Fall 2024 17

Simple FSM logic

• Three-state FSM can take care of this

10/21/24 6.S965 Fall 2024 18

https://fpgacpu.ca/fpga/Pipeline_Skid_Buffer.html

Example: Skid
Buffer

10/21/24 6.S965 Fall 2024 19

EMPTY BUSY FULL

unload

load

flush

fill

flow

Skid Buffer
ready
valid
data*

ready
valid
data*

In/S Out/M

10/21/24 6.S965 Fall 2024 20

https://fpgacpu.ca/fpga/Pipeline_Skid_Buffer.html

Skid Buffer

10/21/24 6.S965 Fall 2024 21

• BUSY is normal operation where data is coming
in and out.
• If there’s a hiccup on the output side, go to FULL

and stall pipeline (s00_tready -> 0)
• If there’s a hiccup on the input side, go to EMPTY

and stall pipeline (m00_tvalid -> 0)

Skid Buffer
ready
valid
data*

ready
valid
data*

In/S Out/M

Skid Buffer

This simple FSM description…glossed over
the potential complexity of the
implementation: 3 states, each connected to
2 signals (valid/ready) per interface, for a
total of 16 possible transitions out of each
state, or 48 possible state transitions total.

10/21/24 6.S965 Fall 2024 22

Cocotb Coverage

10/21/24 6.S965 Fall 2024 23

Another library with ok docs and
source code

10/21/24 6.S965 Fall 2024 24

Cocotb_coverage

• Let’s first focus on how we could measure the
states that our system exists in?
• This thing has a very clearly defined state

machine design and only certain states will
connect to certain states

10/21/24 6.S965 Fall 2024 25

First step is to define some
coverage that we care about
• Let’s look at current state of our fsm and

next/upcoming state of our FSM

10/21/24 6.S965 Fall 2024 26

CoverPoint

10/21/24 6.S965 Fall 2024 27

• Object thar represents coverage. Concerned with a
signal or combination of signals or state of being.
• Has a name (which you organize in a hierarchical

fashion)
• Is used with a function you define
• Qualifies the inputs as one of the values specified in

its bins argument

CoverCross

•

10/21/24 6.S965 Fall 2024 28

• CoverCross generates the Cartesian Product of
multiple CoverPoints
• The CoverCross shown here will have how many

possible bins?

• 9

Coverage_section
• Is another object that

represents a collection
of coverpoints (and any
related crosses)

• The idea is to
hierarchically organize
the things you care
about

10/21/24 6.S965 Fall 2024 29

Must Sample/interface with the
actual DUT
• Write a sampling

function (just a
passthrough here)
• That is then called

repeatedly in a
monitor that is
studying the
state/next state on
the rising clock
edge

10/21/24 6.S965 Fall 2024 30

Decorator links to coverage_section by
name…this is the function that is used by the
cover points for analysis

Then run…

• Launch state monitor here:

• At end of test…report it out using
coverage_db.report_coverage

10/21/24 6.S965 Fall 2024 31

The result

10/21/24 6.S965 Fall 2024 32

Or if you prefer pretty to read xml
• I guess

10/21/24 6.S965 Fall 2024 33

But like… is this good/bad?

• Anything stand out?

10/21/24 6.S965 Fall 2024 34

This is kinda scary actually.

This simple FSM description…glossed over
the potential complexity of the
implementation: 3 states, each connected to
2 signals (valid/ready) per interface, for a
total of 16 possible transitions out of each
state, or 48 possible state transitions total.

10/21/24 6.S965 Fall 2024 35

Skid Buffer
ready
valid
data*

ready
valid
data*

In/S Out/M

So let’s do state and input
• Come up with STS

covergroup (State and
Signals)
• I want to look at the

different states of my
module as well as its
exposure to different
signal combinations
on both S00 and M00
side

10/21/24 6.S965 Fall 2024 36

Write a little monitor coroutine

• Runs and checks
the state and input
signals going into
every rising edge…
• Puts it in a nice

dictionary and I
hand things off to
the coverage
function

10/21/24 6.S965 Fall 2024 37

So we run….

10/21/24 6.S965 Fall 2024 38

From before

New…

Very Limited Coverage (12.5%)

10/21/24 6.S965 Fall 2024 39

Looking Closer…
• Very little of the

state of
possibility was
covered here.

10/21/24 6.S965 Fall 2024 40

So what do we do?

• Instead of
having long
bursts of ready
and then long
bursts of !ready
• Maybe

randomize it?

10/21/24 6.S965 Fall 2024 41

Now?

• Better than
before for sure
• 22%

10/21/24 6.S965 Fall 2024 42

Of course also keep making
sure it passes the scoreboard
checks

Ignore the Driver
• Just throw crap at

this system

10/21/24 6.S965 Fall 2024 43

Resulting Waveform

10/21/24 6.S965 Fall 2024 44

God abandoned this testbench

But at the same time…

• You only need to dig into that testbench if you
see errors

• And it actually seems to be responding ok

10/21/24 6.S965 Fall 2024 45

Slightly improved coverage

• And stuff still
passes so that’s
good at least

10/21/24 6.S965 Fall 2024 46

Run it more?

• Try to catch some
other things?

• Seems to cap out

10/21/24 6.S965 Fall 2024 47

What Else?

• It’d be nice to be able to see how many input
patterns we got of distinct shapes/types in a
higher level labeling
• It’d also be good to have more flexibility with the

math/randomization/and/or have the
randomization focus on edge cases rather than
just really random numbers
• Also some things don’t have “state” so you may

need to characterize off of just external showing
signals

10/21/24 6.S965 Fall 2024 48

