
6.S965
Digital Systems Laboratory II

Lecture 8:
IQ and related topics

10/2/24 6.S965 Fall 2024 1

Administrative

• Week 4 due Monday
• Week 5 will, I’m trying, come out on Friday at

noon.

10/2/24 6.S965 Fall 2024 2

Generalized CORDIC
• The three equations we’re iterating on can be

generalized to this format

10/2/24 6.S965 Fall 2024 3

𝑥!"# = 𝑥! − 𝜇𝑑!𝑦!2$!

𝑦!"# = 𝑦! + 𝑑!𝑥!2$!

𝑧!"# = 𝑧! + 𝑑!𝑥!2$!

𝜇 is settable
constant

𝑑! is our
control/feedback
function for
locking into a
target

sgn(𝜃) in our
walkthrough
example

𝑧 is our angle
accumulator

2"! are the
tan 𝛼! 	from our
original example

Different Modes

10/2/24 6.S965 Fall 2024 4

How to Actually Get 𝑎?

10/2/24 6.S965 Fall 2024 5

Observe tan 𝑥

10/2/24 6.S965 Fall 2024 6

/𝜋 2

/−𝜋
2

Observe tanh 𝑥
• Just a different function…still get our values for

lookup from it…but kinda weird…

10/2/24 6.S965 Fall 2024 7

Hyperbolic Functions

• Whereas regular trig functions are following
around the unit circle… 𝑥! + 𝑦! = 1

• Hyperbolic trig functions are following the
hyperbola: 𝑥! − 𝑦! = 1

10/2/24 6.S965 Fall 2024 8

10/2/24 6.S965 Fall 2024 9

J.S. Walther, "A Unified Algorithm for Elementary Functions," Conference Proceedings, Spring Joint Computer Conference, May 1971, pp. 379-385

𝜇 = 1

𝑥!"# = 𝑥! − 𝜇𝑑!𝑦!2$!

𝑦!"# = 𝑦! + 𝑑!𝑥!2$!

𝑧!"# = 𝑧! + 𝑑!𝑥!2$!

𝜇 = 0 𝜇 = −1

How to Actually Get 𝑎?

• You then need to do:
• 𝑥 = 𝑎 + 0.25
• 𝑦 = 𝑎 − 0.25
• So that… 𝑎 + 0.25 ! − 𝑎 − 0.25 ! = 𝑎

• AMD/Xilinx has a pretty decent writeup of how to
do it in a low-level digital form.

10/2/24 6.S965 Fall 2024 10

From the Xilinx/AMD Docs…
That is, given input x, it computes the output sqrt (x). The CORDIC processor is
implemented using building blocks from the Xilinx blockset.
• The square root is calculated indirectly by the CORDIC algorithm by applying

the identity listed as follows. sqrt (w) = sqrt { (w + 0.25)2 - (w - 0.25)2 }
• The CORDIC square root algorithm is implemented in the following 4 steps:

1. Co-ordinate Rotation: The CORDIC algorithm converges only for positive values of x. If
x < zero, the input data is converted to a non-negative number. If x = 0, a zero detect
flag is passed to the co-ordinate correction stage. The square root circuit has been
designed to converge for all values of x, except for the most negative value.

2. Normalization: The CORDIC algorithm converges only for x between 0.25 (inclusive)
and 1. During normalization, the input x is shifted to the left till it has a 1 in the most
significant non-signed bit. If the left shift results in an odd number of shift values, a
right shift is performed resulting in an even number of left shifts. The shift value is
divided by 2 and passed on to the co-ordinate correction stage. The square root is
derived using the identity sqrt (w) = sqrt {(w + 0.25)2 - (w - 0.25)2}. Based on this identity
the input x gets mapped to, X = x + 0.25 and Y = x - 0.25.

3. Hyperbolic Rotations: For sqrt (X2 - Y2) calculation, the resulting vector is rotated
through progressively smaller angles, such that Ygoes to zero.

4. Co-ordinate Correction: If the input was negative and a left shift was applied to x, this
step assigns the appropriate sign to the output and multiplies it with 2-shift. If the input
was zero, the zero detect flag is used to set the output to 0.

10/2/24 6.S965 Fall 2024 11

CORDIC Square Root
Convergence
• If you sum up all the possible

angle they converge to about 99.88
degrees
• Dictates the range over which

cordic functions can “converge”
through multiple iterations
• Same thing with hyperbolic…but

their possible angle total
approaches: 64.74 degrees
(significantly lower since can’t do
for i=0)

10/2/24 6.S965 Fall 2024 12

Another Interesting Thing…

10/2/24 6.S965 Fall 2024 13

Source…
• This 1971 paper is what

everyone points to as
justification for the
repeated sequence for
convergence

10/2/24 6.S965 Fall 2024 14

J.S. Walther, "A Unified Algorithm for Elementary Functions," Conference Proceedings, Spring Joint Computer Conference, May 1971, pp. 379-385

Square root convergence in Practice
• Normalization: The CORDIC algorithm converges only for x

between 0.25 (inclusive) and 1. During normalization, the input x is
shifted to the left till it has a 1 in the most significant non-signed bit.
If the left shift results in an odd number of shift values, a right shift is
performed resulting in an even number of left shifts. The shift value
is divided by 2 and passed on to the co-ordinate correction stage.
The square root is derived using the identity sqrt (w) = sqrt {(w +
0.25)2 - (w - 0.25)2}. Based on this identity the input x gets mapped
to, X = x + 0.25 and Y = x - 0.25.

10/2/24 6.S965 Fall 2024 15

https://www.mathworks.com/help/fixedpoint/ug/compute-square-root-using-cordic.html

So these are coming from the
assertion
• Keeping in mind: 𝑎 + 0.25 ! − 𝑎 − 0.25 !

which is forcing the starting value of the x and y
values…

10/2/24 6.S965 Fall 2024 16

10/2/24 6.S965 Fall 2024 17

import sys

a = float(sys.argv[1])

x = a+.25
y = a-.25

for i in range(1,20):
 if y >0:
 xn = x - 1/(2**i)*y
 yn = y - 1/(2**i)*x
 else:
 xn = x + 1/(2**i)*y
 yn = y + 1/(2**i)*x
 print(f"x:{xn}, y:{yn}")
 x = xn
 y = yn
print(x/0.828)

Wrote some code to test it

So I ran it…

10/2/24 6.S965 Fall 2024 18

python3 cordic_test.py 4
x:2.375, y:1.625
x:1.96875, y:1.03125
x:1.83984375, y:0.78515625
x:1.790771484375, y:0.670166015625
x:1.7698287963867188, y:0.6142044067382812
x:1.760231852531433, y:0.5865508317947388
x:1.7556494241580367, y:0.572799020446837
x:1.7534119279844163, y:0.5659410148837196
x:1.7523065744397215, y:0.562516382211875
x:1.7517572420352177, y:0.5608051453227738
x:1.751483411397853, y:0.5599497951069363
x:1.751346704904907, y:0.5595221868522006
x:1.7512784038567073, y:0.559308399412637
x:1.7512442663811572, y:0.5592015098616203
x:1.7512272009053924, y:0.559148066127905
x:1.7512186689829967, y:0.5591213445214459
x:1.7512144032256685, y:0.5591079837833097
x:1.7512122703979716, y:0.5591013034305142
x:1.7512112039968648, y:0.5590979632581845
2.1149893768078076

10/2/24 6.S965 Fall 2024 19

python3 cordic_test.py 0.81
x:0.78, y:0.030000000000000027
x:0.7725, y:-0.16499999999999998
x:0.751875, y:-0.06843749999999998
x:0.74759765625, y:-0.021445312499999987
x:0.746927490234375, y:0.001917114257812512
x:0.7468975353240966, y:-0.009753627777099597
x:0.746821335107088, y:-0.003918490782380092
x:0.7468060285024694, y:-0.0010012199421180297
x:0.7468040729947699, y:0.0004573855823008558
x:0.7468036263291622, y:-0.0002719152702330992
x:0.7468034935580341, y:9.273493793543702e-05
x:0.7468034709176684, y:-8.95901337340049e-05
x:0.7468034599813728, y:1.5723993369995485e-06
x:0.7468034598854011, y:-4.400886653100416e-05
x:0.7468034585423571, y:-2.121823359993113e-05
x:0.7468034582185925, y:-9.822917154887839e-06
x:0.7468034581436496, y:-4.125258934836321e-06
x:0.7468034581279129, y:-1.2764298250964468e-06
x:0.7468034581254783, y:1.47984729743475e-07
0.9019365436298048

So I ran it…

Conclusions

• Seems to converge for input values of 0 to 2
• Beyond that it doesn’t converge, and this is

because for hyperbolics, 𝜇 = −1 so:

• Whereas in original:

10/2/24 6.S965 Fall 2024 20

𝑥!"# = 𝑥! + 𝑑!𝑦!2$!

𝑦!"# = 𝑦! + 𝑑!𝑥!2$!

𝑥!"# = 𝑥! − 𝑑!𝑦!2$!
𝑦!"# = 𝑦! + 𝑑!𝑥!2$!

I/Q Format

10/2/24 6.S965 Fall 2024 21

Motivation

• One of the reasons I wanted to look at CORDIC
stuff was it would let us think more about doing
trig functions and other operations
• Forms an important part of a lot of how FPGAs

are used, particularly in signal processing
applications.
• A lot of signals come in and you need to do very

quick math to extract/refine the information from
them.

10/2/24 6.S965 Fall 2024 22

So most wireless data is transferred
on electromagnetic sine waves
• The frequencies of these waves are chosen such

that they can propagate effectively through free
space

• Different frequencies travel in different ways.

• We throw this electromagnetic energy around
and use it to convey information

10/2/24 6.S965 Fall 2024 23

Sine wave looks like this

10/2/24 6.S965 Fall 2024 24

𝑣 𝑡 = 𝐴 sin 2𝜋𝑓𝑡 + 𝜙 	

If you needed to convey information
on this wave what could you do?

• You could:
• Vary the amplitude (Amplitude modulation)

10/2/24 6.S965 Fall 2024 25

𝑣 𝑡 = 𝐴 cos 2𝜋𝑓𝑡 + 𝜙 	

Amplitude Modulation

• Keep frequency the
same and then
modulate then
modulate the
amplitude of your
carrier wave…
• Usually something as

simple as a low-pass
filter and some non-
linearity can get the
info out

10/2/24 6.S965 Fall 2024 26

https://byjus.com/jee/amplitude-modulation/

If you needed to convey information
on this wave what could you do?

• You could:
• Vary the frequency (Frequency modulation)

10/2/24 6.S965 Fall 2024 27

𝑣 𝑡 = 𝐴 cos 2𝜋𝑓𝑡 + 𝜙 	

Frequency Modulation
• You keep a constant amplitude and then vary

your frequency around a constant center
frequency
• Circuits can extract those deviations to get the

info

10/2/24 6.S965 Fall 2024 28

https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/radio-frequency-modulation/frequency-modulation-theory-time-domain-frequency-domain/

If you needed to convey information
on this wave what could you do?

• You could:
• Vary the phase (Phase modulation)

10/2/24 6.S965 Fall 2024 29

𝑣 𝑡 = 𝐴 cos 2𝜋𝑓𝑡 + 𝜙 	

Phase Modulation

• Varying the phase over time to
convey your signal can be
done
• But in a purely analog setting it

is quite rare

10/2/24 6.S965 Fall 2024 30

https://commons.wikimedia.org/wiki/File:Phase_Modulation.png

Reason for that…

• Varying the phase of a signal over time starts to
get tangled with the frequency of the signal

• Frequency really is just time-varying phase after
all…

10/2/24 6.S965 Fall 2024 31

𝑣 𝑡 = 𝐴 cos 2𝜋𝑓𝑡 + 𝜙(𝑡) 	

Phase Modulation
• You do see phase

modulation in lots of
digital settings however.
Distinct changes in the
phase of a signal are easier
to detect and less
ambiguous than
continuous “analog”
phase modulation

10/2/24 6.S965 Fall 2024 32
https://commons.wikimedia.org/wiki/File:Phase_modulation_BPSK_GPS.svg

What do modern systems use?

• Really depends

• Not a ton of regular only-AM anymore
• FM still common
• PM still common
• And as we’ll see some other combinations.

10/2/24 6.S965 Fall 2024 33

Returning to our generic Sine
Wave…
• Let’s say all three portions of the signal can be

functions of time to convey information…

10/2/24 6.S965 Fall 2024 34

𝑣 𝑡 = 𝐴(𝑡) cos 2𝜋𝑓𝑡 + 𝜙(𝑡) 	

Trig Identities

10/2/24 6.S965 Fall 2024 35

Any sine wave that is running…

• Can be said to actually be made of two other
sinusoidal waves:

10/2/24 6.S965 Fall 2024 36

𝑣 𝑡 = 𝐴(𝑡) cos 2𝜋𝑓𝑡 + 𝜙(𝑡) 	

…= cos 2𝜋𝑓𝑡 8 𝐴(𝑡) cos 𝜙(𝑡) −
	sin 2𝜋𝑓𝑡 8 𝐴(𝑡) sin 𝜙(𝑡)

Any sine wave that is running…

10/2/24 6.S965 Fall 2024 37

𝐴 𝑡 cos 2𝜋𝑓𝑡 + 𝜙 𝑡 =	

= cos 2𝜋𝑓𝑡 1 𝐴(𝑡) cos 𝜙(𝑡) −	sin 2𝜋𝑓𝑡 1 𝐴(𝑡) sin 𝜙(𝑡)

In-phase component Quadrature component

I/Q signals

• You have two signals of fixed frequency and
modulatable amplitudes.
• We don’t need to think of those two amplitudes

as related to the original signal, instead just think
of them as modulatable signals on their own:

• This 𝐼(𝑡) and 𝑄(𝑡) signal contain your
information and can be useful in both creating
and analyzing modulated signals.

10/2/24 6.S965 Fall 2024 38

= cos 2𝜋𝑓𝑡 1 𝐴(𝑡) cos 𝜙(𝑡) −	sin 2𝜋𝑓𝑡 1 𝐴(𝑡) sin 𝜙(𝑡)

= cos 2𝜋𝑓𝑡 1 𝐼(𝑡) −	sin 2𝜋𝑓𝑡 1 𝑄(𝑡)

Plot these I/Q values out on the complex
plane…help us visualize signals and
information…

10/2/24 6.S965 Fall 2024 39

In-phase component (x axis)

quadrature component (y axis)

Varying I/Q
• Let’s say we want to send binary 1’s and 0’s.
• One way to do this would be by doing the

following:
• 𝑄 𝑡 is always set to 0
• 𝐼 𝑡 is +1 for binary 1 and -1 for binary 0
• We’d get an I-Q plot like this:

10/2/24 6.S965 Fall 2024 40

𝑣(𝑡) = cos 2𝜋𝑓𝑡 1 𝐼(𝑡) −	sin 2𝜋𝑓𝑡 1 𝑄(𝑡)

𝐼

𝑄

Constellation Plot/Diagram
• Plotting out the possible I/Q

combinations in the 2D
space is known as a
constellation diagram
• Each constellation diagram

is a way to depict all the
forms of a signal that could
be expected
• Time series plot of this

signal shown here-à

10/2/24 6.S965 Fall 2024 41

𝐼

𝑄

https://www.researchgate.net/figure/Implementation-of-Binary-Phase-Shift-Keying_fig10_348364945

Binary Phase Shift Keying
• Let’s say we want to send binary 1’s and 0’s.
• One way to do this would be by doing the

following:
• 𝑄 𝑡 is always set to 0
• 𝐼 𝑡 is +1 for binary 1 and -1 for binary 0
• We’d get an I-Q plot like this:

10/2/24 6.S965 Fall 2024 42

𝑣(𝑡) = cos 2𝜋𝑓𝑡 1 𝐼(𝑡) −	sin 2𝜋𝑓𝑡 1 𝑄(𝑡)

𝐼

𝑄

Can we do more?

• Right now, we have only two states, so can only
send one bit per ”beat” of data.
• Could we do more? What if we use both

dimensions of our I/Q signal?
• Have:
• I be +0.707 or -0.707
• Q be +0.707 or -0.707

• What would that constellation plot look like?

10/2/24 6.S965 Fall 2024 43

𝑣(𝑡) = cos 2𝜋𝑓𝑡 1 𝐼(𝑡) −	sin 2𝜋𝑓𝑡 1 𝑄(𝑡)

Quad-Phase Shift Keying
• Constant amplitude, but

four distinct phases, each
90 degrees separated from
eachother. Each
measurement gives two
bits of info

10/2/24 6.S965 Fall 2024 44

𝐼

𝑄

Keep going
• Instead of assign I/Q

separately, start to have
pairs of I/Q values that
position your signals all
over the constellation plot
as desired.
• 8 points separated by 45

degrees gives 8psk
• Each measurement gives 3

bits.

10/2/24 6.S965 Fall 2024 45

https://en.wikipedia.org/wiki/Constellation_diagram

Can also not just stick to unit
circle (vary amplitude of signal!
• Called Quadrature amplitude modulation.
• 16 QAM has 16 different possibilities:
• In time they look like:

10/2/24 6.S965 Fall 2024 46

Can also not just stick to unit
circle (vary amplitude of signal!
• Called Quadrature amplitude modulation.
• 16 QAM has 16 different possibilities:
• In constellation plot:

10/2/24 6.S965 Fall 2024 47

And this can keep going.

• This methodology of both modulation but also of
analyzing signals can allow for relatively easy
and productive analysis

10/2/24 6.S965 Fall 2024 48

Wifi Uses QAM at higher and higher
densities
• Each

measurement
becomes a symbol
•

10/2/24 6.S965 Fall 2024 49

More advance wifi uses 256 and
1024 QAM

10/2/24 6.S965 Fall 2024 50

Use trig functions to analyze these

• Find their magnitude and find their phase in I/Q
data…that will tell you the value.

10/2/24 6.S965 Fall 2024 51

