6.5965
Digital Systems Laboratory |l

Lecture 8:

|Q and related topics

///////

Administrative

* Week 4 due Monday

* Week 5 will, I’'m trying, come out on Friday at
noon.

10/2/24 6.5965 Fall 2024

Generalized CORDIC

* The three equations we’re iterating on can be

generalized to this format |
U is settable

Z is our angle constant

accumulator
d; is our

_ —1
xi+1 p— xl —_— 'udlylz control/feedback

function for
locking into a

Vier = Vi +dix; 277 target
—7 sgn(@) in our
Zi+1 — Zi ‘l‘ dl-xl-Z l walkthrough
example

27t are the
tan(a;) from our

original example
10/2/24 6.5965 Fall 2024 3

Different Modes

Mode

Circular
p=1
a; =tan~1271
Linear
u=0

Q= 2_i

Hyperbolic

p=-1
a; = tanh~12-

Rotation

d; =sgn(z), z—0

x— O —»K(xcosz—ysinz)
AW @ — K(ycosz+xsinz)

Z — 8 — ()

X i 9 — x

y—™" a — y+Xx2

Z —> 8 — ()

x— O |—»=K'(xcoshz—ysinhz)
y—™ @ — K'(ycoshz+xsinhz)
Z —> 8 — ()

e K'=0.8281593609602...

1/K'=1.207497067763...

Vectoring

d; = —sgn (y;), y—0

|~k /2 Ty?

_.0

— 2+ tan~!(y/x)

— x
— ()

— 2 +V/X

x— O
yv—] &
18
x— O
yv—| &
18
b 8
yv—] &
Z —— =

O

|~k /—y7

— ()

— z+tanh~(y/x)

In hyperbolic mode, iterations 4, 13, 40, 121, ..., j, 3j+1,... must be repeated. The constant K'given below accounts for this.
K=1.646760258121...
1/K = 0.6072529350009...

10/2/24

6.5965 Fall 2024

How to Actually Get v/a?

Rotation Vectoring
Mode
d; =sgn(z), z—0 d; = —sgn (y;), y—0
Circular
Xx— O |—»K(xcosz—ysinz) x—s O |—=K /xZ+y2
P) W— @ — K(ycosz+xsinz) y—n @ — ()
LS z— 8 |—0 z— 8 |—z+tan(yx)
Linear
X —> 9 X b 8 —
St ,) @ —y) X2 y—>» a — ()
a=2 z—> 8 =0 zZ—> 8 — 2+ /X
Hyperbolic .
Xx—= O |— K'(xcoshz—ysinhz) x—s O |—K /x2—y2
A , V= @ — K'(ycoshz+xsinhz) y—> @ ()
chi L :— 8 [—0 z—f 8 |—=z+tanh '(yx)

In hyperbolic mode, iterations 4, 13, 40, 121, ..., j, 3j+1,... must be repeated. The constant K'given below accounts for this.
K=1.646760258121...

1/K = 0.607252935009...

» K'=0.8281593609602...

1/K'=1.207497067763...

10/2/24 6.5965 Fall 2024

"/
Observe tan(x)

c 25 desmos .com,

Untitled Graph | Save desmos

10/2/24 6.5965 Fall 2024 —TT / 6
2

Observe tanh(x)

* Just a different function...still get our values for
lookup from it...but kinda weird...

= Untitled Graph | Save

a |
10/2/24 6.S965Fall’202 7

Hyperbolic Functions

* Whereas regular trig functions are following
around the unit circle... x* + y* =

x? +y2:=1

sinh(a)

a2)

* Hyperbolic trig functions are following the
hyperbola: x? — y%4 =1

10/2/24 6.5965 Fall 2024

Mode

Circular
p=1
a = tan~1271
Linear
u=0
a = o
Hyperbolic

H=-1
a; = tanh=127

Rotation

d; =sgn (z), z—0

x—= O —=K(xcosz—ysinz)

y—= 2 —= K(ycosz+xsinz)
(o]

z— O [—=0

X = B — X

y—> @ —y+x2z
o]

zZ— O — 0

x—= O |—=K'(xcoshz—ysinhz)

y—> @ — K'(ycoshz+xsinhz)
(o]

zZ— O — 0

Vectoring

d; = —sgn(y;), y—0

x— O —=K /x2+y2
y— 2 |—o0

z—f 8 —= 2+ tan~'(y/x)
X —— E — X

y—{ & o

z—> 8 — 2+Y/x
x—s O |—=K /x2—y?
yv—{ & [—o

z—> 8 — z+tanh~!(y/x)

« In hyperbolic mode, iterations 4, 13, 40, 121, ..., j, 3j+1,... must be repeated. The constant K'given below accounts for this.
* K=1.646760258121...

* 1/K=0.607252935009...
* K'=0.8281593609602...
* 1/K'=1.207497067763...

Xip1 = X; — pud;y 27
Yier = Yi +dix; 27"

Ziy1 — Zj + dl-xl-Z_‘

Figure 1—Angle A and Radius R of the vector P=(z, y)

J.S. Walther, "A Unified Algorithm for Elementary Functions," Conference Proceedings, Spring Joint Computer Conference, May 1971, pp. 379-385

10/2/24 6.5965 Fall 2024

How to Actually Get+/a?

—EN .k oz
* You then need to do: 18 o
e x =a+ 0.25
e y=a—0.25

* Sothat...\/(a + 0.25)2 — (a — 0.25)2 = ya

* AMD/Xilinx has a pretty decent writeup of how to
do itin a low-level digital form.

10/2/24 6.5965 Fall 2024 10

From the Xilinx/AMD Docs...

That s, given input x, it computes the output sqrt (x). The CORDIC processor is
implemented using building blocks from the Xilinx blockset.

* The square root is calculated indirectly by the CORDIC algorithm b}/ applying
the identity listed as follows. sqrt (w) = sqrt { (w + 0.25)2 - (w - 0.25)?}

* The CORDIC square root algorithm is implemented in the following 4 steps:
1. Co-ordinate Rotation: The CORDIC algorithm converges only for positive values of x. If

10/2/24

X < zero, the input data is converted to a non-negative number. If x =0, a zero detect
flag is passed to the co-ordinate correction stage. The square root circuit has been
designed to converge for all values of x, except for the most negative value.

. Normalization: The CORDIC algorithm converges only for x between 0.25 (inclusive)

and 1. During normalization, the input x is shifted to the left tillit has a 1 in the most
significant non-signed bit. If the left shift results in an odd number of shift values, a
right shift is performed resulting in an even number of left shifts. The shift value is
divided by 2 and passed on to the co-ordinate correction staée. The squarerootis
derived using the identity sqrt (w) = sgrt {(w + 0.25)2 - (w - 0.25)2}. Based on this identity
the input x gets mapped to, X=x+0.25and Y =x-0.25.

. Hyperbolic Rotations: For sqrt (X? - Y2) calculation, the resulting vector is rotated

through progressively smaller angles, such that Ygoes to zero.

. Co-ordinate Correction: If the input was negative and a left shift was applied to x, this

step assigns the appropriate sign to the output and multiplies it with 2-shift, |f the input
was zero, the zero detect flag is used to set the output to 0.

6.5965 Fall 2024 11

a; = tan™1 (27

CORDIC Square Root ' Degrees | Radians

0 45.00 0.7854

C O nve rge n C e 1 26.57 0.4636

e If you sum up all the possible 2 | 1404 | 02450

angle they converge to about99.88 ° "° %1%

degrees 4 | 358 | 0.0624

» Dictates the range over which > | 1P | o012

I 1 1 7] 6 0.90 0.0160
cordic functions can “converge

through multiple iterations 7 | 045 | 0.0080

. . . 8 0.22 0.0040

* Same thing with hyperbolic...but T om1 | o000

their possible angle total
approaches: 64.74 degrees
(significantly lower since can’t do
for i=0)

10/2/24 6.5965 Fall 2024 12

Another Interesting Thing...

Rotation Vectoring
Mode
d; =sgn(z;), z—0 d; = —sgn (i), y—0
Circular
X = K(xcosz—ysinz) X O K/x2+y?
u=1 ' 9 K(ycosz+xsinz) a 0
6 =tan"'2" Z 3 0 z S z+tan~1(y/x)
Linear N S . . 5 .
A=y . 2 y+xz a 0
a=2" z 8 0 z 8 Z+y/x
Hyperbolic
yp X O K'(xcoshz—ysinhz) X O K/ a—y2
H= 2 K'(ycoshz+xsinhz) y = 0
a; = tanh™12- z 8 0 2 8 z+tanh~!(y/x)

I « In hyperbolic mode, iterations 4, 13, 40, 121, ..., j, 3/+1,... must be repeated. The constant K'given below accounts for this. I
. =nlE 241

¢ 1/K=0.607252935009...
* K'=0.8281593609602...
e 1/K'=1.207497067763...

10/2/24 6.5965 Fall 2024 13

Source...

* This 1971 paper is what

everyone points to as
justification for the

repeated sequence for

convergence

The magnitude of each element of the sequence may be
predetermined, but the direction of rotation must be
determined at each step such that

| Ay | =] Ai | =] (22)

The sum of the remaining rotations must at each
step be sufficient to bring the angle to at least within
a,—1 of zero, even in the extreme case where A;=0,
J Al'+1 |=a;. ThUS,

n—1

a;— Z ;< an-1 (23)
J=1i+1
The domain of convergence is limited by the sum of
the rotations. -

n—1

| Ao [— Z a;<an-1 (24)

7=0

TABLE II—Shift Sequences for a binary code

coordinate domain of radius
. radix system shift sequence convergence factor
P m Fri; 120 max | A, | K
2 1 0,1,23,4,3,... ~1.74 ~1.65
2 0 1,2,3,4,5 i+1,... 1.0 1.0
2 -1 1,2,3,4,4,5,....% ~1.13 ~0.80

-

* for m = —1 the following integers are repeated:
{4, 13, 40, 121, .. ., k, 3k+1, .. .}

J.S. Walther, "A Unified Algorithm for Elementary Functions," Conference Proceedings, Spring Joint Computer Conference, May 1971, pp. 379-385

10/2/24

Table II shows some F sequences, convergence
domains, and radius factors for a binary code.

The hyperbolic mode (m= —1) is somewhat compli-
cated by the fact that for a;=tanh=1(2—%) the con-
vergence criterion (23) is not satisfied. However, it can
be shown that

n—1
ai_< 2 aj) —osit1 <oty (33)

becomes true.

(25)

to within a,—; of zero

e following theorem.

F=i+1
n—1
and that therefore if the integers {4, 13, 40, 121, ...; k, . 2
3k+1, ...} in the F; sequence are repeated then (23) + f_vf:‘ % (26)
6.S965 Fall 2024 14

Square root convergence in Practice

* Normalization: The CORDIC algorithm converges only for x
between 0.25 (inclusive) and 1. During normalization, the input x is
shifted to the left tillit has a 1 in the most significant non-signed bit.
If the left shift results in an odd number of shift values, a right shiftis
performed resulting in an even number of left shifts. The shift value
Is divided by 2 and passed on to the co-ordinate correction stage.
The square root is derived using the identity sqgrt (w) = sqrt {(w +
0.25)? - (w - 0.25)?}. Based on this identity the input x gets mapped
to, X=x+0.25and Y =x-0.25.

Overcoming Algorithm Input Range Limitations

Many square root algorithms normalize the input value, v, to within the range of [0.5, 2). This pre-processing
as well as large input value ranges.

https://www.mathworks.com/help/fixedpoint/ug/compute-square-root-using-cordic.html

10/2/24 6.5965 Fall 2024 15

So these are coming from the
assertion

» Keeping in mind: \/(a + 0.25)% — (a — 0.25)%
which is forcing the starting value of the xand y
values...

10/2/24 6.5965 Fall 2024

16

Wrote some code to test It

10/2/24

import sys
a = float(sys.argv[1])
X = a+.25
y = a—-.25
for i in range(1,20):
if y >0:
Xn = X — 1/(2%xi)xy
yn =y — 1/(2%xi)*x
else:
Xn = X + 1/(2%%1i)xy
yn =y + 1/(2%xi)*x
print(f"x:{xn}, y:{yn}")
X = XN
y =yn

print(x/0.828)

6.5965 Fall 2024

17

Solranit...

N><><><><><><><><><><><><><><><><><><><'O

1
1
1
1
1
1
1
1
1
1 1.
1
1
1
1
1
1
1
1
1

375, y:1.625

.96875, y:1.03125
.83984375, y:0.78515625

.790771484375, y:0.670166015625
.7698287963867188, y:0.6142044067382812
.760231852531433, y:0.5865508317947388
.7556494241580367, y:0.572799020446837
.7534119279844163, y:0.5659410148837196
.7523065744397215, y:0.562516382211875
.7517572420352177, y:0.5608051453227738

ython3 cordic_test.py 4
2.

751483411397853, y:0.5599497951069363

10/2/24

<<<<<<<

®®®®®®®

.751346704904907, vy: 0 5595221868522006
.7512784038567@73
. 7512442663811572,
. 7512272009053924,
.7512186689829967,
. 7512144032256685,
.7512122703979716,
.7512112039968648,
.1149893768078076

.559308399412637

.5592015098616203
.559148066127905

.5591213445214459
.5591079837833097
.5591013034305142
.5590979632581845

6.5965 Fall 2024

18

Solranit...

10

®><><><><><><><><><><><><><><><><><><><'O

0
0
0
0
0
0
0
0
0
:0.
0
0
0
0
0
0
0
0
9

. 7468060285024694,
. 7468040729947699,
. 7468036263291622,
7468034935580341,
. 7468034709176684,
. 7468034599813728,
. 7468034598854011,
. 7468034585423571,
. 7468034582185925,
. 7468034581436496,
. 7468034581279129,
:0.7468034581254783,
.9019365436298048

10/2/24

KKKk kK

ython3 cordic_test.py 0.81

.78, y:0.030000000000000027

.7725 y:—0.16499999999999998

.751875, y:—0.06843749999999998

. 74759765625, y:-0.021445312499999987
.746927490234375, y:0.001917114257812512

. 7468975353240966, y:-0.009753627777099597
.746821335107088, y:-0.003918490782380092
:-0.0010012199421180297
:0.0004573855823008558
:—0.0002719152702330992
:9.273493793543702e-05
:—8.95901337340049e-05
:1.5723993369995485e-06
:-4.400886653100416e-05
:-2.121823359993113e-05
:-9.822917154887839e-06
:—4.125258934836321e-06
:-1.2764298250964468e-06
:1.47984729743475e-07

6.5965 Fall 2024

19

Conclusions

* Seems to converge for input values of 0 to 2

* Beyond that it doesn’t converge, and this is
because for hyperbolics, u = —1 so:

—1

Xit+1 = X T d;Y;2
Vie1 = Vi T dixi 27

* Whereas in original: —i
Xit1 = X; — ;Y2

Vig1 = ¥i +dix; 27

10/2/24 6.5965 Fall 2024

20

|/Q Format

///////

Motivation

* One of the reasons | wanted to look at CORDIC
stuff was it would let us think more about doing
trig functions and other operations

* Forms an important part of a lot of how FPGAs
are used, particularly in signal processing
applications.

* A lot of sighals come in and you need to do very
quick math to extract/refine the information from

them.

10/2/24 6.5965 Fall 2024 22

So most wireless data is transferred
on electromagnetic sine waves

* The frequencies of these waves are chosen such
that they can propagate effectively through free
space

* Different frequencies travel in different ways.

* We throw this electromagnetic energy around
and use it to convey information

10/2/24 6.5965 Fall 2024 23

Sine wave looks like this

Amplitude

One Cycle

Sound Pressure

Time

v(t) = Asin(2nft + ¢)

10/2/24 6.5965 Fall 2024 24

If you heeded to convey information
on this wave what could you do?

v(t) = Acos2rft + ¢)
* You could:
e Vary the amplitude (Amplitude modulation)

10/2/24 6.5965 Fall 2024 25

Amplitude Modulation

[§BYJu's

* Keep frequency the
same and then
modulate then
modulate the
amplitude of your

carrier wave... i

» Usually something as 0 ||[[[HTTITHHH
simple as a low-pass s = s
filter and some non- f M Tﬂr-ﬂﬂb
linearity can get the | w
info out e apsons B

https://byjus.com/jee/amplitude-modulation/

10/2/24 6.5965 Fall 2024

If you heeded to convey information
on this wave what could you do?

v(t) = Acos2rft + ¢)
* You could:
* Vary the frequency (Frequency modulation)

10/2/24 6.5965 Fall 2024 27

Frequency Modulation

* You keep a constant amplitude and then vary
your frequency around a constant center

frequency
* Circuits can extract those deviations to get the
info Frequency Modulation

amplitude

-1.5
time

https://www.allaboutcircuits.com/textbook/radio-frequency-analysis-design/radio-frequency-modulation/frequency-modulation-theory-time-domain-frequency-domain/

10/2/24 6.5965 Fall 2024 28

If you heeded to convey information
on this wave what could you do?

v(t) = Acos2rft + ¢)
* You could:
* Vary the phase (Phase modulation)

10/2/24 6.5965 Fall 2024 29

Phase Modulation

* Varying the phase overtimeto ==

convey your signal can be ﬂ ﬂ N M

done LN
* Butin a purely analog setting it \ \UA

IS quite rare RRRARRRAAN

W

https://commons.wikimedia.org/wiki/File:Phase_Modulation.png
10/2/24 6.5965 Fall 2024 30

Reason for that...

* Varying the phase of a signal over time starts to
get tangled with the frequency of the signal

v(t) = Acos2rft + ¢(t))

* Frequency really is just time-varying phase after
all...

10/2/24 6.5965 Fall 2024

31

Phase Modulation

Binary code PRN

* You do see phase
modulation in lots of W\/\/\/\/\/\/WW\/\/\/\/\/\/W\/
digital settings however. carierwae
Distinct changes in the /\/\/WWV\/W\N\A/\/\/V\W
phase of a signal are easier gpgymoduiated signat
to detect and less
ambiguous than

continuous “analog”
phase modulation

https://commons.wikimedia.org/wiki/File:Phase_modulation_BPSK_GPS.svg
10/2/24 6.5965 Fall 2024 32

What do modern systems use?

* Really depends

* Not a ton of regular only-AM anymore
* FM still common

e PM still common
e And as we’ll see some other combinations.

10/2/24 6.5965 Fall 2024

33

Returning to our generic Sine
Wave...

* Let’s say all three portions of the signal can be
functions of time to convey information...

v(t) = A(t) cos(2rft + ¢d(t))

10/2/24 6.5965 Fall 2024

34

Trig Identities

Cc %

Contents hide

(Top)

Pythagorean identities

v

Reflections, shifts, and
periodicity

v

Angle sum and difference
identities

v

Multiple-angle and half-
angle formulae

Power-reduction formulae

v

Product-to-sum and sum-
to-product identities

v

Linear combinations

Lagrange's trigonometric
identities

Certain linear fractional
transformations

Relation to the complex
exponential function

Series expansion
Infinite product formulae

Inverse trigonometric
functions

v

Identities without
variables

en.wikipedia.org

sgn(cos @) = sgn(sechd) =< —1 if —1<O< f%w or %w <f<m
0 if ¢ {—%’n‘,%ﬂ'}
+1 if—7r<0<—%7ror0<0<%7r
sgn(tand) = sgn(cotf) = ¢ —1 if —%7!‘<0<0 or %71‘<0<7r
0 iffe {—%7!‘,0, %7\',7‘{'}

The trigonometric functions are periodic with common period 27, so for values of 8 outside the interval (f7r, 77], they take repeating

values (see § Shifts and periodicity above).

Angle sum and difference identities (edt;

See also: Proofs of trigonometric identities § Angle sum identities, and Small-angle approximation § Angle sum and difference

These are also known as the angle addition and subtraction theorems (or formulae).

sin(a + B) = sinacos 8 + cos asin 3
sin(a — B) = sinacos 8 — cos asin 8
cos(a + B) = cosacos B — sinasin
cos(a — B) = cosacos 8 + sinasin 3

The angle difference identities for sin(aw — 3) and cos(a —) can be derived from the angle
sum versions by substituting — 3 for 8 and using the facts that sin(—3) = — sin(8) and
cos(—B) = cos(B). They can also be derived by using a slightly modified version of the figure
for the angle sum identities, both of which are shown here.

T idonsisi Pama oz dlin 4o £l baio ponnio of o follonin ookl P PONPN] imald

10/2/24

6.5965 Fall 2024

cos(a + B) sinasin B

a+ [3 .

o

a

Q

% 2

gl =]

—~ a|m™
«
+
g
IE]
@

[

c°$$ 3

a

B 2

™

a |—
cos a cos B

Any sine wave that is running...

v(t) = A(t) cos(2nft + ¢(t))

* Can be said to actually be made of two other
sinusoidal waves:

...=cos(2mft) - A(t) cos(pp(t)) —
sin(2rrft) - A(t) sin(¢(t))

10/2/24 6.5965 Fall 2024

Any sine wave that is running...

A(t) COS(ZTL’ft + qb(t)) =

= cos(2nft) - A(t) cos(p(t)) — sin(2mft) - A(t) sin(¢(t))
\ J | }
| |

In-phase component Quadrature component

10/2/24 6.5965 Fall 2024 37

1/Q signals
= cos(2mft) - A(t) cos(¢p(t)) — sin(2nrft) - A(t) sin(¢p(t))

* You have two signals of fixed frequency and
modulatable amplitudes.

* We don’t need to think of those two amplitudes
as related to the original signal, instead just think
of them as modulatable signhals on their own:

= cos(2mft) - I(t) — sin(2nft) - Q(t)
* This I(t) and Q(t) signal contain your

Information and can be useful in both creating
and analyzing modulated signals.

10/2/24 6.5965 Fall 2024 38

Plot these I/Q values out on the complex
plane...help us visualize signals and
Information...

quadrature component (y axis)

Phasor diagram Wave diagram

Nanva

10/2/24 6.5965 Fall 2024 39

In-phase component (x axis)

v(t) = cos(2nft) - I(t) — sin(2rft) - Q(t)
Varying 1/Q

* Let’s say we want to send binary 1’s and O’s.

* One way to do this would be by doing the
following:

* Q(t)is always setto 0
* [(t)is +1 for binary 1 and -1 for binary 0
* We’d get an |-Q plot like this: (KY

10/2/24 6.5965 Fall 2024 40

Constellation Plot/Diagram

* Plotting out the possible I/Q
combinations in the 2D — o °

space is known as a

constellation diagram
* Each constellation diagram

Is a way to depict all the \

forms of asignalthatcould .. ewe

be expected —_ - L
* Time series plot of this PN =N N N =N N =N

signal shown here-> - L A,

o B e e v

https://www.researchgate.net/figure/Implementation-of-Binary-Phase-Shift-Keying_fig10_348364945
10/2/24 6.5965 Fall 2024 41

v(t) = cos(2nft) - I(t) — sin(2rft) - Q(t)
Binary Phase Shift Keying

* Let’s say we want to send binary 1’s and O’s.

* One way to do this would be by doing the
following:
* Q(t)isalwayssetto0
* [(t)is +1 for binary 1 and -1 for binary 0

aaaaaaaaaaaa

Carrier Signal

BPSK Signal

10/2/24 6.5965 Fall 2024 42

v(t) = cos(2nft) - I(t) — sin(2rft) - Q(t)
Can we do more?

* Right now, we have only two states, so can only
send one bit per "beat” of data.

* Could we do more? What if we use both
dimensions of our I/Q signal?

e Have:

| be +0.707 or-0.707
* Qbe +0.707 or-0.707

* What would that constellation plot look like?

10/2/24 6.5965 Fall 2024 43

Quad-Phase Shift Keying

* Constant amplitude, but
four distinct phases, each
90 degrees separated from

eachother. Each
measurement gives two
bits of info

O C .

10/2/24 6.5965 Fall 2024

44

Keep going

* Instead of assign I/Q
separately, start to have
pairs of I/Q values that
position your signals all 010
over the constellation plot 011
as desired.

» O

110

* 8 points separated by 45 001
degrees gives 8psk

* Each measurement gives 3
bits.

100

https://en.wikipedia.org/wiki/Constellation_diagram

10/2/24 6.5965 Fall 2024 45

Can also not just stick to unit
circle (vary amplitude of signal!

* Called Quadrature amplitude modulation.
* 16 QAM has 16 different possibilities:

0 01 02 03 04 0 01 02 03 04

N /\N "\ "\ N | re==m=e-n
N\ \/\/\/\| 1 1001 |

——————

—_
(=
o
o

o

——————

0 01 02 03 04 0 01 02 03 04

------ 1 1F pesseseaa

1 0000 I o °&/\/\/W I 0001 |

______ -1t " L L 1 -1 I L 1 " [e — |
0 01 02 03 04 0 01 02 03 04

—————— 1F 1F P -

LR YAVAVAVAVA B! | 0010 |

------ 1 3 h 3 3 1 b o
0 01 02 03 04 0 01 02 03 04

—————— 1F 1F P = oo
L LN NSNS\

AR 7AVAVAVAVA IR 1 0111 |
______ -1 -1 L L 1 " [I — |
0 01 02 03 04 0 01 02 03 04
—————— 1F 1 P ————
AN NT T \VAVAVAVAV/

1 0101 1 of of | 0100 |
______ -1 1 L L 1 -1 L L 1 1 == |
0 01 02 03 04 0 01 02 03 04
______ 0 B ENANNANTNA T 441)
R AVAVAVAVAV/EE:: 1111 1
______ -1 1 L L 1 -1 L 1 1 1 o an oo an o
0 01 02 03 04 0 01 02 03 04
""" oINNANNN] ol | 1100 1
1 1101 1 o0 o \/\/\/\/\| ! 1100 |
A MM M M N b —d

1
0
-1
1
0.
-1

R VAVAVAVAVA R \VAVAVAVAV R RI18
0 01 02 03 04 0 01 02 03 04
10/2/24 6.5965 Fall 2024

Can also not just stick to unit
circle (vary amplitude of signal!

* Called Quadrature amplitude modulation.
* 16 QAM has 16 different possibilities:
* |n constellation plot: 2

0000 0100 1100 1000

0001 0101 1101 1001
~ ~ :

0011 0111 1111 1011

0010 0110 1110 1010
'®) (:—\I o Q

10/2/24 6.5965 Fall 2024 47

And this can keep going.

* This methodology of both modulation but also of

analyzing signals can allow for relatively easy

and productive analysis

Mode: FDD Freq.:1747.5 MHz Ref Level: 7.00 dBm Bandwidth: 20.0 MHz Cyclic Prefix : Normal Meas Subft.: 0

10 Constellation

10/2/24

Statistic Count
20 /20
Out of Tolerance
0.00 %
Detected Modulation
16—-0AM
Detected Channel Type
PUSCH
View Filter Throughput
100.0 %

6.5965 Fall 2024

48

Wifi Uses QAM at higher and higher
densities

* Each saqam 3ZQAM) 16QaM
measurement \ \ [/
+7| O O O\O @) /O O O
becomes a symbol
+5| O O @) O @ \/O O
¢ /
+3|l0 | @ (@6 © | @ / @ | O
+1| O O @ o @ O O O

10/2/24 6.5965 Fall 2024 49

More advance wifi uses 256 and

1024 QAM

10/2/24

Modulation Changes in 802.11ax

802.11ac

256 QAM

................
................

................

................

................

................

................

8 bits per symbol

6.5965 Fall 2024

802.11ax

1024 QAM

....................

....................

....................

....................

....................

....................

....................

10 bits per symbol

50

Use trig functions to analyze these

* Find their magnitude and find their phase in 1/Q
data...that will tell you the value.

10/2/24 6.5965 Fall 2024 51

