6.5965
Digital Systems Laboratory |l

Lecture 7:
CORDIC and Iterative Algorithms

///////



Administrative

* Week 4 material is on site. Sorry for delay. Due a
week from today.

* Week 5 will come out on Friday.

9/30/24 6.5965 Fall 2024



Week 4 Stuff

* Build two modules and integrate together into

another DMA pi

neline

N
PS/ DMA
Python
J

[

—»[ FFT

D

J

s

Split
quare
Sum

Square
Rooter

9/30/24

6.5965 Fall 2024




Where we are/where we’re going...

* Last week you all got to mess with the DMA and
ouild a FIR and just get some reps in with the
Pynq framework.

* We’ll do one or two more labs with the Pynqg Z2

board then move to the RFSoC for a couple
weeks (I think)...then be into final projects

9/30/24 6.5965 Fall 2024



For Final Projects

* I'd strongly encourage you to try to build as much
as possible from your designs

* Don’t necessarily go for the high-level cool
stuff...making a full pipeline from scratch (no IP
or anything...) can be really cool

9/30/24 6.5965 Fall 2024



There are tons of cool algorithms
out there

* Particularly for FPGAs or digital environments in

general

Low-cost, High-speed Parallel FIR Filters for
RFSoC Front-Ends Enabled by ChaSH

Craig Ramsay Louise H. Crockett Robert W. Stewart
University of Strathclyde University of Strathclyde University of Strathclyde
Glasgow, Scotland Glasgow, Scotland Glasgow, Scotland
craig.ramsay.100@strath.ac.uk louise.crockett@strath.ac.uk r.stewart@strath.ac.uk

9/30/24

Abstract—We present a new low-cost, high-speed parallel FIR
filter generator targeting the Xilinx Radio Frequency System
on Chip (RFSoC) and direct RF sampling applications. We
compose two existing approaches in a novel hierarchy: effi-
cient parallelism with Fast FIR Algorithm (FFA) structures,
and efficient multiplierless FIR implementations with Hc,,. The
resource usage advantages (in both area and type) are compared
with similar output from the traditional architecture, exemplified
by vendor tools, as well as the Hcp-based filters without the
FFA optimisation. Although these techniq are well died
individually in the literature, they have not enjoyed mainstream
use as their structural complexity proves awkward to capture
with traditional Hardware Description Languages (HDLs). This
work continues a discussion of the use of functional programming
techniques in hardware description, highlighting the benefits of
having easily composable circuit generators.

I. INTRODUCTION

We present a new family of low-cost, high-speed, parallel

Finite Impulse Response (FIR) ﬁlters targeting direct Radio
Eroouency (RE) suith the Yiliny Zuna

Block RAMs UlraRAMs ~ DSP48E2s  Logic Fabric

8 channel
12 bit at 4 GSPS
, 8 channel
To CPUs < 14 bit at 6.5 GSPS
To RAM <
| |

Fig. 1. Overview of RFSoC’s FPGA and RF Data Converters

« Custom Digital Up/Down Conversion (DUC/DDC) as a
front-end of any radio application. Especially useful when
the characteristics of the available hardened DUC/DDCs
[5] do not meet the application’s requirements.

The demand for sample parallelism and the multi-channel

nature of the RFSoC device amplifies the effects of filter

6.5965 Fall 2024




CORDIC

» Coordinate Rotation Digital Computer

* Super versatile class of iterative algorithms that
are used widely in hardware because they are
relatively simple to implement

* Might not be the fastest, but are a good gateway
algorithm for lots of options out there.

9/30/24 6.5965 Fall 2024



CORDIC

* What can you compute with CORDIC?

Directly computable functions |edit| edit source ]

sin z cos z
tan~! 2 sinh z
cosh z tanh™?! z
y/z zz
tan" (y/z) Ve + v
z? — e” = sinh z + cosh z

Indirectly computable functions |edit | edit source ]

In addition to the above functions, a number of other functions can be produced by combining the results of previous computations:

cos z w
sinh z in—Lap — tan—1 w
tanh z = 0 sin”~ w = tan T
1 1
Inw = 2 tanh™? T log, w = %
wh = et cosh™ = ln<w + Vw? — 1)
tan ! (y/z) sinh ! = ln(w + Vw? + 1)
2~y VB =/ (w+1/4) — (w—1/2)?

9/30/24 6.5965 Fall 2024 8



) (¢, ¥r)-

CORDIC

* Built around the d .
iIdea of rotations (X, ¥i)

X cos () —sin(0) | rx;
* Rotation Matrix: bl = ) .

sin(f)  cos (6

e Also break down xp = cos(6) x; — sin(6) y;

Into two equations:
yr = sin(0) x; + cos(8) y;

https://zipcpu.com/dsp/2017/08/30/cordic.html https://en.wikibooks.org/wiki/Digital_Circuits/CORDIC
9/30/24 6.5965 Fall 2024 9



As Motivation to do this...

* If we could carry out that rotation we could start
to answer questions like...

A (cos®, sinB) A (1,y)

e Start at (1, 0) e Startat (1, y)
» Rotate by 6 * Rotate until y=0
» We get (cosb, sinb) « The rotation is tan™" y

9/30/24 6.5965 Fall 2024 10



OK so what do we need to do...

* WWe need to be able to do this...

xf] _ cos (f) —sin (6) xi]
f sin(f#) cos(6) | Wi

* But this is a little chicken-and-egg...because in
order to do this, we need to be able to do sin(8)
or cos(6) which are things we don’t have as
ready-made functions

9/30/24 6.5965 Fall 2024 11



Trig ldentities

> Reflections, shifts, and vos v [>-Y
periodicity Trigonometric functions and their reciprocals on the unit =
> Angle sum and difference circle. All of the right-angled triangles are similar, i.e. the ratios
identities between their corresponding sides are the same. For sin, cos
and tan the unit-length radius forms the hypotenuse of the
> Multiple-angle and half- triangle that defi gth Th . |y§ it .
angle formulae riangle that defines them. The reciprocal identities arise as
) ratios of sides in the triangles where this unit line is no longer
Power-reduction formulae the hypotenuse. The triangle shaded blue illustrates the identity
> Product-to-sum and sum- 1 + cot? = csc? 6, and the red triangle shows that
to-product identities tan? 6+ 1 = sec? 6.
> Linear combinations
Lagrange's trigonometric Each trigonometric function in terms of each of the other five.!'!
identities
in terms of sin 6 cscf cos @ sec tan 6 cot 0

Certain linear fractional
transformations 1

[ooc2 O — tan @ 1
Relation to the complex sinf = sin 6 9 +4/1—cos” 6 :i:Lo1 + 5 = 5
exponential function &l sec v/1+ tan® 0 v/1+cot“ 6

Series expansion csch — 1 + ! + secf Y 1+ tan® 6 ++/1+cot? 9

- cscf

Infinite product formulae sin 6 v/1—cos?6 \/Sec2 6—-1 tan @
Inverse trigonometric /CSCZ 0—1 1 1 cot 6
functions ) | COSO = | +£./1— sin2 0 MR E 2 cos @ — + =

N — = csc sec § V1 + tan® @ \/1+cot29
Identities without
variables 1 csc O 1 1+ cot? 8
Composition of secf= + + secd +4/1+ tan® 0 j:\/i

12
trigonometric functions \/1 — sin” 6 \/cscz -1 cos 6 cot 6
Further "conditional" sin § 1 \/ 1 —cos?@ 1
rurihe tanf = =* + +4/sec’—1 tan@
ginilltl:e?g‘gzthe case a+ \/1 — sin2 9 \/csc2 0_1 + o5 0 sec cot
Historical shorthands ot = 1_sin2 0 cos @ n 1 1

fr2 D el
Miscellaneous + sin @ =y/cec 6= 1 V31— cos2 0 Vi sec2f —1 tané

See also

v

9/30/24 6.5965 Fall 2024 12



1

|dentlty cos(0)x = V1 + tan?(6)

* That means these: x; = cos(8) x; — sin(6) y;

yr = sin(0) x; + cos(8) y;

e Can turn into these:

xr = (x; —tan(0) y;

)\/1 + tan2(6)

yr = (y; +tan(6) x;)

9/30/24 6.5965 Fall 2024 13

\/1 + tan2(6)




The * means value isn’t
same as before

So now our task:

* Ignoring that factor on the x'p = (x; — tan(0) y;)

outside does break stuff. Vs = (7 + tan(6) x)

* We’re no longer really
doing a pure rotation

e _we have to call it We still don’t know how to
T . calculate tan(8)...that’ll
something else... come

9/30/24 6.5965 Fall 2024 14



Has length of

PseudoRotations 11+ tan?(6)

%4 Eil+1/

* |n a pseudorotation, Y's
you still rotate by the  y }————————- ' otaior
same angle, but you
depart the unit circle:

s, +_-Pseudo-rotation
S,

What we’ve got | 7] 4SS S S — 3 E.
x'p = (x; — tan(a) y;)

y'r = (y; + tan(a) x;)

Xpo Xf '
What we wanted
1 1
xr = (x; — tan(a) y;) yr = (y; + tan(a) x;)
! l l \/1 + tan?(a) 4 l l \/1 + tan?(a)

9/30/24 6.5965 Fall 2024 15



What we’ve got

OK still though... ¥y = G = tan@) )

y'r = (y; +tan(a) x;)

* We still don’t know tan(8)

* Now we’re using a thing we don’t know, to do a
thing we don’t want....seems dumb if you ask
me.

9/30/24 6.5965 Fall 2024 16



Iterations

* We don’t have to do this move all at one time. We
could do it in steps.

* Just like you can apply a matrix...then apply a
matrix...you can do the same thing here.

* Do a bunch of smaller pseudo rotations forwards
and even backwards (like a binary search)

* Since we know the angle we want, we could keep
trac

9/30/24 6.5965 Fall 2024 17



stepO
xo = (x; — tan(ao) y;)
Yo = (y; + tan(ao) x;)
0o =0+

step1
x; = (xo — tan(—ay) yo)

y1 = (¥o + tan(—ay) xo)
01 =0+ g — 4

step2
X, = (%1 —tan(az) y1)

y2 = (y1 + tan(a) x;)

92=0+0(0—a1+a2

stepn...
Xn = (xn—l — tan(an) yn—l)

Vn = (Yp—1 +tan(ay) x,—1)
0,=0+ay—a; +a, +--ay,

9/30/24 6.5965 Fall 2024



OK interesting...

* |f we could conceivably arrive at an arbitrary
angle using a number of other steps...

* Could we pick a collection of steps that could be
used to arrive at most arbitrary angles (within

reason?)

* And could we pre-compute those angles?

9/30/24 6.5965 Fall 2024 19



If we have these precomputed
angle jJumps...

* Then we could potentially iterate towards our
target 6 with a number of pre-calculated a jumps

* We could keep track if our running tally is > or <6
and add or subtract our @ as needed.

9/30/24 6.5965 Fall 2024 20



What do we want in our precomputed a?

* Actually nothing.

* What we really care about are good, clean,
wholesome, easy-to-apply values of tan(«a)

* And remember we’re not in human land, we’re in
digital land...so what are nice and easy to apply
are in base 2!

* SO are there any nice base-2

* And it sure would be nice to have angles that
could go forwards or backwards

9/30/24 6.5965 Fall 2024 21



"/
Observe tan(x)

c 25 desmos .com,

Untitled Graph | Save desmos

9/30/24 6.5965 Fall 2024 —1T / 22
2



tan(x) is symmetric

e That’s nice...that means

we could just store
precomputed values of
tan(a) for a¢ > 0 and
just flip sighs when
needed.

9/30/24 6.5965 Fall 2024

23



Are there any “nice” tan(«)

tan(a) = 1 @a = 45°
1
tan(a) = ) @a = 26.57°

1
tan(a) = 2 @a = 14.04° e

1
tan(a) = 3 @a = 7.13°

many more ...
Get smaller and smaller 0.5

9/30/24 6.5965 Fall 2024 24



Do this for a bunch of power-of-2
values

* Can generate a whole o a=tan (@)
table...basically as many as Degrees  Radians
you wa Nt 0 45.00 | 0.7854

* The only nasty thing you need ; fi: z:j:
to store would be these P I R
precomputed angles + | s5s | oo0a

* Because now all those 5 | 179 | 00312
multiplications by tangents are 6 090 | 0.0160
are easy. 7 0.45 | 0.0080

8 0.22 0.0040
9 0.11 0.0020

9/30/24 6.5965 Fall 2024



stepO
xo = (x; — tan(ao) y;)
Yo = (y; + tan(ao) x;)
0o =0+

step1
x; = (xo — tan(—ay) yo)

y1 = (¥o + tan(—ay) xo)
01 =0+ g — 4

step2
X, = (%1 —tan(az) y1)

y2 = (y1 + tan(a) x;)

92=0+0(0—a1+a2

stepn...
Xn = (xn—l — tan(an) yn—l)

Vn = (Yp—1 +tan(ay) x,—1)
0,=0+ay—a; +a, +--ay,

9/30/24 6.5965 Fall 2024



stepO
xo = (x; —1-y)
Yo=@i+1-x)
0, =0+ 45

step1 X, = (Xo _ 1/2 3’0)

yi=(yo + 1/2 Xo)
0, = 0 + 45 — 26.57

step2
X2 = (x1 - 1/43’1)
v2=(y1 + 1/4x1)

6, =0+ 45— 26.57 + 14.04

stepn...
Xn = (xn—l - 1/271 yn—l)
Yo = (Yno1 + 1/2n Xn-1)
6, = 0+ 45 — 26.57 + 14.04 ...a,,

9/30/24 6.5965 Fall 2024



More and More

* The more iterations you do, the closer and closer
you’ll be able to get your final angle to your
desired angle.

* |t works out to about 1 bit of precision per
iteration.

* But we’re still not there yet.

9/30/24 6.5965 Fall 2024 28



We wanted to do this...

* Rotate things.

A (cos®, sin0) A (1,y)

e Start at (1, 0) o Startat (1, y)
* Rotate by 6 * Rotate until y=0
« We get (cos#, sinb) e The rotation is tan~y

* But we’re not...We’re pseudo-rotating :/

9/30/24 6.5965 Fall 2024

29



Has length of

PseudoRotations 11+ tan?(6)

%4 Eil+1/

* |n a pseudorotation, Y's
you still rotate by the  y }————————- ' rostion
same angle, but you
depart the unit circle:

“\ _-Pseudo-rotation

What we’ve got vbee e L 3 E.
x's = (x; — tan(a) y;)

y'r = (y; + tan(a) x;)

Xpo Xf '
What we wanted
1 1
xr = (x; — tan(a) y;) yr = (y; + tan(a) x;)
! l l J1+ tan2(a) 4 l l J1+ tan2(a)

9/30/24 6.5965 Fall 2024 30



1

Remember... c0s(0) % = s

* That means these: x; = cos(8) x; — sin(6) y;

yr = sin(0) x; + cos(8) y;

e Can turn into these:

xr = (x; —tan(0) y;

)\/1 + tan2(0)

yr = (y; +tan(6) x;)

9/30/24 6.5965 Fall 2024 31

\/1 + tan2(0)




We can zero in on our angle...

* But the x,y final locations are still
messed up

e On each iteration silnce we’re not
multiplying b
plying y\/1+tan2(ai)

e That means we’re actually
multiplying by /1 + tan?(a;)

* You’ll hear this called “gain” of a
pseudorotation...

9/30/24 6.5965 Fall 2024 32



So after n iterations...

* I'd expect the vector to be this large...

n—1
K:H\/I—I—tanzai
=0

* What will K be?

* ltis going to depend on what/how we rotated
right? And thatis nasty...

9/30/24 6.5965 Fall 2024

33



BUTTTT!!!!

* \We know ahead of time all
those a values and because of
their behavior around O, it
doesn’t matter if we + or —with
them

* For a given implementation...

n—1
K — H\/1+tan2a@-
1=0

* This will stay the same

9/30/24 6.5965 Fall 2024

© 00 N O 0o b~ W DD

a; = tan~1 (27

Degrees Radians

45.00
26.57
14.04
713
3.58
1.79
0.90
0.45
0.22
0.1

0.7854
0.4636
0.2450
0.1244
0.0624
0.0312
0.0160
0.0080
0.0040
0.0020

34



Not only that K=]]y1+tan’e

a; = tan™1 (27

AL CORDIC implementatiOnS | Degrees Radians
pick the same a values and 0 | 4500 | 0.7854
these get smaller and smaller 1 | 2657 | 0.4636

2 14.04 0.2450

S 7.13 0.1244

* That means this product actually = , .5 | o064
converges to a fixed value, = | e | aeee

* which works out to be: 6 | 080 | 00160
1.646760258121 7| B |Gy

8 0.22 0.0040

9 0.11 0.0020

Smaller n smaller

9/30/24 6.5965 Fall 2024 35



S0 once you’re done...

* You can take your xr and y, and multiplying by
0.60725293634

* Which is the same as multiplying by 2608131502
and right shifting by 32.

* You can also pre-multiply by this in your starting
x; and y;

9/30/24 6.5965 Fall 2024 36



A (cos®, sinB) A (1,y)

Generalizing
o Start at (1, 0) e Startat (1, )
» Rotate by 6 e Rotate until y=0
» We get (cosé, sin6) « The rotation is tan~'y

* The pre-compute and step-by-step iterations are
universal

* Their meaning and the target can be altered:
* We previously targeted our accumulatorto be 6

* We could also target to gety to be O...

* The amount the accumulator ends up with is based on
inverse tan of starting xandy

* The amount x ends up with is based on the sqrt(x**2+y**2)

9/30/24 6.5965 Fall 2024 37



Generalized CORDIC

* The three equations we’re iterating on can be

generalized to this format |
U is settable

Z is our angle constant

accumulator
d; is our

_ —1
xi+1 p— xl —_— 'udlylz control/feedback

function for
locking into a

Vier = Vi +dix; 277 target
—7 sgn(@) in our
Zi+1 — Zi ‘l‘ dl-xl-Z l walkthrough
example

27t are the
tan(a;) from our

original example
9/30/24 6.5965 Fall 2024 38



Different Modes

Mode

Circular
p=1
a; =tan~1271
Linear
u=0

Q= 2_i

Hyperbolic

p=-1
a; = tanh~12-

Rotation

d; =sgn(z), z—0

x— O —»K(xcosz—ysinz)
AW @ — K(ycosz+xsinz)

Z — 8 — ()

X i 9 — x

y—™" a — y+Xx2

Z —> 8 — ()

x— O |—»=K'(xcoshz—ysinhz)
y—™ @ — K'(ycoshz+xsinhz)
Z —> 8 — ()

e K'=0.8281593609602...

1/K'=1.207497067763...

Vectoring

d; = —sgn (y;), y—0

|~k /2 Ty?

_.0

— 2+ tan~!(y/x)

— x
— ()

— 2 +V/X

x— O
yv—] &
18
x— O
yv—| &
18
b 8
yv—] &
Z —— =

O

|~k /—y7

— ()

— z+tanh~(y/x)

In hyperbolic mode, iterations 4, 13, 40, 121, ..., j, 3j+1,... must be repeated. The constant K'given below accounts for this.
K=1.646760258121...
1/K = 0.6072529350009...

9/30/24

6.5965 Fall 2024

39



CORDIC

* You can use these outputs to generate all these
weird things

Directly computable functions |[edit! edit source ]

sin z cos z
tan~! z sinh z
cosh z tanh ! z
y/x zz
tan~! (y/z) Vet + P
z? — 9P e® = sinh z + cosh z

Indirectly computable functions |edit | edit source ]

In addition to the above functions, a number of other functions can be produced by combining the results of previous computations:

tanz = —— cos ' w = tan ”

sinh z : _ -1 w
tanh 2 = cosh z smw=ten V1 —w?

w—1 Inw
Inw = 2tanh™? Y log, w = S
wh = ethv cosh™! = ln<w +4/w? — 1)
tan~! (y/z) sinh! = ln(w + Vw? + 1)
2~y VB =/ (w+1/4)* = (w—1/4)?

9/30/24 6.5965 Fall 2024 40



There’s very few multiplications in
this

* And really no divisions.

[=]
— o - i N
N N ) |
| - +I -~ + NS +I
. & . & ) g
: : g
7] 7] ED
wn
° + +i N +I
) =
+ + +i +I
[~ [—o [~ o™
[=}
> — > P > -— > p:
o x = L
e >

https://en.wikibooks.org/wiki/Digital_Circuits/CORDIC

sgn(zy) |

A\

[>>1]

¥
[>>2]

3
[>>n-1]

v

[>>0]
[>>1]
[>>2]

[>>n-1]

9/30/24 6.5965 Fall 2024 41



So when you’re in Vivado or

wherever

,‘ Configuration Options

Configuration Parameters
i

. Functional Selection

Pipelining Mode

Data Format |

9/30/24 6.5965 Fall 2024

* Now you can
know what this is

doing and make a

better one.

42



People still making
Improvements/updates

9/30/24

2156 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 9, SEPTEMBER 2019

Generalized Hyperbolic CORDIC and Its
Logarithmic and Exponential Computation
With Arbitrary Fixed Base

Yuanyong Luo™’, Yuxuan Wang, Yajun Ha, Senior Member, IEEE, Zhongfeng Wang ', Fellow, IEEE,

Siyuan Chen, and Hongbing Pan

Abstract—This paper proposes a generalized hyperbolic
COordinate Rotation Digital Computer (GH CORDIC) to
directly compute logarithms and exponentials with an arbitrary
fixed base. In a hardware implementation, it is more efficient than
the state of the art which requires both a hyperbolic CORDIC
and a constant multiplier. More specifically, we develop the theory
of GH CORDIC by adding a new parameter called base to
the conventional hyperbolic CORDIC. This new parameter can
be used to specify the base with respect to the computation of
logarithms and exponentials. As a result, the constant multiplier
is no longer needed to convert base ¢ (Euler’s number) to other
values because the base of GH CORDIC is adjustable. The
proposed methodology is first validated using MATLAB with
extensive vector matching. Then, example circuits with 16-bit
fixed-point data are implemented under the TSMC 40-nm CMOS
technology. Hardware experiment shows that at the highest
frequency of the state of the art, the proposed methodology saves
27.98% area, 50.69% power consumption, and 6.67% latency
when calculating logarithms; it saves 13.09% area, 40.05% power
consumption, and 6.67% latency when computing exponentials.
Both calculations do not compromise accuracy. Moreover, it can
increase 13% maximum frequency and reduce up to 17.65%
latency accordingly compared to the state of the art.

Index Terms— Architecture, exponential, generalized hyper-
bolic COordinate Rotation Digital Computer (GH CORDIC),

evaluate logarithms and exponentials: approximation method
and iterative method. Although loads of well-related research
achievements have been proposed on these methods, there is
still plenty of room for improvement. First, current approaches
do not support easy porting to other fixed bases while they are
needed. Second, current approaches still have room to further
reduce the hardware overheads. In this paper, we will propose
a promising solution to abovementioned concerns.

The following literature addresses the evaluation of log-
arithms and exponentials using the approximation method.
[1]-[4] evaluate binary logarithms and exponentials via simple
piecewise linear approximation. When the output approaches
zero, this method encounters notably large relative error.
In order to overcome this shortage, Nam et al. [5] perform
finer subdivisions around the output of zero since the error
increases as the output value gets closer to zero. Subsequently,
they have designed a processor of the logarithmic number
system for 3-D graphics. The main shortcoming of a simple
linear approximation method is the high relative error with
limited lookup tables. Paul ez al. [6] use a second-order poly-

nomial approximation method to reduce the relative error. The
= o) RS £ £l 2 M 42 +L h VS M 42




For Week 4

* | tell you to do a binary search for the square
root, but actually a CORDIC would be cooler,
tbh. You should try to get that working instead if
you want.

e |t should use lower resources and be better in
general and cooler

9/30/24 6.5965 Fall 2024 44



Other Fun, Cheapies

* In lab this week, we we’re finding essentially the
maghnitude of a complex number

* While the binary search/CORDIC will be better in
terms of final value...there are others

* Alpha-Max-Plus-Beta-Min algorithm

9/30/24 6.5965 Fall 2024 45



Alpha Max Plus Beta Min

* Pretty cool approximation and some neat
Improvements with it

https://en.wikipedia.org/wiki/Alpha_max_plus_beta_min_algorithm

9/30/24 6.5965 Fall 2024

46



