
6.S965
Digital Systems Laboratory II

Lecture 7:
CORDIC and Iterative Algorithms

9/30/24 6.S965 Fall 2024 1

Administrative

• Week 4 material is on site. Sorry for delay. Due a
week from today.
• Week 5 will come out on Friday.

9/30/24 6.S965 Fall 2024 2

Week 4 Stuff

9/30/24 6.S965 Fall 2024 3

• Build two modules and integrate together into
another DMA pipeline

Where we are/where we’re going…

• Last week you all got to mess with the DMA and
build a FIR and just get some reps in with the
Pynq framework.
• We’ll do one or two more labs with the Pynq Z2

board then move to the RFSoC for a couple
weeks (I think)…then be into final projects

9/30/24 6.S965 Fall 2024 4

For Final Projects

• I’d strongly encourage you to try to build as much
as possible from your designs
• Don’t necessarily go for the high-level cool

stuff…making a full pipeline from scratch (no IP
or anything…) can be really cool

9/30/24 6.S965 Fall 2024 5

There are tons of cool algorithms
out there
• Particularly for FPGAs or digital environments in

general

9/30/24 6.S965 Fall 2024 6

CORDIC

• Coordinate Rotation Digital Computer

• Super versatile class of iterative algorithms that
are used widely in hardware because they are
relatively simple to implement

• Might not be the fastest, but are a good gateway
algorithm for lots of options out there.

9/30/24 6.S965 Fall 2024 7

CORDIC
• What can you compute with CORDIC?

9/30/24 6.S965 Fall 2024 8

CORDIC

• Built around the
idea of rotations

• Rotation Matrix:

• Also break down
into two equations:

9/30/24 6.S965 Fall 2024 9

https://zipcpu.com/dsp/2017/08/30/cordic.html https://en.wikibooks.org/wiki/Digital_Circuits/CORDIC

(𝑥! , 𝑦!)

(𝑥", 𝑦").

𝑥"
𝑦" 	

𝑥!
𝑦! 	

𝑥" = cos 𝜃 𝑥! − sin 𝜃 𝑦!

𝑦" = sin 𝜃 𝑥! + cos 𝜃 𝑦!

As Motivation to do this…

• If we could carry out that rotation we could start
to answer questions like…

9/30/24 6.S965 Fall 2024 10

OK so what do we need to do…

• We need to be able to do this…

• But this is a little chicken-and-egg…because in
order to do this, we need to be able to do sin 𝜃
or cos 𝜃 which are things we don’t have as
ready-made functions

9/30/24 6.S965 Fall 2024 11

𝑥"
𝑦" 	

𝑥!
𝑦! 	

Trig Identities

9/30/24 6.S965 Fall 2024 12

Identity

• That means these:

9/30/24 6.S965 Fall 2024 13

𝑥" = cos 𝜃 𝑥! − sin 𝜃 𝑦!

𝑦" = sin 𝜃 𝑥! + cos 𝜃 𝑦!

cos 𝜃 𝑥! =
1

1 + tan# 𝜃

• Can turn into these: 𝑥" = 𝑥! − tan 𝜃 𝑦!
1

1 + tan# 𝜃

𝑦" = 𝑦! + tan 𝜃 𝑥!
1

1 + tan# 𝜃

Let’s ignore these

So now our task:

• Ignoring that factor on the
outside does break stuff.

• We’re no longer really
doing a pure rotation

• …we have to call it
something else…

9/30/24 6.S965 Fall 2024 14

𝑥′" = 𝑥! − tan 𝜃 𝑦!

𝑦′" = 𝑦! + tan 𝜃 𝑥!

We still don’t know how to
calculate tan 𝜃 …that’ll
come

The ‘ means value isn’t
same as before

PseudoRotations
• In a pseudorotation,

you still rotate by the
same angle, but you
depart the unit circle:

9/30/24 6.S965 Fall 2024 15

𝑥" 𝑥′"

𝑦"

𝑦′"

𝑅′"1 5 1 + tan# 𝜃

𝜃"

𝑥′" = 𝑥! − tan 𝛼 𝑦!

𝑦′" = 𝑦! + tan 𝛼 𝑥!

𝑥" = 𝑥! − tan 𝛼 𝑦!
1

1 + tan# 𝛼
𝑦" = 𝑦! + tan 𝛼 𝑥!

1
1 + tan# 𝛼

𝛼

Has length of

What we’ve got

What we wanted

OK still though…

• We still don’t know tan 𝜃

• Now we’re using a thing we don’t know, to do a
thing we don’t want….seems dumb if you ask
me.

9/30/24 6.S965 Fall 2024 16

𝑥′" = 𝑥! − tan 𝛼 𝑦!

𝑦′" = 𝑦! + tan 𝛼 𝑥!

What we’ve got

Iterations
• We don’t have to do this move all at one time. We

could do it in steps.

• Just like you can apply a matrix...then apply a
matrix…you can do the same thing here.

• Do a bunch of smaller pseudo rotations forwards
and even backwards (like a binary search)

• Since we know the angle we want, we could keep
trac

9/30/24 6.S965 Fall 2024 17

9/30/24 6.S965 Fall 2024 18

𝑥$ = 𝑥! − tan 𝛼$ 𝑦!
𝑦$ = 𝑦! + tan 𝛼$ 𝑥!

𝜃$ = 0 + 𝛼$

step0

𝑥% = 𝑥$ − tan −𝛼% 𝑦$
𝑦% = 𝑦$ + tan −𝛼% 𝑥$
𝜃% = 0 + 𝛼$ − 𝛼%

step1

𝑥# = 𝑥% − tan 𝛼# 𝑦%
𝑦# = 𝑦% + tan 𝛼# 𝑥%
𝜃# = 0 + 𝛼$ − 𝛼% + 𝛼#

step2

𝑥& = 𝑥&'% − tan 𝛼& 𝑦&'%
𝑦& = 𝑦&'% + tan 𝛼& 𝑥&'%

𝜃& = 0 + 𝛼$ − 𝛼% + 𝛼# +⋯𝛼&

stepn...

OK interesting…

• If we could conceivably arrive at an arbitrary
angle using a number of other steps…

• Could we pick a collection of steps that could be
used to arrive at most arbitrary angles (within
reason?)

• And could we pre-compute those angles?

9/30/24 6.S965 Fall 2024 19

If we have these precomputed
angle jumps…
• Then we could potentially iterate towards our

target 𝜃 with a number of pre-calculated 𝛼 jumps

• We could keep track if our running tally is > or < 𝜃
and add or subtract our 𝛼 as needed.

9/30/24 6.S965 Fall 2024 20

What do we want in our precomputed 𝛼?

• Actually nothing.
• What we really care about are good, clean,

wholesome, easy-to-apply values of tan 𝛼
• And remember we’re not in human land, we’re in

digital land…so what are nice and easy to apply
are in base 2!
• So are there any nice base-2
• And it sure would be nice to have angles that

could go forwards or backwards

9/30/24 6.S965 Fall 2024 21

Observe tan 𝑥

9/30/24 6.S965 Fall 2024 22

9𝜋 2

9−𝜋
2

tan 𝑥 is symmetric

• That’s nice…that means
we could just store
precomputed values of
tan 𝛼 for 𝛼 > 0 and
just flip signs when
needed.

9/30/24 6.S965 Fall 2024 23

Are there any ”nice” tan 𝛼

9/30/24 6.S965 Fall 2024 24

o
tan 𝛼 = 1	@𝛼 = 45(

o

tan 𝛼 =
1
2 	@𝛼 = 26.57(

o

tan 𝛼 =
1
4 	@𝛼 = 14.04(

o

tan 𝛼 =
1
8 	@𝛼 = 7.13(

o𝑚𝑎𝑛𝑦	𝑚𝑜𝑟𝑒…
Get smaller and smaller

Do this for a bunch of power-of-2
values
• Can generate a whole

table…basically as many as
you want
• The only nasty thing you need

to store would be these
precomputed angles
• Because now all those

multiplications by tangents are
are easy.

9/30/24 6.S965 Fall 2024 25

9/30/24 6.S965 Fall 2024 26

𝑥$ = 𝑥! − tan 𝛼$ 𝑦!
𝑦$ = 𝑦! + tan 𝛼$ 𝑥!

𝜃$ = 0 + 𝛼$

step0

𝑥% = 𝑥$ − tan −𝛼% 𝑦$
𝑦% = 𝑦$ + tan −𝛼% 𝑥$
𝜃% = 0 + 𝛼$ − 𝛼%

step1

𝑥# = 𝑥% − tan 𝛼# 𝑦%
𝑦# = 𝑦% + tan 𝛼# 𝑥%
𝜃# = 0 + 𝛼$ − 𝛼% + 𝛼#

step2

𝑥& = 𝑥&'% − tan 𝛼& 𝑦&'%
𝑦& = 𝑦&'% + tan 𝛼& 𝑥&'%

𝜃& = 0 + 𝛼$ − 𝛼% + 𝛼# +⋯𝛼&

stepn...

9/30/24 6.S965 Fall 2024 27

𝑥$ = 𝑥! − 1 5 𝑦!
𝑦$ = 𝑦! + 1 5 𝑥!
𝜃$ = 0 + 45

step0

𝑥% = 𝑥$ − 91 2𝑦$
𝑦% = 𝑦$ + 91 2𝑥$

𝜃% = 0 + 45 − 26.57

step1

𝑥# = 𝑥% − 91 4𝑦%
𝑦# = 𝑦% + 91 4𝑥%

𝜃# = 0 + 45 − 26.57 + 14.04

step2

𝑥& = 𝑥&'% − 91 2& 𝑦&'%
𝑦& = 𝑦&'% + 91 2& 𝑥&'%

𝜃& = 0 + 45 − 26.57 + 14.04…𝛼&

stepn...

More and More

• The more iterations you do, the closer and closer
you’ll be able to get your final angle to your
desired angle.
• It works out to about 1 bit of precision per

iteration.

• But we’re still not there yet.

9/30/24 6.S965 Fall 2024 28

We wanted to do this…

• Rotate things.

• But we’re not…We’re pseudo-rotating :/

9/30/24 6.S965 Fall 2024 29

PseudoRotations
• In a pseudorotation,

you still rotate by the
same angle, but you
depart the unit circle:

9/30/24 6.S965 Fall 2024 30

𝑥" 𝑥′"

𝑦"

𝑦′"

𝑅′"1 5 1 + tan# 𝜃

𝜃"

𝑥′" = 𝑥! − tan 𝛼 𝑦!

𝑦′" = 𝑦! + tan 𝛼 𝑥!

𝑥" = 𝑥! − tan 𝛼 𝑦!
1

1 + tan# 𝛼
𝑦" = 𝑦! + tan 𝛼 𝑥!

1
1 + tan# 𝛼

𝛼

Has length of

What we’ve got

What we wanted

Remember…

• That means these:

9/30/24 6.S965 Fall 2024 31

𝑥" = cos 𝜃 𝑥! − sin 𝜃 𝑦!

𝑦" = sin 𝜃 𝑥! + cos 𝜃 𝑦!

cos 𝜃 𝑥! =
1

1 + tan# 𝜃

• Can turn into these: 𝑥" = 𝑥! − tan 𝜃 𝑦!
1

1 + tan# 𝜃

𝑦" = 𝑦! + tan 𝜃 𝑥!
1

1 + tan# 𝜃

Let’s ignore these

We can zero in on our angle…
• But the x,y final locations are still

messed up
• On each iteration since we’re not

multiplying by !
!"#$%! &"

…

• That means we’re actually
multiplying by 1 + tan' 𝛼(

• You’ll hear this called “gain” of a
pseudorotation…

9/30/24 6.S965 Fall 2024 32

So after n iterations…

• I’d expect the vector to be this large…

• What will K be?

• It is going to depend on what/how we rotated
right? And that is nasty…

9/30/24 6.S965 Fall 2024 33

BUTTTT!!!!

• We know ahead of time all
those 𝛼 values and because of
their behavior around 0, it
doesn’t matter if we + or – with
them
• For a given implementation...

• This will stay the same

9/30/24 6.S965 Fall 2024 34

Not only that

• All CORDIC implementations
pick the same 𝛼 values and
these get smaller and smaller

• That means this product actually
converges to a fixed value,
• which works out to be:

1.646760258121

9/30/24 6.S965 Fall 2024 35

Smaller n smaller

So once you’re done…

• You can take your 𝑥! and 𝑦! and multiplying by
0.60725293634
• Which is the same as multiplying by 2608131502

and right shifting by 32.

• You can also pre-multiply by this in your starting
𝑥" and 𝑦"

9/30/24 6.S965 Fall 2024 36

Generalizing
CORDIC

• The pre-compute and step-by-step iterations are
universal
• Their meaning and the target can be altered:
• We previously targeted our accumulator to be 𝜃
• We could also target to get y to be 0…

• The amount the accumulator ends up with is based on
inverse tan of starting x and y

• The amount x ends up with is based on the sqrt(x**2+y**2)

9/30/24 6.S965 Fall 2024 37

Generalized CORDIC
• The three equations we’re iterating on can be

generalized to this format

9/30/24 6.S965 Fall 2024 38

𝑥'() = 𝑥' − 𝜇𝑑'𝑦'2*'

𝑦'() = 𝑦' + 𝑑'𝑥'2*'

𝑧'() = 𝑧' + 𝑑'𝑥'2*'

𝜇 is settable
constant

𝑑! is our
control/feedback
function for
locking into a
target

sgn(𝜃) in our
walkthrough
example

𝑧 is our angle
accumulator

2'! are the
tan 𝛼! 	from our
original example

Different Modes

9/30/24 6.S965 Fall 2024 39

CORDIC
• You can use these outputs to generate all these

weird things

9/30/24 6.S965 Fall 2024 40

There’s very few multiplications in
this
• And really no divisions.

9/30/24 6.S965 Fall 2024 41

https://en.wikibooks.org/wiki/Digital_Circuits/CORDIC

So when you’re in Vivado or
wherever

• Now you can
know what this is
doing and make a
better one.

9/30/24 6.S965 Fall 2024 42

People still making
improvements/updates

9/30/24 6.S965 Fall 2024 43

For Week 4

• I tell you to do a binary search for the square
root, but actually a CORDIC would be cooler,
tbh. You should try to get that working instead if
you want.

• It should use lower resources and be better in
general and cooler

9/30/24 6.S965 Fall 2024 44

Other Fun, Cheapies

• In lab this week, we we’re finding essentially the
magnitude of a complex number

• While the binary search/CORDIC will be better in
terms of final value…there are others

• Alpha-Max-Plus-Beta-Min algorithm

9/30/24 6.S965 Fall 2024 45

Alpha Max Plus Beta Min

• Pretty cool approximation and some neat
improvements with it

9/30/24 6.S965 Fall 2024 46

https://en.wikipedia.org/wiki/Alpha_max_plus_beta_min_algorithm

