
6.S965
Digital Systems Laboratory II

Lecture 6:
Scoreboarding and Models and Drivers
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Administrative
• Week 3 stuff is due tomorrow
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Virginia Woolf’s Radio at her 
house in Sussex, England

Used a “magic-eye” tube for tuning



Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer
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Week 3

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

-ish

Sequencer
-ish
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At a high level…

• Ideally, we want to just be able to issue high-
level commands of things to send and not have 
to worry about:
• Turning signals on/off
• Waiting for signals to be on/off (e.g. READY)
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DriverPython data structure Wires set high/low



Bus Functional Model: “BFM”

• You will find this term thrown around a lot and it 
is kinda/basically the same thing we’re doing 
here. 
• A BFM is a programming construct that allows 

allows interfacing of testing 
languages/frameworks to work with the 
simulated digital designs

BFMPython data structures Wires set high/low



Drivers

• In week 3’s stuff we’re creating (and then using) a 
Bus Driver that you write like the following:

• What is this “append” method?
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ind = AXISDriver(dut,'s00',dut.s00_axis_aclk)
#...
#...
#feed the driver:
for i in range(50):
  data = {'type':'single', "contents":{"data": random.randint(1,255),"last":0,"strb":15}}
  ind.append(data)
data = {'type':'burst', "contents":{"data": np.array(list(range(100)))}}
ind.append(data)



Drivers

• Several different classes 
and subclasses
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The Driver Base Class
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The append method
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What is self._sendQ ?
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Double Ended Queue
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An internal FIFO of things to do
• Just like in hardware a FIFO/queue allows 

breathing room and a decoupling of commands 
from implementation
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Driver
Python data structure Wires set high/low

Wires read high/low



Launches the running process
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An internal FIFO of things to do
• Just like in hardware a FIFO/queue allows 

breathing room and a decoupling of commands 
from implementation
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Driver

Python 
data structure

Wires set high/low

Wires read high/low

thread



_send_thread coroutine

• Monitors queue…if stuff in it…calls the _send 
procedure

25 September 2024 6.S965 Fall 2024 18



_send

• Finally this is getting to the _driver_send 
procedure which we have.
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Notice this is awaiting it
And actually the last few 
pages have been awaits



What are we appending?

• Several Mechanisms for that.
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We may also want to get feedback 
from our Drivers
• Several Mechanisms for that.
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Callback?

• A callback is essentially a function that gets 
called when an transaction is complete.
• You could:
• Log the event that you wrote it
• Print something
• Perhaps call some other function that updates global 

state to influence future behavior (useful for 
synchronizing multiple drivers)
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Event?

• These are a second way of causing a python-side 
thing to occur when a transaction happens
• These are a fundamental part of the cocotb 

library, allowing different coroutines to 
communicate with each other
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Usefulness? Think of the AXI LITE

• One interface actually has three separate busses in 
it. Have Driver for Each Bus, but need to sync them…
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Events 
• Events/Triggers could allow Driver 1 to only send 

after Driver 2 sent or vice versa or whatever 
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Python 

data structure

Wires set high/low

Wires read high/low

Wires set high/low

Wires read high/lowthread
Driver1

Python data structure Wires set high/low

Driver2

Python data structure

Event happens

Event happens

await Done



Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer
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Standard Testing Framework
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AXISMonitor

• Given to you in week 3
• Monitors the line
• If a valid/ready transaction occurs, do something with it.

25 September 2024 6.S965 Fall 2024 28



At a high level…

• Monitors should be completely passive entities 
that simply report what they see and not affect 
the system
• Keeps it simple
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Monitor Python data structure
Wires set high/low



A little closer

• Made a internal variable to keep track of the 
number of valid/ready things we saw happen on 
the bus
• Then created a Python data structure from it (for 

easy human interpretability) and reported it.
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The _recv method does a few 
things:
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__init__ of Monitor Class:

Call function with transaction!

Or shove it into a queue

Or trigger various events



Monitor Class
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What would the 
monitor/callbacks be useful for?
• Right now (week 3), just printing stuff and verify 

by eye

• But it would be nice to verify the data, for 
example… That’s where maybe a callback could 
come in
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One useful callback might be a 
model
• You wrote a model in week 1 when “verifying” 

that crappy divider we gave you
• A callback to a model might be useful if attached 

to an input monitor.
• Every time an input to DUT is observed, you 

trigger the model to compute what to expect off 
of it.
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Minor modifications to 
BusMonitor
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callback

Just send the value to that thing rather than 
dictionary thing



With these modifications…
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callback

Proven software model



So now 

DUTDriver Monitor
(output)

Monitor
(input)

Sequencer
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Model ???



Plug an entity in to Compare these 
results

DUTDriver Monitor
(output)

Monitor
(input)

Sequencer
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Model Scoreboard



ScoreBoard

• There’s a 
scoreboarding 
class that is 
designed to 
work with data 
streams like 
this
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Make a scoreboard
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Scoreboard instance
Thing for it to check… actual, expected



Scoreboard Class

• Has all the stuff running to check/compare the 
actual/expected pairs as they come in.
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• Can also 
override the 
compare to do 
whatever you 
want…ranges, 
whatever



Scoreboard sees failure and tells 
you
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Scoreboard see no error and 
you’re good
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Places For Improvement at end of 
Week 3
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Still a little ugly

Maybe make driver for output port

Our creation of 
stuff is getting 
better but it would 
still be nicer for 
that to be more 
high-level…



Sequencer will fix some of that

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer
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Model


