
6.S965
Digital Systems Laboratory II

Lecture 6:
Scoreboarding and Models and Drivers

25 September 2024 6.S965 Fall 2024 1

Administrative
• Week 3 stuff is due tomorrow

25 September 2024 6.S965 Fall 2024 2

Virginia Woolf’s Radio at her
house in Sussex, England

Used a “magic-eye” tube for tuning

Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

25 September 2024 6.S965 Fall 2024 3

Week 3

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

-ish

Sequencer
-ish

25 September 2024 6.S965 Fall 2024 4

Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

25 September 2024 6.S965 Fall 2024 5

Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

25 September 2024 6.S965 Fall 2024 6

At a high level…

• Ideally, we want to just be able to issue high-
level commands of things to send and not have
to worry about:
• Turning signals on/off
• Waiting for signals to be on/off (e.g. READY)

25 September 2024 6.S965 Fall 2024 7

DriverPython data structure Wires set high/low

Bus Functional Model: “BFM”

• You will find this term thrown around a lot and it
is kinda/basically the same thing we’re doing
here.
• A BFM is a programming construct that allows

allows interfacing of testing
languages/frameworks to work with the
simulated digital designs

BFMPython data structures Wires set high/low

Drivers

• In week 3’s stuff we’re creating (and then using) a
Bus Driver that you write like the following:

• What is this “append” method?

25 September 2024 6.S965 Fall 2024 9

ind = AXISDriver(dut,'s00',dut.s00_axis_aclk)
#...
#...
#feed the driver:
for i in range(50):
 data = {'type':'single', "contents":{"data": random.randint(1,255),"last":0,"strb":15}}
 ind.append(data)
data = {'type':'burst', "contents":{"data": np.array(list(range(100)))}}
ind.append(data)

Drivers

• Several different classes
and subclasses

25 September 2024 6.S965 Fall 2024 10

The Driver Base Class

25 September 2024 6.S965 Fall 2024 11

The append method

25 September 2024 6.S965 Fall 2024 12

What is self._sendQ ?

25 September 2024 6.S965 Fall 2024 13

Double Ended Queue

25 September 2024 6.S965 Fall 2024 14

An internal FIFO of things to do
• Just like in hardware a FIFO/queue allows

breathing room and a decoupling of commands
from implementation

25 September 2024 6.S965 Fall 2024 15

Driver
Python data structure Wires set high/low

Wires read high/low

Launches the running process

25 September 2024 6.S965 Fall 2024 16

An internal FIFO of things to do
• Just like in hardware a FIFO/queue allows

breathing room and a decoupling of commands
from implementation

25 September 2024 6.S965 Fall 2024 17

Driver

Python
data structure

Wires set high/low

Wires read high/low

thread

_send_thread coroutine

• Monitors queue…if stuff in it…calls the _send
procedure

25 September 2024 6.S965 Fall 2024 18

_send

• Finally this is getting to the _driver_send
procedure which we have.

25 September 2024 6.S965 Fall 2024 19

Notice this is awaiting it
And actually the last few
pages have been awaits

What are we appending?

• Several Mechanisms for that.

25 September 2024 6.S965 Fall 2024 20

We may also want to get feedback
from our Drivers
• Several Mechanisms for that.

25 September 2024 6.S965 Fall 2024 21

Callback?

• A callback is essentially a function that gets
called when an transaction is complete.
• You could:
• Log the event that you wrote it
• Print something
• Perhaps call some other function that updates global

state to influence future behavior (useful for
synchronizing multiple drivers)

25 September 2024 6.S965 Fall 2024 22

Event?

• These are a second way of causing a python-side
thing to occur when a transaction happens
• These are a fundamental part of the cocotb

library, allowing different coroutines to
communicate with each other

25 September 2024 6.S965 Fall 2024 23

Usefulness? Think of the AXI LITE

• One interface actually has three separate busses in
it. Have Driver for Each Bus, but need to sync them…

25 September 2024 6.S965 Fall 2024 24

Events
• Events/Triggers could allow Driver 1 to only send

after Driver 2 sent or vice versa or whatever

25 September 2024 6.S965 Fall 2024 25

Python

data structure

Wires set high/low

Wires read high/low

Wires set high/low

Wires read high/lowthread
Driver1

Python data structure Wires set high/low

Driver2

Python data structure

Event happens

Event happens

await Done

Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

25 September 2024 6.S965 Fall 2024 26

Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

25 September 2024 6.S965 Fall 2024 27

AXISMonitor

• Given to you in week 3
• Monitors the line
• If a valid/ready transaction occurs, do something with it.

25 September 2024 6.S965 Fall 2024 28

At a high level…

• Monitors should be completely passive entities
that simply report what they see and not affect
the system
• Keeps it simple

25 September 2024 6.S965 Fall 2024 29

Monitor Python data structure
Wires set high/low

A little closer

• Made a internal variable to keep track of the
number of valid/ready things we saw happen on
the bus
• Then created a Python data structure from it (for

easy human interpretability) and reported it.

25 September 2024 6.S965 Fall 2024 30

The _recv method does a few
things:

25 September 2024 6.S965 Fall 2024 31

__init__ of Monitor Class:

Call function with transaction!

Or shove it into a queue

Or trigger various events

Monitor Class

25 September 2024 6.S965 Fall 2024 32

What would the
monitor/callbacks be useful for?
• Right now (week 3), just printing stuff and verify

by eye

• But it would be nice to verify the data, for
example… That’s where maybe a callback could
come in

25 September 2024 6.S965 Fall 2024 33

One useful callback might be a
model
• You wrote a model in week 1 when “verifying”

that crappy divider we gave you
• A callback to a model might be useful if attached

to an input monitor.
• Every time an input to DUT is observed, you

trigger the model to compute what to expect off
of it.

25 September 2024 6.S965 Fall 2024 34

Minor modifications to
BusMonitor

25 September 2024 6.S965 Fall 2024 35

callback

Just send the value to that thing rather than
dictionary thing

With these modifications…

25 September 2024 6.S965 Fall 2024 36

callback

Proven software model

So now

DUTDriver Monitor
(output)

Monitor
(input)

Sequencer

25 September 2024 6.S965 Fall 2024 37

Model ???

Plug an entity in to Compare these
results

DUTDriver Monitor
(output)

Monitor
(input)

Sequencer

25 September 2024 6.S965 Fall 2024 38

Model Scoreboard

ScoreBoard

• There’s a
scoreboarding
class that is
designed to
work with data
streams like
this

25 September 2024 6.S965 Fall 2024 39

Make a scoreboard

25 September 2024 6.S965 Fall 2024 40

Scoreboard instance
Thing for it to check… actual, expected

Scoreboard Class

• Has all the stuff running to check/compare the
actual/expected pairs as they come in.

25 September 2024 6.S965 Fall 2024 41

• Can also
override the
compare to do
whatever you
want…ranges,
whatever

Scoreboard sees failure and tells
you

25 September 2024 6.S965 Fall 2024 42

Scoreboard see no error and
you’re good

25 September 2024 6.S965 Fall 2024 43

Places For Improvement at end of
Week 3

25 September 2024 6.S965 Fall 2024 44

Still a little ugly

Maybe make driver for output port

Our creation of
stuff is getting
better but it would
still be nicer for
that to be more
high-level…

Sequencer will fix some of that

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

25 September 2024 6.S965 Fall 2024 45

Model

