6.5965
Digital Systems Laboratory |l

Lecture 6:

Scoreboarding and Models and Drivers

Administrative

e Week 3 stuff is due tomorrow

Used a “magic-eye” tube for tuning Virginia Woolf's Radio at her
house in Sussex, England
25 September 2024 6.S965 Fall 2024 2

Standard Testing Framework

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

25 September 2024 6.5965 Fall 2024 3

Week 3

Monitor
(input)

..... Scoreboard
-ish

Monitor
(output)

Sequencer
-ish

Driver

25 September 2024 6.5965 Fall 2024 4

Standard Testing Framework

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

25 September 2024 6.5965 Fall 2024 5

Standard Testing Framework

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

25 September 2024 6.5965 Fall 2024 6

At a high level...

Python data structure == e= e Driver Wires set high/low

* |deally, we want to just be able to issue high-
level commands of things to send and not have
to worry about:

* Turning signals on/off
* Waiting for signals to be on/off (e.g. READY)

25 September 2024 6.5965 Fall 2024

Bus Functional Model: “BFM”

* You will find this term thrown around a lot and it
Is kinda/basically the same thing we’re doing
here.

* ABFM s a programming construct that allows
allows interfacing of testing
languages/frameworks to work with the
simulated digital designs

Python data structures Wires set high/low

Drivers

* In week 3’s stuff we’re creating (and then using) a
Bus Driver that you write like the following:

ind = AXISDriver(dut, 's00',dut.s00_axis_aclk)
#...
#...
#feed the driver:
for i in range(50):
data = {'type':'single', "contents":{"data": random.randint(1,255),"last":0,"strb":15}}
ind.append(data)
data = {'type':'burst', "contents":{"data": np.array(list(range(100)))}}
ind.append(data)

* What is this “append” method?

25 September 2024 6.5965 Fall 2024 9

cocotb-bus / src / cocotb_bus / drivers / __init__.py (&

Drivers

21

22 v class BitDriver:

23 """Drives a signal onto a single bit.
24

® Seve ral diffe re nt Classes 25 Useful for exercising ready/valid flags.

26 mnon

and subclasses

73 v class Driver:
"""Class defining the standard interface for a driver within a testbench.

The driver is responsible for serializing transactions onto the physical
pins of the interface. This may consume simulation time.

206 v class BusDriver(Driver):
207 """Wrapper around common functionality for buses which have:
208

209 * a list of :attr:_signals’ (class attribute)
210 * a list of :attr: _optional_signals’ (class attribute)
211 *x a clock

* a name

286

287 ~ class ValidatedBusDriver(BusDriver):

288 """Same as a :class: BusDriver’ except we support an optional generator
289 to control which cycles are valid.

25 September 2024 6.5965 Fall 2024 10

The Driver Base Class

72

73 v class Driver:

74 ""!"Class defining the standard interface for a driver within a testbench.
75

76 The driver is responsible for serializing transactions onto the physical
7. pins of the interface. This may consume simulation time.

78 e

79

80 v def __init__ (self):

81 ""Constructor for a driver instance."""

82 self._pending = Event(name="Driver._pending")

83 self._sendQ = deque()

84 self.busy_event = Event("Driver._busy")

85 self.busy = False

86

87 # Sub-classes may already set up logging

88 if not hasattr(self, "log"):

89 self.log = logging.getLogger(*cocotb.driver.%s" % (type(self).__qualname__))
90

91 # Create an independent coroutine which can send stuff

92 self._thread = cocotb.start_soon(self._send_thread())

93

94 v async def _acquire_lock(self):

95 if self.busy:

96 await self.busy_event.wait()

97 self.busy_event.clear()

98 self.busy = True

—

25 September 2024 6.S965 Fall 2024 11

The append method

110 v
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

def append(
self, transaction: Any, callback: Callable[[Any], Any] = None,
event: Event = None, *xkxkwargs: Any

) —> None:
"""Queue up a transaction to be sent over the bus.

Mechanisms are provided to permit the caller to know when the
transaction is processed.

Args:

transaction: The transaction to be sent.

callback: Optional function to be called
when the transaction has been sent.

event: :class: ~cocotb.triggers.Event® to be set
when the transaction has been sent.

xkkwargs: Any additional arguments used in child class'
rany: _driver_send’ method.

self._sendQ.append((transaction, callback, event, kwargs))
self._pending.set()

25 September 2024

6.5965 Fall 2024 12

What is self._sendQ ?

72

73 v class Driver:

74 """Class defining the standard interface for a driver within a testbench.
75

76 The driver is responsible for serializing transactions onto the physical
77 pins of the interface. This may consume simulation time.

78 o

79

80 v def __init_ (self):

81 """Constructor for a driver instance."""

82 self._pending = Event(name="Driver._pending")

83 self._sendQ = deque()

84 eLT.DUSy_ever r er._busy")

85 self.busy = False

86

87 # Sub-classes may already set up logging

88 if not hasattr(self, "log"):

89 self.log = logging.getlLogger("cocotb.driver.%s" % (type(self).__qualname__))
90

91 # Create an independent coroutine which can send stuff

92 self._thread = cocotb.start_soon(self._send_thread())

25 September 2024 6.S965 Fall 2024 13

Double Ended Queue

&«] °5 geeksforgeeks.org/de

Courses v Tutorials v+ Jobs & Practice + Contests ee

< Python Course Python Basics Interview Questions Python Quiz Popular Packages Python Projects Practice Python Al With Python Learn Python3 Python Automat

Deque in Python

Last Updated : 20 Jun, 2024

% D2

Deque (Doubly Ended Queue) in Python is implemented using the module “collections®. Deque is
preferred over a list in the cases where we need quicker append and pop operations from both the
ends of the container, as deque provides an O(1) time complexity for append and pop operations as

compared to a list that provides O(n) time complexity.

ADD ELEMENT AT REAR ADD ELEMNET AT FRONT

N REAR FRONT ¢

10| 15| 20 30 40 50 60| 70

</

REMOVE ELEMENT FROM REAR REMOVE ELEMENT FROM FRONT

Types of Restricted Deque Input
¢ Input Restricted Deque: Input is limited at one end while deletion is permitted at both ends.
¢ Output Restricted Deque: output is limited at one end but insertion is permitted at both ends.

Example: Python code to demonstrate deque

25 September 2024 6.S965 Fall 2024

An internal FIFO of things to do

* Just like in hardware a FIFO/queue allows
breathing room and a decoupling of commands
from implementation

Driver

Python data structure Wires set high/low

JU00OUO000

h
Wires read high/low

25 September 2024 6.5965 Fall 2024 15

Launches the running process

25 September 2024

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

v class Driver:

""""Class defining the standard interface for a driver within a testbench.
The driver is responsible for serializing transactions onto the physical
pins of the interface. This may consume simulation time.
v def __init_ (self):

"""Constructor for a driver instance."""

self._pending = Event(name="Driver._pending")

self._sendQ = deque()

self.busy_event = Event("Driver._busy")

self.busy = False

Sub-classes may already set up logging

if not hasattr(self, "log"):

self.log = logging.getlLogger("cocotb.driver.%s" % (type(self).__qualname__))

Create an independent coroutine which can send stuff

self._thread = cocotb.start_soon(self._send_thread())

6.5965 Fall 2024 16

An internal FIFO of things to do

* Just like in hardware a FIFO/queue allows
breathing room and a decoupling of commands
from implementation

Driver

Wires set high/low
Python _ _ o

data structure

JUO0O0EE00

Wires read high/low

25 September 2024 6.5965 Fall 2024 17

~send thread coroutine

* Monitors queue...if stuff in it...calls the _send
procedure

100

186 v async def _send_thread(self):

187 while True:

188

189 # Sleep until we have something to send

190 while not self._sendQ:

191 self._pending.clear()

192 await self._pending.wait()

193

194 synchronised = False

195

196 # Send in all the queued packets,

197 # only synchronize on the first send

198 while self._sendQ:

199 transaction, callback, event, kwargs = self._sendQ.popleft()
200 self.log.debug("Sending queued packet...")

201 awalt self._send(transaction, callback, event,
202 sync=not synchronised, sxxkwargs)
203

204

25 Septembepiage 0IOTVU T AN ZUZ

~send

* Finally this is getting to the _driver_send
procedure which we have.

163 v async def _send(
164 self, transaction: Any, callback: Callable[[Any], Any], event: Event,
165 sync: bool = True, *xkkwargs
166) —> None:
167 """Send coroutine.
168
169 Args:
. 170 transaction: The transaction to be sent.
NOtlce thIS IS awaltlng It 171 callback: Optional function to be called
172 when the transaction has been sent.
And aCtuauy the laSt feW 173 event: event to be set when the transaction has been sent.
: 174 sync: Synchronize the transfer by waiting for a rising edge.
pages have been awalts 175 *kxkwargs: Any additional arguments used in child class'
176 tany: _driver_send” method.
77
1
179
180
181 if event:
182 event.set()
183 if callback:
184 callback(transaction)

1o0c

25 September 2024 6.S965 Fall 2024 19

What are we appending?

 Several Mechanisms for that.

110 v def append(

111 self, transaction: Any, callback: Callable[[Any], Anyl = None,
112 event: Event = None, *kkwargs: Any

113) —> None:

114 """Queue up a transaction to be sent over the bus.

115

116 Mechanisms are provided to permit the caller to know when the
117 transaction is processed.

118

119 Args:

120 transaction: The transaction to be sent.

121 callback: Optional function to be called

122 when the transaction has been sent.

123 event: :class: ~cocotb.triggers.Event® to be set

124 when the transaction has been sent.

125 *kkwargs: Any additional arguments used in child class'
126 rany: _driver_send’ method.

127 o

128 self._sendQ.append((transaction, callback, event, kwargs))
129 self._pending.set()

a

25 September 2024

6.5965 Fall 2024 20

We may also want to get feedback
from our Drivers

 Several Mechanisms for that.

110 v def append(

111 self, transaction: Any, callback: Callable[[Any], Any]l = None,
112 event: Event = None, *kkwargs: Any

113) —> None:

114 """Queue up a transaction to be sent over the bus.

115

116 Mechanisms are provided to permit the caller to know when the
117 transaction is processed.

118

119 Args:

120 transaction: The transaction to be sent.

121 callback: Optional function to be called

122 when the transaction has been sent.

123 event: :class: ~cocotb.triggers.Event®™ to be set

124 when the transaction has been sent.

125 *kkwargs: Any additional arguments used in child class'
126 rany: _driver_send” method.

127

128 self._sendQ.append((transaction, callback, event, kwargs))
129

PR.V.Y

25 September 2024 6.S965 Fall 2024 21

Callback?

* A callback is essentially a function that gets
called when an transaction is complete.

* You could:
* Log the event that you wrote it

* Print something

* Perhaps call some other function that updates global
state to influence future behavior (useful for
synchronizing multiple drivers)

25 September 2024 6.5965 Fall 2024 22

Event?

* These are a second way of causing a python-side

thing to occur when a transaction happens

* These are a fundamental part of the cocotb
library, allowing different coroutines to
communicate with each other

25 September 2024 6.5965 Fall 2024

23

Usefulness? Think of the AXI LITE

* One interface actually has three separate busses in

Master
interface

Write address channel

Address
and control
 —
Write data channel
Write Write Write Write
data data data data

—_ ———> ——> ——»

Write response channel

Write
response

«—

Slave
interface

it. Have Driver for Each Bus, but need to sync them...

25 September 2024

6.5965 Fall 2024

24

Fython data Structure == es e 4 q Wires set

Events

* Events/Triggers could allow Driver 1 to only send
after Driver 2 sent or vice versa or whatever

Wires set high/low

(\t - - o
ottty Driver1
g - : .
thread Pid = - Wires read high/low
- 0
(l - Pc;’:’(t\a ructur®
- PythOn
Wa N = ~<dat Stry
IDOOG S ~ == Ctire.‘ Wires set high/low
~

Driver2
h
Wires read high/low

25 September 2024 6.5965 Fall 2024 25

Standard Testing Framework

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

25 September 2024 6.5965 Fall 2024 26

Standard Testing Framework

Monitor

(input) [~===~ Scoreboard

Monitor
(output)

Sequencer Driver

25 September 2024 6.5965 Fall 2024 27

14 class AXISMonitor(BusMonitor):

15 e

. 16 monitors axi streaming bus

AXISMonitorz

18 transactions = 0
19 def __init_ (self, dut, name, clk):
20 self._signals = ['axis_tvalid', 'axis_tready', 'axis_tlast', 'axis_tdata', 'axis_tstrb']
21 BusMonitor.__init_ (self, dut, name, clk)
22 self.clock = clk
23 self.transactions = 0
24 async def _monitor_recv(self):
25 e
26 Monitor receiver
27 e
28 rising_edge = RisingEdge(self.clock) # make these coroutines once and reuse
29 falling_edge = FallingEdge(self.clock)
30 read_only = ReadOnly() #This is
31 while True:
32 await rising_edge
33 await falling_edge #sometimes see in AXI shit
34 await read_only #readonly (the postline)
35 valid = self.bus.axis_tvalid.value
36 ready = self.bus.axis_tready.value
37 last = self.bus.axis_tlast.value
38 data = self.bus.axis_tdata.value #.signed_integer
39 if valid and ready:
40 self.transactions+=1
41 thing = dict(data=data, last=1last,name=self.name, count=self.transactions,time=gst())
42 print(thing)
43 self._recv(thing)

* Giventoyouinweek3
* Monitors the line
* |f a valid/ready transaction occurs, do something with it.

25 September 2024 6.S965 Fall 2024 28

At a high level...

Wires set high/low
= == § Python data structure

* Monitors should be completely passive entities
that simply report what they see and not affect
the system

* Keeps it simple

25 September 2024 6.5965 Fall 2024 29

A little closer

if valid and ready:
self.transactions+=1

thing = dict(data=data, last=1last,name=self.name, count=self.transactions,time=gst())
print(thing
self._recv(thing)

* Made a internal variable to keep track of the

number of valid/ready things we saw happen on
the bus

* Then created a Python data structure from it (for
easy human interpretability) and reported it.

25 September 2024 6.5965 Fall 2024 30

The _recv method does a few
th i N gs . __init__ of Monitor Class:

def __init__ (self, callback=None, event=None):
self._event = event
if self._event is not None:
self._event.data = None # FIXME: This

126 v def _recv(self, transaction): celf ait event = E 0

127 """Common handling of a received transaction.'""" -Walt_ev = kven

128 self._wait_event.data = None

129 self.stats.received_transactions += 1 self._recvQ = deque()

130 self._callbacks = []

131 # either callback based consumer

132 for callback in self._callbacks:

133 callback(transaction) . . .
134 Call function with transaction!
135 # 0Or queued with a notification

136 if not self._callbacks:

137 self._recvQ.append(transaction) Orshove itinto a queue

138

139 if self._event is not None:

140 t t(self. t, t ti : :

Lt set_even (Se _even ransac lon) Or trlgger VarIOUS events
142 # If anyone was waiting then let them know

143 if self._wait_event is not None:

144 set_event(self._wait_event, transaction)

self._wait_event.clear()

25 September 2024 6.S965 Fall 2024 31

Monitor Class

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

v

class Monitor:

"""Base class for Monitor objects.

Monitors are passive 'listening' objects that monitor pins going in or out of a DUT.

This class should not be used directly,

but should be sub-classed and the internal :meth: _monitor_recv' method should be overridde
This :meth: _monitor_recv’ method should capture some behavior of the pins, form a transact
and pass this transaction to the internal :meth: _recv’ method.

The :meth: _monitor_recv' method is added to the cocotb scheduler during the “"__init_ "" p
so it should not be awaited anywhere.

The primary use of a Monitor is as an interface for a :class: ~cocotb.scoreboard.Scoreboard

Args:
callback (callable): Callback to be called with each recovered transaction
as the argument. If the callback isn't used, received transactions will
be placed on a queue and the event used to notify any consumers.
event (cocotb.triggers.Event): Event that will be called when a transaction
is received through the internal :meth: _recv’ method.
"Event.data’ is set to the received transaction.

25 September 2024 6.S965 Fall 2024 32

What would the
monitor/callbacks be useful for?

* Right now (week 3), just printing stuff and verify
by eye

{'data’:
{'data":
{'data":
{'data’:

00000000000000000010100000110011,
00000000000000000000000001100011,
00000000000000000010100000110110,
00000000000000000010100000111001,

'last':
'last':
'last':
'last':

P o r o

'name':
'name':
'name':
'name':

'moo’,
's00',
'moo"',
'moo’,

'count':
'count':
'count':
'count':

150,
150,
151,
152,

"time'
"time':
"time':
"time'

* But it would be nice to verify the data, for
example... That’s where maybe a callback could
come in

25 September 2024

6.5965 Fall 2024

: 5105000}

5115000}
5115000}

: 5125000}

33

One useful callback might be a
model

* You wrote a model in week 1 when “verifying”
that crappy divider we gave you

* A callback to a model might be useful if attached
to an input monitor.

* Every time an input to DUT is observed, you
trigger the model to compute what to expect off
of it.

25 September 2024 6.5965 Fall 2024 34

Minor modifications to
BusMonitor callback

52
53
54
55
56
57
58
59
60
61

62
A3

class AXISMonitor(BusMonitor):

monitors axi streaming bus
transactions = 0
def __init__(self, dut, name, clk, callback=None):
self._signals = ['axis_tvalid', 'axis_tready', 'axis_tlas@, 'axis_tdata', 'axis_tstrb']
BusMonitor.__init__ (self, dut, name, clk, callback=callback)
self.clock = clk
self.transactions = 0

if

valid and ready:

self.transactions+=1

thing = dict(data=data, last=1last,name=self.name, count=self.transactions,time=gst())
print(thing)

self._recv(data.value) \

Just send the value to that thing rather than
dictionary thing

25 September 2024 6.S965 Fall 2024

35

With these modifications...

0>
66 mq = [] #list for holding output

67

68 def model(transaction):

69 #val = transaction.get('data')

70 val = transaction

71 print(val)

72 mq.append(3*xval+10000) #gold standard model
73

74

75 @cocotb.test()
76 async def test_a(dut):

77 """cocotbh test for seven segment controller"""

78 inm = axismonitor(dut, 's@0',dut.s00_axis_aclk,callback=model)
79 outm = axismonitor(dut, 'm@@"',dut.s@0_axis_aclk)

80 ind = axisdriver(dut, 's00',dut.s00_axis_aclk)

81

C)_
25 September 2024 6.S965 Fall 2024

Proven software model

callback

36

So now

Monitor
(input)

M o

25 September 2024 6.5965 Fall 2024 37

Monitor
(output)

Plug an entity in to Compare these

results
-H
A
1

Monitor
(output)

Monitor
(input)

M o

25 September 2024 6.5965 Fall 2024 38

DUT

ScoreBoar

* There’s a
scoreboarding
class thatis
designed to
work with data
streams like
this

25 September 2024

1iv

17 v class Scoreboard:
18 """Generic scoreboarding class.
19
20 We can add interfaces by providing a monitor and an expected output queue.
21
22 The expected output can either be a function which provides a transaction
23 or a simple list containing the expected output.
24
25 TODO:
26 Statistics for end-of-test summary etc.
27
28 Args:
29 dut (SimHandle): Handle to the DUT.
30 reorder_depth (int, optional): Consider up to ‘reorder_depth’ elements
31 of the expected result list as passing matches.
32 Default is @, meaning only the first element in the expected result list
33 is considered for a passing match.
34 fail_immediately (bool, optional): Raise :exc: AssertionError’
35 immediately when something is wrong instead of just
36 recording an error. Default is "‘True "
37 e
38
39 v def __init__ (self, dut, reorder_depth=0, fail_immediately=True): # FIXME: reorder_depth ne
40 self.dut = dut
41 self.log = logging.getLogger("cocotb.scoreboard.%s" % self.dut._name)
42 self.errors = 0
43 self.expected = {}
44 self._imm = fail_immediately
45
46 @property
47 v def result(self):
48 """Determine the test result, do we have any pending data remaining?
49
50 Raises:
6.5965 Fall 2024 39

Make a scoreboard

@cocotb.test()

async def test_a(dut):

"""cocoth test for seven segment controller"""

inm = AXISMonitor(dut, 's00',dut.s00_axis_aclk,callback=model)
outm = AXISMonitor(dut, 'm@@',dut.s00_axis_aclk)

ind = AXISDriver(dut,'s00',dut.s@0_axis_aclk)

scoreboard = Scoreboard(dut)
scoreboard.add_interface(outm,mq)

Scoreboard instance
Thing for it to check... actual, expected

25 September 2024 6.5965 Fall 2024 40

Scoreboard Class

* Has all the stuff running to check/compare the
actual/expected pairs as they come in.

o Can also def compare(self, got, exp, log, strict_type=True):
. """Common function for comparing two transactions.
Ove rrlde the Can be re-implemented by a sub-class.
compare to do

got: The received transaction.

Wh ateve r you exp: The expected transaction.

log: The logger for reporting messages.
Wa nt ra n eS strict_type (bool, optional): Require transaction type to match
oeo g 9 exactly if “"True® , otherwise compare its string representation.

whatever

texc: ‘AssertionError’: If received transaction differed from
expected transaction when :attr: fail_immediately” is " “True' .
If xstrict_typex is “"True' ",
also the transaction type must match.

25 September 2024 6.5965 Fall 2024 41

Scoreboard sees failure and tells
you

/Users/ jodalyst/cocotb_development/fir_dev2/sin/test_fir.py:118: Deprecationdarning: Use “bv.integer” instead.
self._recv(data.value)
35.88ns cocotb.scoreboard. j_math.nB8
35.88ns INFO cocotb.scoreboard. j_math.nB8 Expected:
28312
35.88ns INFO cocotb.scoreboard. j_math.mB8 Received:
18312
/Users/ jodalyst/62685_python/1ib/python3.18/site-packages/cocotb_bus/scoreboard.py:148: DeprecationMarning: cocotb.utils.hexdiffs is deprecated. Use scapy.utils.hexdiff instead.
log.uarning("Difference:\n¥s" % hexdiffs{strexp, strgot))
/Users/ jodalyst/6285_python/Lib/python3.18/site-packages/cocotb_bus/scoreboard.py:148: Deprecationdarning: Passing strings to hexdiffs is deprecated, pass bytes instead
Llog.warning("Difference:\nis" % hexdiffs{strexp, strgot))
35.88ns UARNING cocotb.scoreboard. j_math.mBB Difference:
ane8 38333132 8312
8888 38333132 $312

/Users/ jodalyst/62685_python/ 1 ib/python3.18/site-packages/cocotb_bus/scoreboard.py:142: DeprecationMarning: TestFailure is deprecated, use an ““assert’” statement instead
raise TestFailure("Received transaction differed from expected "
35.88ns INFO ..Task 1.ARISHonitor._monitor_recy Test stopped by this forked coroutine
35.868ns INFO cocotb.regression test_a
Traceback (most recent call last):
File "/Users/jodalyst/cocotb_developnent/fir_dev2/sin/test_fir.py"., line 118, in _monitor_recv
self._recv(data.value)
File "/Users/jodalyst/62085_python/lib/python3.18/site-packages/cocotb_bus/monitors/__init__.py"., line 138, in _recv
callback{transaction}
File "/Users/jodalyst/6285_python/lib/python3.18/site-packages/cocotb_bus/scoreboard.py”, Lline 227, in check_received_tra

self.compare{transaction, exp, log, strict_type=strict_type)
File "/Users/jodalyst/6285_python/lib/python3.18/site-packages/cocotb_bus/scoreboard.py”, Lline 142, in compare
raise TestFailure("Received transaction differed from expected "
cocotb.result.TestFailure: Received transaction differed from expected transaction

35.86ns INFO cocotb.regression S e e T T s s e S T T T T s o

*x TEST STATUS SIM TIME (ns) REAL TIME (s> RATID {ns/s) ==

E s T S s rrrrrre=]

*¥x% test_fir.test_a 35.88 . 12819.39 =xx

B s s s rrrsrrss3

*x TESTS=1 PAS5=8 FAIL=1 SKIP=@ 35.808 . B843.29 =x

Scoreboard see no error an
you’re good

*x test_fir.test_a . 12819.39 =x

*¥x TESTS=1 PASS=8 FAIL=1 SKIP=8 . B843.29 =xx

INFOD: Results file: /Users/jodalyst/cocotb_development/fir_devZ/sin/sin_build/results.xnl
(6285_python) (base) DHCP-POOL-18-25-22-252:sim jodalyst$ python3 test_fir.py
/Users/ jodalyst/cocotb_developnent/fir_dev2/sin/test_fir.py:12: UserMarning: Python runners and associated APIs are an experinental feature and subject to change.
from cocotb.runner import get_runner
INFO: Running command iverilog -o /lUsers/jodalyst/cocotb_developnent/fir_dev2/sin/sin_build/sin.vvp -D COCOTB_SIM=1 -s j_math -g2812 -Wall -s cocotb_iverilog_dump -f /Users/jodalyst/
cocotb_developnent/fir_dev2/sin/sin_build/cnds.f /Users/jodalyst/cocotb_development/fir_dev2/hdl/j_math.sv /Users/jodalyst/cocotb_developnent/fir_dev2/sin/sin_build/cocotb_iverilog_d
unp.v in directory /lUsers/jodalyst/cocotb_developnent/fir_dev2/sin/sin_build
INFO: Running command vwp -M /Users/jodalyst/6285_python/Lib/python3.18/site-packages/cocotb/libs -n libcocotbvpi_icarus /lUsers/jodalyst/cocotb_development/fir_dev2/sin/sin_build/sin
.wvp in directory /Users/jodalyst/cocotb_developnent/fir_dev2/sin/sin_build
-.--ns INFO opi ..mbed/gpi_enbed.cpp:189 in set_program_name_in_venv Using Python virtual environment interpreter at /lUsers/jodalyst/6
285_python/bin/python
.—-ns INFO gpi ../gpi/GpiConmon.cpp:181 in gpi_print_registered_inpl UPI registered
.B8ns INFD cocotb Running on Icarus Verilog version 12.8 (stable)
.B8ns INFO cocotb Running tests uith cocotb v1.9.1 from /Users/jodalyst/6285_python/Lib/python3.18/site-packages/cocotb
.88ns INFO cocotb Seeding Python random module with 1727293312
.B8ns INFO cocotb.regression pytest not found, install it to enable better AssertionError messages
/Users/ jodalyst/cocotb_development/fir_devZ/sin/test_fir.py:12: UserMarning: Python runners and associated APIs are an experimental feature and subject to change.
from cocotb.runner import get_runner
B8.88ns INFO cocotb.regression Found test test_fir.test_a
8.88ns INFO cocotb.regression test_a (1/1)
cocotb test for seven segment controller
/Users/ jodalyst/6285_python/Lib/python3.18/site-packages/cocotb_bus/monitors/__init__.py:67: Deprecationlarning: This method is nou private.
self._thread = cocotb.scheduler.add(self._monitor_recv(})
/Users/ jodalyst/6285_python/lib/python3.18/site-packages/cocotb_bus/drivers/__init__.py:92: Deprecationlarning: This method is nou private.
self._thread = cocotb.scheduler.add(self._send_thread(})
8.88ns INFO cocotb.scoreboard. j_math Created with reorder_depth 8
UCD info: dumpfile /lUsers/jodalyst/cocotb_developnent/fir_dev2/sin/sin_build/j_math.fst opened for output.
/Users/ jodalyst/cocotb_development/fir_devZ/sin/test_fir.py:178: Deprecationlarning: Setting values on handles using the *“dut.handle = value®
““handle.value = value'" syntax
dut.mBB_axis_tready = val
/Users/ jodalyst/cocotb_developnent/fir_dev2/sin/test_fir.py:118: DeprecationMarning: Use “bv.integer® instead.
self._recv{data.value)
6728.868ns INFO cocotb.regression test_a passe
6728.88ns INFD cocotb.regression s T e e s s S e oo T e e e e 2T
*x TEST STATUS SIM TINE {ns) REAL TIME (s} RATIO {(ns/s) =x
e
*x test_fir.test_a PASS 6728.88 8.85 129322.58 xx
B T s T T T ST s
*x TESTS=1 PASS=1 FAIL=B SKIP-=8 6720.60 8.89 2485 .14 xx
sEmmmmooccooscocs e s s

syntax is deprecated. Instead use the

INFO: Results file: /Users/jodalyst/cocotb_development/fir_devZ/sin/sin_build/results.xnl
{6285_python) (base) DHCP-POOL-18-25-22-252:sin jodalyst$ I

Places For Improvement at end of
Week 3

@cocotb.test()

async def test_a(dut): Our creation of

"""cocotb test for seven segment controller"""

inm = AXISMonitor(dut,'s00"',dut.s@@_axis_aclk,callback=model) stuffis gettlng
outm = AXISMonitor(dut, 'm0@',dut.s00_axis_aclk) .
ind = AXISDriver(dut,'s0@',dut.s@@_axis_aclk) better but it would

scoreboard = Scoreboard(dut)
scoreboard.add_interface(outm,mq)
cocotb.start_soon(Clock(dut.s@0_axis_aclk, 10, units="ns").start())
await set_ready(dut,1)
await reset(dut.s@0_axis_aclk, dut.s@0_axis_aresetn,2,0)
#feed the driver:
for i in range(50):

data = {'type':'single', "contents":{"data": random.randint(1,25

ind.append(data)
#data = {'type':'burst', "contents":{"data": np.array(20x[0]+[1]+30x[0]+[-2]1+59%([0])}}
data = {'type':'burst', "contents":{"data": np.array(list(range(100)))}}
ind.append(data)
await ClockCycles(dut.s@0_axis_aclk, 50)
await set_ready(dut,)
await ClockCycles(dut.s00_axis_aclk, 300)
await set_ready(dut,1) Still a little Ljé;l)/
await ClockCycles(dut.s0@_axis_aclk, 10)
await set_ready(dut,0)
await ClockCycles(dut.s@0_axis_aclk, 10) Maybe make driver for output port
await set_ready(dut,1)
await ClockCycles(dut.s@0_axis_aclk, 300)
assert inm.transactions==outm.transactions, f"Transaction Count doesn't match! :/"

still be nicer for
that to be more
high-level...

"last":0,"strb":15}}

25 September 2024 6.5965 Fall 2024 44

Seqguencer will fix some of that

-’M
A
!

Monitor
(output)

Monitor
(input)

M o

25 September 2024 6.5965 Fall 2024 45

