
6.S965
Digital Systems Laboratory II

Lecture 5:
DMA,

Streaming AXI,
Monitors, Drivers, Scoreboards

September 16, 2024 6.S965 Fall 2024 1

6.205 FPGA

• Spartan 7 (xc7s50csga324-ish):
• 2.7 Mb of BRAM
• 120 DSP slices
• 52K logic cells*

• Dev Board also has 128 MB of
DRAM

September 4, 2024 6.S965 Fall 2024 2

https://docs.amd.com/v/u/en-US/ds180_7Series_Overview

*”logic cell” is a vague term used to compare Xilinx/AMD FPGAs to other vendors. There actually is no such thing as
a “logic” cell in Xilinx architecture

6.S965 Zynq 7000

• Series 7000 XC7Z020:
• 5.04 Mb of BRAM
• 220 DSP slices
• 85K logic cells
• Two 650 MHz A9 ARM processors
• High-speed interconnects between

two resources

• Board has 512 MB of DDR3

September 4, 2024 6.S965 Fall 2024 3

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-7000.html

6.S965 RFSoC
• UltraScale+ ZU48DR:
• 38 Mb of BRAM
• +22Mb of UltraRAM
• 4272 DSP slices
• 930,000 Logic Cells
• Four 5-Gsps 14 bit ADCs
• Two 10-Gsps 14 bit DACs
• Four 1.3 GHz ARM 53

processors
• Two Real-time 533 MHz ARM

processors

September 4, 2024 6.S965 Fall 2024 4

• Board has 4GB of DDR4 for FPGA portion (”PL”) and 4 GB
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab

Reflective of Situation in all
devices (not just FPGAs/SOCs)
• Quick-to-access

memory is desirable
• BRAM
• URAM

• As far as memories go
they take up a lot of
space
• To have more memory

you have to go off-chip

https://computerscience.chemeketa.edu/cs160Reader/ComputerArchitecture/MemoryHeirarchy.html

Off-Chip Memory Resources
• On-chip memory is always hard and expensive to

make (it has gotten better, but still nowhere near
what is needed)

Zynq7020 DDR3• DRAM has proven
to be the way to get
lots of memory into
a small spot
• But to make those

massive, small-in-
size designs, uses
different fab tech
• Have to put off-chip

as a result

DRAM

• Extremely dense array of transistor/capacitor
”cells”
• So dense and tiny that read is destructive since

you’ve stolen all charge from cap in the
process….have to write back to it.
• Also So dense and tiny that the devices lose their

information after about 100 ms due to parasitics
naturally
• so need to be constantly read-out/rewritten,

even when not using else you’ll lose your info
(called a refresh)

DRAM

• This constant need for refreshing means getting
info into and out of the DRAM is not an easy
task…
• Requires something to handle all the needs for

refreshes and balancing them with requests for
reads/writes, etc…
• This is the job of a Memory Interface/Controller

DRAM is pretty wild (aside)

• MOSTEK developed the modern form of DRAM
• The MK4564 was the first widely successful DRAM

chip
• 64 Kbits of RAM organized into 256 rows and 256

columns of one bit.
• They got destroyed by Japanese competition in the

1980s and closed up shop
• I found about 1100 of these chips (and variants) in

the EECS stockroom…we’re hopefully going to write
a controller for them in 6.205 this year since they are
so slow

~1980
8 KB

DRAM is pretty wild (aside)

• Today you can buy 2GB DRAM variants for about
¼ the cost of what the 1980 version cost and you
get:
• 250,000 times the storage
• About 10,000 the throughput

~2024
2GB

DRAM

• The constant need for refreshing means getting
info into and out of the DRAM is not an easy
task…
• Even more complicated in modern devices

because they’ll have different
banks/channels/buffers
• Requires something to handle all the needs for

refreshes and balancing them with requests for
reads/writes, etc…
• This is the job of a Memory Interface/Controller

Xilinx Series 7 FPGAs

• The FPGAs used in 6.205 (series 7…Spartan or
Artix) had no “hard” memory controller.
• Instead you’d use a Memory Interface Generator

(“MIG”) to synthesize all the control logic

• Downside of this is
it takes up a ton of
your FPGA
resources
• Also generally uses

an AXI flow

Zynq 7000

• On the Zynq-
7000 chips,
the DRAM is
connected to
“PS” pins
• But not

directly to the
ARM cores
themselves

DDR3

Direct-Memory-Access

• The Memory
controller does have
interfaces to both
the ARM cores and
the PL
• For the PL, this gives

it “Direct Memory
Access” or “DMA”
• As opposed to MA

only through the
processor

DDR3

On the Python (processor) side…
• Use allocate

from pynq import PL
PL.reset()
from pynq import Overlay #import the overlay module
ol = Overlay('./design_1_wrapper.bit') #locate/point to the bit file
import pprint
pprint.pprint(ol.ip_dict)
dma = ol.dma # GRAB THE DMA

from pynq import allocate
import numpy as np
Allocate buffers for the input and output signals
n = 1000000
in_buffer = allocate(shape=(n,), dtype=np.int32)
out_buffer = allocate(shape=(n,), dtype=np.int32)

Copy the samples to the in_buffer
np.copyto(in_buffer,samples) #samples come from somewhere
Trigger the DMA transfer and wait for the result
dma.sendchannel.transfer(in_buffer) #send data out into memory
dma.recvchannel.transfer(out_buffer) #wait for data to appear
dma.sendchannel.wait()
dma.recvchannel.wait()

On the PL (FPGA) side…

• There’s a piece of IP

On the PL (FPGA) side…

• There’s a piece of IP:
• Has several different flavors of AXI port.
• Data comes into the PL and gets put back into the

DMA through AXI Streaming (AXIS) ports
• The other AXI ports are for control largely

• It actually isn’t too bad to build tbh.

Speed
• In lab this week, you’ll send down 2 million 32 bit

integers into the PL fabric and then run some
filters on them and put the results back up into
the DRAM for processor consumption
• Timing it this takes about 0.021 seconds.
• That ends up being about 380 MBps which is

nothing to sneeze at.

Speed
• DDR3: 32 bits * 1066 MHz * 2 = 4.3 GBps
• So the 380 MBps is actually kinda low
• But that is largely based on the fact that the AXIS

streaming system you’ll build is clocked at 100
MHz and moving data on a 32 bit bus (about 400
MBps throughput)
• Clocking faster and doing some other things

should be able to increase this if needed.

AXI Streaming

• All of this does meant though to get access to all
that memory and to be able to exchange
information in large volumes quickly between the
two environments, we will need to use AXI-
Streaming

Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links. Provides

highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection (no
bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant for high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing
• Meant to stream data from one device to another quickly

on its own direct connection

September 16, 2024 6.S965 Fall 2024 21From the Zynq Book

VALID

DATA

READY

Good News about AXIS

• It is the least complicated of the AXI protocols

Dev 1 Dev 2

ACLK

From clock source

VALID

READY

DATA

RSTnRSTn

From reset source

VALID

DATA

READY

No Addressing!

• Data flows unidirectionally
• Data’s “place” is where it is in the chain. It

doesn’t have a address it is supposed to live at
• For values that are independent of one another

this is pretty much all that’s needed

• Often a few other signals…

Strobe
• The strobe line will clarify which bytes in data are

to be acted upon (default 0b1111 aka all)

VALID

DATA

READY

Dev 1 Dev 2

ACLK

From clock source

VALID

READY

DATA

RSTnRSTn

From reset source

VALID

DATA

READY

STRB STRB STRB

TLAST
• For data sent in packets (such as samples of a

signal where), a TLAST signal is asserted on the
final sample to ensure

VALID

DATA

READY

Dev 1 Dev 2

ACLK

From clock source

VALID

READY

DATA

RSTnRSTn

From reset source

VALID

DATA

READY

STRB STRB STRB

TLAST TLAST TLAST

Let’s say you wanted to build a
streaming module that…
• Takes in a number, multiplies it by 3 and adds

10000

• An attempt at a streaming module like this would
be the following…

Build First Part of Lab 3

September 16, 2024 6.S965 Fall 2024 27

s_AXIS_tvalid

s_AXIS_tdata[31:0]
×3 +

s_AXIS_tlast

m_AXIS_tvalid

m_AXIS_tlast

m_AXIS_tdata[31:0]

m_AXIS_treadys_AXIS_tready

M S
M S

10000

s_AXIS_tstrb m_AXIS_tstrb
4 4

Where it will get tricky…

• If you have a module that is making calculations
based off of more than one sample.
• In previous module, the flops are in place for

pipelining and to meet timing
• If you have flops in place to for an:

• FFT
• FIR
• Any sort of stateful calculation…

• Passthrough can get much nastier
• When a LAST signal appears, you’ll still need to

pump data through the system to clear the buffers.

cocotb

SV Time Slot Expanded Out
• Awaiting this

will guarantee
your results
have stabilized

September 9, 2024 6.S965 Fall 2024 30

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

await ReadOnly()

If you need to write once in
Postponed…
• You can’t…

• From ReadOnly, these two triggers should be
equivalent (I think)

Adding Layers to Cocotb

• So we’ve been kinda building up some loose
testing modules in Python using Cocotb.
• What we’d like to do is start to add some

structure and reusability to this.
• To help with this, we’ll start using the cocotb_bus

library

cocotb_bus

• I think this was
originally part
of cocotb but
was split off
• Not sure why. I

don’t think it
was a bad
thing like
happened with
Rust or Node
or RethinkDB

cocotb_bus

• Library Built Upon Cocotb that gives three (four)
main devices:
• Bus object

Bus

• Let’s you read and manipulate
different wires in a group:
• Drive sets all wires together at once
• Capture gets all measures at once
• Etc…

Bus is important because…

• Pretty much every modern digital design uses
groups of wires to convey information.
• Packaging them up nicely is super beneficial.

What else does Cocotb_bus bring
us?
• A set of nice Components that can form the

basis of reusable testing infrastructure.

Standard Testing Framework

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

DUT

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

Monitors

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

Monitor/Bus Monitor

Monitors

• Monitors should listen to signals on a bus and
legitimate transactions are observed then log
them for processing by another party.

• A single Monitor is relatively useless

• Multiple monitors, however can generate lists of
transactions and together these can be used to
assess what the DUT is generating.

Driver

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

Driver

Driver

• Instead of listening to a bus, it takes in high-level
commands about things to put on the bus and
takes care of the appropriate signaling.
•

DriverPython data structure Wires set high/low

Monitors kinda the opposite of
drivers

• While having both might seem kinda
stupid/redundant, its strength comes from the
compartmentalization of roles.
• It is much easier to just design a thing that turns

bus

Monitor
(input)Wires set high/low Python data structure

Scoreboard

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

ScoreBoard

Sequencer

DUTDriver Monitor
(output)

Monitor
(input) Scoreboard

Sequencer

Sequencer

• This is tied a bit more into *what* we test on the
device so we’ll cover it in the future. For now
we’ll be kinda kludging this part.

