6.5965
Digital Systems Laboratory |l

Lecture 5:

DMA,
Streaming AXI,
Monitors, Drivers, Scoreboards

eeeeeeeeeeeeeeee

6.205 FPGA

* Spartan 7 (xc7s50csga324-ish):.

e 2.7 Mb of BRAM
e 120 DSP slices

* 52K logic cells™

* Dev Board also has 128 MB of
DRAM

*”logic cell” is a vague term used to compare Xilinx/AMD FPGAs to other vendors. There actually is no such thing as

a “logic” cell in Xilinx architecture
https://docs.amd.com/v/u/en-US/ds180_7Series_Overview

September 4, 2024 6.5965 Fall 2024 2

6.S965 Zyng 7000

* Series 7000 XC7Z020:
e 5.04 Mb of BRAM
e 220 DSP slices
e 85K logic cells

* Two 650 MHz A9 ARM processors

* High-speed interconnects between
two resources

e Board has 512 MB of DDR3

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zyng-7000.html

September 4, 2024 6.5965 Fall 2024 3

6.5965 RFSoC

* UltraScale+ ZU48DR:

38 Mb of BRAM

+22Mb of UltraRAM
4272 DSP slices

930,000 Logic Cells

Four 5-Gsps 14 bit ADCs
Two 10-Gsps 14 bit DACs

Four 1.3 GHz ARM 53
Processors

* Two Real-time 533 MHz ARM
Processors
* Board has 4GB of DDR4 for FPGA portion (’PL”) and 4 GB
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zyng-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab

September 4, 2024 6.5965 Fall 2024 4

Reflective of Situation in all
devices (not just FPGAs/SOCs)

* Quick-to-access THE
memory is desirable MEMORY HIERARCHY
» BRAM b
» URAM
* As faras memories g0 wum
theytake up alotof e :
Space e ———

* To have more memory
you have to go off-chip

https://computerscience.chemeketa.edu/cs160Reader/ComputerArchitecture/MemoryHeirarchy.html

Off-Chip Memory Resources

* On-chip memory is always hard and expensive to
make (it has gotten better, but still nowhere near
what is needed)

* DRAM has proven Zynq7020 DDR3
to be the way to get rylemmmn
lots of memory into JEEE '
a small spot = o

* But to make those
massive, small-in-
size designs, uses
different fab tech

« Have to put off-chip L&
as a result

..............
,,,,,,

DRAM

* Extremely dense array of transistor/capacitor
“cells”

* So dense and tiny that read is destructive since
you’ve stolen all charge from cap in the
process....have to write back to it.

* Also So dense and tiny that the devices lose their
iInformation after about 100 ms due to parasitics
naturally

* SO0 nheed to be constantly read-out/rewritten,
even when not using else you’ll lose your info

(called a refresh)

DRAM

* This constant need for refreshing means getting
Info into and out of the DRAM is not an easy

task...

* Requires something to handle all the needs for
refreshes and balancing them with requests for
reads/writes, etc...

* This is the job of a Memory Interface/Controller

DRAM is pretty wild (aside)

* MOSTEK developed the modern form of DRAM

* The MK4564 was the first widely successful DRAM
chip

* 64 Kbits of RAM organized into 256 rows and 256
columns of one bit.

* They got destroyed by Japanese competition in the
1980s and closed up shop

* | found about 1100 of these chips (and variants) in
the EECS stockroom...we’re hopefully going to write
a controller for them in 6.205 this year since they are
so slow

DRAM is pretty wild (aside)

~2024
2GB

* Today you can buy 2GB DRAM variants for about
Ya the cost of what the 1980 version cost and you
get:

e 250,000 times the storage
* About 10,000 the throughput

DRAM

* The constant need for refreshing means getting
Info into and out of the DRAM is not an easy

task...

* Even more complicated in modern devices
pecause they’ll have different
panks/channels/buffers

* Requires something to handle all the needs for
refreshes and balancing them with requests for
reads/writes, etc...

* This is the job of a Memory Interface/Controller

Xilinx Series 7 FPGAs

* The FPGAs used in 6.205 (series 7...Spartan or
Artix) had no “hard” memory controller.

* Instead you’d use a Memory Interface Generator
(“MIG”) to synthesize all the control logic

* Downside of this is —
It takes up a ton of _-:—<> E’y“ifi“_‘D DDR3
you r FPGA :Z_-f;';(_-'l y mrncm_l:ci;:c‘; D’ .m‘mcm._locked
resources 1 — “—'t (t'bmp']t(T D init_calib_complete
L AlSO generally uses zg_xiprotocol_checker_?
an AXI| flow q;j::‘x' pc'::_t::sl,:ft:c:_D zzzzzzurize:o]

AXI| Protocol Checker

/Zyng 7000

Processing System

* On the Zyng-
7000 chips,
the DRAM s
connected to = G
“PS” P iNs : : 7 "2‘;2' " Coner s wptore System Gates,

32/32 KB I/D Caches DSP, RAM

Static Memory Controller namic Memory Controller
NOR, NAND, SRAM, QSPI DDR2, DDR3, LPDDR2

* But not
directly to the

ARM cores
themselves

Multi Standards 10s (3.3V & High Speed 1.8V)

SysMon/ADC

Multi Standards 10s (3.3V & High Speed 1.8V) Multi Gigabit Transceivers

Direct-Memory-Access

* The Memory
controller does have
interfaces to both
the ARM cores and
the PL

* For the PL, this gives

DDR3

DSP, RAM

It “DlreCt Memory Dynamic Memory Controller ‘
Access” or “DMA” DDR2, DDR3, LPDDR2 |
* As opposed to MA
only through the
Processor B :
Logic: :g;
System Gates, [

On the Python (processor) side...

 Use allocate

from pyng import PL

PL.reset()

from pyng import Overlay #import the overlay module

ol = Overlay('./design_1_wrapper.bit') #locate/point to the bit file
import pprint

pprint.pprint(ol.ip_dict)

dma = ol.dma # GRAB THE DMA

from pyng import allocate

import numpy as np

Allocate buffers for the input and output signals
n = 1000000

in_buffer = allocate(shape=(n,), dtype=np.int32)
out_buffer = allocate(shape=(n,), dtype=np.int32)

Copy the samples to the in_buffer
np.copyto(in_buffer,samples) #samples come from somewhere

Trigger the DMA transfer and wait for the result
dma.sendchannel.transfer(in_buffer) #send data out into memory
dma.recvchannel.transfer(out_buffer) #wait for data to appear
dma.sendchannel.wait()

dma.recvchannel.wait()

On the PL (FPGA

* There’s a piece of IP

math_doer 0

+ so_mas
00_awis_adk

00_ais_aresetn MOO_AXE + [

dma

pr |- S 401 UITE

mo0_aus ack

mO0_xis aresan

S AIS 2MM
5 2d _Ite_adk
m_xd_mm2s_adk
m_ad_s2mm_adk

M_AXLAMAES + [

M_axisaaw +
M_AXIS AMZS +

MmM2s pAmry_reset ot n
S2Mm_pamry_reset_ ot n
mm2s rmrout

axi_mem_intercon

0 _resetn Ay
= s2mm_introut MO0_ACLK nen
MOO_ARESETN
AXI Dir E TS
DO1_ARESETN
AXI Inte e
7.0 axi riph rocessing_system?7 0
1s1_ps7_0_100M & ps penp P 9.5Y
T
|—‘ » DDR

dowest sync clk mb_reset e e +|::
el bus stnict reseti0) e [[[+ s.#a o Frr0_cTa Fxe00 + ||} D FXED IO

) 2

e from e e £RESETN Ll bt ||+ 5 A1 HPO = umwoo +|||

aux_reseen eripheral_reses|
n;m:: - nw:om‘y;’mmm T00_ACLK W 00 A0 [M_AXLGPO_ACIX ZYNQ M_AX1LGPO - [e

P [<t ares

i - N A S AX]_HPO_ACLK FOLK_CLKD

dom_locked peripheral_aresetr{0:0] - e Ry

p h— MOO_ARESETN

AXT It

ZYNQ7 Proc

On the PL (FPGA) side...

* There’s a piece of IP:

* Has several different flavors of AXI port.

 Data comes into the PL and gets put back into the
DMA through AXI Streaming (AXIS) ports

* The other AXI ports are for control largely
* It actually isn’t too bad to build tbh.

dam
8 AT MAES 43
p— + ol -
S < mas A_ax1 sz + |3
- 1_AXIE MMZS 4
Ite =
MM25_PANry_reset_ o _n t
m m
s2m ANry_reset_ o n
m s2mm =
MM2S IO e
) _resetn
S2MM _IMIow =
—4
™ .\

T

Speed

* In lab this week, you’ll send down 2 million 32 bit
Integers into the PL fabric and then run some
filters on them and put the results back up into
the DRAM for processor consumption

* Timing it this takes about 0.021 seconds.

* That ends up being about 380 MBps which is
nothing to sneeze at.

Speed

* DDR3: 32 bits * 1066 MHz * 2 =4.3 GBps
* So the 380 MBps is actually kinda low

* But that is largely based on the fact that the AXIS
streaming system you’ll build is clocked at 100
MHz and moving data on a 32 bit bus (about 400
MBps throughput)

* Clocking faster and doing some other things
should be able to increase this if needed.

AXI| Streaming

* All of this does meant though to get access to all
that memory and to be able to exchange
iInformation in large volumes quickly between the

two environments, we will need to use AXI-
Streaming

Three General Flavors of AXI4

* AXI4 (Full AXI): For memory-mapped links. Provides
highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

* AXI4 Lite: Amemory-mapped simplified link
supporting only one data transfer per connection (no
bursts). (also restricted to 32 bit addr/data)

1. Addressis supplied
2. One data transfer

("« AX14 Stream: Meant for high-speed streaming data)
* Can do burst transfers of unrestricted size
* No addressing

* Meant to stream data from one device to another quickly
_ on its own direct connection)

September 16, 2024 6.5965 Fall 2024 From the Zynq Book .,

Good News about AXIS

* ltis the least complicated of the AXI protocols

DATA

From clock source

From reset source

No Addressing!

* Data flows unidirectionally

 Data’s “place” is where it is in the chain. It
doesn’t have a address it is supposed to live at

* For values that are independent of one another
this is pretty much all that’s needed

* Often a few other signals...

Strobe

* The strobe line will clarify which bytes in data are
to be acted upon (default Ob1111 aka all)

DATA

: DATA

From clock source

From reset source

TLAST

* For data sent in packets (such as samples of a
signal where), a TLAST signal is asserted on the
final sample to ensure

DATA

: DATA

STRB

—f

TLAST

From clock source

From reset source

Let’s say you wanted to build a
streaming module that...

* Takes in a number, multiplies it by 3 and adds
10000

* An attempt at a streaming module like this would
be the following...

Build First Part of Lab 3 PR

E—»m_AXIS_tvalid
E—» m_AXIS tlast

s_AXIS_tdata[31:0] |><3 ‘ ‘ ‘ ? ‘ ‘ m_AXIS_tdata[31:0]

s_AXIS_tvalid

s AXIS tlast

> | b |

10000
s AXIS tstrb / | | / m_AXIS tstrb
" AN
s_AXIS_tready <« m_AXIS_tready

September 16, 2024 6.5965 Fall 2024 27

Where it will get tricky...

* If you have a module that is making calculations
based off of more than one sample.

* In previous module, the flops are in place for
pipelining and to meet timing

* If you have flops in place to for an:
* FFT
* FIR
* Any sort of stateful calculation...

* Passthrough can get much nastier

* When a LAST signal appears, you’ll still need to
pump data through the system to clear the buffers.

Triggers

Triggers are used to indicate when the cocotb scheduler should resume coroutine execution. To use
a trigger, a coroutine should await it. This will cause execution of the current coroutine to pause.

C O C Ot b When the trigger fires, execution of the paused coroutine will resume:

async def coro():
print("Some time before the edge")
await RisingEdge(clk)
print("Immediately after the edge")

Simulator Triggers

Signals %

class cocotb.triggers.Edge(signal) [source]

Fires on any value change of signal.

class cocotb.triggers.RisingEdge(signal) [source]

Fires on the rising edge of signal, on a transition from o to 1.

class cocotb.triggers.FallingEdge(signal) [source]

Fires on the falling edge of signal, on a transition from 1 to o .

class cocotb.triggers.ReadOnly [source]

Fires when the current simulation timestep moves to the read-only phase.

The read-only phase is entered when the current timestep no longer has any further delta steps.
This will be a point where all the signal values are stable as there are no more RTL events
scheduled for the timestep. The simulator will not allow scheduling of more events in this
timestep. Useful for monitors which need to wait for all processes to execute (both RTL and
cocotb) to ensure sampled signal values are final.

SV Time Slot Expanded Out

* Awaiting this
will guarantee
your results
have stabilized

From previous
time slot

Update to
|IEEE1800-2005
Standard

A time slot is
divided into a set of
17 ordered regions
(9 Verilog & 8 PLI)

Old Verilog
event region

New SystemVerilog
event region

await ReadOnly()

New SV

‘ agions for PLI

|Current time slot |

Region for new
SV commands

Preponed I
PLI Pre-active

|
— //:/I Blocking assignments |

4_|

Acii ve I§§

Inactive |

Observed
PLI|-_Post-observed T P
<—| Reactive |<\
e Rednactive |© |
» d PLI

—7 | Evaluate RHS of NBAs |
\P| Continuous assignments |

\1\1 $display command |

Eval inputs & update
outputs of primitives

#0 blocking assignments]

Update LHS of NBAs |

Regions for new
SV commands

monitor commandl

strobe command |

_ Fre-Postponed ———

Postponed

To next
time slot

Figure 4 - SystemVerilog-2005 event regions with PLI regions shown

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
Clifford E. Cummings Arturo Salz

September 9, 2024

6.5965 Fall 2024

30

If you need to write once in
Postponed...

* You can’t...

class cocotb.triggers.ReadWrite [source]

Fires when the read-write portion of the simulation cycles is reached.

class cocotb.triggers.NextTimeStep [source]

Fires when the next time step is started.

* From ReadOnly, these two triggers should be
equivalent (I think)

Adding Layers to Cocotb

* So we’ve been kinda building up some loose
testing modules in Python using Cocotb.

* What we’d like to do is start to add some
structure and reusability to this.

* To help with this, we’ll start using the cocotb_bus
library

cocotb bus

. cocotb-bus ' Public

* | think this was
originally part
of cocotb but
was split off

* Not sure why. |
don’t think it
was a bad
thing like
happened with
Rust or Node
or RethinkDB

¥ master ~

[]

.github/workflows

W bin

docs

0 examples

"W src/cocotb_bus

0 tests

[P R I B O o R e A A P

B

.gitignore
.readthedocs.yml
LICENSE
Makefile
README.md
noxfile.py
pyproject.toml

setup.py

README &3 License

¥ 4 Branches © 6 Tags

Q Gotofile t

Brush up CI (#75)

Replace xml.etree.cElementTree with ElementTree for Pyt...

Document new scapy dependency; add newsfragment

Ensure that comparisons are run on value returned by sig...

Re-add support for event data field that has been remove...

Do not implicitly convert signal value to bool

Initial commit of documentation System (#66)

Initial commit of documentation System (#66)

Create an initial blank repository

Fix broken reporting of available SIM settings
Document new scapy dependency; add newsfragment
Brush up CI (#75)

Initial commit of documentation System (#66)

Brush up CI (#75)

& Watch 11

) 3,134 Commits

2 months ago
4 years ago

10 months ago
last week

last week

last week

10 months ago
10 months ago
3 years ago

4 years ago

10 months ago
2 months ago
10 months ago

2 months ago

7

v

Add file ~ <> Code ~

g} p12tic and ktbarrett Re-add support for event data field that has beenrem... @ b99fifa - last week

cocotb bus

* Library Built Upon Cocotb that gives three (four)
main devices:

* Bus object

(Preview | Code Blame 174 lines (123 loc) - 5.72 KB Raw D & 2 ~
(_Preview |

Testbench Tools

Buses

Buses are simply defined as collection of signals. The :class: .Bus" class will automatically bundle any group of signals together that are
named similar to dut.<bus_name><separator><signal_name> . For instance,

dut.stream_in_valid Ll;'
dut.stream_in_data

have a bus name of stream_in , a separator of _, and signal names of valid and data . A list of signal names, or a dictionary mapping
attribute names to signal names is also passed into the :class: .Bus’ class. Buses can have values driven onto them, be captured (returning
a dictionary), or sampled and stored into a similar object.

stream_in_bus = Bus(dut, "stream_in", ["valid", "data"]) # '_' is the default separator i

Driving Buses

specific bus implementation bus drivers (AMBA, Avalon, XGMII, and others) exist in the :class: ' .Driver’ class enabling a test

18 v class Bus:

19 """Wraps up a collection of signals.
20
21 Assumes we have a set of signals/nets named " “entity.<bus_name><bus_separator><signal>"".

Bus :
23 : X “valid™

For example a bus " “stream_in" "~ with signals

and " “data’ " is assumed

24 to be named '‘dut.stream_in_valid'® and " “dut.stream_in_data'® (with

25 the default separator '_').

26

27 TODO:

28 Support for ““struct® '/ ‘record’’ ports where signals are member names.
29 e

* Let’s you read and manipulate
different wires in a group:
* Drive sets all wires together at once
* Capture gets all measures at once
* Etc...

Symbols X

Find definitions and references for functions and
other symbols in this file by clicking a symbol
below or in the code.

= Filter symbols r
func _build_sig_attr_dict
v class Bus
func __init__
func _caselnsensGetattr
func _add_signal
func drive
v func capture
v class _Capture
func __getattr__
func __setattr__
func __delattr__

func sample

Bus Is Important because...

* Pretty much every modern digital design uses
groups of wires to convey information.

* Packaging them up nicely is super beneficial.

What else does Cocotb_bus bring
us?

* A set of nice Components that can form the
basis of reusable testing infrastructure.

Standard Testing Framework

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

DUT

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

Monitors

Monitor

(input) [~===~ Scoreboard

Monitor
(output)

Sequencer Driver

Monitor/Bus Monitor

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

class Monitor:

"""Base class for Monitor objects.

Monitors are passive 'listening' objects that monitor pins going in or out of a DUT.

This class should not be used directly,

but should be sub-classed and the internal :meth: _monitor_recv’ method should be overridde
This :meth: _monitor_recv’ method should capture some behavior of the pins, form a transact
and pass this transaction to the internal :meth: _recv’ method.

The :meth: _monitor_recv' method is added to the cocotb scheduler during the “"__init__ " p
so it should not be awaited anywhere.

The primary use of a Monitor is as an interface for a :class: ~cocotb.scoreboard.Scoreboard

Args:
callback (callable): Callback to be called with each recovered transaction
as the argument. If the callback isn't used, received transactions will
be placed on a queue and the event used to notify any consumers.
event (cocotb.triggers.Event): Event that will be called when a transaction
is received through the internal :meth: _recv’ method.
"Event.data’ is set to the received transaction.

Monitors

* Monitors should listen to signals on a bus and
legitimate transactions are observed then log
them for processing by another party.

* Asingle Monitor is relatively useless

* Multiple monitors, however can generate lists of
transactions and together these can be used to
assess what the DUT is generating.

Driver

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

Driver

205
206
207
08
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

N

v

class BusDriver(Driver):

"""Wrapper around common functionality for buses which have:

* a list of :attr:’_signals’ (class attribute)
% a list of :attr: _optional_signals' (class attribute)
* a clock
* a name
* an entity
Args:

entity: A handle to the simulator entity.
name: Name of this bus. *“None'" for a nameless bus, e.g.
bus-signals in an interface or a " “modport’".
(untested on " “struct’*/ “record’ ", but could work here as well).
clock: A handle to the clock associated with this bus.
xkkwargs: Keyword arguments forwarded to :class: cocotb.Bus”,
see docs for that class for more information.

_optional_signals = []

def __init_ (self, entity: SimHandleBase, name: Optionall[str], clock: SimHandleBase, xxkwa
index = kwargs.get("array_idx", None)

self.log = logging.getlLogger("cocotb.%s.%s" % (entity._name, name))
Driver.__init_ (self)
self.entity = entity
self.clock = clock
self.bus = Bus(
self.entity, name, self._signals, optional_signals=self._optional_signals,
*kkwargs

Driver

* Instead of listening to a bus, it takes in high-level
commands about things to put on the bus and
takes care of the appropriate signaling.

Python data structure Driver Wires set high/low

Monitors kinda the opposite of
drivers

Wires set high/low

Monitor
(input)

————— » Python data structure

* While having both might seem kinda
stupid/redundant, its strength comes from the
compartmentalization of roles.

* |tis much easier to just design a thing that turns
bus

Scoreboard

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

ScoreBoard

v class Scoreboard:

18 """"Generic scoreboarding class.

19

20 We can add interfaces by providing a monitor and an expected output queue.
21

22 The expected output can either be a function which provides a transaction
23 or a simple list containing the expected output.

24

25 TODO:

26 Statistics for end-of-test summary etc.

27

28 Args:

29 dut (SimHandle): Handle to the DUT.

30 reorder_depth (int, optional): Consider up to ‘reorder_depth' elements
31 of the expected result list as passing matches.

32 Default is @, meaning only the first element in the expected result list
33 is considered for a passing match.

34 fail_immediately (bool, optional): Raise :exc: AssertionError®

35 immediately when something is wrong instead of just

36 recording an error. Default is "~ "True ".

37 e

38

39 v def __init_ (self, dut, reorder_depth=0, fail_immediately=True): # FIXME: reorder_depth
40 self.dut = dut

41 self.log = logging.getLogger("cocotb.scoreboard.%s" % self.dut._name)
42 self.errors = 0

43 self.expected = {}

44 self._imm = fail_immediately

45

46 @property

47 v def result(self):

48 """Determine the test result, do we have any pending data remaining?
49

50 Raises:

Seguencer

Monitor

(input) [~==== Scoreboard

Monitor
(output)

Sequencer Driver

Seguencer

 This is tied a bit more into *what* we test on the
device so we’ll cover it in the future. For now
we’ll be kinda kludging this part.

