
6.S965
Digital Systems Laboratory II

Lecture 4:
Signal Processing I

September 16, 2024 6.S965 Fall 2024 1

Administrative
• No lecture next Monday on 9/23/2024. I will post

some readings though.

• No office hours this week on Friday from me
(9/20/204
• Week 03 will still come out this upcoming Friday:

• DMA, FIR Filter, additional structure in
testbenching/verification

• Week 02 stuff is out:
• More Cocotb
• More Pynq:

• Update to the code on the site for last part…

September 16, 2024 6.S965 Fall 2024 2

Week 2 Lab:
AXI-Lite Packager Broke
• Still not sure *what* broke going from 2023.2 to

2024.1

• Didn’t have enough time over the weekend to figure
it out

• The new source for AXI Lite mentions burst
mode…not sure if that’s a typo or indicative of
something else weird.
• Also incompletely specifies read logic compared to

<2024.1

September 16, 2024 6.S965 Fall 2024 3

Variants

• I think there’s a bug in their READY
implementation

Not-working (2024.1) Less Not-working (2023.2)

September 16, 2024 6.S965 Fall 2024 4

Reads Work Fine

• The “IP wizard” does fail to create all the
appropriate read logic by default, but for
registers it does, things work
• And you can add in the logic to read the

”forgotten” registers (>4) and things still work

September 16, 2024 6.S965 Fall 2024 5

What’s Broken?

• Hard Crash/Timeout when a Write is made to the
AXI MMIO created
• My guess is it is related to the response channel

logic
• An AXI write interface will have three channels:
• Write Address (“AW”) (address to write data to)
• Write Data (“W”) (data to write)
• Response Data (“B”) A response

September 16, 2024 6.S965 Fall 2024 6

Generalized Transaction
• All Channel Interactions

follow same high-level
structure

September 16, 2024 6.S965 Fall 2024 7

Sending One ”beat” of data (one clock-cycle of data)

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

Generalized Transaction
• All Channel Interactions

follow same high-level
structure

September 16, 2024 6.S965 Fall 2024 8

Sending One ”beat” of data (one clock-cycle of data)

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

Generalized Transaction
• All Channel Interactions

follow same high-level
structure

September 16, 2024 6.S965 Fall 2024 9

Sending One ”beat” of data (one clock-cycle of data)

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

Other Things to Keep in Mind
• the VALID signal of the AXI interface sending

information must not be dependent on the
READY signal of the AXI interface receiving that
information
• an AXI interface that is receiving information can

wait until it detects a VALID signal before it
asserts its corresponding READY signal.
• Fail to Follow these rules and could have devices

wait infinitely.
• Like when two people keep going “no, after you at a

door”

September 16, 2024 6.S965 Fall 2024 10

Update: I think this is one issue:

• AXI_AWADDR getting used when AXI_AWREADY
and AXI_AWVALID are both not asserted.

September 16, 2024 6.S965 Fall 2024 11

Line Letting Un-hand-shaken data
through:

• Early in module there is this:

• Elsewhere the write logic had this

• Change to this:

//suck:
case ((S_AXI_AWVALID) ? S_AXI_AWADDR[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB]
 : axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB])

if (S_AXI_AWVALID && S_AXI_AWREADY)begin
 axi_awaddr <= S_AXI_AWADDR;

//seems better:
case ((S_AXI_AWREADY && S_AXI_AWVALID) ? S_AXI_AWADDR[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB]
 : axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB])

September 16, 2024 6.S965 Fall 2024 12

Update: I think this is part of
issue…
• There’s a line that uses the raw address based

only on AXI_AWVALID
• Change it

September 16, 2024 6.S965 Fall 2024 13

Still Not Exactly Sure

• So haven’t tested it. But that is at least one “hole” in
the spec that the other, older module does not fall
prey to.
• Anyways, I’ll keep looking. This might form part of

week 3’s assignment
• This is part of a larger issue. A lot of Xilinx stuff and

many vendors is “AXI-ish”…fails on some edge
cases. This can get very frustrating when using
encrypted IP

• Also I’m not the first to talk about this

September 16, 2024 6.S965 Fall 2024 14

AXI Culture

• This Gisselquist
guy is anywhere
anybody
mentions AXI on
the internet

September 16, 2024 6.S965 Fall 2024 15

Signal Processing on the
FPGA

September 16, 2024 6.S965 Fall 2024 16

6.S965 RFSoC
• UltraScale+ ZU48DR:
• 38 Mb of BRAM
• +22Mb of UltraRAM
• 4272 DSP slices
• 930,000 Logic Cells
• Four 5-Gsps 14 bit ADCs
• Two 10-Gsps 14 bit DACs
• Four 1.3 GHz ARM 53

processors
• Two Real-time 533 MHz ARM

processors

September 16, 2024 6.S965 Fall 2024 17

• Board has 4GB of DDR4 for FPGA portion (”PL”) and 4 GB
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab

A Digital System in an Analog World

September 16, 2024 6.S965 Fall 2024 18

• Many physical phenomena (sound, light, physics in
general) are best-described as continuous entities

Analog
phenomena

Digital
System

Analog
phenomena

Reconstruction

Manipulation

Sampling,
Quantization,
Digitization

Visualizing Sampling

September 16, 2024 6.S965 Fall 2024 19

Continuous in Value and in Time

September 16, 2024 20

t

V(
t)

6.S965 Fall 2024

Discretization in Time

September 16, 2024 21

t

V(
t)

6.S965 Fall 2024

September 16, 2024 22

t

V(
t)

4 bit value encoding

6.S965 Fall 2024

Discretization in Time and
Quantization in Value

v[n] = [9,11,5,7,11,11,10,8,5,4,]

September 16, 2024 23

t

V(
t)

4 bit value encoding

Discretization in Time and
Quantization in Value

6.S965 Fall 2024

Store in memory

• v[n] = [9,11,5,7,11,11,10,8,5,4,]
• 10 4-bit values: need 40 bits to represent!
• Good stuff. That’s not a lot!

September 16, 2024 246.S965 Fall 2024

Reconstruction of Signal

September 16, 2024 25

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]

6.S965 Fall 2024

Reconstruction (with first-order hold
interpolation)

September 16, 2024 26

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]

6.S965 Fall 2024

Compare to original… not bad

September 16, 2024 27

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,11,11,10,8,5,4,]

6.S965 Fall 2024

Errors

• Discretization Error: How ”off” our readings are
in time due to sampling at discrete intervals

• Quantization Error: How “off” our readings are
in reproduced value…if our bin size is 50mV and
our signal varies only by 20mV this is going to
cause problems

September 16, 2024 286.S965 Fall 2024

Continuous in Value and in Time

September 16, 2024 29

t

V(
t)

6.S965 Fall 2024

September 16, 2024 30

t

V(
t)

4 bit value encoding

6.S965 Fall 2024

Discretization in Time and
Quantization in Value

v[n] = [9,11,5,7,5,12,10,7,5,4,]

September 16, 2024 31

t

V(
t)

4 bit value encoding
6.S965 Fall 2024

Discretization in Time and
Quantization in Value

Reproduce

September 16, 2024 32

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

6.S965 Fall 2024

Reproduce

September 16, 2024 33

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

6.S965 Fall 2024

Compare to original… Did not Capture
the high-frequency Wiggles!

September 16, 2024 34

t

V(
t)

v[n] = [9,11,5,7,5,12,10,7,5,4,]

Potentially Bad Discretization Error

6.S965 Fall 2024

Continuous in Value and in Time

September 16, 2024 35

t

V(
t)

6.S965 Fall 2024

September 16, 2024 36

t

V(
t)

4 bit value encoding

6.S965 Fall 2024

Discretization in Time and
Quantization in Value

v[n] = [9,9,9,9,9,9,9,9,9,9]

September 16, 2024 37

t

V(
t)

4 bit value encoding
6.S965 Fall 2024

Discretization in Time and
Quantization in Value

Store in memory

• v[n] = [9,9,9,9,9,9,9,9,9,9]
• 10 4-bit values: need 40 bits in memory!
• Great. All is good.

September 16, 2024 386.S965 Fall 2024

v[n] = [9,9,9,9,9,9,9,9,9,9]

September 16, 2024 39

t

V(
t)

4 bit value encoding

Reproduce

6.S965 Fall 2024

v[n] = [9,9,9,9,9,9,9,9,9,9]

September 16, 2024 40

t

V(
t)

4 bit value encoding

Reproduce

6.S965 Fall 2024

v[n] = [9,9,9,9,9,9,9,9,9,9]

September 16, 2024 41

t

V(
t)

Compare… to original also meh

Those tiny wiggles might

be really important in

certain contexts!

Tiny heartbeats!Potentially Really Problematic
Quantization Error!

6.S965 Fall 2024

Conclusions
• Care must be taken when choosing what rate

you sample (discretize) your signal and at what
bit-depth you quantize your sample
• There’s no right answer, since it depends on

context/use cases.
• Ideally want to sample at high rate and quantize

with many bits…
• But taken to the extreme this uses a lot of

resources (lots of memory and resources/lots of
bits) so downward pressure on choices

September 16, 2024 6.S965 Fall 2024 42

Is that all there is to it?
• No, it is wayyy more complicated
• Let’s just consider sample rate for right now

(we’ll revisit quantization later)

September 16, 2024 436.S965 Fall 2024

Sample Rate
• How frequently we sample our signal directly

influences what we can effectively capture.
• A sample rate of 𝑓! is only capable of expressing

signals with frequencies less than "!
#

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies
in this region of the
spectrum can be fully
captured

Nyquist, Shannon, few
others showed this in the
1930s

September 16, 2024 6.S965 Fall 2024 44

Let’s consider this situation though….

September 16, 2024 45

t

V(
t)

6.S965 Fall 2024

September 16, 2024 46

t

V(
t)

4 bit value encoding

6.S965 Fall 2024

Let’s digitize it…at this sample rate we
shouldn’t be able to capture it

v[n] = [9,11,5,7,5,12,10,7,5,4,]

September 16, 2024 47

t

V(
t)

4 bit value encoding
6.S965 Fall 2024

Discretization in Time and
Quantization in Value

Store in memory

• v[n] = [9,11,5,7,5,12,10,7,5,4,]
• 10 4-bit values: need 40 bits in memory!
• Easy-peasy one-two-threesy

September 16, 2024 486.S965 Fall 2024

Reconstruct

September 16, 2024 49

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

6.S965 Fall 2024

Reproduce

September 16, 2024 50

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

6.S965 Fall 2024

Compare to original… Did not Capture
the high-frequency Wiggles!

September 16, 2024 51

t

V(
t)

Great….but we still captured something! What is
that signal expressed by the red interpolation?

6.S965 Fall 2024

Consider this…

September 16, 2024 52

t

V(
t)

6.S965 Fall 2024

Sample it…

September 16, 2024 53

t

V(
t)

6.S965 Fall 2024

Store it…

September 16, 2024 54

t

V(
t)

6.S965 Fall 2024

Reconstruct it…

September 16, 2024 55

t

V(
t)

6.S965 Fall 2024

We’ve created a a different signal from what was before! WTH?

Or Consider this…
 if we start with this data…

September 16, 2024 56

t

V(
t)

6.S965 Fall 2024

And we Reconstruct the signal…is
this ok?

September 16, 2024 57

t

V(
t)

6.S965 Fall 2024

First-order hold (connect-the dots)

If it came from this, ok… but…

September 16, 2024 58

t

V(
t)

6.S965 Fall 2024

It could have also come from
this…Uh oh

September 16, 2024 59

t

V(
t)

6.S965 Fall 2024

First-order hold (connect-the dots)

Which one Made the Signal

September 16, 2024 60

t

V(
t)

6.S965 Fall 2024

There’s ambiguity in what those samples could represent…that
means it really doesn’t convey much, if any, information

Aliasing
• While we can’t fully capture and reproduce signals

with a frequency higher than the Nyquist sampling
rate, it doesn’t mean they won’t have an impact!
• Energy from that high frequency will leak into the

frame…a form of “spectral leakage”
• A sample rate of 𝑓! can fully capture all information

in a signal if and only if, the highest frequency in that
signal is at or below "!

#
 !

• If you don’t do this, aliasing will appear (higher
frequencies appear as a different signal (an “alias”))
that can be expressed with the sample rate

September 16, 2024 6.S965 Fall 2024 61

Aliasing Can Happen in Space too
• Just like there are temporal frequencies (in time),

images have spatial frequencies.
• Same issues arise!

September 16, 2024 6.S965 Fall 2024 62

https://en.wikipedia.org/wiki/Aliasing

Anti-alias Filtered Not Anti-alias Filtered

This font has been
processed with an
anti-alias filter to
prevent artifacts
when displayed

Solution
• The ONLY way to guarantee that a set of discrete points

can unambiguously represent a signal is to guarantee
that prior to sampling, we remove all energy that it exists
in frequencies higher than the Nyquist Sampling Rate
• To do this we need a Low-Pass Filter!

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies
in this region of the
spectrum can be fully
captured

Nothing can exist in
this region of the
spectrum

September 16, 2024 6.S965 Fall 2024 63

Low Pass Filter
• Prior to Sampling, we must be sure that our

signal has no significant energy above our
Nyquist Rate

Signal In Downstream

“Anti-Aliasing Filter”

LPF
Filtered

Signal Sampler

September 16, 2024 6.S965 Fall 2024 64

Audio Sampling

Signal in
@48 ksps

30-tap
FIR Filter

Downsample by
factor of 8

Already sampled at 6/8 bits

Signal out
@6 ksps

• Since we’re down-sampling by a factor of 8, to avoid
aliasing (makes the recording sound “scratchy/metallic”)
we need to pass the incoming samples through a low-
pass antialiasing filter to remove audio signal above 3kHz
(Nyquist frequency of a 6kHz sample rate).

LPF with ”shoulder” at 3 kHz

September 16, 2024 6.S965 Fall 2024 65

@48ksps

How Do You Actually Make a Filter?
• Several types of filters. Two big ones:
• IIR: Infinite Impulse Response:

• Uses past output history for filtering
• FIR: Finite Impulse Response:

• Uses input history for filtering
• CIC: Cascaded Integrator Comb:

• Special case of FIR mixed with down-samplers/decimators

September 16, 2024 6.S965 Fall 2024 66

Filters
• Stateful systems that analyze history signals to

select for particular signal attributes:
• Low-pass Filter: Lets through low-frequency signals
• High-pass Filter: Lets through high-frequency signals
• Band-pass Filter: Lets through selective group of

frequencies
• Band-stop Filter: Blocks selective group of frequencies
• Matched-Filter: Values come from time-series of feature

of interest being convolved with signal

September 16, 2024 6.S965 Fall 2024 67

Infinite Impulse Response Filter (IIR)

• The current output (𝑦 𝑛) of the filter is based on
the weighted sum of the previous output (𝑦 𝑛 − 1)
of the filter + the value of the input (𝑥[𝑛))*
• Sometimes called a recursive filter: “y is based off

of y is based off of y…”
• Information enters the system through 𝑥 but its

influence on the output is dependent on the values
of 𝛼 and 𝛽

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 	𝛽 , 𝑥[𝑛]

September 16, 2024 6.S965 Fall 2024 68

*can also be based on multiple past values of y and x

Infinite Impulse Response (Modified)

• Fix the relationship of the new input and old
output to one variable 𝛼	:
• As 𝛼 → 1 input has less weight (takes time for it to

affect output…blocks more high frequency events)
• As 𝛼 → 0 input has more weight (output quickly

follows input…allows through more high frequency
events (and everything actually)

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]

0 ≤ 𝛼 ≤ 1

September 16, 2024 6.S965 Fall 2024 69

IIR Filter

September 16, 2024 70

t

x(
t)

6.S965 Fall 2024

y(
t)

t

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]

Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
September 16, 2024 6.S965 Fall 2024 71

Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
September 16, 2024 6.S965 Fall 2024 72

N

M

N+M

M
N

N+M

N+M+1 N
>>>M+1

Need to keep in mind bits!

𝛼 would be scaled up by 2M
and
Then the result is shifted back
down later

IIR

• Computationally lightweight
• No very flexible, often poor performance since

not a lot of parameters to adjust.

September 16, 2024 6.S965 Fall 2024 73

Finite Impulse Response
• Have the output be based off of a sliding window

of the past history of the input.
• Literally just convolution basically

• Very powerful!! Huge flexibility in choosing those
coefficients and can get a ton of behaviors!

September 16, 2024 6.S965 Fall 2024 74

𝑦 𝑛 = 𝑏$, 𝑥 𝑛 + 𝑏% , 𝑥 𝑛 − 1 + 𝑏# , 𝑥 𝑛 − 2

FIR Filter

September 16, 2024 75

t

x(
t)

6.S965 Fall 2024

y(
t)

t

𝑦 𝑛 = 𝑏! * 𝑥 𝑛 + 𝑏" * 𝑥 𝑛 − 1 + 𝑏# * 𝑥 𝑛 − 2

FIR Filters
• Extremely flexible
• Often times many, many “taps” long (N in 1000s

is not uncommon)

• The values you pick for these taps are arrived at
using a number of DSP-oriented algorithms
(beyond scope of course…but in 6.341, etc)

September 16, 2024 6.S965 Fall 2024 76

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

FIR Filters
• Some online tools, Matlab, Python, Vivado all have

tools that allow you to:
• specify how you want your filter to look
• Provide you the coefficients needed to generate that filter

• The 𝑏 coefficients are generally provided as real
numbers between 0 and 1. But since we don’t want
to do floating point arithmetic, we usually scale
them by some power of two and then round to
integers.
• Since coefficients are scaled by 2M, we’ll have to re-scale

the answer by dividing by 2M. But this is easy – just get rid
of the bottom M bits!

• More taps generally means you can get better
response:
• Closer to ideal filter!

September 16, 2024 6.S965 Fall 2024 77

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

FIR Filters

• They implement convolution, so can be much
more than just “filters”
• You can use them to:
• Remove complicated features to signals
• Add complicated features to signals
• Making an FIR filter “dynamic” can lead to systems

that dynamically tune themselves.
• Make a ”matched filter” to look for features.

• Very much a work-horse type module.

September 16, 2024 6.S965 Fall 2024 78

FIR Filter (Iterative Design)

• For audio and mid-frequency phenomena, usually plenty
of clock cycles exist between each audio cycle anyways
(you have 2000 clock cycles of 100 MHz between each
audio sample of 48 ksps audio!)
• Just make a low-resource state-machine-based module.
• After every sample, do each multiply-accumulate for each

tap. As long as you have enough cycles, you can do
thousands of taps. Can even break up into more

September 16, 2024 6.S965 Fall 2024 79

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

September 16, 2024 6.S965 Fall 2024 80

𝑦[𝑛]	 = 6
%&!

'!

𝑥 𝑛 − 𝑘 𝑏[𝑘]

𝑦[𝑛]	 = 𝑥 𝑛 − 0 𝑏[0] +	

𝑥 𝑛 − 1 𝑏[1]+	. . .	

𝑥 𝑛 − 30 𝑏[30] +	

Circular Buffer/Pointer in Action

6.S965 RFSoC
• UltraScale+ ZU48DR:
• 38 Mb of BRAM
• +22Mb of UltraRAM
• 4272 DSP slices
• 930,000 Logic Cells
• Four 5-Gsps 14 bit ADCs
• Two 10-Gsps 14 bit DACs
• Four 1.3 GHz ARM 53

processors
• Two Real-time 533 MHz ARM

processors

September 16, 2024 6.S965 Fall 2024 81

• Board has 4GB of DDR4 for FPGA portion (”PL”) and 4 GB
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab

How Much Data is That?

• The max the FPGA fabric can run is like 700 MHz
or so.
• If ADCs run at 5 Gsps how many clock cycles

September 16, 2024 6.S965 Fall 2024 82

Finite Impulse Response

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏#

𝑥[𝑛 − 1]

×

+

𝑏$

𝑥[𝑛 − 2]

×

+

𝑏%

𝑥[𝑛 − 3]

×

+

𝑏&'#

𝑥[𝑛 − 𝑁 + 1]⋯

⋯

September 16, 2024 6.S965 Fall 2024 83

Disgustingly long combinational path…too much propagation delay

Finite Impulse Response (Modified)

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏# ×

+

𝑏$ ×

+

𝑏% ×

+

𝑏&'#

⋯

⋯

September 16, 2024 6.S965 Fall 2024 84

Much nicer critical path (worst propagation delay)

Bit Growth 𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏# ×

+

𝑏$ ×

+

𝑏% ×

+

𝑏&'#

⋯

⋯

September 16, 2024 6.S965 Fall 2024 85

N N
M M M M M

N+MN+M N+M N+M N+M

https://zipcpu.com/dsp/2017/07/21/bit-growth.html

Adding values that are N+M bits repeatedly grows the number of bits needed
to not lose precision…will grow at between 1 bit per N and 1 bit per log2(N)!
But this can grow large so there’s ways to handle it

Most FIR Filters (not all) are
symmetric too.
• Depending on situation can double-up and feed

back delayed signal

September 16, 2024 6.S965 Fall 2024 86

DSP Blocks?

• These IIR and especially FIR filters sure do have a
lot of multiply-then-add operations going on…
• Remember those DSP blocks? That’s why they’re

designed the way they are

September 16, 2024 6.S965 Fall 2024 87

DSP Blocks
• Mult-then-add is a common operation chain in

many things, particularly Digital Signal
Processing
• FPGA has dedicated hardware modules called

DSP48 blocks on it
• 150 of them on Urbana FPGA board
• Capable of single-cycle multiplies

• Can get inferred from using * in your Verilog that
isn’t a power of 2:
• x*y, for example, will likely will result in DSP getting

used
• May take a full clock cycle so would need to budget

tiing accordingly

September 16, 2024 6.S965 Fall 2024 88

DSP48 Slice (High Level)

September 16, 2024 6.S965 Fall 2024 89

https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf

DSP48E2 (Ultrascale +)

September 16, 2024 6.S965 Fall 2024 90

DSP Blocks

September 16, 2024 6.S965 Fall 2024 91

FIR Wizard
• FIRs are so

common, Vivado
actually has some
IP infrastructure to
aid in designing
them
• Can tune how

pipelined vs.
Iterative/FSM you
want your FIR!
• Or use

Python/numpy to
determine
coefficients

September 16, 2024 6.S965 Fall 2024 92

Project Idea (Smart Meter Listening)

• https://www.dailydot.com/debug/hacker-smart-
meter-texas-snowstorm/
• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

7412105/

September 16, 2024 6.S965 Fall 2024 93

https://www.dailydot.com/debug/hacker-smart-meter-texas-snowstorm/
https://www.dailydot.com/debug/hacker-smart-meter-texas-snowstorm/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412105/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7412105/

RAMBO

• https://arxiv.org/abs/2409.02292
• https://thehackernews.com/2024/09/new-

rambo-attack-uses-ram-radio-signals.html

September 16, 2024 6.S965 Fall 2024 94

https://arxiv.org/abs/2409.02292
https://thehackernews.com/2024/09/new-rambo-attack-uses-ram-radio-signals.html
https://thehackernews.com/2024/09/new-rambo-attack-uses-ram-radio-signals.html

