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Administrative
• No lecture next Monday on 9/23/2024. I will post 

some readings though.

• No office hours this week on Friday from me 
(9/20/204
• Week 03 will still come out this upcoming Friday:

• DMA, FIR Filter, additional structure in 
testbenching/verification

• Week 02 stuff is out:
• More Cocotb
• More Pynq:

• Update to the code on the site for last part…
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Week 2 Lab: 
AXI-Lite Packager Broke
• Still not sure *what* broke going from 2023.2 to 

2024.1

• Didn’t have enough time over the weekend to figure 
it out

• The new source for AXI Lite mentions burst 
mode…not sure if that’s a typo or indicative of 
something else weird. 
• Also incompletely specifies read logic compared to 

<2024.1
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Variants

• I think there’s a bug in their READY 
implementation

Not-working (2024.1) Less Not-working (2023.2)
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Reads Work Fine

• The “IP wizard” does fail to create all the 
appropriate read logic by default, but for 
registers it does, things work
• And you can add in the logic to read the 

”forgotten” registers (>4) and things still work
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What’s Broken?

• Hard Crash/Timeout when a Write is made to the 
AXI MMIO created
• My guess is it is related to the response channel 

logic
• An AXI write interface will have three channels:
• Write Address (“AW”) (address to write data to)
• Write Data (“W”) (data to write)
• Response Data (“B”) A response 
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Generalized Transaction
• All Channel Interactions 

follow same high-level 
structure
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Other Things to Keep in Mind
• the VALID signal of the AXI interface sending 

information must not be dependent on the 
READY signal of the AXI interface receiving that 
information
• an AXI interface that is receiving information can 

wait until it detects a VALID signal before it 
asserts its corresponding READY signal.
• Fail to Follow these rules and could have devices 

wait infinitely.
• Like when two people keep going “no, after you at a 

door”
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Update: I think this is one issue:

• AXI_AWADDR getting used when AXI_AWREADY 
and AXI_AWVALID are both not asserted.
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Line Letting Un-hand-shaken data 
through:

• Early in module there is this:

• Elsewhere the write logic had this

• Change to this:

//suck:
case ( (S_AXI_AWVALID) ? S_AXI_AWADDR[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] 
                       : axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )

if (S_AXI_AWVALID && S_AXI_AWREADY)begin
   axi_awaddr <= S_AXI_AWADDR;

//seems better:
case ( (S_AXI_AWREADY && S_AXI_AWVALID) ? S_AXI_AWADDR[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] 
                                        : axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
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Update: I think this is part of 
issue…
• There’s a line that uses the raw address based 

only on AXI_AWVALID
• Change it 
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Still Not Exactly Sure

• So haven’t tested it.  But that is at least one “hole” in 
the spec that the other, older module does not fall 
prey to. 
• Anyways,  I’ll keep looking. This might form part of 

week 3’s assignment
• This is part of a larger issue. A lot of Xilinx stuff and 

many vendors is “AXI-ish”…fails on some edge 
cases. This can get very frustrating when using 
encrypted IP 

• Also I’m not the first to talk about this
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AXI Culture

• This Gisselquist 
guy is anywhere 
anybody 
mentions AXI on 
the internet
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Signal Processing on the 
FPGA
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6.S965 RFSoC
• UltraScale+ ZU48DR:
• 38 Mb of BRAM
• +22Mb of UltraRAM
• 4272 DSP slices
• 930,000 Logic Cells
• Four 5-Gsps 14 bit ADCs
• Two 10-Gsps 14 bit DACs
• Four 1.3 GHz ARM 53 

processors
• Two Real-time 533 MHz ARM 

processors
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• Board has 4GB of DDR4 for FPGA portion (”PL”) and 4 GB 
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab



A Digital System in an Analog World

September 16, 2024 6.S965 Fall 2024 18

• Many physical phenomena (sound, light, physics in 
general) are best-described as continuous entities

Analog 
phenomena

Digital
System

Analog 
phenomena

Reconstruction

Manipulation 

Sampling,
Quantization,
Digitization



Visualizing Sampling
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Continuous in Value and in Time

September 16, 2024 20

t

V(
t)

6.S965 Fall 2024



Discretization in Time
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v[n] = [9,11,5,7,11,11,10,8,5,4,]
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Store in memory

• v[n] = [9,11,5,7,11,11,10,8,5,4,]
• 10 4-bit values: need 40 bits to represent!
• Good stuff. That’s not a lot!
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Reconstruction of Signal
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Reconstruction (with first-order hold 
interpolation)
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Compare to original… not bad
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Errors

• Discretization Error: How ”off” our readings are 
in time due to sampling at discrete intervals

• Quantization Error: How “off” our readings are 
in reproduced value…if our bin size is 50mV and 
our signal varies only by 20mV this is going to 
cause problems
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Continuous in Value and in Time
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v[n] = [9,11,5,7,5,12,10,7,5,4,]
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Reproduce
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Reproduce

September 16, 2024 33

t

V(
t)

4 bit value encoding

v[n] = [9,11,5,7,5,12,10,7,5,4,]

6.S965 Fall 2024



Compare to original… Did not Capture 
the high-frequency Wiggles!
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Continuous in Value and in Time
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v[n] = [9,9,9,9,9,9,9,9,9,9]
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Store in memory

• v[n] = [9,9,9,9,9,9,9,9,9,9]
• 10 4-bit values: need 40 bits in memory!
• Great.  All is good.
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v[n] = [9,9,9,9,9,9,9,9,9,9]
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v[n] = [9,9,9,9,9,9,9,9,9,9]
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v[n] = [9,9,9,9,9,9,9,9,9,9]
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Compare… to original also meh

Those tiny wiggles might 

be really important in 

certain contexts!  

Tiny heartbeats!Potentially Really Problematic 
Quantization Error!
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Conclusions
• Care must be taken when choosing what rate 

you sample (discretize) your signal and at what 
bit-depth you quantize your sample
• There’s no right answer, since it depends on 

context/use cases.
• Ideally want to sample at high rate and quantize 

with many bits…
• But taken to the extreme this uses a lot of 

resources (lots of memory and resources/lots of 
bits) so downward pressure on choices
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Is that all there is to it?
• No, it is wayyy more complicated
• Let’s just consider sample rate for right now 

(we’ll revisit quantization later)
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Sample Rate
• How frequently we sample our signal directly 

influences what we can effectively capture.
• A sample rate of 𝑓! is only capable of expressing 

signals with frequencies less than "!
#

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies 
in this region of the 
spectrum can be fully 
captured

Nyquist, Shannon, few 
others showed this in the 
1930s
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Let’s consider this situation though….
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Let’s digitize it…at this sample rate we 
shouldn’t be able to capture it



v[n] = [9,11,5,7,5,12,10,7,5,4,]
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Store in memory

• v[n] = [9,11,5,7,5,12,10,7,5,4,]
• 10 4-bit values: need 40 bits in memory!
• Easy-peasy one-two-threesy
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Reconstruct
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Reproduce
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Compare to original… Did not Capture 
the high-frequency Wiggles!
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that signal expressed by the red interpolation?
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Consider this…
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Sample it…
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Store it…
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Reconstruct it…
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We’ve created a a different signal from what was before! WTH?



Or Consider this…
 if we start with this data…
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And we Reconstruct the signal…is 
this ok?
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First-order hold (connect-the dots)



If it came from this, ok… but…
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It could have also come from 
this…Uh oh
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Which one Made the Signal
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There’s ambiguity in what those samples could represent…that 
means it really doesn’t convey much, if any, information



Aliasing
• While we can’t fully capture and reproduce signals 

with a frequency higher than the Nyquist sampling 
rate, it doesn’t mean they won’t have an impact!
• Energy from that high frequency will leak into the 

frame…a form of “spectral leakage”
• A sample rate of 𝑓! can fully capture all information 

in a signal if and only if, the highest frequency in that 
signal is at or below "!

#
  !

• If you don’t do this, aliasing will appear (higher 
frequencies appear as a different signal (an “alias”)) 
that can be expressed with the sample rate
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Aliasing Can Happen in Space too
• Just like there are temporal frequencies (in time), 

images have spatial frequencies.
• Same issues arise!
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https://en.wikipedia.org/wiki/Aliasing

Anti-alias Filtered Not Anti-alias Filtered

This font has been 
processed with an 
anti-alias filter to 
prevent artifacts 
when displayed



Solution
• The ONLY way to guarantee that a set of discrete points 

can unambiguously represent a signal is to guarantee 
that prior to sampling, we remove all energy that it exists 
in frequencies higher than the Nyquist Sampling Rate
• To do this we need a Low-Pass Filter!

frequency𝑓!0 𝑓!
2

“Nyquist Rate”

Signals with frequencies 
in this region of the 
spectrum can be fully 
captured

Nothing can exist in 
this region of the 
spectrum
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Low Pass Filter
• Prior to Sampling, we must be sure that our 

signal has no significant energy above our 
Nyquist Rate

Signal In Downstream

“Anti-Aliasing Filter”

LPF
Filtered 

Signal Sampler
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Audio Sampling

Signal in 
@48 ksps

30-tap
FIR Filter

Downsample by 
factor of 8

Already sampled at 6/8 bits

Signal out 
@6 ksps

• Since we’re down-sampling by a factor of 8, to avoid 
aliasing (makes the recording sound “scratchy/metallic”) 
we need to pass the incoming samples through a low-
pass antialiasing filter to remove audio signal above 3kHz 
(Nyquist frequency of a 6kHz sample rate).

LPF with ”shoulder” at 3 kHz
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How Do You Actually Make a Filter?
• Several types of filters. Two big ones:
• IIR: Infinite Impulse Response:

• Uses past output history for filtering
• FIR: Finite Impulse Response:

• Uses input history for filtering
• CIC: Cascaded Integrator Comb:

• Special case of FIR mixed with down-samplers/decimators
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Filters
• Stateful systems that analyze history signals to 

select for particular signal attributes:
• Low-pass Filter: Lets through low-frequency signals
• High-pass Filter: Lets through high-frequency signals
• Band-pass Filter: Lets through selective group of 

frequencies
• Band-stop Filter: Blocks selective group of frequencies
• Matched-Filter: Values come from time-series of feature 

of interest being convolved with signal
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Infinite Impulse Response Filter (IIR)

• The current output (𝑦 𝑛 )  of the filter is based on 
the weighted sum of the previous output (𝑦 𝑛 − 1 ) 
of the filter + the value of the input (𝑥[𝑛))*
• Sometimes called a recursive filter: “y is based off 

of y is based off of y…”
• Information enters the system through 𝑥 but its 

influence on the output is dependent on the values 
of 𝛼 and 𝛽

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 	𝛽 , 𝑥[𝑛]
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Infinite Impulse Response (Modified)

• Fix the relationship of the new input and old 
output to one variable 𝛼	:
• As 𝛼 → 1 input has less weight (takes time for it to 

affect output…blocks more high frequency events)
• As 𝛼 → 0 input has more weight (output quickly 

follows input…allows through more high frequency 
events (and everything actually)

𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛]

0 ≤ 𝛼 ≤ 1
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IIR Filter
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Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
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Infinite Impulse Response (Modified)
𝑦 𝑛 = 	𝛼 , 𝑦 𝑛 − 1 + 1 − 𝛼 , 𝑥[𝑛] 0 ≤ 𝛼 ≤ 1

× +

𝛼

𝑥 𝑦

×

1 − 𝛼
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N+M

N+M+1 N
>>>M+1

Need to keep in mind bits!

𝛼 would be scaled up by 2M 
and 
Then the result is shifted back 
down later



IIR

• Computationally lightweight
• No very flexible, often poor performance since 

not a lot of parameters to adjust.
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Finite Impulse Response
• Have the output be based off of a sliding window 

of the past history of the input.
• Literally just convolution basically

• Very powerful!! Huge flexibility in choosing those 
coefficients and can get a ton of behaviors!
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FIR Filter
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FIR Filters
• Extremely flexible
• Often times many, many “taps” long (N in 1000s 

is not uncommon)

• The values you pick for these taps are arrived at 
using a number of DSP-oriented algorithms 
(beyond scope of course…but in 6.341, etc)
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FIR Filters
• Some online tools, Matlab, Python, Vivado all have 

tools that allow you to:
• specify how you want your filter to look
• Provide you the coefficients needed to generate that filter

• The 𝑏 coefficients are generally provided as real 
numbers between 0 and 1.  But since we don’t want 
to do floating point arithmetic, we usually scale 
them by some power of two and then round to 
integers.
• Since coefficients are scaled by 2M, we’ll have to re-scale 

the answer by dividing by 2M.  But this is easy – just get rid 
of the bottom M bits!

• More taps generally means you can get better 
response:
• Closer to ideal filter! 
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FIR Filters

• They implement convolution, so can be much 
more than just “filters” 
• You can use them to:
• Remove complicated features to signals
• Add complicated features to signals
• Making an FIR filter “dynamic” can lead to systems 

that dynamically tune themselves. 
• Make a ”matched filter” to look for features.

• Very much a work-horse type module.
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FIR Filter (Iterative Design)

• For audio and mid-frequency phenomena, usually plenty 
of clock cycles exist between each audio cycle anyways 
(you have 2000 clock cycles of 100 MHz between each 
audio sample of 48 ksps audio!)
• Just make a low-resource state-machine-based module.
• After every sample, do each multiply-accumulate for each 

tap. As long as you have enough cycles, you can do 
thousands of taps.  Can even break up into more 
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𝑦[𝑛]	 = 6
%&!

'!

𝑥 𝑛 − 𝑘 𝑏[𝑘]

𝑦[𝑛]	 = 𝑥 𝑛 − 0 𝑏[0] +	

𝑥 𝑛 − 1 𝑏[1]+	. . .	

𝑥 𝑛 − 30 𝑏[30] +	

Circular Buffer/Pointer in Action



6.S965 RFSoC
• UltraScale+ ZU48DR:
• 38 Mb of BRAM
• +22Mb of UltraRAM
• 4272 DSP slices
• 930,000 Logic Cells
• Four 5-Gsps 14 bit ADCs
• Two 10-Gsps 14 bit DACs
• Four 1.3 GHz ARM 53 

processors
• Two Real-time 533 MHz ARM 

processors
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• Board has 4GB of DDR4 for FPGA portion (”PL”) and 4 GB 
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zynq-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab



How Much Data is That?

• The max the FPGA fabric can run is like 700 MHz 
or so.
• If ADCs run at 5 Gsps how many clock cycles 
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Finite Impulse Response

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏#

𝑥[𝑛 − 1]

×

+

𝑏$

𝑥[𝑛 − 2]

×

+

𝑏%

𝑥[𝑛 − 3]

×

+

𝑏&'#

𝑥[𝑛 − 𝑁 + 1]⋯

⋯
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Disgustingly long combinational path…too much propagation delay



Finite Impulse Response (Modified)

𝑦 𝑛 =	3
01$

23%

𝑏0 , 𝑥[𝑛 − 𝑘]

×

+

𝑏"

𝑥[𝑛]

×

+

𝑏# ×

+

𝑏$ ×

+

𝑏% ×

+

𝑏&'#

⋯

⋯
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Much nicer critical path (worst propagation delay)



Bit Growth 𝑦 𝑛 =	3
01$
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𝑥[𝑛]

×

+

𝑏# ×

+

𝑏$ ×

+

𝑏% ×

+

𝑏&'#

⋯

⋯
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https://zipcpu.com/dsp/2017/07/21/bit-growth.html

Adding values that are N+M bits repeatedly grows the number of bits needed 
to not lose precision…will grow at between 1 bit per N and 1 bit per log2(N)!  
But this can grow large so there’s ways to handle it



Most FIR Filters (not all) are 
symmetric too.
• Depending on situation can double-up and feed 

back delayed signal
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DSP Blocks?

• These IIR and especially FIR filters sure do have a 
lot of multiply-then-add operations going on…
• Remember those DSP blocks? That’s why they’re 

designed the way they are
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DSP Blocks
• Mult-then-add is a common operation chain in 

many things, particularly Digital Signal 
Processing
• FPGA has dedicated hardware modules called 

DSP48 blocks on it
• 150 of them on Urbana FPGA board
• Capable of single-cycle multiplies

• Can get inferred from using * in your Verilog that 
isn’t a power of 2:
• x*y, for example, will likely will result in DSP getting 

used
• May take a full clock cycle so would need to budget 

tiing accordingly
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DSP48 Slice (High Level)
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https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf



DSP48E2 (Ultrascale +)
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DSP Blocks
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FIR Wizard
• FIRs are so 

common, Vivado 
actually has some 
IP infrastructure to 
aid in designing 
them
• Can tune how 

pipelined vs. 
Iterative/FSM you 
want your FIR!
• Or use 

Python/numpy to 
determine 
coefficients
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Project Idea (Smart Meter Listening)

• https://www.dailydot.com/debug/hacker-smart-
meter-texas-snowstorm/
• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

7412105/ 
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https://www.dailydot.com/debug/hacker-smart-meter-texas-snowstorm/
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RAMBO

• https://arxiv.org/abs/2409.02292
• https://thehackernews.com/2024/09/new-

rambo-attack-uses-ram-radio-signals.html 
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