6.5965
Digital Systems Laboratory |l

Lecture 4:

Signal Processing |
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Administrative

* No lecture next Monday on 9/23/2024. | will post
some readings though.

* No office hours this week on Friday from me
(9/20/204

* Week 03 will still come out this upcoming Friday:

* DMA, FIR Filter, additional structure in
testbenching/verification

* Week 02 stuff is out:
* More Cocotb
* More Pynq:
* Update to the code on the site for last part...
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Week 2 Lab:
AXI-Lite Packager Broke

 Still not sure *what* broke going from 2023.2 to
2024.1

* Didn’t have enough time over the weekend to figure
it out

* The new source for AXI Lite mentions burst
mode...not sure if that’s a typo or indicative of
something else weird.

* Also incompletely specifies read logic compared to
<2024.1
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Variants

* | think there’s a bug in their READY
implementation

Not-working (2024.1) Less Not-working (2023.2)

> » M
S_AXI_ARREADY

_ AXI_ARVALID
DR [4:0]

|LBRESP [1:0]
S_AXI_BVALID

00000005
00000005

UNDEF 2
00009000 00000005
UNDEF
xx... (000000000001
0000000 63:0 xx...|0000000000000000
./ 0000000 a_out[: 00000006,
0000)
0000000
0000000
v 12

2.

60000 ps EaC)) X 000000

ker 311379 s s [31:0] x...)( 00000000
200000 ps 250000 ps 350000 ps 400000 ps 450000 ps 500000 ps 55 ps 650000 ps 700000 ps s 0000 ps 300000 p 350000 ps 400000 ps 450000 ps 500000 ps 55 0ps 650000 ps 700000 ps

Add 53




Read address channel

Address
and control

Reads Work Fine &= ...

Read Read Read Read
data data data data

— — — —

* The “IP wizard” does fail to create all the
appropriate read logic by default, but for
registers it does, things work

* And you can add in the logic to read the
“forgotten” registers (>4) and things still work
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Write address channel

Address
and control

What’s Broken? T e

Master Write Write Write Write
interface data data data data

_ ) — — —>

Write response channel

Write
response

«—

Slave
interface

e Hard Crash/Timeout when a Write is made to the
AXI MMIO created

* My guess is itis related to the response channel
logic
* An AXI write interface will have three channels:
* Write Address (“AW?”) (address to write data to)

* Write Data (“W”) (data to write)
* Response Data (“B”) Aresponse
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Generalized Transaction

Table A3-1 Transaction channel handshake pairs

® Al.l C h a n n e l. I nte ra Ct i O n S Transaction channel Handshake pair
fo l.lOW same h | g h - leve l Write address channel ~ AWVALID, AWREADY
Write data channel WVALID, WREADY
St r u Ct u re Write response channel ~ BVALID, BREADY
Read address channel ARVALID, ARREADY
Read data channel RVALID, RREADY
Sending One "beat” of data (one clock-cycle of data)
T1 T2 T3
Keep in mind this
could be 64 parallel INFORMA':IC;:l — XI | IX—|—,
wiresof 1’'sand0’sof ____—
VALID J/ \\

info or 8 bytes for

example... READY r—

Orit could be
something else Figure A3-2 VALID before READY handshake
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Generalized Transaction

Table A3-1 Transaction channel handshake pairs

® Al.l C h a n n e l. I nte ra Ct I O n S Transaction channel Handshake pair

fo l.lOW same h | g h - leve l Write address channel ~ AWVALID, AWREADY
Write data channel WVALID, WREADY

St ru Ct ure Write response channel ~ BVALID, BREADY
Read address channel  ARVALID, ARREADY
Read data channel RVALID, RREADY

Sending One "beat” of data (one clock-cycle of data)
T T2 T3
Keep in mind this k] 1 1 1 |

could be 64 parallel
INFORMATION X X

wires of 1’s and O’s of//-»
VALID /R

info or 8 bytes for

example... READY|  f |
Orit could be
something else Figure A3-3 READY before VALID handshake
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Generalized Transaction

Table A3-1 Transaction channel handshake pairs

® Al.l C h a n n e l. I nte ra Ct i O n S Transaction channel Handshake pair
fo l.lOW same h | g h - leve l Write address channel ~ AWVALID, AWREADY
Write data channel WVALID, WREADY
St r u Ct u re Write response channel ~ BVALID, BREADY
Read address channel ARVALID, ARREADY
Read data channel RVALID, RREADY
Sending One "beat” of data (one clock-cycle of data)
T T2
Keep in mind this ok 1 [ L. L. T 1L |
could be 64 parallel EORMATION Y )
wiresof 1’'sand0’sof ____— VALID I\
info or 8 bytes for READY Jy \
example...
Orit could be Figure A3-4 VALID with READY handshake

something else
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Other Things to Keep in Mind

* the VALID signal of the AXI interface sending
Information must not be dependent on the
READY signal of the AXI interface receiving that
iInformation

* an AXl interface that is receiving information can
wait until it detects a VALID signhal before it
asserts its corresponding READY signal.

* Fail to Follow these rules and could have devices
wait infinitely.
* Like when two people keep going “no, after you at a
door”
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Update: | think this is one issue:

* AXI_AWADDR getting used when AXI_AWREADY
and AXI_ AWVALID are both not asserted.

> P M € )

S_AXI_ACLK

S_AXI_ARESETN

S_AXI_AWADDR [4:0] 2z )00

S_AXI_AWREADY

S_AXI_AWVALID

S_AXI_WDATA [31:0] 00000007 72777.. ) 00000005 00...( 00000009
S_AXI_WVALID

S_AXI_WREADY

S_AXI_BREADY

S_AXI_BRESP [1:0]

S_AXI_BVALID

0: Marker A: 9229 ps 110000 ps

1: Marker A: 29229 ps 130000 ps
slv_reg0 [31:0] 00000000 00000000 00000009
slv_reg1 [31:0] 00000000 00000000 00000007




Line Letting Un-hand-shaken data
through:

* Early in module there is this:

if (S_AXI_AWVALID && S_AXI_AWREADY)begin
axi_awaddr <= S_AXI_AWADDR;

* Elsewhere the write logic had this

//suck:
case ( (S_AXI_AWVALID) ? S_AXI_AWADDR[ADDR_LSB+O0PT_MEM_ADDR_BITS:ADDR_LSB]
: axi_awaddr [ADDR_LSB+0OPT_MEM_ADDR_BITS:ADDR_LSB] )

* Change to this:

//seems better:

case ( (S_AXI_AWREADY && S_AXI_AWVALID) ? S_AXI_AWADDR [ADDR_LSB+0PT_MEM_ADDR_BITS:ADDR_LSB]
: axi_awaddr [ADDR_LSB+0PT_MEM_ADDR_BITS:ADDR_LSB] )
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Update: | think this is part of
ISSUe...

* There’s a line that uses the raw address based
only on AXI_AWVALID

* Change it

> P P ¢ )l

S_AXI_ACLK

S_AXI_ARESETN

S_AXI_AWADDR [4:0] zz___ )00

S_AXI_AWREADY

S_AXI_AWVALID

S_AX|_WDATA [31:0] 00000005 22272... ) 00000005 00.. 00000009
S_AXI_WVALID

S_AXI_WREADY

S_AXI_BREADY

S_AXI_BRESP [1:0]

S_AXI|_BVALID

0: Marker A: 9229 ps 110000 ps

1: Marker A: 29229 ps 130000 ps
slv_reg0 [31:0] 00000000 00000000 00...) 00000009
slv_reg1 [31:0] ololofoolololo} 00000000




Still Not Exactly Sure

* So haven’ttested it. But thatis at least one “hole” in
the spec that the other, older module does not fall
prey to.

 Anyways, I’'ll keep looking. This might form part of
week 3’s assignment

* This is part of a larger issue. A lot of Xilinx stuff and
many vendors is “AXI-ish”...fails on some edge
cases. This can get very frustrating when using
encrypted IP

 Also I’m not the first to talk about this
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AXI Culture

* This Gisselquist
guy is anywhere
anybody
mentions AXI| on
the internet

The most common AXI mistake

Apr 16, 2019
D@n
Some time ago, | posted a set of formal properties which could |
slave or master. | then applied these properties to the AXI-lite sle
and found multiple errors within their core. e
Members
®23k ©32

September 16, 2024

25 zipcpu.com/blog/2021/05/22/vhdlaxil.html

|
Gisselquist
Technology, LLC

WV

Main/Blog

Aoout Us Fixing Xilinx's Broken AXI-lite Design in
o VHDL

g,. ZipCPU
-’

| think you have some basic misconception of what AXI actually is.

I'm willing to believe | have such a basic misconception. This is why I'm writing and asking for
enlightenment. Thank you for taking the time to help me understand this here.

It's a high performance protocol.

This may be where | need the most enlightenment. To me, a "high performance protocol" is
one that allows one beat of information to be communicated on every clock. Many if not most
of the AXI implementations I've seen don't actually hit this target simply because all of the
extra logic required to implement the bus slows it down. There's also something to be said for
low-latency, but in general my biggest criticisms are of lost throughput.

You can take advantage of slave features like command reordering with DDR.

demonstration designs, Xilinx has yet to fix their designs as of Vivado 2020.2. [1], [2] Indeed, at this
point, it’s not clear if Xilinx will ever fix their demonstration designs. Perhaps | shouldn’t complain-their
gns simply make the services | offer and sell that much more valuable.

»

Posted January 8, 2020

@HasanWAVE

Might it be because your Zynq design only supports AXI3 and not AXI4? The maximum AXI3 burst length is only 16 beats.
Which board are you using?

Also, this really belongs in the FPGA/embedded forum, not the microcontroller forum.
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Sighal Processing on the
FPGA

eeeeeeeeeeeeeeee



6.5965 RFSoC

* UltraScale+ ZU48DR:

38 Mb of BRAM

+22Mb of UltraRAM

4272 DSP slices

930,000 Logic Cells

Four 5-Gsps 14 bit ADCs
Two 10-Gsps 14 bit DACs

Four 1.3 GHz ARM 53
Processors

* Two Real-time 533 MHz ARM
Processors
* Board has 4GB of DDR4 for FPGA portion (’PL”) and 4 GB
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zyng-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab
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A Digital System in an Analog World

* Many physical phenomena (sound, light, physics in
general) are best-described as continuous entities

Sampling,
Quantization,
Digitizatio
) Reconstruction
[ ) [ \
Analog 7 Digital Analog
phenomena System phenomena
U Vi J

Manipulatiorr/
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Visualizing Sampling
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Continuous in Value and in Time

AV

>

V(t)
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Discretization in Time

N T

V(t)
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Discretization in Time and
Quantization in Value

A

NS

t

V(t)

4 bit value encoding
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Discretization in Time and
Quantization in Value

A

V(t)

t

v[n] =1[9,11,5,7,11,11,10,8,5,4,]

4 bit value encoding
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Store in memory

*v[n]=[9,11,5,7,11,11,10,8,5,4,]
* 10 4-bit values: need 40 bits to represent!
* Good stuff. That’s not a lot!

September 16, 2024 6.5965 Fall 2024
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Reconstruction of Signal

A

V(t)

t

v[n] =1[9,11,5,7,11,11,10,8,5,4,]

4 bit value encoding
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Reconstruction (with first-order hold

Interpolation)
A
>

t

v[n] =1[9,11,5,7,11,11,10,8,5,4,]

4 bit value encoding

September 16, 2024 6.5965 Fall 2024 26



Compare to original... not bad

A

V(t)

t

v[n] =1[9,11,5,7,11,11,10,8,5,4,]

4 bit value encoding
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Errors

* Discretization Error: How ”off” our readings are
in time due to sampling at discrete intervals

* Quantization Error: How “off” our readings are
in reproduced value...if our bin size is 50mV and
our signal varies only by 20mV this is going to
cause problems
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Continuous in Value and in Time

A

V(t)

September 16, 2024 6.5965 Fall 2024
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Discretization in Time and
Quantization in Value

A

V(t)

4 bit value encoding
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Discretization in Time and
Quantization in Value

A

V(t)

t

v[n] =[9,11,5,7,5,12,10,7,5,4,]

4 bit value encoding

September 16, 2024 6.5965 Fall 2024
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Reproduce

A

V(t)

t

v[n] =[9,11,5,7,5,12,10,7,5,4,]

4 bit value encoding
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Reproduce

A

V(t)

t

v[n] =[9,11,5,7,5,12,10,7,5,4,]

4 bit value encoding
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Compare to original... Did not Capture
the high-frequency Wiggles!

V(t)

v[n] =[9,11,5,7,5,12,10,7,5,4,]

Potentially Bad Discretization Error
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Continuous in Value and in Time

A

V(t)

September 16, 2024 6.5965 Fall 2024
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Discretization in Time and
Quantization in Value

A

V(t)

t

4 bit value encoding
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Discretization in Time and
Quantization in Value

A

V(t)

t

v[n] =1[9,9,9,9,9,9,9,9,9,9]

4 bit value encoding

September 16, 2024 6.5965 Fall 2024
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Store in memory
*v[n]=[9,9,9,9,9,9,9,9,9,9]

* 10 4-bit values: need 40 bits in memory!
* Great. Allis good.

September 16, 2024 6.5965 Fall 2024
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Reproduce

A

V(t)

t

v[n] =1[9,9,9,9,9,9,9,9,9,9]

4 bit value encoding
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Reproduce

A

V(t)

t

v[n] =1[9,9,9,9,9,9,9,9,9,9]

4 bit value encoding
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Compare... to original also meh

A

V(t)

>
t sf\".‘ght
v[n] =[9,9,9,9,9,9,9,9,9,9] -ny““‘gg\riaﬂ“n

: . e W Lpot,

Potentially Really Problematic TS:Srea\\Y;:\nte)(:z

1 / in av>’
Quantization Error! cef"j‘heartbe

1in
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Conclusions

* Care must be taken when choosing what rate
you sample (discretize) your signal and at what
bit-depth you quantize your sample

* There’s no right answer, since it depends on
context/use cases.

* |deally want to sample at high rate and quantize
with many bits...

* But taken to the extreme this uses a lot of
resources (lots of memory and resources/lots of
bits) so downward pressure on choices

September 16, 2024 6.5965 Fall 2024 42



|s that all there is to It?

* No, it is wayyy more complicated

* Let’s just consider sample rate for right now
(we’ll revisit quantization later)

September 16, 2024 6.5965 Fall 2024
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Sample Rate

* How frequently we sample our signal directly
Influences what we can effectively capture.
* Asample rate of f; is only capable of expressing

signals with frequencies less than%

A

Signals with frequencies ®

in this region of the 7

spectrum can be fully ~ =

captured

0 >

Nyquist, Shannon, few Js frequency
others showed this in the

1930s

V\——v Y P

“Nyquist Rate
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Let’s consider this situation though....

A

V(t)
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Let’s digitize it...at this sample rate we
shouldn’t be able to capture it

A

V(t)

4 bit value encoding
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Discretization in Time and
Quantization in Value

A

V(t)

t

v[n] =[9,11,5,7,5,12,10,7,5,4,]

4 bit value encoding

September 16, 2024 6.5965 Fall 2024
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Store in memory

*v[n]=[9,11,5,7,5,12,10,7,5,4,]
* 10 4-bit values: need 40 bits in memory!
* Easy-peasy one-two-threesy

September 16, 2024 6.5965 Fall 2024
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Reconstruct

V(t)

t

v[n] =[9,11,5,7,5,12,10,7,5,4,]

4 bit value encoding
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Reproduce

A

V(t)

t

v[n] =[9,11,5,7,5,12,10,7,5,4,]

4 bit value encoding
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Compare to original... Did not Capture
the high-frequency Wiggles!

V(t)

>

Great....but we still captured something! What is
that signal expressed by the red interpolation?
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Consider this...

V(t)

September 16, 2024

6.5965 Fall 2024
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Sample it...

A

V(t)

| —

September 16, 2024
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Store it...

V(t)
®

September 16, 2024
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Reconstruct It...

V(t)
5
\\
//

>

We’ve created a a different signal from what was before! WTH?
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Or Consider this...
If we start with this data...

A

V(t)
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And we Reconstruct the signal...is
this ok?

A

V(t)
N
/
N\

First-order hold (connect-the dots)
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If it came from this, ok... but...

A

V(t)
>

September 16, 2024 6.5965 Fall 2024
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It could have also come from
this...Uh oh

A
___7(/4\' 7
= [ ————i§ H
S A S -
¢ [ | ‘\\ _ pd
v %‘<~?/‘ &

t

First-order hold (connect-the dots)
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Which one Made the Signal

w\h
A
o

>
t

There’s ambiguity in what those samples could represent...that
means it really doesn’t convey much, if any, information
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Aliasing

* While we can’t fully capture and reproduce signals
with a frequency higher than the Nyquist sampling
rate, it doesn’t mean they won’t have an impact!

* Energy from that high frequency will leak into the
frame...a form of “spectral leakage”

* A sample rate of f; can fully capture all information
In a signal if and only if, the highest frequency in that
signal is at or belowLZS !

* If you don’t do this, aliasing will appear (higher
frequencies appear as a different signal (an “alias”))
that can be expressed with the sample rate
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Aliasing Can Happen in Space too

* Just like there are temporal frequencies (in time),
images have spatial frequencies.

e Same issues arise!

This font has been

processed with an
= anti-alias filter to
Anti-alias Filtered Not Anti-alias Filtered prevent artifacts

when displayed
https://en.wikipedia.org/wiki/Aliasing

September 16, 2024 6.5965 Fall 2024 62



Solution

* The ONLY way to guarantee that a set of discrete points
can unambiguously represent a signal is to guarantee
that prior to sampling, we remove all energy that it exists
in frequencies higher than the Nyquist Sampling Rate

 To do this we need a Low-Pass Filter!

Nothing can exist in

Signals with frequencies this region of the

A /nthis region of the

spectrum
spectrum can be fully
O
captured
< e >
>
0 fs frequency

L——> N [oh

[13 M
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Low Pass Filter

* Prior to Sampling, we must be sure that our
signal has no significant energy above our
Nyquist Rate

Signalin

Filtered( ]Dom[nstream
Signal| ampler

k J
K “Anti-Aliasing Filter”

September 16, 2024 6.5965 Fall 2024 64
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Audio Sampling

* Since we’re down-sampling by a factor of 8, to avoid
aliasing (makes the recording sound “scratchy/metallic”)
we need to pass the incoming samples through a low-
pass antialiasing filter to remove audio signhal above 3kHz
(Nyquist frequency of a 6kHz sample rate).

4 N
Signal in @48ksps| pownsample by Signal out
@48 ksps factor of 8 @6 ksps
& J

Already sampled at 6/8 bits LPF with ”shoulder” at 3 kHz
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How Do You Actually Make a Filter?

* Several types of filters. Two big ones:
* [IR: Infinite Impulse Response:
* Uses past output history for filtering

* FIR: Finite Impulse Response:
* Uses input history for filtering

* CIC: Cascaded Integrator Comb:
* Special case of FIR mixed with down-samplers/decimators

September 16, 2024 6.5965 Fall 2024
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Filters

* Stateful systems that analyze history signals to
select for particular signal attributes:
* Low-pass Filter: Lets through low-frequency signals
* High-pass Filter: Lets through high-frequency signals
 Band-pass Filter: Lets through selective group of
frequencies

* Band-stop Filter: Blocks selective group of frequencies

e Matched-Filter: Values come from time-series of feature
of interest being convolved with signal

September 16, 2024 6.5965 Fall 2024
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Infinite Impulse Response Filter (lIR)
yln] = a-yln—-1] + B - x[n]

* The current output (y[n]) of the filter is based on
the weighted sum of the previous output (y[n — 1])
of the filter + the value of the input (x|n))*

* Sometimes called a recursive filter: “y is based off
of yis based off of y...”

* Information enters the system through x but its
Influence on the output is dependent on the values
of e and [

*can also be based on multiple past values of y and x
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Infinite Impulse Response (Modified)

yinl=a-yln-1]+ (1 —-a) - x[n]
0<ac<l

* Fix the relationship of the new input and old
output to one variable « :

* Asa — 1 input has less weight (takes time for it to
affect output...blocks more high frequency events)

* As a — 0 input has more weight (output quickly
follows input...allows through more high frequency
events (and everything actually)
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» t

yinl = a-yln-1]+ (1 —a) - x[n]

IR Filter
A

70
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Infinite Impulse Response (Modified)
yin] = a-yln—-1]+ (1 — a) - x[n] 0<a<l

a

|
* @

X

1l—«
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Infinite Impulse Response (Modified)

yinl=a-yIn—-1]+ Q1 —a)-x[n] 0<a<1
a Need to keep in mind bits!
M A
N+M+1 N
@)@l L[}y
N N+M
N+M
/
X 7
N a would be scaled up by 2"
M and
1 — Then the result is shifted back

September 16, 2024 6.5965 Fall 2024
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IR

* Computationally lightweight

* No very flexible, often poor performance since
not a lot of parameters to adjust.

September 16, 2024 6.5965 Fall 2024
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Finite Impulse Response

* Have the output be based off of a sliding window
of the past history of the input.

* Literally just convolution basically

yln] = by - x|n] + by - xIn — 1] + b, - x[n — 2]

* Very powerful!! Huge flexibility in choosing those
coefficients and can get a ton of behaviors!
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yln] = by - x[n] + by - x[n — 1] + b, - x[n — 2]

FIR Filter

» t

75

6.5965 Fall 2024

September 16, 2024



FIR Filters

* Extremely flexible

* Often times many, many “taps” long (N in 1000s
IS not uncommon)

ylnl = > by -x[n—k
k=0

* The values you pick for these taps are arrived at
using a number of DSP-oriented algorithms
(beyond scope of course...but in 6.341, etc)

September 16, 2024 6.5965 Fall 2024
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FIR Filters z by - x[n — k]

* Some online tools, Matlab, Python Vlvado all have
tools that allow you to:
* specify how you want your filter to look
* Provide you the coefficients needed to generate that filter

* The b coefficients are generally provided as real
numbers between 0 and 1. But since we don’t want
to do floating point arithmetic, we usually scale
them by some power of two and then round to
Integers.

* Since coefficients are scaled by 2M we’ll have to re-scale
the answer by dividing by 2". But this is easy —just getrid
of the bottom M bits!

* More taps generally means you can get better
response:

e Closertoideal filter!
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FIR Filters

* They implement convolution, so can be much
more than just “filters”

* You can use them to:
* Remove complicated features to signals
* Add complicated features to signals

 Making an FIR filter “dynamic” can lead to systems
that dynamically tune themselves.

e Make a "matched filter” to look for features.

* Very much a work-horse type module.
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FIR Filter (Iterative DeS|gn)

Nz:kxn k]

* For audio and mid-frequency phenomena, usually plenty
of clock cycles exist between each audio cycle anyways
(you have 2000 clock cycles of 100 MHz between each

audio sample of 48 ksps audio!)
 Just make a low-resource state-machine-based module.

* After every sample, do each multiply-accumulate for each
tap. As long as you have enough cycles, you can do
thousands of taps. Can even break up into more
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Circular Buffer/Pointer in Action

offset
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6.5965 RFSoC

e UltraScale+ ZU48DR:
38 Mb of BRAM
+22Mb of UltraRAM =B DR L
4272 DSP slices i ,ERFSoC4xzi§E:

HPYNQ™

930,000 Logic Cells
Four 5-Gsps 14 bit ADCs
Two 10-Gsps 14 bit DACs

Four 1.3 GHz ARM 53
Processors

* Two Real-time 533 MHz ARM
Processors
* Board has 4GB of DDR4 for FPGA portion (’PL”) and 4 GB
of DDR4 for processors (“PS”)

https://www.amd.com/en/products/adaptive-socs-and-fpgas/soc/zyng-
ultrascale-plus-rfsoc.html#tabs-b3ecea84f1-item-e96607e53b-tab
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How Much Data is That?

* The max the FPGA fabric can runis like 700 MHz
or So.

* [f ADCs run at 5 Gsps how many clock cycles
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Finite Impulse Response

ylnl = ) by -x[n—k
k=0

x[n —1] x[n — 2] x[n — 3] x[n—N + 1]

x|n] . oo N
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v ‘
() 2 b0 b by X)) |
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I
© & @ @ ©
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Disgustingly long combinational path...too much propagation delay
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Finite Impulse Response (Modified)

ylnl = ) by x[n— k]
k=0

U
4444

Much nicer critical path (worst propagation delay)
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Bit Growth y[n] = 2 b - x[n — k]
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to not lose precision...will grow at between 1 bit per N and 1 bit per log,(N)!
But this can grow large so there’s ways to handle it

https://zipcpu.com/dsp/2017/07/21/bit-growth.html
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Most FIR Filters (not all) are
symmetric too.

* Depending on situation can double-up and feed
back delayed signal

el

° > Z-1

x[K]

o)

o\,
Figure 4.23: Example of a symmetric 11-weight FIR filter.
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DSP Blocks?

* These |lIR and especially FIR filters sure do have a
lot of multiply-then-add operations going on...

* Remember those DSP blocks? That’s why they’re
designed the way they are
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DSP Blocks

* Mult-then-add is a common operation chain in
many things, particularly Digital Signal
Processing

* FPGA has dedicated hardware modules called
DSP48 blocks on it

* 150 of them on Urbana FPGA board

* Capable of single-cycle multiplies

* Can get inferred from using * in your Verilog that
iIsn’t a power of 2:

e x*y, for example, will likely will result in DSP getting
used

* May take a full clock cycle so would need to budget
tiing accordingly
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DSP48 Slice (High Level)

48-Bit Accumulator/Logic Unit

A
) >
25x18
A Multiplier

Pre-adder -
¢ ﬁ
>

Figure 1-1: Basic DSP48E1 Slice Functionality

Pattern Detector

UG479_c1_21_032111

https://www.xilinx.com/support/documentation/user_guides/ugd79_7Series_DSP48E1.pdf
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DSP48E2 (Ultrascale +)

» XOR

_ Pattern

48-Bit Accumulator/Logic Unit
B >
p >
A >
> > >
27 x 18
_ p Multiplier
D o > Pre-adder | S
L Pattern Detector
c >
D>
X16750-082917
Figure 1-1: Basic DSP48E2 Functionality
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DSP Blocks

DSP48 Macro (3.0)
© Documentation IP Location C Switch to Defaults

IP Symbol Instruction summary Component Name | xbip_dsp48_macro_0

Show disabled ports Instructions | Pipeline Options Implementation
Pipeline Options | Automatic

Custom Pipeline options

Tier: 1 2

D > -»>

- > »
— CLK B > >
= A[17:0]
= B[17:0] P[47:0] =

C -» -»
= C[47:0]
= D[17:0] > e

| -» -»
KEY: Fabric register

DSP register

Control ports

Global D A B
CE

SCLR
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FIR Compiler (7.2)

@ Documentation = IP Location C Switch to Defaults

[ ]
p Symbol | Freq. Response Implementation Defails | Component Name fir_compiler_0
A Filter Op Channel cation |Implementation Detailed Implementation | Interface | Summary
Freq. Response

Coefficient Options

I

Frequency Response (Magnitude) Coefficient Type Signed

Quantization Integer Coefficients v

* FIRs are so paEam i

hd 30.0
common. Vivado . P )
T 20.0 (\ /
’ k] \ Coefficient Structure Inferred o
ININRHN
actually has some I
100 ' Input Data Type signed o

IP infrastructure to - s

-40,

.0 Qutput Rounding Mode Full Precision v
0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L] L] L] L]
Normalized Frequency (x Pl rad/sample) Output Width 24 1-24
Output Fractional Bits : 0

them

Pass Band
Range: 0.0 - Jos

Min 18.061800 dB

° C an tune how e fosw )

. . .
l d FIR Compiler (7.2)
pipelined vs.
° @ Documentation IP Location C' Switch to Defaults
I t e ra t I Ve/ I S M yo u req. Response | Implementation Details  Cc 5 Component Name fir_compiler_0
Filter Options Channel Specification  Implementatior Detailed Implementat
Wa nt O l I r Resource Estimates
o DSP slice count: 1

Interleaved Channel Specification

PY Information Number of Channels |1 [1-1024]
Start-up Latency: 19

Select Sequence All
Calculated Coefficients: 21
Coefficient front padding: 0
y O I I I l ' l I I I py O Processing cycles per output: 11
AXI4 Stream Port Structure

)
dete rI I II I Ie Number of Paths |1 1-16]
S_AXIS_DATA - TDATA

Transaction Field Type

P Symbo

BRAM count: 0

Sequence ID List P4-0,P4-1,P4-2,P4-3,P4-4

Parallel Channel Specification

Hardware Oversampling Specification

) .
0 REAL(15:0) fix16_0
C O e I C I e I I S Select Format Frequency Specification  ~

M_AXIS_DATA - TDATA Sample Period (Clock Cycles) 1

T t Field I
Iransaction fed e Input Sampling Frequency (MHz) '0.001
0 REAL(23:0) fix24 0
Clock Frequency (MHz) 300.0
Interleaved Channel Sequences
Clock cycles per input: 300000
Clock cycles per output: 300000

Se ptembel’ 1 6, 2024 Number of parallel inputs 1

Number of parallel outputs 1



Project Idea (Smart Meter Listening)

* https://www.dailydot.com/debug/hacker-smart-
meter-texas-snowstorm/

* https://www.ncbi.nlm.nih.gov/pmc/articles/PMC
7412105/
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RAMBO

* https://arxiv.org/abs/2409.02292

* https://thehackernews.com/2024/09/new-
rambo-attack-uses-ram-radio-signals.html
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