6.S965 Digital Systems Laboratory II

Lecture 3:

Zynq Architecture

Administrative

- Week 1's stuff due Friday at 5pm
- Week 2's stuff should be out at noon on Friday
- If you find yourself thinking, "I'm probably doing something stupid..." in the context of Vivado, the problem may not be you, it may be Vivado.
 Please ask for help

Some Stuff on the PYNQ Z2 Board

How Can You Work With it?

- The Zynq XC7Z020-1CLG400 has almost twice the amount of "classic" FPGA material as the Spartan 7 boards used in 6.205
 - 13,300 Logic Cells
 - 630 KByte of BRAM
 - 220 DSP slices
 - On-chip analog-to-digital converters on both
 - Four Clock management tiles
- Also has two ARM 9 Cores

ZYNQ Architecture

- Processing System (PS)
- Programmable Logic (PL)
- Both can be manipulated

Python for Zynq....Pynq

Taken from some Xilinx talk I went to...

Yocto

- Yocto is a project dating back >10 years...focus of it is to build linux for embedded systems applications
- With Yocto you can basically build images of linux distributions targeted at small, particular processors (such as the ARM cores on the Zynq chip)
- Yocto is installed on your computer (kinda like any tool) and then you build for other systems...just like how we build for our FPGA with Vivado.

PetaLinux

• AMD/Xilinx took Yocto, added some stuff on top intended to streamline these tools for their chips and architectures specifically and called it

PetaLinux

https://discuss.pynq.io/t/deploying-pynq-and-jupyter-with-petalinux/677

September 11, 2024

PYNQ uses an Ubuntu based Linux

Taken from some Xilinx talk I went to...

September 11, 2024

PYNQ Framework

Taken from some Xilinx talk I went to...

September 11, 2024

PYNQ Compromises

- With the PYNQ framework you're basically starting with a pre-built Yocto/Petalinux implementation that people have already designed for you.
- To get the most out of a chip, one may want to go and do their own custom version and build and then make an image.
- You can 100% build your own pynq image from scratch or with modifications:
 - https://pynq.readthedocs.io/en/latest/pynq_sd_card.html

We're largely ignoring middle part

Taken from some Xilinx talk I went to...

September 11, 2024

ZYNQ 7020 is a chip like any other chip

- Zynq package is a ball grid array (all pins are underneath)
- One of the most unforgiving packages out there...

Still from video of somebody "reballing" an Xilinx chip https://www.youtube.com/watch?v=DVTxHx0z-wo

September 11, 2024

Assigning Pins

Once design is synthesized you can specify where to route (we'll not do this much since much of this has been decided ahead of time with the PYNQ board's PCB layout, but if you were designing with the chip from scratch this would be part of process

- Pinout file can be found here:
- https://www.xilinx.com/content/dam/xilinx/support/packagefiles/z7 packages/xc7z020clg400pkg.txt

400 Pins Listed Out

- Some pins connect to the PL part of chip
- Some pins connect to the PS part of chip.
- Just how it goes...

Device/Package xc7z020clg4	00 9/18/2012 09:51:09					
Pin Pin Name R11 DONE_0 M9 DXP_0 J10 GNDADC_0 J9 VCCADC_0 L9 VREFP_0 L10 VN_0 F11 VCCBATT_0 F9 TCK_0 M10 DXN_0 K10 VREFN_0 K9 VP_0 F10 RSVDROD K6 RSVDVCC3 R6 RSVDVCC1 M6 CFGBVS_0 G6 TD0_0 F6 TMOGRAM_B_0 J6 TMS_0 V7 IO_L11P_T1_SRCC_13 V7 IO_L12P_T1_MRCC_13 V7 IO_L12P_T1_MRCC_13 Y7 IO_L13P_T2_MRCC_13 Y6 IO_L14P_T2_SRCC_13 Y7 IO_L14P_T2_SRCC_13 Y8 IO_L15P_T2_DOS_13 W8 IO_L15P_T2_OS_13 <td>Memory Byte Group NA NA NA NA NA NA NA NA NA NA NA NA NA</td> <td>Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>VCCAUX Group NA NA NA NA NA NA NA NA NA NA NA NA NA</td> <td>Super Logic Region NA NA NA NA NA NA NA NA NA NA NA NA NA</td> <td>I/O Type CONFIG</td> <td>No-Connect NA NA NA NA NA NA NA NA NA NA NA NA NA</td>	Memory Byte Group NA NA NA NA NA NA NA NA NA NA NA NA NA	Bank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VCCAUX Group NA NA NA NA NA NA NA NA NA NA NA NA NA	Super Logic Region NA NA NA NA NA NA NA NA NA NA NA NA NA	I/O Type CONFIG	No-Connect NA NA NA NA NA NA NA NA NA NA NA NA NA
J19 IO_L10N_11_AD11N_35 J19 IO_L10N_11_AD11N_35 L16 IO_L11P_T1_SRCC_35 L17 IO_L11P_T1_SRCC_35 L17 IO_L11P_T1_SRCC_35 K17 IO_L12P_T1_MRCC_35 K18 IO_L12P_T1_MRCC_35 H16 IO_L12P_T2_MRCC_35 H17 IO_L13P_T2_MRCC_35 J18 IO_L14P_T2_AD4P_SRCC_ H17 IO_L13N_T2_DOS_AD12N_ G17 IO_L16P_T2_35 J20 IO_L17N_T2_AD5N_35 G18 IO_L17P_T2_AD5P_35 H20 IO_L17N_T2_AD5N_35 G19 IO_L18P_T2_AD13P_35 G20 IO_L18P_T2_AD13P_35 G15 IO_L19N_T3_VREF_35 K14 IO_L20P_T3_AD6N_35 G15 IO_L21N_T3_DOS_AD14P_ N16 IO_L21P_T3_AD7P_35 L15 IO_L22N_T3_AD7N_35 M15 IO_L22N_T3_AD7N_35 M15 IO_L22N_T3_AD7N_35 M15 IO_L22N_T3_AD7N_35 M15 IO_L22N_T3_AD7N_35 M16 IO_L22N_T3_AD15N_3	1 1 1 1 1 2 35 2 35 2 35 2 35 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3	35 35 35 35 35 35 35 35 35 35 35 35 35 3	NA NA	NA NA	HR H	NA NA

Aside...The RFSoC is Bigger

- Go to this site (https://www.xilinx.com/support/package-pinout-files/zynqultrascale-plus-pkgs.html) and use the non-functional sort tools to find the pin file for the xczu48
- You'll see that it is a 1156 pin BGA

Showing 1 - 24 * of 24 Sort By: Featured V																										
Compare	Mfr Part #		Quantity Available	0	Price Price by	Quantity	Series		Pack	age	Product	: Status	Archite	cture	Core Pro	ocessor	Flast	Size	RAMS	Size	Periph	nerals	Connect	ivity	Speed	
	^	~	^	~	^	~	^	~	^	~	^	~	^	~	^	~	^	~	^	~	^	~	^	~	~	~
	XCZU48 C UV R 1156BGA AMD	BDR-1FFVE1156E FSOC A53 FPGA	Check	0 In Stock Lead Time	1 : \$20,1	27.50000 Tray	Zynq® UltraSo RFSoC) cale+™ ;	Tray	0	Active		MCU, FPGA		Quad A Cortex MPCore CoreSig Dual	RM® ®-A53 e™ with ght™,	-		256K	В	DDR, DMA, PCle		CANbus EBI/EMI Etherne MMC/Si SPI,	s, , t, 12C, D/SDIO,	500MH 1.2GHz	. Z ,
															R5 with CoreSig	jht™							USB OT	G		edback

Now, the Pynq Z2 board made some choices for us

- If you were the engineer laying out the chip/board from scratch you would also need to make these decision.
- Some decisions have very little wiggle room, others do.

Schematic of PYNQ Z2 <u>Board</u>

- The 512 MB DRAM is routed to PS_... Pins of the Zynq chip.
- Meaning the DRAM is only accessible in the processing side

Schematic of PYNQ Z2 <u>Board</u>

- Ethernet, SD card, some HDMI control portions, OTG/USB are all also wired to PS_ pins
- That means those are not accessible via

Γ	15G	1		
	Bank 501 PS SRST B 501	B10	PS RST	
	PS_MIO_VREF_501	E11	VREF0V9	
	D5 MID16 501	A10		
	PS_MI016_501 PS_MI017_501	F14		──≫ ЕТН_ТХСК 5
	PS_MIC17_501 PS_MIC18_501	B18	ETH TXD1	
	PS_MI019_501	D10	ETH TXD2	
	PS_MIO20_501	A17	ETH TXD3	
	PS_MIO21_501	F14	ETH TXCTL	
	PS_MI022_501	B17	ETH_RXCK	
	PS_MIO23_501	D11	ETH_RXD0	
	PS_MIO24_501	A16	ETH_RXD1	ETH RXD1 5
	PS_MIO25_501	F15	ETH_RXD2	ETH BXD2 5
	PS_MIO26_501	A15	ETH_RXD3	ETH RXD3 5
	PS_MIO27_501	D13	ETH RXCTL	ETH RXCTL 5
	PS_MIO28_501	016	OTG_DATA4	─────────────────────────────────────
13	PS_MIO29_501	C15		→>>> OTG_DIR 7
	PS_MI030_501	E16		─────────────────────────────────────
	PS_WI031_501 PS_WI032_501	Δ1/I		─────────────────────────────────────
	PS_MIO32_501 PS_MIO33_501	D15	OTG DATA1	─────────────────────────────────────
	PS_MI035_501 PS_MI034_501	A12	OTG DATA2	─────────────────────────────────────
	PS_MI035_501	F12	OTG DATA3	
	PS_MI036_501	A11	OTG CLK	
	PS_MI037_501	A10	OTG DATA5	
	PS_MIO38_501	E13	OTG_DATA6	
	PS_MIO39_501	C18	OTG_DATA7	
	PS_MIO40_501	D14	R217, 40.2 5%	
	PS_MIO41_501	C17	SD_CMD	
	PS_MIO42_501	E12	SD_D0	SD_D0_5
	PS_MIO43_501	A9	SD_D1	
	PS_MIO44_501	F13	SD_D2	
	PS_MIO45_501	D16		S SD_D3 5
	PS_MI046_501	D10		→>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
	PS_WI047_501	B12	30_00	——≫ SD_CD 5
	PS_MIC48_501 PS_MIC49_501	C12		
	PS_MI050_501	B13	HDML TX SCI	
	PS_MI050_501	B9	HDMI TX SDA	
	PS MI052 501	C10	ETH MDC	
	PS_MI053_501	C11	ETH MDIO	
L				
	XC7Z020-1CLG400C			
	COMMON			

Most other things on the board are actually wired to pins that are part of the PL (Programmable Logic)

- So pretty much everything else...
- All these the random pins, the audio, the HDMI in/out, buttons, etc...

List of I/O Peripherals for the PS:

- "Hard" IP cores exist on the **PS** that perform certain interfacing roles/protocols:
- These can be multiplexed out to many subsets of pins

I/O Interface	Description
SPI (x2)	Serial Peripheral Interface [10] De facto standard for serial communications based on a 4-pin interface. Can be used either in master or slave mode.
I2C (x2)	I ² C bus [14] Compliant with the I2C bus specification, version 2. Supports master and slave modes.
CAN (x2)	Controller Area Network Bus interface controller compliant with ISO 118980-1, CAN 2.0A and CAN 2.0B standards.
UART (x2)	Universal Asynchronous Receiver Transmitter Low rate data modem interface for serial communication. Often used for Terminal connections to a host PC.
GPIO	General Purpose Input/Output There are 4 banks GPIO, each of 32 bits.
SD (x2)	For interfacing with SD card memory.
USB (x2)	Universal Serial Bus Compliant with USB 2.0, and can be used as a host, device, or flexibly ("on-the-go" or OTG mode, meaning that it can switch between host and device modes).
GigE (x2)	Ethernet Ethernet MAC peripheral, supporting 10Mbps, 100Mbps and 1Gbps modes.

Taken from The Zynq Book

Using them

- In a normal microcontroller, you would simply activate a module, such as an SPI controller and connect it to some pins.
- The way the Pynq Z2 board is laid out you can't do that.
- In an effort to ensure flexibility for development, they connected most things and broke out most general IO from the PL side.

Assigning I/O pins to Hard IP Peripherals

Linking to Outside World

- The I/O pins normally go to the outside world, but on our PYNQ board we need to extend them into the PL (which has its own actual physical output pins)
- Making the GPIO pins EMIO (Extended) Multiplexed In/Out) puts them into the PL for further manipulation

Lab 1

We have specified the Zynq PS to route its IO pins out into the PL fabric and we can do what we want with them

Clicking on these things is really just a nice way to configure internal multiplexers

September 11, 2024

Taken from the MicroZed Chronicles Blog/Xilinx Docs

September 11, 2024

Other PL-PS Interconnects

Interface Between PS and PL

- Four Ways to **Transfer Data from** the PS to the PL
 - 64 bits of GPIO
 - 4 GP AXI Ports
 - 4 HP AXI Ports
 - 1 ACP Port

September 11, 2024

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html 6S965 Fall 2024 29

GPIO Pins

- <u>General Purpose Input Output</u>
- You can via software (writing to registers), control and be controlled by ~54 pins
- These are good for low-speed control, configuration, reset signals...things like that.

Interrupts

- The GPIO of the PS can be setup to have interrupts even when you are routing them "internally" into the PL Using EMIO.
- This means you can actually have the PL trigger Python processes to run by setting up the interrupts as well as some async programming on the Python side
- https://pynq.readthedocs.io/en/latest/pynq_libraries/interrupt.html
- <u>https://pynq.readthedocs.io/en/latest/overlay_design_methodology/</u> <u>pynq_and_asyncio.html#pynq-and-asyncio</u>

Interface Between PS and PL

- Four Ways to **Transfer Data from** the PS to the PL
 - 64 bits of GPIO
 - 4 GP AXI Ports
 - 4 HP AXI Ports
 - 1 ACP Port

September 11, 2024

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html 6S965 Fall 2024 32

Master/Slave Terminology

- I've been a big fan of moving away from this terminology.
- For SPI, for example, instead of MOSI/MISO, do COPI/CIPO (controller/peripheral), etc...
- However, <u>all</u> of the AMD/Xilinx, use Master/Slave and <u>everything</u> has that M's and S's prepended, appended, etc..
- I'm going to just use their nomenclature so we don't have to constantly be mapping between alternate names.

AXI Ports

 Parallel Busses of two different flavors that allow us to pretty quickly transfer data between the Processing System and the FPGA section using shared registers and some other stuff

ACP Port

- Accelerator Coherency Port
- 64-bit wide bus that can transfer data from very quickly from PL fabric

• There's lot of neat IP we can work AXI Everywhere with....if you wanted to implement & hardware accelerated Fast Fourier Transform you totally can...

Advanced Microcontroller Bus Architecture (AMBA)

- Version 1 released in 1996 by ARM
- 2003 saw release of Advanced eXtensible Interface (AXI3)
- 2011 saw release of AXI4
- There are no royalties affiliated with AMBA/AXI so they're used a lot.
- It is a general, flexible, and relatively free* communication protocol for development

re September 11, 2024

Three General Flavors of AXI4

- AXI4 (Full AXI): For memory-mapped links. Provides highest performance.
 - 1. Address is supplied
 - 2. Then a data burst transfer of up to 256 data words
- **AXI4 Lite:** A memory-mapped simplified link supporting only one data transfer per connection (no bursts). (also restricted to 32 bit addr/data)
 - 1. Address is supplied
 - 2. One data transfer
- AXI4 Stream: Meant high-speed streaming data
 - Can do burst transfers of unrestricted size
 - No addressing
 - Meant to stream data from one device to another quickly on its own direct connection

From the Zynq Book

Memory Map?

- Memory mapped means an address is specified within the transaction by the master (read or write). This corresponds to an address in the system memory space.
- For **AXI4-Lite**, which supports a single data transfer per transaction, data is then written to, or read from, the specified address
- For **Full-AXI4** sending a burst, the address specified is for the first data word to be transferred, and the slave must then calculate the addresses for the data words that follow.
- AXI-Stream has no addressing so no memory mapping

AXI Idea

- Communication between two devices (Master and Slave) is carried out over multiple assigned "channels"
- Each channel has its own collection of wires which convey data, signals, etc.
- The channels can work somewhat independently, however in practice what one channel does is often the result of what a different one did previously
- Five Types of Channels (may have all or a subset):
 - Read Address: "AR" channel
 - Read Data: "R" channel
 - Write Address: "AW" channel
 - Write Data: "W" channel
 - Write Response: "B" channel

Read Wiring

Master initiates communication, Slave responds

Write Wiring

Within Each Channel are wires:

- These wires serve specific purposes.
- Some are universal to all channels, and others are specific

- Everything in system will run off of AXI clock usually called **ACLK** in documentation
- No combinatorial paths between inputs and outputs. Everything must be registered.
- All signals are sampled **on rising edge**
- AXI modules should also have Reset pins. AXI work ACTIVE LOW so the Reset pin is usually called **ARSTn** or **ARESETn**

- All of AXI uses the same handshake procedure:
- The source of a data generates a **VALID** signal
- The destination generates a **READY** signal
- Transfer of data only occurs when both are high
- Both Master and Slave Devices can therefore control the flow of their data as needed

- Everything else is information and depends on what is needed in situation. Could be:
 - Address
 - Data
 - Other specialized wires like:
 - STRB (used to specify which bytes in current data step are valid, sent by Master along with data payload to Slave)
 - RESP (sort of like a status
 - LAST (sent to indicate the final data clock cycle of data in a burst)

Each channel has its own subset of "stuff" that goes along with those core signals shared by all

For example, the Write Data Channel ("W" channel)

	Signal	Source	Description	
-	WID	Master	Write ID tag. This signal is the ID tag of the write data transfer. Supported only in AXI3. See <i>Transaction ID</i> on page A5-77.	1
Payload	WDATA	Master	Write data.	
	WSTRB	Master	Write strobes. This signal indicates which byte lanes hold valid data. There is one write strobe bit for each eight bits of the write data bus. See <i>Write strobes</i> on page A3-49.	Supplemental
	WLAST	Master	Write last. This signal indicates the last transfer in a write burst. See <i>Write data channel</i> on page A3-39.	Stuff
	WUSER	Master	User signal. Optional User-defined signal in the write data channel.	4
CORE	WVALID	Master	Write valid. This signal indicates that valid write data and strobes are available. See <i>Channel handshake signals</i> on page A3-38.	
	WREADY	Slave	Write ready. This signal indicates that the slave can accept the write data. See <i>Channel handshake signals</i> on page A3-38.	

The Read Data Channel:

Table A2-6 Read data channel signals

	Signal	Source	Description		
_	RID	Slave	Read ID tag. This signal is the identification tag for the read data group of signals generated by the slave. See <i>Transaction ID</i> on page A5-77.	1	
Payload	RDATA	Slave	Read data.		
	RRESP	Slave	Read response. This signal indicates the status of the read transfer. See <i>Read and write response structure</i> on page A3-54.		Supplement
	RLAST	Slave	Read last. This signal indicates the last transfer in a read burst. See <i>Read data channel</i> on page A3-39.	1	al Stuff
	RUSER	Slave	User signal. Optional User-defined signal in the read data channel.		
CORE	RVALID	Slave	Read valid. This signal indicates that the channel is signaling the required read data. See <i>Channel handshake signals</i> on page A3-38.		
	RREADY	Master	Read ready. This signal indicates that the master can accept the read data and response information. See <i>Channel handshake signals</i> on page A3-38.		

Read Address Chanel

	Signal	Source	Description
	ARID	Master	Read address ID. This signal is the identification tag for the read address group of signals. See <i>Transaction ID</i> on page A5-77.
Payload	ARADDR	Master	Read address. The read address gives the address of the first transfer in a read burst transaction. See <i>Address structure</i> on page A3-44.
	ARLEN	Master	Burst length. This signal indicates the exact number of transfers in a burst. This changes between AXI3 and AXI4. See <i>Burst length</i> on page A3-44.
	ARSIZE	Master	Burst size. This signal indicates the size of each transfer in the burst. See <i>Burst size</i> on page A3-45.
	ARBURST	Master	Burst type. The burst type and the size information determine how the address for each transfer within the burst is calculated. See <i>Burst type</i> on page A3-45.
	ARLOCK	Master	Lock type. This signal provides additional information about the atomic characteristics of the transfer. This changes between AXI3 and AXI4. See <i>Locked accesses</i> on page A7-95.
	ARCACHE	Master	Memory type. This signal indicates how transactions are required to progress through a system. See <i>Memory types</i> on page A4-65.
	ARPROT	Master	Protection type. This signal indicates the privilege and security level of the transaction, and whether the transaction is a data access or an instruction access. See <i>Access permissions</i> on page A4-71.
	ARQOS	Master	<i>Quality of Service</i> , QoS. QoS identifier sent for each read transaction. Implemented only in AXI4. See <i>QoS signaling</i> on page A8-98.
	ARREGION	Master	Region identifier. Permits a single physical interface on a slave to be used for multiple logical interfaces. Implemented only in AXI4. See <i>Multiple region signaling</i> on page A8-99.
	ARUSER	Master	User signal. Optional User-defined signal in the read address channel.
CORE	ARVALID	Master	Read address valid. This signal indicates that the channel is signaling valid read address and control information. See <i>Channel handshake signals</i> on page A3-38.
CORE	ARREADY	Slave	Read address ready. This signal indicates that the slave is ready to accept an address and associated control signals. See <i>Channel handshake signals</i> on page A3-38.

Septembei

Write Response

Table A2-4 Write response channel signals

esponse. See Transaction ID on
rite transaction. See Read and
sponse channel. Supported only
nel is signaling a valid write 8.
n accept a write response. See

Write Address Channel

	Signal	Source	Description
	AWID	Master	Write address ID. This signal is the identification tag for the write address group of signals. See <i>Transaction ID</i> on page A5-77.
Payload	AWADDR	Master	Write address. The write address gives the address of the first transfer in a write burst transaction. See <i>Address structure</i> on page A3-44.
	AWLEN	Master	Burst length. The burst length gives the exact number of transfers in a burst. This information determines the number of data transfers associated with the address. This changes between AXI3 and AXI4. See <i>Burst length</i> on page A3-44.
	AWSIZE	Master	Burst size. This signal indicates the size of each transfer in the burst. See <i>Burst size</i> on page A3-45.
	AWBURST	Master	Burst type. The burst type and the size information, determine how the address for each transfer within the burst is calculated. See <i>Burst type</i> on page A3-45.
	AWLOCK	Master	Lock type. Provides additional information about the atomic characteristics of the transfer. This changes between AXI3 and AXI4. See <i>Locked accesses</i> on page A7-95.
	AWCACHE	Master	Memory type. This signal indicates how transactions are required to progress through a system. See <i>Memory types</i> on page A4-65.
	AWPROT	Master	Protection type. This signal indicates the privilege and security level of the transaction, and whether the transaction is a data access or an instruction access. See <i>Access permissions</i> on page A4-71.
	AWQOS	Master	<i>Quality of Service</i> , QoS. The QoS identifier sent for each write transaction. Implemented only in AXI4. See <i>QoS signaling</i> on page A8-98.
	AWREGION	Master	Region identifier. Permits a single physical interface on a slave to be used for multiple logical interfaces. Implemented only in AXI4. See <i>Multiple region signaling</i> on page A8-99.
	AWUSER	Master	User signal. Optional User-defined signal in the write address channel. Supported only in AXI4. See <i>User-defined signaling</i> on page A8-100.
0005	AWVALID	Master	Write address valid. This signal indicates that the channel is signaling valid write address and control information. See <i>Channel handshake signals</i> on page A3-38.
CORE September 11	AWREADY	Slave	Write address ready. This signal indicates that the slave is ready to accept an address and associated control signals. See <i>Channel handshake signals</i> on page A3-38.

S

Generalized Transaction

• All Channel Interactions follow same high-level structure

Sending One "beat" of data (one clock-cycle of data)

Keep in mind this could be 64 parallel wires of 1's and 0's of info or 8 bytes for example... Or it could be something else

Figure A3-2 VALID before READY handshake

Table A3-1 Transaction channel handshake pairs

Handshake pair

AWVALID, AWREADY

WVALID, WREADY

BVALID, BREADY

Transaction channel

Write address channel

Write response channel

Write data channel

Generalized Transaction

• All Channel Interactions follow same high-level structure

Sending One "beat" of data (one clock-cycle of data)

Keep in mind this could be 64 parallel wires of 1's and 0's of info or 8 bytes for example... Or it could be something else

Figure A3-3 READY before VALID handshake

Table A3-1 Transaction channel handshake pairs

Handshake pair

AWVALID, AWREADY

WVALID, WREADY

BVALID, BREADY

RVALID, RREADY

ARVALID, ARREADY

Transaction channel

Write address channel

Write response channel

Read address channel

Read data channel

Write data channel

Generalized Transaction

• All Channel Interactions follow same high-level structure

Sending One "beat" of data (one clock-cycle of data)

Table A3-1 Transaction channel handshake pairs

Transaction channel	Handshake pair
Write address channel	AWVALID, AWREADY
Write data channel	WVALID, WREADY
Write response channel	BVALID, BREADY
Read address channel	ARVALID, ARREADY
Read data channel	RVALID, RREADY

Other Things to Keep in Mind

- the VALID signal of the AXI interface sending information must not be dependent on the READY signal of the AXI interface receiving that information
- an AXI interface that is receiving information can wait until it detects a VALID signal before it asserts its corresponding READY signal.
- Fail to Follow these rules and could have devices wait infinitely.
 - Like when two people keep going "no, after you at a door"

And Up to All Five AXI channels can come from one device

- While operating independently at their individual transaction level, they can then report to the larger module to provide overall interfaces
- Example:
 - The slave device receives address on write channel address
 - The write data channel then becomes active and knows where to point incoming data
 - The response channel then opens and does its thing
 - And so on
- Hierarchy of Control/Design

And you Can Use AXI to Interface with Tons of things!

Connecting a FIR (from a Xilinx IP) to the FFT module

And you Can Use AXI to Interface with Tons of things!

Creating a AXI-controlled joe6 module that I can then call from Python

And you Can Use AXI to Interface with Tons of things!

The AXI Interfaces on the Zynq Enable PS to PL communication effectively

Interface Name	Interface Description	Master	Slave
M_AXI_GP0		PS	PL
M_AXI_GP1	General Purpose (AXI_GP)	PS	PL
S_AXI_GP0		PL	PS
S_AXI_GP1	General Purpose (AXI_GP)	PL	PS
S_AXI_ACP	Accelerator Coherency Port (ACP), cache coherent transaction	PL	PS
S_AXI_HP0	High Performance Ports (AXI_HP) with	PL	PS
S_AXI_HP1	read/write FIFOs.	PL	PS
S_AXI_HP2	(Note that AXI_HP interfaces are sometimes	PL	PS
S_AXI_HP3		PL	PS

Master/Slave refers to who controls/initiates comms on that bus that bus

From Zynq Book

General Purpose/Performance "GP" AXI Ports

- 32 bits in size
- Maximum flexibility
- Allow register access from:
 - PS to PL
 - PL to PS

High Performance "HP" AXI Ports

- Can be 32 or 64 bits wide (or variable between, but avoid)
- Maximum bandwidth access to external memory and on-chip-memory (OCM)
- When use all four HP ports at 64 bits, you can outpace ability to write to DDR and OCM bandwidths!
 - HP Ports : 4 * 64 bits * 150 MHz * 2 = **9.6 GByte/sec**
 - external DDR: 1 * 32 bits * 1066 MHz * 2 = **4.3 GByte/sec**
 - OCM : 64 bits * 222 MHz * 2 = **3.5 GByte/sec**
- Optimized for large burst lengths

Taken from ECE699 lec 6 notes gm.edu

How it is Laid Out

From The Zynq Book

September 11, 2024

Complexity

- In terms of wires and options, Full-AXI is the most complex
- AXI-LITE has a lot less options (single data beat so all the supplemental stuff that specifies burst characteristics gets skipped)
- AXI-STREAM has even less...basically a high-speed write channel (Few options), but often needs that extra TLAST signal

Sources

- "AMBA® AXITM and ACETM Protocol Specification", ARM 2011
- "The Zynq Book", L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and **R.W. Stewart, University of Glasgow**
- "Building Zynq Accelerators with Vivado High Level Synthesis" **Xilinx Technical Note**
- Some material from ECE699 Spring 2016 https://ece.gmu.edu/coursewebpages/ECE/ECE699_SW_HW/S1 6/

Crack open the AXI spec sheet with a few data sheets for some Xilinx IP cores (like the CORDIC, FFT, etc...) and you should be able to start making sense of it.

This is the thing right here...the

Spec Sheet/Manual is