6.5965
Digital Systems Laboratory |l

Lecture 3:

Zynq Architecture

11111111111111111111111111111

Administrative

* Week 1’s stuff due Friday at 5pm
* Week 2’s stuff should be out at noon on Friday

* If you find yourself thinking, “I’m probably doing
something stupid...” in the context of Vivado, the
problem may not be you, it may be Vivado.
Please ask for help

September 11, 2024 6S965 Fall 2024

Some Stuff on the PYNQ Z2 Board

HDMI OUT -
Audio (Line infout, etc) USB (Host) Lots of pins broken out

Ethernet

Y M () 2 ° v i 3
- - 4 e o AR
- . B 8. L ,, 1 i {
N0 ‘- = : = 1 O
r 0 o - : o = EF G
3 - z T
3t TrT e S QC.OF ="
= _ o= .
L DDR
o SEE =X 4 { e b b
R - me & P, A NA: ¢
UART Bridge ‘ S r WE, o
LELE LR ’ 2. O o et g B e ~ < <1 <0~ <2 3 S
- " ™ QL= Xad § 4 = B & == AR EE R o
. Y B o § | pecsieediies - : 3
Sl B N - Sy
: A - | 2 -7 a b | - [
B » | ™ " i "
5 { | i ’ . Vet ,
| .
| @ ¥ ¥ DALO DA O DA P
° | D D | 3

Buttons
Power Supply

. Zyng XC72020-1CLG400
Switches uSD Slot (for OS)

September 11, 2024 6S965 Fall 2024 3

How Can You Work With it?

* The Zyng XC7Z2020-1CLG400 has almost twice
the amount of “classic” FPGA material as the
Spartan 7 boards used in 6.205

* 13,300 Logic Cells
* 630 KByte of BRAM

* 220 DSP slices
* On-chip analog-to-digital converters on both

* Four Clock managementtiles

e Also has two ARM 9 Cores

September 11, 2024 6S965 Fall 2024

/ZYNQ Architecture

. []
P ro C e S S IN g Processing System
System (PS) St o ok L

* Programmable

L0g|C (PL) i3t Programmable
e Both can be iy | DSRR
manipulated —

with DMA

Multi Standards 10s (3.3V & High Speed 1.8V)

2x USB
with DMA

2x GigE
with DMA

SysMon/ADC

Multi Standards 10s (3.3V & High Speed 1.8V)

September 11, 2024 6S965 Fall 2024 5

Python for Zyng...Pynq

Jupyter notebooks,

browser-based interface PYNQ enables JupyterLab
/ on Zynqg and ZU+
Jupyter web

SErver Hardware C-drivers wrapped
IPython kernel ﬂ in Python packages

Ubuntu-based :

Linux Overlays/designs
GUI
ARM A9 / A53 ZU+ Fabric
@EET ==

Taken from some Xilinx talk | went to...

September 11, 2024 6S965 Fall 2024

Yocto yocto

PROJECT

* Yocto Is a project dating back >10 years...focus
of it is to build linux for embedded systems
applications

* With Yocto you can basically build images of
linux distributions targeted at small, particular
processors (such as the ARM cores on the Zynq
chip)

* Yocto is installed on your computer (kinda like
any tool) and then you build for other
systems...just like how we build for our FPGA
with Vivado.

September 11, 2024 6S965 Fall 2024 7

PetalLinux

* AMD/Xilinx took Yocto, added some stuff on top
Intended to streamline these tools for their chips
and architectures spec:lflcally and called It
PetalLinux e et e el

https://discuss.pynq.io/t/deploying-pyng-and-jupyter-with-petalinux/677

September 11, 2024 6S965 Fall 2024 8

PYNQ uses an Ubuntu based
Linux

PYNQ uses Ubuntu’s: PYNQ bundles :
* Root file system (RFS) * Development tools
» Package manager (apt-get) » Cross-compilers
* Repositories + Latest Python packages
(" Pack Ubuntu/)
ackage untu
Manager/ Debian Dev PF;}::tl?aone
Repositor Package Tools S 9
. y S , PYNQ'’s

Ubuntu Root File System Ubuntu-based Linux

Kernel, Bootloader

PYNQ uses the PetalLinux build flow and board support package:
* Access to all Xilinx kernel patches

* Works with any Xilinx supported board

» Configured with additional drivers for PS-PL interfaces

Taken from some Xilinx talk | went to...
September 11, 2024 6S965 Fall 2024

PYNQ Framework

/Applications\ 4 R A
Jupyter/ L[-L[PYNQ notebooks]
python D IPython
N [matplotlib] [numpy] """" [scikit-learn] [opencv]
Jupyter \. J
- e LLL[\)
PYNQ libs
(" Software) Python) [dma]
el = \ { PL]'[GPIO]'[Interrupt H MMIO]-[libcma.so r
SD3C™ ¢
- ~/ Linux kernel
{ xdevcfg]—[sysgpio H uio]-[devmem H xlnk]—‘
(i inte)
Hardware f o LxLne N
P \/l\/ADO! [_[User designs] \
= \
D) FPGA . L[_[PYNQ overlays]
%ﬁ_‘j L LL[PYNQ IPs] y

Taken from some Xilinx talk | went to...

September 11, 2024

635965 Fall 2024

} Apps

} APIs

]- Drivers

]- Bitstreams

—/

PYNQ™

10

PYNQ Compromises

* With the PYNQ framework you’re basically
starting with a pre-built Yocto/Petalinux
Implementation that people have already
designed for you.

* To get the most out of a chip, one may want to go
and do their own custom version and build and

then make an image.

* You can 100% build your own pynq image from

scratch or with modifications:
* https://pynq.readthedocs.io/en/latest/pynq_sd_card.html

September 11, 2024 6S965 Fall 2024 11

We’re largely ignoring middle part

/Applications\

python .
T~
jupyter

o~

4 Software)

vvvvvvvvvv

nnnnnnnnnn

Hardware

a VIVADO!

Taken from some Xilinx talk | went to...

4 .)
Jupyter/ LLL[PYNQ notebooks]
IPython
_ [matplotlib] [numpy] """" [scikit-learn] [opencv])
4))
PYNQ libs
Python] [Sk]
- [PL]‘[GPIO]'[Interrupt]-[MMIO]-[libcma.so]/
[Linux kernel
- [xdevcfg]—[sysgpio]—[uio]-[devmem]—[xlnk]—“
Vs l| axi_intc ,I ™\
[_[User designs] S
FPGA L[_[PYNQ overlays]
L LL[PYNQ IPs])

]- Drivers

September 11, 2024

635965 Fall 2024

} Apps

]- APIs

]- Bitstreams

—/

PYNQ™

12

ZYNQ 7020 is a chip like any other
chip

* /Zynq package is a ball grid
array (all pins are underneath)

Can’tuseiron

* One of the most unforgiving
packages out there...

Still from video of somebody “reballing” an Xilinx chip
https://www.youtube.com/watch?v=DVTxHx0z-wo

September 11, 2024 6S965 Fall 2024 13

Assigning Pins

Summary x| Device x| Schematic x| Device (2) x| Package x = 2?2000

Once design is synthesized you
can specify where to route (we’ll
not do this much since much of
this has been decided ahead of
time with the PYNQ board’s PCB
layout, but if you were designing
with the chip from scratch this
would be part of process

 Pinout file can be found here:

* https://www.xilinx.com/content/dam/xilinx/support/packagefiles/z7
packages/xc7z020clg400pkg.txt

September 11, 2024 6S965 Fall 2024 14

400 Pins
Listed Out

* Some pins
connectto the PL
part of chip

* Some pins
connect to the PS
part of chip.

* Just how it goes...

September 11, 2024

Device/Package xc7z020c1g400 9/18/2012 09:51:09

Pin
R11
M9
Jie
J9
L9
L10
F11
F9
M10
K10
K9
F10
N6
R6
R10
G6
F6
T6
M6
L6
J6
V5
u7

H20
G19
G20
H15
G15
K14
J14
N15
N16
L14
L15
M14
M15
K16
J16
J15

E11l
c7

8

E14
D10
F14
D11
F15
D13
C13
E16
D15

Pin Name

DONE_0

DXP_0

GNDADC_0

VCCADC_0

VREFP_0

VN_0

VCCBATT_0

TCK_0

DXN_0

VREFN_0

VP_0

RSVDGND

RSVDVCC3

RSVDVCC2

INIT_B_@

TDI_0

TDO_0

RSVDVCC1

CFGBVS_0
PROGRAM_B_0

TMS_0
10_L6N_TO_VREF_13
I0_L11P_T1_SRCC_13
TIO0_L1IN_T1_SRCC_13
I0_L12P_T1_MRCC_13
I0_L12N_T1_MRCC_13
I0_L13P_T2_MRCC_13
10_L13N_T2_MRCC_13
10_L14P_T2_SRCC_13
I0_L14N_T2_SRCC_13
10_L15P_T2_DQS_13
I0_L15N_T2_DQS_13
10_LION_I1_AD1IN_35
I0_L11P_T1_SRCC_35
I0_L1IN_T1_SRCC_35
I0_L12P_T1_MRCC_35
I0_L12N_T1_MRCC_35
I0_L13P_T2_MRCC_35
I0_L13N_T2_MRCC_35
I0_L14P_T2_AD4P_SRCC_35
I0_L14N_T2_AD4N_SRCC_35
I0_L15P_T2_DQS_AD12P_35
I0_L15N_T2_DQS_AD12N_35
I0_L16P_T2_35
I0_L16N_T2_35
I0_L17P_T2_AD5P_35
I0_L17N_T2_AD5N_35
I0_L18P_T2_AD13P_35
I0_L18N_T2_AD13N_35
I0_L19P_T3_35
I0_L19N_T3_VREF_35
I0_L20P_T3_AD6P_35
I0_L20ON_T3_AD6N_35
I0_L21P_T3_DQS_AD14P_35
I0_L21N_T3_DQS_AD14N_35
I0_L22P_T3_AD7P_35
I0_L22N_T3_AD7N_35
I0_L23P_T3_35
I0_L23N_T3_35
I0_L24P_T3_AD15P_35
I0_L24N_T3_AD15N_35
10_25_35

PS_CLK_500
PS_MIO_VREF_501
PS_POR_B_500
PS_MI015_500
PS_MI017_501
PS_MI019_501
PS_MI021_501
PS_MI023_501
PS_MI025_501
PS_MI027_501
PS_MI029_501
PS_MI031_501
PS_MT033 501

Memory Byte Group Bank VCCAUX Group Super Logic Region
N

NA 0 NA A
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
NA 0 NA NA
] 13 NA NA
1 13 NA NA
1 13 NA NA
1 13 NA NA
1 13 NA NA
2 13 NA NA
2 13 NA NA
2 13 NA NA
2 13 NA NA
2 13 NA NA
2 13 NA NA
1 35 NA NA
1 35 NA NA
1 35 NA NA
1 35 NA NA
1 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
2 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
3 35 NA NA
NA 35 NA NA
NA 500 NA NA
NA 501 NA NA
NA 500 NA NA
NA 500 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA
NA 501 NA NA

I/0 Type

CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
CONFIG
HR

MIO
MIO
MIO
MIO
MIO
MT0

No-Connect
N

Aside...The RFSoC is Bigger

e Go to this site (https://www.xilinx.com/support/package-pinout-files/zynq-
ultrascale-plus-pkgs.htmt) aNd use the non-functional sort
tools to find the pin file for the xczu48

* You'll see thatitisa 1156 pin BGA

Showing 1-24 ~ of 24 Sort By: Featured

Download Table

Price
e 2;];?;:?; @ - e ‘

XCZU48DR-1FFVE1156E 0 1:$20,127.50000 7ynq® Tray @ Active McCU, Quad ARM® - 256KB DDR, CANbus, 500MHz,
s T
n Stock ra
|101 ZUBP F;FSOC AS3 FPGA UltraScale+™ FPGA Cortex®-A53 DMA, EBI/EMI, 1.2GHz
) 5686 Check Lead Time RFSoC MPCore™ with PCle Ethernet, 12C,
AMD CoreSight™, MMC/SD/SDIO,
Dual SPI,
ARM®Cortex™- UART/USART,
R5 with USB OTG

CoreSight™

edback

September 11, 2024 6S965 Fall 2024 16

Now, the Pynq Z2 board made
some choices for us

* If you were the engineer
laying out the
chip/board from scratch
you would also need to
make these decision.

e Some decisions have
very little wiggle room,
others do.

September 11, 2024 6S965 Fall 2024 17

Schematic

PYNQ Z2
Board

U15E

DDR PORT 502

PS_DDR_DQ31_502 | V3
DDR3_VREF P6 | PS_DDR_VREF1_502 PS_DDR_DQ30_502 V2
H6 | PS_DDR_VREF0_502 PS_DDR_DQ29_502 | W3
PS_DDR_DQ28_502 | Y2
MEM_ADD[15..0] PS_DDR_DQ27_502 | Y4
13 MEM_ADO[15.0] <& F4 | Ps_DDR A14_502 PS_DDR_DQ26_502 | W1
D4| ps_DDR_A13_502 PS_DDR_DQ25_502 [Y3
E4 PS_DDR_A12_502 PS_DDR_DQ24_502 Vi
G PS_DDR_A11_502 PS_DDR_DQ23_502 u3
F5_| Ps_DDR_A10_502 PS_DDR_DQ22_502 [U2
Js PS_DDR_A9_502 PS_DDR_DQ21_502 U4
K1_| PS_DDR_A8_502 PS_DDR_DQ20_502 | T4
K PS_DDR_A7_502 PS_DDR_DQ19_502 R1
L4 | Ps_DDR_A6_502 PS_DDR_DQ18_502 [R3
L1 | Ps_DDR_A5_502 PS_DDR_DQ17_502 | P3
M: PS_DDR_A4_502 PS_DDR_DQ16_502 P1 DDR3 D[15.0]
K3 | Ps_DDR_A3_502 PS_DDR_DQ15_502 | J1 R3 D15 »> DOR3 D{15.0 13
M3"| Ps_DDR_A2_s02 PS_DDR_DQ14_502 | H1 R3 D14
K2 | ps_pDR_A1_502 PS_DDR_DQ13_502 H2 R 3
N2 | PS_DDR_AQ_502 PS_DDR_DQ12_502 | J3 DDR3 D12
PS_DDR_DQ11_502 | H3 D11
PS_DDR_DQ10_502 | G3 D10
13 MEM BANK[2.0 PS_DDR_DQ9_502 E: DDR
-BANK[2.0] <& MEM_BANK2 J5 | PS_DDR_BA2_502 PS_DDR_DQ8_502 R3 D
MEM_BANK1 R4 | ps_DDR_BA1_502 PS_DDR_DQ7_502 D
MEM_BANKO L5 | Ps_DDR_BAO_502 PS_DDR_DQ6_502 C DDR
PS_DDR_DQ5_502 R
PS_DDR_DQ4_502 R3 D
PS_DDR_DQ3_502 A R
13 MEM RE: B4 PS_DDR_DRST_B_502 PS_DDR_DQ2_502 A2 D:
13 MEM RASH P: 502 PS_DDR_DQ1_502 B DDR3 D
13 MEM_CAS# z :gz PS_DDR_DQO_502 C D
13 MEM_MAO_CS_LO D
13 MEM. WE# M5 | ps_DDR_WE_B_502
PS_DDR_DM3_502 Y1
PS_DDR_DM2_502 T
13 MEM MAO_CKEO N3 | Ps_DDR_CKE_502 PS_DDR_DM1_502 F1 MEM_DM1 MEM DM1 13
13 MEM CLKO P L2'| Ps_DDR_CKP_502 PS_DDR_DM0_502 Al MEM_DMO ; MEM DMO 13
_CLKO | PS_DDR_CKN_502 -
13 MEM_CLKO_N - DDR_CKN._.
R218,,, 806 1% PS_DDR_DQs_P3_502 | W5
N5 | Ps_DDR_0ODT_502 PS_DDR_DQs_N3_502 | W4
13 MEM_MAD_ODTO & Ps_DDR_DQs_P2_502 | R2
PS_DDR_DQS_N2_502 | T2
PS_DDR_DQS_P1.502 | G2 MEM DQS1 P 13
] R219,,, 806 1% _ DDR VRP H5 | Ps_DDR_VRP_502 PS_DDR_DQS_N1_502 F2 MEM DQS1 N 13
vccw! R220,,v 806 1% __DDR VRN G5 | Ps_DDR_VRN_502 Ps_DDR_DQs_P0_502 | C2 MEM DQSO P 13
PS_DDR_DQS_N0_s02 | B2 MEM DQSON 13
XC72020-1CLG400C
0K_SPI SCLK FBVCEG1

e The 512 MB DRAM is routed to PS ... Pins of the

Zynq chip.

* Meaning the
processing side

September 11, 2024

635965 Fall 2024

DRAM is only accessible in the

18

Schematic of
PYNQ Z2
Board

 Ethernet, SD card, some
HDMI control portions,
OTG/USB are all also
wired to PS_ pins

e That means those are
not accessible via

September 11, 2024 6S965 Fall 2024

U15G

Bank 501

PS_SRST_B_501 | B10 PS_RST
PS_MIO_VREF_501 | E11 VREFOV9
ps_MIO16_501 | A19 ETH_TXCK
ps_ MIO17 501 | E14 ETH TXDO Em-&gg 5
Ps_mI018 501 | B18 ETH_TXD1 3 5
Ps_MI019_501 | D10 ETH_TXD2 ETH TXD1 5
Ps_MIO20_501 | A17 ETH TXD3 Emﬁigg g
Ps_MIO21_501 | F14 ETH_TXCTL ErTees 5.
PS_MI022_501 | B17 ETH_RXCK TRk &
PS_MI023 501 | D11 ETH_RXDO ETH R0 &
PS_MI024_501 | A16 ETH RXD1 ETH-RXDO 3
ps_MIO25_501 | F15 ETH RXD2 .
Ps_MI026_501 | Al5 ETH RXD3 ETH RXD2 5
ps_ MIO27_ 501 | D13 ETH RXCTL BRI ®
pPs_mi028 501 | C16 OTG DATA4 = 5
pS_MI029 501 | C13 OTG DR 8TQDATA4 7
Ps_MIO30_501 | C15 OTG STP oo T
PS_MI031_501 | E16 OTG NXT T o 7
PS_MI032_501 A14 OTG DATAO -
ps_MIO33_501 | D15 OTG DATAI 8%—82&? ;
Ps_MIO34_501 | A12 OTG DATAZ oAy 7
Ps_MIO35_501 | F12 OTG DATA3 oTe
PS_MI036_501 | Ald OTG CLK O%—%GIA% 7
Ps_mI037_501 | A10 OTG DATAS5 OTC DATAS 7
PS_MIO38_501 | E13 OTG DATA6 &
PS_MI039 501 | C18 OTG_DATA7 OTG_DATA6 7
PS_MIO40_501 | D14 R217.. 40.2 5% o s T
PS_MIO41_501 | C17 SD"MD oo MLK 5
PS_MIO42_501 | E12 SD DO SD780 D5 5
PS_MI043_501 | A9 SD D1 0 D1 -
PS_MIO44_501 | F13 SD D2 s
Ps_MIO45_501 | B15 SD D3 Sb_ D2 5
PS_MIO46_501 | D16 OTG_RESETN ?)?GD??ESETN ,
PS_MIO47_501 | B14 SD_CD I
PS_MIO48_501 | B12 .
PS_MIO49_501 | C12
PS_MI050_501 | B13 HDMI_TX_SCL
PS_MIO51 501 | B9 HDMI TX SDA oI 50n &
PS_MIO52_501 | C10 ETH_MDC ETH MDG. 5
PS_MIO53_501 C11 ETH _MDIO ETH MDIO 5
XC72020-1CLG400C
COMMON
19

Most other things on the board are
actually wired to pins that are part of
the PL (Programmable Logic)

......

.~ :-'_ NG O
* S0 pretty much o ,’W Vot s
everything else... R

* All these the random
pins, the audio, the
HDMl in/out, buttons, s

PEEET - ORRET

e [=
I (:f,_» N i e () ; ;

t B R G
e Cooo :] e N | | S e Tl
o | <al | o, AT
o= e LKl H | w A e T

".

September 11, 2024 6S965 Fall 2024 20

List of I/O Peripherals for the PS:

 "Hard” IP cores exist
on the PS that
perform certain
Interfacing
roles/protocols:

* These can be
multiplexed out to
many subsets of
pins

September 11, 2024

I/0 Interface Description

SPI (x2) Serial Peripheral Interface [10]
De facto standard for serial communications based on a 4-pin
interface. Can be used either in master or slave mode.

12C (x2) I°C bus [14]
Compliant with the 12C bus specification, version 2. Supports
master and slave modes.

CAN (x2) Controller Area Network
Bus interface controller compliant with ISO 118980-1, CAN
2.0A and CAN 2.0B standards.

UART (x2) Universal Asynchronous Receiver Transmitter
Low rate data modem interface for serial communication. Often
used for Terminal connections to a host PC.

GPIO General Purpose Input/Output
There are 4 banks GPIO, each of 32 bits.

SD (x2) For interfacing with SD card memory.

USB (x2) Universal Serial Bus
Compliant with USB 2.0, and can be used as a host, device, or
flexibly (“on-the-go” or OTG mode, meaning that it can switch
between host and device modes).

GigE (x2) Ethernet
Ethernet MAC peripheral, supporting 10Mbps, 100Mbps and
1Gbps modes.

Taken from The Zynq Book
635965 Fall 2024 21

Using them

* |[n a normal microcontroller, you would simply
activate a module, such as an SPI controller and
connect it to some pins.

* The way the Pynq Z2 board is laid out you can’t
do that.

* |n an effort to ensure flexibility for development,
they connected most things and broke out most
general IO from the PL side.

September 11, 2024 6S965 Fall 2024 22

Assigning I/O pins to Hard IP

Peripherals

ZYNQ7 Processing System (5.5)

© Documentation £F Presets

Page Navigator -

Zynq Block Design
PS-PL Configuration
Peripheral I/0 Pins

MIO Configuration
Clock Configuration
DDR Configuration
SMC Timing Calculation

Interrupts

IP Location #F Import XPS Settings

Peripheral /O Pins

Search:

Peripherals

SPIO

» /I SPI1

UART O

» /1 UART 1

12C 0

12C 1

VI CAN O

CAN 1
TTCo
TTc1
SWDT
PITAG

TPIU

> /| GPIO MIO

GPIO EMIO

September 11, 2024

il et B i B a0, 11

Re-customize IP

C4
C
/75

reen g

« O = = 0

Q
e Sq .
| Bank1l LVCMOS3.3V ~ ; 'O/ns/

Bank 0 | LVCMOS 3.3V~

Ly o pl By oy By 0.0 S0, L2, L22 L2 o4 Lony LB Lo, o8, L2020, L2, L2220y L22 LSt L35

4 = [7 2 Sy 10 11 12 13 iy uloy uls

SPI0 mos SPI0 mos &>

UARTO UARTO UARTO
UARTL UARTL UARTL UARTL
E—
12C0 12C0 12C0
12C1 12c1 12C1
CANO CANO CANO
CAN1 cant CANL CANL
CANO: [MIO10-11]
TTCO
JICL TTC1
SWDT SWDT
PITAG PITAG PJ
Trace Trace

25 26 27 28 29 30 31 32

oK | | Cancel

6S965 Fall 2024 23

Linking to Outside World

* The I/0O pins normally ~2°°"° e e e e
go to the outside 7 oPo =P <
world, but on our
PYNQ board we need

to extend them into
the PL (which has its
own actual physical
output pins)

* Making the GPIO pins
EMIO (Extended)
Multiplexed In/Out)
puts them into the PL
for further
manipulation

September 11, 2024 6S965 Fall 2024 24

Lab 1

We have specified the Zynq PS to route its 10
pins out into the PL fabric and we can do what

we want with them \

These represent pins that come
directly from the PS and interface
with DRAM (DDR) and some

hard-wired interface:

x Address Editor

© Q

x | base.xdc

+ &

processing_system7_0

GPIO
GPIO_I[63:0
GPIO_0[63:0
GPIO_T[63:0]
DDR +

FIXED_IO +
FCLK_CLKO
FCLK_RESETO_N

ZYNQ

ZYNQ?7 Processing System

X | pulse_mager.sv

x | pulse_maker_w.v

Of | = Default View v

C

stop_slice

Slice

x | led_controller.sv

Din[63:0] Dout[0:0] F—

x | led_controller_w.v 200

&

pulse_maker_w_0

— = =

clk
’ RTL pulse
- 8
S

pulse_maker w vl 0

up_slice

Din[3:0] Dout[0:0]

Diagram
@ e H &
btns[3:0] [

—_—
Slice

down_slice
b i

Din[3:0] Dout[0:0]

{> DDR
led_controller_w_0
—=f clk
en
go_up RTL q(3:0] »
— go_down
stop

led controller w v1 0

Can then route into

Slice

outside Worlld from PLl’s
[FIXED
Ak-ofusable pins

bhan
NMNUITITIN

September 11, 2024

6S965 Fall 2024

25

Clicking on these things is really just a nice

way to configure internal multiplexers

ZYNQ7 Processing System (5.5)

@ Documentation £ Presets IP Location #F Import XPS Settings

Page Navigator -

Zynq Block Design

Peripheral /O Pins
« O = = 0

PS-PL Configuration Search:

Peripheral I/0 Pins

Peripherals 0 1

MIO Configuration SPIO

Clock Configuration > /1 SPI1

UART O
DDR Configuration

» /| UART 1

SMC Timing Calculation
12C 0

Interrupts 12¢ 1

CAN O

> CAN 1
TTCO
TTC1
SWDT
PITAG
TRIU

» /| GPIO MIO

GPIO EMIO

September 11, 2024

Bank 0

4

o

[

LVCMOS 3.3V«

ol

By 10 11 14 15 16 17
SPID
i
UARTO UARTO
UART1 UART1 UARTL
12co 12co
12C1 12C1
CANOD
CAM1 CANT CANL
CAN O : [MIO 10-11]
TIC1
SWDT
PITAG
Trace
2 Sg 10 11 12 13 ddy doy iy uld

635965 Fall 2024

|Bank1 LVCMOS 3.3V v

18, 19, 20 20, L2222 o4, 25

mos

UARTO
UARTL
12co
12c1

CANOD
CAN1 CAN1

TTCo

PITAG

Trace

26 27

SWDT

28 .29
SPI0

CANL

304 21

TTCO

y

22y 222 L2y S35

CAN1

Bl

| Cancel

26

UART is finé

WAVE_OUT
(SWDT T1C 1,0 CLK_IN I,\

I
I
1
IOPs 7 T RESET_OuT |MIO| |
4 CLK_IN e —
AHB 32 1 MIO
PS =] e a | usBo [TLeewo uio | o
=] Reg* = PortPWR SRaRh
[:S APB | ::, usB 1 ULPI 1 u;?l F&
Central MDIO 0 rert A |
fnterconnect i ===
~28 Iy] e n | Gige 0

Comm
Regs Port
AHB 32
oma Comm
AP 1
B Thegs | 9! | Pon
AMB 32 GMIl va EMIO (]
oma

| Regs $0I00 [+ 50100

"Imaaa SDIO 1

AMB 32 o SDIO 1 - L

Regs to EMIO

)

o] _[]
;
S
g
§ m3
JEA}
| :_

Processor <fn‘.‘1‘?‘mw

EIEEEEE
:
|

DMA QSPI0
Quad SPI 0 —
BTNy BEE] P B
ks DMA QSPI 1 e
APB Quad SPI 1 ©
— Regs == Pin
AX1 32 ONFi |
g L e M e
Parallel
[+ 22 =G [Norisram] L
To AP slave ports for Regs E
I M GPIO i sy ey
APB Control. GPIO Banks 0 & 1 walT
R
[w |- Status Regs ['GPIO Banks 28 3 -
Stave v—2= [sPo.n ,'IrL s
AX| 32 APB MIO
~—E5] [{can o 0k mw

wio |
153

o

Taken from the MicroZed Chronicles Blog/Xilinx Docs
September 11, 2024 6S965 Fall 2024

PS_pins

Unconnected Pins
on PYNQ Z2 board

Route to PL 10
which is attached

27

Other PL-PS
Interconnects

11111111111111111111111111111

Interface Between PS and PL

* Four Ways to
Transfer Data from
the PS to the PL

* 64 bits of GPIO
* 4 GP AXI Ports
* 4 HP AXI Ports
* 1 ACP Port

S
S
M
M
M
M
M
M

<

Just talked about this

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
September 11, 2024 65965 Fall 2024 29

GPIO Pins

e General Purpose Input Output :

M

M

* You can via software (writing HP Ports M

to registers), control and be Sk -

controlled by ~54 pins M

* These are good for low-speed i v
control, configuration, reset GPIO

(2x 32 bit)

signals...things like that.

September 11, 2024 6S965 Fall 2024 30

g ™
{ \

GPio_0 = |||
Interrupts o om0 4 L
ZYNQ. GPIO O[63:0] P =

GPIO T[63:0] p» ==

* The GPIO of the PS can be setup to have
interrupts even when you are routing them
“internally” into the PL Using EMIO.

* This means you can actually have the PL trigger

Python processes to run by setting up the
interrupts as well as some async programming

on the Python side

* https://pyng.readthedocs.io/en/latest/pynqg_libraries/interrupt.html

* https://pyng.readthedocs.io/en/latest/overlay design methodology/
pyng and_asyncio.html#pynqg-and-asyncio

September 11, 2024 6S965 Fall 2024 31

https://pynq.readthedocs.io/en/latest/pynq_libraries/interrupt.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html

Interface Between PS and PL

* Four Ways to
Transfer Data from
the PS to the PL

* 64 bits of GPIO
* 4 GP AXI Ports
* 4 HP AXI Ports
* 1 ACP Port

S
S
M
M
M
M
M
M

<

Just talked about this

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
September 11, 2024 65965 Fall 2024 32

Master/Slave Terminology

* I’ve been a big fan of moving away from this
terminology.

* For SPI, for example, instead of MOSI/MISO, do
COPI/CIPO (controller/peripheral), etc...

* However, all of the AMD/Xilinx, use
Master/Slave and everything has that M’s and
S’s prepended, appended, etc..

* I’'m going to just use their nomenclature so we
don’t have to constantly be mapping between
alternate names.

September 11, 2024 6S965 Fall 2024

AXI Ports

* Parallel Busses of two
different flavors that
allow us to pretty
quickly transfer data
between the
Processing System
and the FPGA section
using shared registers
and some other stuff

S
S
M
\"
M
M
M
M

<

September 11, 2024 6S965 Fall 2024 34

ACP Port

 Accelerator
Coherency Port

* 64-bit wide bus that
can transfer data from
very quickly from PL
fabric

S
S
M
\"
M
M
M
M

<

September 11, 2024 6S965 Fall 2024 35

e There’s lot of neat IP we can work

AXI Everywhere with....if you wanted to implement :

hardware accelerated Fast Fourier
Transform you totally can...

Search:
FoAXld-Stream Data Width Converter ~ AX|
¥ AXl4-Stream Interconnect
¥ AXl4-Stream Protocol Cl
AX|4-Stream Register Sl xfft 0
¥ AX|4-Stream Subset Col ' N
o - =~ S _AXIS DATA MAXIS_DATA —t
AXI = AX[A-Stream SW'|tCh - - - m axis data tdata[31:0] b |-
— = P s_axis data_tdata[31:0] - - -
AX|4-Stream to Video O AXl | < axis data tiast e
— . _ - < s axis data tready m_axis_data tready 4 |=
&¥14-Stream Verificatior L m axis data tvalld p |-
- i i — P 5 axis_data tvalid e_ent_fram_e i AXI
AX] AHBLIite Br|dge | . S_AXIS_CONFIG B —
- _ = b s axis config tdata[15:0] event_tlast_unexpected =
AXl APB B”dge - U ' event_tlast_missing (=
Il = ¢ s-axis_config_tready event_status_channel_halt
W) —
A¥] BRAM Controller — » s axis_config_tvalid ~status_ -
i event_data_in_channel_halt
EMTER to select, ESC to cal event_data_out_channel halt j=

Fast Fourier Transform

September 11, 2024 6S965 Fall 2024 36

Advanced Microcontroller Bus
Architecture (AMBA)

* Version 1 released in 1996 by ARM

e 2003 saw release of Advanced eXtensible
Interface (AXI3)

e 2011 saw release of AXI4

* There are no royalties affiliated with AMBA/AXI so
they’re used a lot.

* [tis a general, flexible, and relatively free*
communication protocol for development

https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architectu

€ September 11, 2024 6S965 Fall 2024 37

Three General Flavors of AXI4

* AXI4 (Full AXI): For memory-mapped links.
Provides highest performance.
1. Addressis supplied
2. Then a data burst transfer of up to 256 data words

* AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)

1. Addressis supplied
2. One data transfer

* AXlI4 Stream: Meant high-speed streaming data
e Can do burst transfers of unrestricted size
* No addressing

e Meant to stream data from one device to another
quickly on its own direct connection

From the Zynq Book

September 11, 2024 6S965 Fall 2024 38

Memory Map?

* Memory mapped means an address is specified
within the transaction by the master (read or
write). This corresponds to an address in the
system memory space.

* For AXl4-Lite, which supports a single data
transfer per transaction, data is then written to,
or read from, the specified address

* For Full-AXI4 sending a burst, the address
specified is for the first data word to be
transferred, and the slave must then calculate
the addresses for the data words that follow.

* AXI-Stream has no addressing so no memory
mapping

September 11, 2024 6S965 Fall 2024

AXl ldea

« Communication between two devices (Master and
Slave) is carried out over multiple assigned

“channels”

e Each channel has its own collection of wires which
convey data, signals, etc.

* The channels can work somewhat independently,
however in practice what one channel does is often
the result of what a different one did previously

* Five Types of Channels (may have all or a subset):
 Read Address: "AR” channel

Read Data: “R” channel

Write Address: “AW” channel

Write Data: “W” channel

Write Response: “B” channel

September 11, 2024 6S965 Fall 2024

40

Read Wiring

Master
interface

Generalized collection of wires

“Channel”. Will contain numerous

wires
Read address channel

/

/

Address
and control
—_—
Read data channel
Read Read Read Read
data data data data
< <

Master initiates communication, Slave responds

September 11, 2024

635965 Fall 2024

Slave
interface

41

Write Wiring

Master
interface

Write address channel

Address
and control

—

Write data channel

Write
data

Write
data

Write
data

Write
data

—_—> —> ———> —»

Write response channel

Write
response

September 11, 2024

635965 Fall 2024

«——

Slave
interface

42

Within Each Channel are wires:

* These wires serve specific purposes.

e Some are universal to all channels, and others
are specific

September 11, 2024 6S965 Fall 2024

43

AXI Clock

ACLK
From clock sourc

* Everything in system will run off of AXI clock
usually called ACLK in documentation

* No combinatorial paths between inputs and
outputs. Everything must be registered.

* All sighals are sampled on rising edge

* AXI modules should also have Reset pins. AXI
work ACTIVE LOW so the Reset pin is usually
called ARSTn or ARESETn

September 11, 2024 6S965 Fall 2024

44

Valid and Ready

ACLK
From clock source

* All of AXl uses the same handshake procedure:
* The source of a data generates a VALID signal

* The destination generates a READY signal

* Transfer of data only occurs when both are high

e Both Master and Slave Devices can therefore
control the flow of their data as needed

September 11, 2024 6S965 Fall 2024 45

Everything Else...

From clock source

* Everything else is information and depends on what
Is needed in situation. Could be:
* Address
* Data

* Other specialized wires like:

 STRB (used to specify which bytes in current data step are valid,
sent by Master along with data payload to Slave)

 RESP (sort of like a status
* LAST (sent to indicate the final data clock cycle of data in a burst)

September 11, 2024 6S965 Fall 2024 46

Each channel has its own subset of
“stuff” that goes along with those
core signals shared by all

For example, the Write Data Channel ("W” channel)

Signal Source Description

WID Master Write ID tag. This signal is the ID tag of the write data transfer. Supported only in AXI3.
See Transaction ID on page AS-77.

Pa y lo a d WDATA Master Write data.

WSTRB Master Write strobes. This signal indicates which byte lanes hold valid data. There is one write
strobe bit for each eight bits of the write data bus. See Write strobes on page A3-49.

Supplemental

WLAST Master Write last. This signal indicates the last transfer in a write burst. See Write data channel Stuff
on page A3-39.

WUSER Master User signal. Optional User-defined signal in the write data channel.

WVALID Master Write valid. This signal indicates that valid write data and strobes are available. See
C 0 R E Channel handshake signals on page A3-38.

WREADY Slave Write ready. This signal indicates that the slave can accept the write data. See Channel
handshake signals on page A3-38.

September 11, 2024 6S965 Fall 2024 47

The Read Data Channel:

Table A2-6 Read data channel signals

Signal Source Description

RID Slave Read ID tag. This signal is the identification tag for the read data group of signals
oenerated by the slave. See Transaction ID on page A5-77.

Payload] roata sive Read data.

RRESP Slave Read response. This signal indicates the status of the read transfer. See Read and write
response structure on page A3-54.

Supplement
RLAST Slave l;:;;l/l:;fé ';'his signal indicates the last transfer in a read burst. See Read data channel on al Stuff

RUSER Slave User signal. Optional User-defined signal in the read data channel.

DDOTIEd On N AXI4 er-delined Onagling On Nago

RVALID Slave Read valid. This signal indicates that the channel is signaling the required read data. See
C O R E Channel handshake signals on page A3-38.

RREADY Master Read ready. This signal indicates that the master can accept the read data and response
information. See Channel handshake signals on page A3-38.

September 11, 2024 6S965 Fall 2024 48

Read Address Chanel

Table A2-5 Read address channel signals

Signal Source Description

ARID Master Read address ID. This signal is the identification tag for the read address group of
signals. See Transaction ID on page A5-77.

Payload

ARLEN Master Burst length. This signal indicates the exact number of transfers in a burst. This
changes between AXI3 and AXI4. See Burst length on page A3-44.

ARSIZE Master Burst size. This signal indicates the size of each transfer in the burst. See Burst size on
page A3-45.

ARBURST Master Burst type. The burst type and the size information determine how the address for each
transfer within the burst is calculated. See Burst type on page A3-45.

ARLOCK Master Lock type. This signal provides additional information about the atomic characteristics
of the transfer. This changes between AXI3 and AXI4. See Locked accesses on
page A7-95.

ARCACHE Master Memory type. This signal indicates how transactions are required to progress through
a system. See Memory types on page A4-65.

ARPROT Master Protection type. This signal indicates the privilege and security level of the transaction,
and whether the transaction is a data access or an instruction access. See 4Access
permissions on page A4-71.

ARQOS Master Quality of Service, QoS. QoS identifier sent for each read transaction. Implemented
only in AXI4. See QoS signaling on page A8-98.

ARREGION Master Region identifier. Permits a single physical interface on a slave to be used for multiple
logical interfaces. Implemented only in AXI4. See Multiple region signaling on
page A8-99.

ARUSER Master User signal. Optional User-defined signal in the read address ch:

........ n_A i

annel.

ARVALID Master Read address valid. This signal indicates that the channel is signaling valid read
C O R E address and control information. See Channel handshake signals on page A3-38.

ARREADY Slave Read address ready. This signal indicates that the slave is ready to accept an address
and associated control signals. See Channel handshake signals on page A3-38.

Septembel

49

Write Response

Table A2-4 Write response channel signals

Signal Source Description
BID Slave Response ID tag. This signal is the ID tag of the write response. See Transaction ID on
page A5-77.

Payload

BUSER Slave User signal. Optional User-defined signal in the write response channel. Supported only

Slave Write response valid. This signal indicates that the channel is signaling a valid write
C 0 RE response. See Channel handshake signals on page A3-38.

Master Response ready. This signal indicates that the master can accept a write response. See
Channel handshake signals on page A3-38.

September 11, 2024 6S965 Fall 2024

Write Address Channel

Payload

CORE

September 11

Table A2-2 Write address channel signals

Signal

Source

Description

AWID

Master

Write address ID. This signal is the identification tag for the write address group
of signals. See Transaction ID on page A5-77.

Master

Burst length. The burst length gives the exact number of transfers in a burst. This
information determines the number of data transfers associated with the address.

This changes between AXI3 and AX14. See Burst length on page A3-44.

AWSIZE

Master

Burst size. This signal indicates the size of each transfer in the burst. See Burst size
on page A3-45.

AWBURST

Master

Burst type. The burst type and the size information, determine how the address for
each transfer within the burst is calculated. See Burst type on page A3-45.

AWLOCK

Master

Lock type. Provides additional information about the atomic characteristics of the
transfer. This changes between AXI3 and AXI4.

See Locked accesses on page A7-95.

AWCACHE

Master

Memory type. This signal indicates how transactions are required to progress
through a system. See Memory types on page A4-65.

AWPROT

Master

Protection type. This signal indicates the privilege and security level of the
transaction, and whether the transaction is a data access or an instruction access.
See Access permissions on page A4-71.

AWQOS

Master

Quality of Service, QoS. The QoS identifier sent for each write transaction.
Implemented only in AXI4. See QoS signaling on page A8-98.

AWREGION

Master

Region identifier. Permits a single physical interface on a slave to be used for
multiple logical interfaces.

Implemented only in AXI4. See Multiple region signaling on page A8-99.

AWUSER

Master

Master

User signal. Optional User-defined signal in the write address channel.
Supported only in AXI4. See User-defined signaling on page A8-100.

Write address valid. This signal indicates that the channel is signaling valid write
address and control information. See Channel handshake signals on page A3-38.

Slave

Write address ready. This signal indicates that the slave is ready to accept an
address and associated control signals. See Channel handshake signals on
page A3-38.

51

Generalized Transaction

Table A3-1 Transaction channel handshake pairs

Transaction channel Handshake pair

([All C h a n n e l | nte ra Ct i O n S Write address channel AWVALID, AWREADY
. Write data channel WVALID, WREADY
fo l.lOW S a m e h I g h = leve l Write response channel ~ BVALID, BREADY
structure e e
Sending One "beat” of data (one clock-cycle of data)
T1 T2 T3
Keep in mind this ACLK[|] |

could be 64 parallel INFORMATION |) X

wires of 1’s and 0’s (%%D. \
info or 8 bytes for READY ! Jy 1.
example...
Or it could be

something else

Figure A3-2 VALID before READY handshake

September 11, 2024 6S965 Fall 2024 52

Generalized Transaction

Table A3-1 Transaction channel handshake pairs

Transaction channel Handshake pair

Write address channel AWVALID, AWREADY

 All Channel Interactions

Write data channel WVALID, WREADY
fo llOW S a m e h I g h -— leve l Write response channel ~ BVALID, BREADY
Read address channel ARVALID, ARREADY
St r u Ct u re Read data channel RVALID, RREADY
Sending One "beat” of data (one clock-cycle of data)
T T2 T3
Keep in mind this
g ST o e S e A e B

could be 64 parallel

: | ATION X \
wires of 1’s and 0’s w
VALID Jy 1

info or 8 bytes for

example... READY] |
Or it could be
something else Figure A3-3 READY before VALID handshake

September 11, 2024 6S965 Fall 2024 53

Generalized Transaction

Table A3-1 Transaction channel handshake pairs

Transaction channel Handshake pair

* All Channel Interactions el chows WAL, AVRBAOY
fo l_lOW same h igh - level Write response channel ~ BVALID, BREADY
Read address channel ARVALID, ARREADY
St ru Ct u re Read data channel RVALID, RREADY
Sending One "beat” of data (one clock-cycle of data)
T T2
Keep in mind this ackk [L L1
could be 64 parallel ORMATION) \
wires of 1’s and 0’s M VALID [\
info or 8 bytes for READY [\
example...
Or it could be Figure A3-4 VALID with READY handshake

something else

September 11, 2024 6S965 Fall 2024 54

Other Things to Keep in Mind

* the VALID signal of the AXl interface sending
iInformation must not be dependent on the
READY signal of the AXl interface receiving that
iInformation

* an AXl interface that is receiving information can
wait until it detects a VALID signal before it

asserts its corresponding READY signal.

* Fail to Follow these rules and could have devices
wait infinitely.
* Like when two people keep going “no, after you at a
door”

September 11, 2024 6S965 Fall 2024 55

And Up to All Five AXI channels
can come from one device

* While operating independently at their individual
transaction level, they can then report to the
larger module to provide overall interfaces

* Example:

e The slave device receives address on write channel
address

* The write data channel then becomes active and
knows where to point incoming data

* The response channel then opens and does its thing
* And soon

* Hierarchy of Control/Design

September 11, 2024 6S965 Fall 2024 56

And you Can Use AXI to Interface
with Tons of things!

Connecting a FIR (from a Xilinx IP) to the FFT module

xfft_0

fir compiler_0

M_AXIS DATA +E
event_frame _started |

Il S AXIS DATA

. M_AXIS DATA [4 S _AXIS DATA event tlast unexpected j=
Tl 5 AXIS CONFIG event_tlast missing =
FIR Compiler = aclk event_status_channel_halt =

event data_in_channel_halt f=
event data out channel halt =

Fast Fourier Transform

September 11, 2024 6S965 Fall 2024

And you Can Use AXI to Interface
with Tons of things!

Creating a AXI-controlled joe6 module that | can then call from Python

rst_ps7_0_50M

slowest sync_clk mb_reset

ext reset in bus struct reset[0:0]

peripheral_reset[0:0]
interconnect aresetn[0:0]

aux_reset in
mb_debug sys rst

ps7_0_axi_periph

dem_locked peripheral_aresetn[0:0]

Processor System Reset

| S00_AXI
ACLK
ARESETN .?.
500 ACLK

SOO_ARESETN gsm

MO0 _ACLK

processing_system7_0

“

DOR + |}

MOO_ARESETN

joe6 0

-

4 SDO_AXI

s00 _axi_aclk

H—HE MO0 AX| 4 [

AXIl Interconnect

FIXED 10 + ||
M _AX| GFO 4

M_AXI_GPD_ACLK ZYNO‘

FCLE_CLKD

FCLE_RESETD_N £=—-o

ZYNQ7T Processing System

September 11, 2024

6S965 Fall 2024

s00_axi_aresetn

- <
joet_v1.0 (Pre-Production)

) DDR

—) FIXED IO

58

And you Can Use AXI to Interface
with Tons of things!

-

averager_2_1

=+ 500_AXIS
500 _axis aclk

500 _axis_aresetn

mO0_axis_aclk

-—

mi0_axis_aresetn

MOO_AXIS + 5

avera ger_2_w1.0 (Pre-Producti on)

A running-average hardware
accelerator Using AXI Stream for
DMA (Direct Memory Access)

avg_dma

“i|4 S_AXI_LITE
—:'::'+ S_AXIS SZMM

5_axi_lite_aclk

B——g 3xi_resetn

mm2s_prmry_reset_out n
m_axi_mm2s_aclk 2 S outn g=
s2mm_prmry_reset_out n
m_axi_s2mm_aclk b out.n g=
b

“

M_AXI MM25 4|3

axi_smc
p

M_AXLS2ZMM |3

A so0 A g om

M_AXIS_ MMZS 4= e

mm2s_introut
s2mm_introut

ps7_0_axi_periph

— —0

AXl Direct Memory Access

S S01_AX) .
W ':clk = .ﬁ. MOO_AX| 4 |/ e

ey aresetn L n

AXl SmartConnect

pE|

] H—N

LK E-—E MO0 AXI 4|

FBSETHN m-——m
LK
ESETN

AXl Interconnect

-

processing_system7_0

+ S_AXI_HPO_FIFO_CTRL
i S_AXI_HPO -
M_AXI_GPO_ACLK YN G :

S_AXI_HPO_ACLK

FCLK_RESETO_N

DOR |||
FIXED_IO 4 |||
M_ANI_GPO o [} e
FCLK_CLKO

J

ZYNQT Processing System

September 11, 2024

6S965 Fall 2024

59

The AXI Interfaces on the Zynq Enable
PS to PL communication effectively

Interface Name Interface Description Master Slave
M_AXI_GPO PS PL
General Purpose (AXI_GP)
M_AXI_GP1 PS PL
S_AXI_GPO PL PS
General Purpose (AXI_GP)
S_AXI_GP1 PL PS
S_AXI _ACP Accelerator Coherency Port (ACP), PL PS
cache coherent transaction
S_AXI HPO High Performance Ports (AXI_HP) with PL PS
read/write FIFOs.
S_AXI_HP1 PL PS
S AXI HP2 (Note that AXI_HP interfaces are sometimes PL PS
_ — referred to as AXI Fifo Interfaces, or AFIs).
S_AXI_HP3 PL PS

Master/Slave refers to who controls/initiates comms on that bus that bus

From Zynq Book

September 11, 2024 6S965 Fall 2024

General Purpose/Performance
“GP” AXI Ports

* 32 bits in size
* Maximum flexibility

* Allow register access from:
* PStoPL
* PLto PS

September 11, 2024 6S965 Fall 2024

61

High Performance “HP” AXI Ports

* Can be 32 or 64 bits wide (or variable between, but
avoid)

* Maximum bandwidth access to external memory and
on-chip-memory (OCM)

* When use all four HP ports at 64 bits, you can outpace
ability to write to DDR and OCM bandwidths!

* HP Ports : 4 * 64 bits * 150 MHz * 2 = 9.6 GByte/sec
* external DDR: 1 * 32 bits * 1066 MHz * 2 = 4.3 GByte/sec
* OCM: 64 bits * 222 MHz * 2 = 3.5 GByte/sec

* Optimized for large burst lengths

Taken from ECE699 lec 6 notes gm.edu

September 11, 2024 6S965 Fall 2024 62

How it is Laid Out

Processing System | Programmable Logic
O g e general
o [« »
g E purpose
% § M s interfaces
2le b M_AXI_GP[1:0]
APU
Scu i ! ACP interface
l:‘ " S_AXI_ACP
° AS M general
L O L
o £ purpose
® g s M interfaces
= Lle > S_AXI_GP[1:0]
Memory Interconnect =
S S S S
v
Fros high performance interfaces
M M M M

S_AXI_HP[3:0]

Figure 2.9: The structure of AXI interconnects and interfaces connecting the PS and PL

From The Zynq Book

September 11, 2024 6S965 Fall 2024 63

Complexity

* Interms of wires and options, Full-
AXl is the most complex

* AXI-LITE has a lot less options
(single data beat so all the
supplemental stuff that specifies
burst characteristics gets skipped)

* AXI-STREAM has even
less...basically a high-speed write
channel (Few options), but often
needs that extra TLAST signal

September 11, 2024 6S965 Fall 2024

Full-AXI4

!

AXI-LITE

!

AXI-STREAM

64

Sources gy o

« “AMBA® AXITM and ACETM Protocol Specification”, ARM 2011

* “The Zynq Book”, L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and
R.W. Stewart, University of Glasgow

* “Building Zynq Accelerators with Vivado High Level Synthesis”
Xilinx Technical Note

 Some material from ECE699 Spring 2016
https://ece.gmu.edu/coursewebpages/ECE/ECE699 _SW_HW/S1
6/

Crack open the AXI spec sheet with a few data

sheets for some Xilinx IP cores (like the
CORDIC, FFT, etc...) and you should be able to
start making sense of it.

September 11, 2024 6S965 Fall 2024 65

