
6.S965
Digital Systems Laboratory II

Lecture 3:
Zynq Architecture

September 11, 2024 6S965 Fall 2024 1

Administrative

• Week 1’s stuff due Friday at 5pm
• Week 2’s stuff should be out at noon on Friday
• If you find yourself thinking, “I’m probably doing

something stupid…” in the context of Vivado, the
problem may not be you, it may be Vivado.
Please ask for help

September 11, 2024 6S965 Fall 2024 2

Some Stuff on the PYNQ Z2 Board

Switches

Buttons

LEDs

HDMI IN

DDR

HDMI OUT

Ethernet

Audio (Line in/out, etc)

uSD Slot (for OS)
Zynq XC7Z020-1CLG400

UART Bridge

USB (Host) Lots of pins broken out

Power Supply

September 11, 2024 6S965 Fall 2024 3

How Can You Work With it?
• The Zynq XC7Z020-1CLG400 has almost twice

the amount of “classic” FPGA material as the
Spartan 7 boards used in 6.205
• 13,300 Logic Cells
• 630 KByte of BRAM
• 220 DSP slices
• On-chip analog-to-digital converters on both
• Four Clock management tiles

• Also has two ARM 9 Cores

September 11, 2024 6S965 Fall 2024 4

ZYNQ Architecture

September 11, 2024 6S965 Fall 2024 5

• Processing
System (PS)
• Programmable

Logic (PL)
• Both can be

manipulated

Python for Zynq…Pynq

September 11, 2024 6S965 Fall 2024 6

Jupyter notebooks,
browser-based interface PYNQ enables JupyterLab

on Zynq and ZU+

Ubuntu-based
Linux

Jupyter web
server

IPython kernel

ARM A9 / A53

Overlays/designs

ZU+ Fabric

Hardware C-drivers wrapped
in Python packages

GUI

Taken from some Xilinx talk I went to…

Yocto

• Yocto is a project dating back >10 years…focus
of it is to build linux for embedded systems
applications
• With Yocto you can basically build images of

linux distributions targeted at small, particular
processors (such as the ARM cores on the Zynq
chip)
• Yocto is installed on your computer (kinda like

any tool) and then you build for other
systems…just like how we build for our FPGA
with Vivado.

September 11, 2024 6S965 Fall 2024 7

PetaLinux

• AMD/Xilinx took Yocto, added some stuff on top
intended to streamline these tools for their chips
and architectures specifically and called it
PetaLinux

September 11, 2024 6S965 Fall 2024 8

https://discuss.pynq.io/t/deploying-pynq-and-jupyter-with-petalinux/677

PYNQ uses an Ubuntu based
Linux

September 11, 2024 6S965 Fall 2024 9

Kernel, Bootloader

Ubuntu Root File System

PYNQ’s
Ubuntu-based Linux

Python
Package

s

Dev
Tools

PYNQ uses the PetaLinux build flow and board support package:
• Access to all Xilinx kernel patches
• Works with any Xilinx supported board
• Configured with additional drivers for PS-PL interfaces

Ubuntu/
Debian

Package
s

Package
Manager/
Repositor

y

PYNQ uses Ubuntu’s:
• Root file system (RFS)
• Package manager (apt-get)
• Repositories

PYNQ bundles :
• Development tools

• Cross-compilers
• Latest Python packages

Taken from some Xilinx talk I went to…

PYNQ Framework

September 11, 2024 6S965 Fall 2024 10

APIs

Drivers

Bitstreams

Linux kernel

Python

FPGA

Overlay

xdevcfg sysgpio uio devmem

dma

axi_intc

AppsJupyter/
IPython

numpy opencvscikit-learnmatplotlib

PYNQ notebooks

XLNK

xlnk

GPIOPL Interrupt libcma.soMMIO

PYNQ libs

PYNQ IPs

PYNQ overlays

User designs

Taken from some Xilinx talk I went to…

PYNQ Compromises

• With the PYNQ framework you’re basically
starting with a pre-built Yocto/Petalinux
implementation that people have already
designed for you.
• To get the most out of a chip, one may want to go

and do their own custom version and build and
then make an image.
• You can 100% build your own pynq image from

scratch or with modifications:
• https://pynq.readthedocs.io/en/latest/pynq_sd_card.html

September 11, 2024 6S965 Fall 2024 11

We’re largely ignoring middle part

September 11, 2024 6S965 Fall 2024 12

APIs

Drivers

Bitstreams

Linux kernel

Python

FPGA

Overlay

xdevcfg sysgpio uio devmem

dma

axi_intc

AppsJupyter/
IPython

numpy opencvscikit-learnmatplotlib

PYNQ notebooks

XLNK

xlnk

GPIOPL Interrupt libcma.soMMIO

PYNQ libs

PYNQ IPs

PYNQ overlays

User designs

Taken from some Xilinx talk I went to…

ZYNQ 7020 is a chip like any other
chip
• Zynq package is a ball grid

array (all pins are underneath)
• One of the most unforgiving

packages out there…

September 11, 2024 6S965 Fall 2024 13

Can’t use iron

Still from video of somebody “reballing” an Xilinx chip
https://www.youtube.com/watch?v=DVTxHx0z-wo

Assigning Pins

• Pinout file can be found here:
• https://www.xilinx.com/content/dam/xilinx/support/packagefiles/z7

packages/xc7z020clg400pkg.txt

September 11, 2024 6S965 Fall 2024 14

Once design is synthesized you
can specify where to route (we’ll
not do this much since much of
this has been decided ahead of
time with the PYNQ board’s PCB
layout, but if you were designing
with the chip from scratch this
would be part of process

400 Pins
Listed Out
• Some pins

connect to the PL
part of chip
• Some pins

connect to the PS
part of chip.
• Just how it goes…

September 11, 2024 6S965 Fall 2024 15

Aside…The RFSoC is Bigger

• Go to this site (https://www.xilinx.com/support/package-pinout-files/zynq-

ultrascale-plus-pkgs.html) and use the non-functional sort
tools to find the pin file for the xczu48
• You’ll see that it is a 1156 pin BGA

September 11, 2024 6S965 Fall 2024 16

Now, the Pynq Z2 board made
some choices for us
• If you were the engineer

laying out the
chip/board from scratch
you would also need to
make these decision.
• Some decisions have

very little wiggle room,
others do.

September 11, 2024 6S965 Fall 2024 17

Schematic of
PYNQ Z2
Board

• The 512 MB DRAM is routed to PS_... Pins of the
Zynq chip.
• Meaning the DRAM is only accessible in the

processing side

September 11, 2024 6S965 Fall 2024 18

Schematic of
PYNQ Z2
Board

• Ethernet, SD card, some
HDMI control portions,
OTG/USB are all also
wired to PS_ pins
• That means those are

not accessible via

September 11, 2024 6S965 Fall 2024 19

Most other things on the board are
actually wired to pins that are part of
the PL (Programmable Logic)

• So pretty much
everything else…
• All these the random

pins, the audio, the
HDMI in/out, buttons,
etc…

September 11, 2024 6S965 Fall 2024 20

List of I/O Peripherals for the PS:

September 11, 2024 6S965 Fall 2024 21

Taken from The Zynq Book

• ”Hard” IP cores exist
on the PS that
perform certain
interfacing
roles/protocols:
• These can be

multiplexed out to
many subsets of
pins

Using them

• In a normal microcontroller, you would simply
activate a module, such as an SPI controller and
connect it to some pins.
• The way the Pynq Z2 board is laid out you can’t

do that.
• In an effort to ensure flexibility for development,

they connected most things and broke out most
general IO from the PL side.

September 11, 2024 6S965 Fall 2024 22

Assigning I/O pins to Hard IP
Peripherals

September 11, 2024 6S965 Fall 2024 23

Here I double-clicked on the

Zynq7 Processing IP Core

CAN and SPI can’t share same pins!

UART is fine

GPIO

Linking to Outside World
• The I/O pins normally

go to the outside
world, but on our
PYNQ board we need
to extend them into
the PL (which has its
own actual physical
output pins)
• Making the GPIO pins

EMIO (Extended)
Multiplexed In/Out)
puts them into the PL
for further
manipulation

September 11, 2024 6S965 Fall 2024 24

Lab 1

September 11, 2024 6S965 Fall 2024 25

We have specified the Zynq PS to route its IO
pins out into the PL fabric and we can do what
we want with them

These represent pins that come
directly from the PS and interface
with DRAM (DDR) and some
hard-wired interfaces

Can then route into
outside world from PL’s

bank of usable pins

Clicking on these things is really just a nice
way to configure internal multiplexers

September 11, 2024 6S965 Fall 2024 26

CAN and SPI can’t share same pins!

UART is fine

GPIO

September 11, 2024 6S965 Fall 2024 27

Taken from the MicroZed Chronicles Blog/Xilinx Docs

PS_pins
Processor

Unconnected Pins
on PYNQ Z2 board

Route to PL IO
which is attached

Other PL-PS
Interconnects

September 11, 2024 6S965 Fall 2024 28

Interface Between PS and PL

• Four Ways to
Transfer Data from
the PS to the PL
• 64 bits of GPIO
• 4 GP AXI Ports
• 4 HP AXI Ports
• 1 ACP Port

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
September 11, 2024 6S965 Fall 2024 29

Just talked about this

GPIO Pins
• General Purpose Input Output

• You can via software (writing
to registers), control and be
controlled by ~54 pins
• These are good for low-speed

control, configuration, reset
signals…things like that.

September 11, 2024 6S965 Fall 2024 30

Interrupts

• The GPIO of the PS can be setup to have
interrupts even when you are routing them
“internally” into the PL Using EMIO.
• This means you can actually have the PL trigger

Python processes to run by setting up the
interrupts as well as some async programming
on the Python side

• https://pynq.readthedocs.io/en/latest/pynq_libraries/interrupt.html
• https://pynq.readthedocs.io/en/latest/overlay_design_methodology/

pynq_and_asyncio.html#pynq-and-asyncio

September 11, 2024 6S965 Fall 2024 31

https://pynq.readthedocs.io/en/latest/pynq_libraries/interrupt.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html
https://pynq.readthedocs.io/en/latest/overlay_design_methodology/pynq_and_asyncio.html

Interface Between PS and PL

• Four Ways to
Transfer Data from
the PS to the PL
• 64 bits of GPIO
• 4 GP AXI Ports
• 4 HP AXI Ports
• 1 ACP Port

https://pynq.readthedocs.io/en/v2.3/overlay_design_methodology/pspl_interface.html
September 11, 2024 6S965 Fall 2024 32

Just talked about this

Master/Slave Terminology
• I’ve been a big fan of moving away from this

terminology.
• For SPI, for example, instead of MOSI/MISO, do

COPI/CIPO (controller/peripheral), etc…
• However, all of the AMD/Xilinx, use

Master/Slave and everything has that M’s and
S’s prepended, appended, etc..
• I’m going to just use their nomenclature so we

don’t have to constantly be mapping between
alternate names.

September 11, 2024 6S965 Fall 2024 33

AXI Ports
• Parallel Busses of two

different flavors that
allow us to pretty
quickly transfer data
between the
Processing System
and the FPGA section
using shared registers
and some other stuff

September 11, 2024 6S965 Fall 2024 34

ACP Port
• Accelerator

Coherency Port
• 64-bit wide bus that

can transfer data from
very quickly from PL
fabric

September 11, 2024 6S965 Fall 2024 35

AXI Everywhere

September 11, 2024 6S965 Fall 2024 36

• There’s lot of neat IP we can work
with….if you wanted to implement a
hardware accelerated Fast Fourier
Transform you totally can…

AXI

AXI
AXI

AXI

Advanced Microcontroller Bus
Architecture (AMBA)
• Version 1 released in 1996 by ARM
• 2003 saw release of Advanced eXtensible

Interface (AXI3)
• 2011 saw release of AXI4
• There are no royalties affiliated with AMBA/AXI so

they’re used a lot.
• It is a general, flexible, and relatively free*

communication protocol for development

https://en.wikipedia.org/wiki/Advanced_Microcontroller_Bus_Architectu
re September 11, 2024 6S965 Fall 2024 37

Three General Flavors of AXI4
• AXI4 (Full AXI): For memory-mapped links.

Provides highest performance.
1. Address is supplied
2. Then a data burst transfer of up to 256 data words

• AXI4 Lite: A memory-mapped simplified link
supporting only one data transfer per connection
(no bursts). (also restricted to 32 bit addr/data)

1. Address is supplied
2. One data transfer

• AXI4 Stream: Meant high-speed streaming data
• Can do burst transfers of unrestricted size
• No addressing
• Meant to stream data from one device to another

quickly on its own direct connection

September 11, 2024 6S965 Fall 2024 38

From the Zynq Book

Memory Map?
• Memory mapped means an address is specified

within the transaction by the master (read or
write). This corresponds to an address in the
system memory space.
• For AXI4-Lite, which supports a single data

transfer per transaction, data is then written to,
or read from, the specified address
• For Full-AXI4 sending a burst, the address

specified is for the first data word to be
transferred, and the slave must then calculate
the addresses for the data words that follow.
• AXI-Stream has no addressing so no memory

mapping

September 11, 2024 6S965 Fall 2024 39

AXI Idea
• Communication between two devices (Master and

Slave) is carried out over multiple assigned
“channels”
• Each channel has its own collection of wires which

convey data, signals, etc.
• The channels can work somewhat independently,

however in practice what one channel does is often
the result of what a different one did previously
• Five Types of Channels (may have all or a subset):

• Read Address: ”AR” channel
• Read Data: “R” channel
• Write Address: “AW” channel
• Write Data: “W” channel
• Write Response: “B” channel

September 11, 2024 6S965 Fall 2024 40

Read Wiring

September 11, 2024 6S965 Fall 2024 41

Generalized collection of wires
“Channel”. Will contain numerous
wires

Master initiates communication, Slave responds

Write Wiring

September 11, 2024 6S965 Fall 2024 42

Within Each Channel are wires:

• These wires serve specific purposes.
• Some are universal to all channels, and others

are specific

September 11, 2024 6S965 Fall 2024 43

AXI Clock

• Everything in system will run off of AXI clock
usually called ACLK in documentation
• No combinatorial paths between inputs and

outputs. Everything must be registered.
• All signals are sampled on rising edge
• AXI modules should also have Reset pins. AXI

work ACTIVE LOW so the Reset pin is usually
called ARSTn or ARESETn

September 11, 2024 6S965 Fall 2024 44

M S
ACLK

From clock source

Valid and Ready

• All of AXI uses the same handshake procedure:
• The source of a data generates a VALID signal
• The destination generates a READY signal
• Transfer of data only occurs when both are high
• Both Master and Slave Devices can therefore

control the flow of their data as needed

September 11, 2024 6S965 Fall 2024 45

M S
ACLK

From clock source

VALID

READY

Everything Else…

• Everything else is information and depends on what
is needed in situation. Could be:
• Address
• Data
• Other specialized wires like:

• STRB (used to specify which bytes in current data step are valid,
sent by Master along with data payload to Slave)

• RESP (sort of like a status
• LAST (sent to indicate the final data clock cycle of data in a burst)

September 11, 2024 6S965 Fall 2024 46

M S
ACLK

From clock source

VALID

READY

<-STUFF->

Each channel has its own subset of
“stuff” that goes along with those
core signals shared by all

September 11, 2024 6S965 Fall 2024 47

Payload

Supplemental
Stuff

CORE

For example, the Write Data Channel (”W” channel)

The Read Data Channel:

September 11, 2024 6S965 Fall 2024 48

CORE

Payload

Supplement
al Stuff

September 11, 2024 6S965 Fall 2024 49

Read Address Chanel

CORE

Payload

Write Response

September 11, 2024 6S965 Fall 2024 50

CORE

Payload

September 11, 2024 6S965 Fall 2024 51

CORE

Payload

Write Address Channel

Generalized Transaction

• All Channel Interactions
follow same high-level
structure

September 11, 2024 6S965 Fall 2024 52

Sending One ”beat” of data (one clock-cycle of data)

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

Generalized Transaction

• All Channel Interactions
follow same high-level
structure

September 11, 2024 6S965 Fall 2024 53

Sending One ”beat” of data (one clock-cycle of data)

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

Generalized Transaction

• All Channel Interactions
follow same high-level
structure

September 11, 2024 6S965 Fall 2024 54

Sending One ”beat” of data (one clock-cycle of data)

Keep in mind this
could be 64 parallel
wires of 1’s and 0’s of
info or 8 bytes for
example…
Or it could be
something else

Other Things to Keep in Mind

• the VALID signal of the AXI interface sending
information must not be dependent on the
READY signal of the AXI interface receiving that
information
• an AXI interface that is receiving information can

wait until it detects a VALID signal before it
asserts its corresponding READY signal.
• Fail to Follow these rules and could have devices

wait infinitely.
• Like when two people keep going “no, after you at a

door”

September 11, 2024 6S965 Fall 2024 55

And Up to All Five AXI channels
can come from one device
• While operating independently at their individual

transaction level, they can then report to the
larger module to provide overall interfaces
• Example:
• The slave device receives address on write channel

address
• The write data channel then becomes active and

knows where to point incoming data
• The response channel then opens and does its thing
• And so on

• Hierarchy of Control/Design

September 11, 2024 6S965 Fall 2024 56

And you Can Use AXI to Interface
with Tons of things!

September 11, 2024 6S965 Fall 2024 57

Connecting a FIR (from a Xilinx IP) to the FFT module

And you Can Use AXI to Interface
with Tons of things!

September 11, 2024 6S965 Fall 2024 58

Creating a AXI-controlled joe6 module that I can then call from Python

And you Can Use AXI to Interface
with Tons of things!

September 11, 2024 6S965 Fall 2024 59

A running-average hardware
accelerator Using AXI Stream for
DMA (Direct Memory Access)

The AXI Interfaces on the Zynq Enable
PS to PL communication effectively

September 11, 2024 6S965 Fall 2024 60

Master/Slave refers to who controls/initiates comms on that bus that bus

From Zynq Book

General Purpose/Performance
“GP” AXI Ports
• 32 bits in size
• Maximum flexibility
• Allow register access from:
• PS to PL
• PL to PS

September 11, 2024 6S965 Fall 2024 61

High Performance “HP” AXI Ports
• Can be 32 or 64 bits wide (or variable between, but

avoid)
• Maximum bandwidth access to external memory and

on-chip-memory (OCM)
• When use all four HP ports at 64 bits, you can outpace

ability to write to DDR and OCM bandwidths!
• HP Ports : 4 * 64 bits * 150 MHz * 2 = 9.6 GByte/sec
• external DDR: 1 * 32 bits * 1066 MHz * 2 = 4.3 GByte/sec
• OCM : 64 bits * 222 MHz * 2 = 3.5 GByte/sec

• Optimized for large burst lengths

September 11, 2024 6S965 Fall 2024 62

Taken from ECE699 lec 6 notes gm.edu

How it is Laid Out

September 11, 2024 6S965 Fall 2024 63

From The Zynq Book

Complexity
Full-AXI4

AXI-LITE

AXI-STREAM

September 11, 2024 6S965 Fall 2024 64

• In terms of wires and options, Full-
AXI is the most complex

• AXI-LITE has a lot less options
(single data beat so all the
supplemental stuff that specifies
burst characteristics gets skipped)

• AXI-STREAM has even
less…basically a high-speed write
channel (Few options), but often
needs that extra TLAST signal

Sources

• “AMBA® AXITM and ACETM Protocol Specification”, ARM 2011
• “The Zynq Book”, L.H. Crockett, R.A. Elliot, M.A. Enderwitz, and

R.W. Stewart, University of Glasgow

• “Building Zynq Accelerators with Vivado High Level Synthesis”
Xilinx Technical Note

• Some material from ECE699 Spring 2016
https://ece.gmu.edu/coursewebpages/ECE/ECE699_SW_HW/S1
6/

September 11, 2024 6S965 Fall 2024 65

This is the thing right here…the

spec sheet/manual is

surprisingly good!!

Crack open the AXI spec sheet with a few data
sheets for some Xilinx IP cores (like the
CORDIC, FFT, etc…) and you should be able to
start making sense of it.

