
6.S965
Digital Systems Laboratory II

Lecture 2:
Verilog, Simulation, and Cocotb

September 9, 2024 6.S965 Fall 2024 1

Administrative

• Week 1’s material is out. Some students
actually already go through it, which means it is
doable, albeit poorly written.
• Lab stations 19 through 30 have user accounts,

Pynq boards set up for you.
• Reach out for help on Piazza
• I’ve thrown some office hours in the calendar for

the week too.

September 9, 2024 6.S965 Fall 2024 2

How Does Verilog Actually Work?

• We spent all of 6.205 using Verilog and
SystemVerilog to write things, but we never really
spent any time thinking about how it actually
simulates
• If we’re going to spend a lot of time learning how

to thinking about simulation at least quasi-
formally we should at least.

September 9, 2024 6.S965 Fall 2024 3

Let’s look at a relatively simple
chunk of code
• Here’s some simple

SystemVerilog:
• It has a variety of

things being done
here

September 9, 2024 6.S965 Fall 2024 4

`timescale 1ns/1ps

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Compile and Run

• Previously in 6.111/6.205 if we wanted to
compile our design with something like
icarusVerilog we’d do:

• This would then produce a file we would run with
vvp (Verilog Virtual Processor) like so:

• Simulation runs…prints, waveforms generated,
etc…

September 9, 2024 6.S965 Fall 2024 5

iverilog -g2012 -o example.out example_tb.sv example.sv

vvp example.out

The Fundamental Problem

• When we design hardware we’re designing
systems that work “in parallel” or “at the same
time”
• But when we simulate we can’t actually do that.

Simulation is really just a program that runs one
instruction after the other.
• As a result we need to fake the “at-the-same-

time” thing.

September 9, 2024 6.S965 Fall 2024 6

The Fundamental Problem II

• What happens if two things are supposed to
happen at the same time?
• Which one will get simulated first will be non-

deterministic
• That may or may not matter depending on the

design.

September 9, 2024 6.S965 Fall 2024 7

Verilog Simulation

• A standard Verilog engine runs through a series of
time slots.
• Within each time slot are regions in which different

evaluations and updates are made

• The size of the simulation timeslot will be based off
the timescale specified. For example:
• `timescale 1ns/1ps
• Means we have basically 1ps time step size

September 9, 2024 6.S965 Fall 2024 8
“Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”
Clifford E. Cummings Sunburst Design, Inc.

Timeslot 0 Timeslot 1 Timeslot n…

The Verilog Simulation Time Step

• Within each time
slot are regions in
which different
evaluations and
updates are
made
• They go through a

specific order

September 9, 2024 6.S965 Fall 2024 9

“Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”
Clifford E. Cummings Sunburst Design, Inc.

Three Main Regions

• Active:
• Blocking Assignments
• RHS of non-blocking assignments
• Continuous assignments

• Inactive Region:
• “#0 Blocking Assignments” (ignore)

• Non-Blocking Region:
• LHS updating of non-blocking assignments

September 9, 2024 6.S965 Fall 2024 10

https://medium.com/@vritvlsi/verilog-event-scheduler-88e5e18e4afd

Go Back Triggers
• The simulation does not go

necessarily go through each
stage once
• It monitors the changes to

things. If a change in one region
means another change should
happen, different stages may be
restart

September 9, 2024 6.S965 Fall 2024 11

*NBA = Non-blocking Assignments

Active

Inactive

NBA

Return to the
code…
• Here’s some simple

SystemVerilog:
• It has a variety of

things being done
here

September 9, 2024 6.S965 Fall 2024 12

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Active Region

• Fully do (in any order) non-deterministic:
• assign a = b + c;
• b = c + d;
• d=e+2;

• Evaluate RHS of:
• c <= e+2;

September 9, 2024 6.S965 Fall 2024 13

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

d updated and b updated. Because
other lines use them in their RHS,
the simulator will need to go back
through again

Active Region II

• Redo (in any order) non-deterministic:
• assign a = b + c;
• b = c + d;

• Evaluate RHS of:
• c <= e+2;

September 9, 2024 6.S965 Fall 2024 14

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

b updated. Depending on the order
these lines were evaluated in, the
first one might need to run again
given the new value of b

Active Region III

• Redo (in any order) non-deterministic:
• assign a = b + c;

• Evaluate RHS of:
• c <= e+2;

September 9, 2024 6.S965 Fall 2024 15

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Shouldn’t be anything left dangling

InActive Region

• Just skip this…is a weird delayed region
that people use to force order on
assignments
• Kinda like !important in css if anybody

does webdev

September 9, 2024 6.S965 Fall 2024 16

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

NBA Region

• Transfer result of e+2 to c

September 9, 2024 6.S965 Fall 2024 17

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

c updated. Because c was used in
the assignments of b and a, we will
return back to the Active region to
recalculate

Active Region IV

• Fully do (in any order) non-deterministic:
• assign a = b + c;
• b = c + d;

September 9, 2024 6.S965 Fall 2024 18

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

b updated. Depending on the order
these lines were evaluated in, the
first one might need to run again
given the new value of b

Active Region V

• Redo (in any order) non-deterministic:
• assign a = b + c;

• Evaluate RHS of:
• c <= e+2;

September 9, 2024 6.S965 Fall 2024 19

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Shouldn’t be anything left dangling

InActive Region II

• Just skip this…is a weird delayed region
that people use to force order on
assignments
• Kinda like !important in css if anybody

does webdev

September 9, 2024 6.S965 Fall 2024 20

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

NBA Region II
• Nothing new this time through

September 9, 2024 6.S965 Fall 2024 21

Active

Inactive

NBA

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
 b = c + d;
end

always_comb begin
 d=e+2;
end

always_ff @(posedge clk)begin
 c <= e+2;
end

Non-Determinism
• Blocking Lines within

an always block will be
evaluated in order
• Blocking Lines across

multiple always blocks
will be analyzed in a
non-deterministic
fashion
• Might require iterations

in stages

September 9, 2024 6.S965 Fall 2024 22

logic clk;
logic [1:0] a,b,c,d,e;

//fine:
always_comb begin
 b = c + d;
 e = 1+b;
end

//Alternative:
//annoying but will resolve
always_comb begin
 b = c + d;
end

always_comb begin
 e = 1+b;
end

Non-Determinism
• Very possible to have

conflicting
assignments across
multiple blocks
• Non-deterministic

which will “win”

September 9, 2024 6.S965 Fall 2024 23

logic clk;
logic [1:0] a,b,c,d,e;

//bad but will resolve:
always_comb begin
 b = c + d;
 b = 1 + e;
end

//Alternative:
//bad...non-deterministic
always_comb begin
 b = c + d;
end

always_comb begin
 b = 1 + e;
end

Avoid Issues?

• In Verilog, there are ways to end up in non-
determism hell when you have very complicated
designs and are lazy with blocking/non-blocking
• The language requires you to follow rules in order

for things to work properly.
• Good reading: “Nonblocking Assignments in

Verilog Synthesis, Coding Styles That Kill!” by
Clifford E. Cummings Sunburst Design, Inc.

September 9, 2024 6.S965 Fall 2024 24

Interstingly…VHDL

• Interestingly, VHDL largely avoids the issues with
non-determinism in its design largely through its
use of syntax and how its simulator does
updates (no need to iterate back since it forces
you to specify causality even when doing
combinational logic)

September 9, 2024 6.S965 Fall 2024 25

The Verilog Simulation Time Step

• Within each time
slot are regions in
which different
evaluations and
updates are
made
• They go through a

specific order
and may iterate
until values have
“settled”

September 9, 2024 6.S965 Fall 2024 26

“Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”
Clifford E. Cummings Sunburst Design, Inc.

SystemVerilog to the Rescue

• Whereas Verilog has like four-
ish stages in a simulation
step, SystemVerilog added a
ton more on top
• Just like language is superset

of Verilog, so is simulation
engine. New:
• Preponed
• Observed region
• Reactive region

September 9, 2024 6.S965 Fall 2024 27

The SystemVerilog Simulation
Time Step
• Just like

language is a
superset of
Verilog
• Simulation in

System

September 9, 2024 6.S965 Fall 2024 28

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

System Verilog Simulation
• Still basic

Active/Inactive/NB
A region,
• But additional

regions added in
for more reliable
simulation and
control interfacing

September 9, 2024 6.S965 Fall 2024 29

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

System Verilog Simulation
• Active/Inactive/NBA region meant

for the hardware under simulation
• Re-active/Re-inactive/Re-NBA

region meant for simulation/testing
code. A testbench will set inputs in
the reactive region, for example
• Separating the two was an attempt

at avoiding bugs that showed up
when mixing simulation with
synthesis Verilog

September 9, 2024 6.S965 Fall 2024 30

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

SV Time Slot Expanded Out
• 17-total stages

in a single time
slot now

September 9, 2024 6.S965 Fall 2024 31

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

PLI regions?
• Sprinkled

throughout are
PLI regions
• These are

actually regions
to allow you to
interface with
the simulation

September 9, 2024 6.S965 Fall 2024 32

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
 Clifford E. Cummings Arturo Salz

Program Language Interface (PLI)

• Original set of hooks built into the Verilog spec
that would allow you to read out data from the
Verilog simulation engine to C program
• You could also use them to inject inputs into

Verilog
• In the original Verilog standard, the PLI

integration was mixed in with the simulation part
which could lead to bugs.

September 9, 2024 6.S965 Fall 2024 33

PLI Died

• PLI is deprecated and was replaced with the
Verilog Procedural Interface or VPI
• You’ll still hear PLI and VPI used interchangeably,

but VPI is kinda the newer term.
• VPI is sometimes called “PLI 2.0”

September 9, 2024 6.S965 Fall 2024 34

VPI vs. DPI

• The VPI allows a set of C functions that can be
used to hook into various points in the
simulation timesteps (basically at those PLI
points)
• SystemVerilog has its own thing which is actually

called a Direct Programming Interface (DPI)
• DPI is higher level and apparently nicer, but I

have no personal experience with it.

September 9, 2024 6.S965 Fall 2024 35

https://www.asic-world.com/systemverilog/dpi1.html

Comparing and
Contrasting…

• It is complicated.
• I’ve also seen VPI backronymed to Verification

Peripheral Interface (Verilator)
• The big thing I want to point out here is most Verilog

simulation engines (and VHDL too) have hooks into
them that can allow C or other languages to interface
with them.

September 9, 2024 6.S965 Fall 2024 36

The Point of PLI/VPI/DPI

• All of these simulation entry points were created
to provide ways to automate simulation.
• But also they found use in allowing you to

interface non-HDL models of very complicated
things:
• Memory
• CPU’s
• Other bit-accurate models

• Key component of the developing Verification
field

September 9, 2024 6.S965 Fall 2024 37

Builiding Up

• About ten years ago, some folks started to wrap
up the VPI C material with Python and that ended
up evolving into what Cocotb is today

September 9, 2024 6.S965 Fall 2024 38

CoCoTb
Python for Simulation

September 9, 2024 6.S965 Fall 2024 39

Two Big Parts to Cocotb

• It takes advantage of the Verilog Procedural
Interface
• A built-in interface to the simulator’s runtime

environment that allows manipulation within the
environment by outside forces

• Takes advantage of Python’s asynchronous
programming capabilities to spawn many
parallel running processes.
• Very nice…can spawn off lots of tasks to take care of

different jobs and not worry about having to task
switch between tracking them.

September 9, 2024 6.S965 Fall 2024 40

Verilog Procedural Interface (VPI)

• Previously in 6.111/6.205 if we wanted to
compile our design with something like
icarusVerilog we’d do:

• This would then produce a file we would run with
vvp (Verilog Virtual Processor) like so:

• The VPI is part of the VVP

September 9, 2024 6.S965 Fall 2024 41

iverilog -g2012 -o example.out example_tb.sv example.sv

vvp example.out

Does Vivado Support VPI?

• No
• Vivado does support ”DPI” though

• So that means Cocotb does not work with Vivado
(only iVerilog and Verilator)

September 9, 2024 6.S965 Fall 2024 42

https://docs.amd.com/r/en-US/ug900-vivado-logic-simulation/Direct-Programming-Interface-DPI-in-Vivado-Simulator

However…An attempt to link
Cocotb to
• There’s an open project on github of someone

trying to connect Cocotb to Vivado’s DPI:*:
• https://github.com/themperek/cocotb-vivado/tree/main

• This would certainly be nice because it would let
us simulate and work with locked IP within
Vivado.
• If somebody wants to make this their final

project that’d be sweet.

September 9, 2024 6.S965 Fall 2024 43

*doesn’t look touched in the half-year…

https://github.com/themperek/cocotb-vivado/tree/main

What can you do through the VPI
that Cocotb builds upon?
• Basically anything you want.
• It gives you full access to all signals within the

simulated environment
• It also has built a lot of utility logic that will

“watch for events”

September 9, 2024 6.S965 Fall 2024 44

Documentation is Pretty Good…

September 9, 2024 6.S965 Fall 2024 45

There’s decent reference cards,
etc…

September 9, 2024 6.S965 Fall 2024 46

https://docs.cocotb.org/en/stable/refcard.html

Demo/Live-Code

• Let’s investigate the simple counter from Week
1’s Lab.

September 9, 2024 6.S965 Fall 2024 47

