6.5965
Digital Systems Laboratory |l

Lecture 2:
Verilog, Simulation, and Cocotb

eeeeeeeeeeeeeee

Administrative

* Week 1’s material is out. Some students
actually already go through it, which means itis
doable, albeit poorly written.

* Lab stations 19 through 30 have user accounts,
Pynq boards set up for you.

* Reach out for help on Piazza

e I’ve thrown some office hours in the calendar for
the week too.

September 9, 2024 6.S965 Fall 2024

How Does Verilog Actually Work?

* We spent all of 6.205 using Verilog and
SystemVerilog to write things, but we never really
spent any time thinking about how it actually
simulates

* If we’re going to spend a lot of time learning how
to thinking about simulation at least quasi-
formally we should at least.

September 9, 2024 6.S965 Fall 2024 3

Let’s look at a relatively simple

Chunk Of COde “timescale 1ns/1ps

* Here’s some simple {og::Lc (E}ké] o
SystemVerilog: ogic [1:0] a,b,c,d,e;

* It has a variety of assign a = b + ¢

things being done always_comb begin
here b =c+ d;
end

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

September 9, 2024 6.596p Fall 2024 4

Compile and Run

* Previously in 6.111/6.205 if we wanted to
compile our design with something like
icarusVerilog we’d do:

iverilog —g2012 —-o example.out example_tb.sv example.sv

* This would then produce a file we would run with
vvp (Verilog Virtual Processor) like so:

vvp example.out

* Simulation runs...prints, waveforms generated,
etc...

September 9, 2024 6.S965 Fall 2024 5

The Fundamental Problem

* When we design hardware we’re designing

systems that work “in parallel” or “at the same
time”

* But when we simulate we can’t actually do that.

Simulation is really just a program that runs one
Instruction after the other.

e As aresult we need to fake the “at-the-same-
time” thing.

September 9, 2024 6.S965 Fall 2024

The Fundamental Problem ||

* What happens if two things are supposed to
happen at the same time?

* Which one will get simulated first will be non-
deterministic

* That may or may not matter depending on the
design.

September 9, 2024 6.S965 Fall 2024

Verilog Simulation

* A standard Verilog engine runs through a series of

time slots.

* Within each time slot are regions in which different
evaluations and updates are made

Timeslot O

4)

-

- J

\ 4

.

Timeslot 1

~

—> 000

J

 ——

-

.

Timeslotn

* The size of the simulation timeslot will be based off
the timescale specified. For example:

« timescale 1ns/1ps
* Means we have basically 1ps time step size

“Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”
6.5965 Fall 2024

Cliggrﬁltg.n(%gréw%?%%wburst Design, Inc.

The Verilog Simulation Time Step

* Within each time
slot are regions in
which different
evaluations and
updates are
made

* They go through a
specific order

From previous

time slot

Updates to NBAs
can re-trigger more
active events

A Verilog-2001 time
slot is divided into a set
of 4 ordered regions

New name for the

monitor events queue \l

[Current time slot | Any
A order
o
Blocking assignmentsl
>
d /4 Evaluate RHS of NBAs]|
| —> 4
< Active P/ [Continuous assignments
\ﬁ $display command|
\ Eval inputs & update
NBA I outputs of primitives
\ #0 blocking assignments |
|Update LHS of NBAs |
How can we simplify this queue?
Guideline #8: do not use #0 delays
[$monitor command|
$strobe command|
x | N To next
Ensiponed time slot

“Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”

Clifford E. Cummings Sunburst Design, Inc.
September 9, 2024

6.5965 Fall 2024

;['<\ } SSIGAIMENTS
A CT’VEE RHS OF Non-Blockln

i I A
Three Main Regions | ———
| zhcnee |
* Active: T e AT
* Blocking Assignments ; ——

* RHS of non-blocking assignments T .o <— UpDann s

. . - Rlotkml Lus oF
* Continuous assignments Deted L6 cinse e
* Inactive Region: e M
‘« : : » (: ; :ge&téb ijﬂf“‘ :
* “#0 Blocking Assignments” (ignore l S FuToe e

* Non-Blocking Region:

* LHS updating of non-blocking assignments

https://medium.com/@uvritvlsi/verilog-event-scheduler-88e5e18e4afd

September 9, 2024 6.5965 Fall 2024 10

Go Back Triggers g A
> Active
* The simulation does not go N Y
necessarily go through each ‘ P N
stage once
. Inactive
* |t monitors the changes to
things. If a change in one region |~ o
means another change should e ™
happen, different stages may be NBA
restart
- J

*NBA = Non-blocking Assignments

September 9, 2024 6.S965 Fall 2024

11

Return to the
code...

* Here’s some simple
SystemVerilog:

* |t has a variety of
things being done
here

September 9, 2024

logic clk;

logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
b =c+ d;

end

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

6.5965 Fall 2024 12

Active Region

« Fully do (in any order) non-deterministic:

« assign a = b + c;
* b=c+ d;
- d=e+2;

« Evaluate RHS of:

« C <= e+2;

d updated and b updated. Because
other lines use them in their RHS,
the simulator will need to go back
through again

September 9, 2024 6.5965 Fall 2024

» Active
.
< p 1
Inactive
_
< p 1
NBA
.
logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
b=c+ d;
end

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

13

Active Region |l

« Redo (in any order) non-deterministic:
 assign a = b + c;
- b=~c+ d;

« Evaluate RHS of:

« C <= e+2;

» Active
_
— |
Inactive
_
—]
NBA
_

b updated. Depending on the order
these lines were evaluated in, the
first one might need to run again
given the new value of b

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
b=c+ d;
end

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

September 9, 2024 6.5965 Fall 2024

14

Active Region |l

« Redo (in any order) non-deterministic:

e assign a = b + c;

« Evaluate RHS of:

« C <= e+2;

Shouldn’t be anything left dangling

September 9, 2024

6.5965 Fall 2024

» Active
.
< p 1
Inactive
_
< p 1
NBA
.
logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
b=c+ d;
end

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

15

InActive Region

* Just skip this...is a weird delayed region

that people use to force order on
assignments

* Kinda like limportant in css if anybody

does webdev

September 9, 2024 6.S965 Fall 2024

Active
.
) (
Inactive
&
) 4
NBA
.
logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
b=c+d;
end

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

16

» Active
NBA Region —
4
Inactive
« Transfer result of e+2 to C —
-
NBA
.
. logic clk;
c updated. Because c was used in logic [1:0] a,b,c,d,e;
the assignments of b and a, we will assign a = b + ¢;
return back to the Active region to always_comb begin
recalculate s erd

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

September 9, 2024 6.5965 Fall 2024 17

Active Region |V

« Fully do (in any order) non-deterministic:

« assign a = b + c;
* b=c+ d;

b updated. Depending on the order
these lines were evaluated in, the
first one might need to run again
given the new value of b

September 9, 2024 6.5965 Fall 2024

» Active
_
— |
Inactive
_
—]
NBA
_

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
b=c+ d;
end

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

18

Active Region V

« Redo (in any order) non-deterministic:

e assign a = b + c;

« Evaluate RHS of:

« C <= e+2;

Shouldn’t be anything left dangling

September 9, 2024

6.5965 Fall 2024

» Active
.
< p 1
Inactive
_
< p 1
NBA
.
logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
b=c+ d;
end

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

19

InActive Region ||

* Just skip this...is a weird delayed region

that people use to force order on
assignments

* Kinda like limportant in css if anybody

does webdev

September 9, 2024 6.S965 Fall 2024

Active
.
) (
Inactive
&
) 4
NBA
.
logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
b=c+d;
end

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

20

» Active
NBA Region Il —
Inactive
* Nothing new this time through — {
(NBA
N

logic clk;
logic [1:0] a,b,c,d,e;

assign a = b + c;

always_comb begin
b=c+ d;
end

always_comb begin
d=e+2;
end

always_ff @(posedge clk)begin
C <= e+2;
end

September 9, 2024 6.5965 Fall 2024 21

Non-Determinism

* Blocking Lines within
an always block will be
evaluated in order

* Blocking Lines across
multiple always blocks
will be analyzed in a
non-deterministic
fashion

* Might require iterations
In stages

logic clk;
logic [1:0] a,b,c,d,e;

always_comb begin

b =c+ d;
e = 1+b;
end

always_comb begin
b =c+d;
end

always_comb begin
e = 1+b;
end

September 9, 2024 6.5965 Fall 2024

22

Non-Determinism

* Very possible to have
conflicting
assignments across
multiple blocks

* Non-deterministic
which will “win”

September 9, 2024

logic clk;
logic [1:0] a,b,c,d,e;

always_comb begin

b =c+ d;
b=14+ e;
end

always_comb begin
b =c+d;
end

always_comb begin
b=1+ e;
end

6.5965 Fall 2024

Avoid Issues?

* In Verilog, there are ways to end up in non-
determism hell when you have very complicated
designs and are lazy with blocking/non-blocking

* The language requires you to follow rules in order
for things to work properly.

* Good reading: “Nonblocking Assignments in
Verilog Synthesis, Coding Styles That Kill!” by
Clifford E. Cummings Sunburst Design, Inc.

September 9, 2024 6.S965 Fall 2024 24

Interstingly...VHDL

* Interestingly, VHDL largely avoids the issues with
non-determinism in its design largely through its
use of syntax and how its simulator does
updates (no need to iterate back since it forces
you to specify causality even when doing
combinational logic)

September 9, 2024 6.S965 Fall 2024 25

The Verilog Simulation Time Step

 Within each time

[Current time slot | Any

order

slot are regions in oo "

which different
evaluations and TpastewionEs

can re-trigger more

active events

updates are .y

Blocking assignmentsl
L Evaluate RHS of NBAs |

[Continuous assignments

{$display command]|

/0

NBA

Eval inputs & update

made o
* They go through a “siouearegon

specific order

and may iterate New name for the

outputs of primitives
\ #0 blocking assignments |

|Update LHS of NBAs |

How can we simplify this queue?
Guideline #8: do not use #0 delays

v

[$monitor command|

/5 strobe command|
To next

u nti l Va lu e S h ave monitor events queue
“settled”

Postponed

I time slot

“Nonblocking Assignments in Verilog Synthesis, Coding Styles That Kill!”
Clifford E. Cummings Sunburst Design, Inc.

September 9, 2024 6.5965 Fall 2024

26

SystemVerilog to the Rescue

* Whereas Verilog has like four;omp

revious time slot

Ish stages in a simulation
step, SystemVerilog added a
ton more on top

* Just like language is superset
of Verilog, so is simulation
engine. New:

* Preponed
* Observed region
* Reactive region

September 9, 2024 6.S965 Fall 2024

Preponed

To next time slot
Postponed -

www.theoctetinstitute.com

27

The SystemVerilog Simulation
Time Step

Region for new
SV commands

A |

. . I
° J l k From previous
U St I e time slot 1 ’ I Proponed l SystemVerilog reduces
r———=—=-- Po——— races between RTL models
gh . and HVL testbenches!

language is a e
superset of
Verilog pype s

Active
v

1= |
:] Inactive | :—<
I le—] | :

Active region
set

Evaluate concurrent

[\.

|
1
1
|

l - //| assertions

* Simulation in e
P r :-—ﬂ l‘ I [Reactive region
egions for new > . r | t
SySte| N SV commands [T 1[* Reactive | I I e
v
\q\\ R - L 1 Execute
4—{ e-Inactive | < . .
1 \‘ = I | | pass/fail as;lem;)n c(c;de
Update t ock code
|EEE1800-2005 : Re-NEA | 1 ==

Standard S I [— |
|

v

| Postponed |-—l—> To Hoxt
. time slot

Figure 5 - SystemVerilog-2005 event regions with PLI regions omitted

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
Clifford E. Cummings Arturo Salz

September 9, 2024 6.5965 Fall 2024 28

System Verilog Simulation
 Still basic \m crizragon dagan)

Active/lnactive/NB

II Re-NBA

v | /
Postponed 1

Figure 6 - Simplified event regions diagram

simulation and
control interfacing

| |
| . |
I v I "
Active | |
A region, R
- Vol Nea] |! | nea ||
() But addltlonal : @ : :::> FeedbackloopsarestillI
. . I | l - |/ there - but not shown
reglons added In : ReaZtive : :::Iﬁ::::/
for more reliable | | (o) | | Reed)
| |
I
|

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
Clifford E. Cummings Arturo Salz

September 9, 2024 6.5965 Fall 2024 29

System Verilog Simulation

* Active/lnactive/NBA region meant
for the hardware under simulation

* Re-active/Re-inactive/Re-NBA
region meant for simulation/testing
code. Atestbench will setinputsin
the reactive region, for example

* Separating the two was an attempt
at avoiding bugs that showed up
when mixing simulation with
synthesis Verilog

“SystemVerilog Event Regions, Race Avoidance & Guidelines”

Clifford E. Cummings Arturo Salz
September 9, 2024 6.5965 Fall 2024 30

SV Time Slot Expanded Out

* 17-total stages
In a single time
slot now

From previous
time slot

Update to
|IEEE1800-2005
Standard

o

A time slot is

17 ordered regions
(9 Verilog & 8 PLI)

divided into a set of

Old Verilog
event region

New SystemVerilog
event region

New SV
regions for PLI
commands

|Current time slot |

Region for new
SV commands

Preponed I

PLI Pre-active

1
= —

|
4_|

Blocking assignmentsl

Ac;i ve E’E

Inactive |

Observed

PLI

|
|

Post-observed —————
Reactive I‘\
h J
Rednactive | |
= PLI
Re-NBA

T

Evaluate RHS of NBAs |

1

Continuous assignments |

\|\1 $display command |

7

Eval inputs & update
outputs of primitives

#0 blocking assignmentsl

Update LHS of NBAs |

Regions for new
SV commands

77

Postponed

% $strobe command |
|

|$monitor command |

To next
time slot

Figure 4 - SystemVerilog-2005 event regions with PLI regions shown

“SystemVerilog Event Regions, Race Avoidance & Guidelines”
Clifford E. Cummings Arturo Salz

September 9, 2024

6.5965 Fall 2024

31

PLI regions?

* Sprinkled
throughout are
PLI regions

* These are
actually regions
to allow you to
interface with
the simulation

From previous PLI -
time slot >

Update to
|IEEE1800-2005
Standard

A time slot is
divided into a set of
17 ordered regions
(9 Verilog & 8 PLI)

Old Verilog
event region

New SystemVerilog
event region

New SV
regions for PLI
commands

|Current time slot |

Region for new
SV commands

Preponed I
Pre-active

|
///%/I Blocking assignments |

Active

<—| Inactive |
h J
< P L_IJ '
NBA
Post-NBA

'PLI| _Pre-observed
Observed

[PLI !‘_Post-obseng_d_/‘\ >

<—| Reactive fe—o
v
Re-lnactlve I‘/

<—{ Re-N BA

Post-Re-NBA _ | P LI

»

— | Evaluate RHS of NBAs |
| T{Continuous assignments |

$display command |

Eval inputs & update
outputs of primitives

#0 blocking assignmentsl

7,27

|Update LHS of NBAs |

Regions for new
SV commands

-w-

I |$monltor command |

/ $strobe command |

PLI|-_Pre-Postpone
| Postponed

=

To next
time slot

Figure 4 - SystemVerilog-2005 event regions with PLI regions shown

“SystemVerilog Event Regions, Race Avoidance & Guidelines”

Clifford E. Cummings Arturo Salz
September 9, 2024

6.5965 Fall 2024

32

Program Language Interface (PLI)

* Original set of hooks built into the Verilog spec
that would allow you to read out data from the
Verilog simulation engine to C program

* You could also use them to inject inputs into
Verilog

* In the original Verilog standard, the PLI
Integration was mixed in with the simulation part
which could lead to bugs.

September 9, 2024 6.S965 Fall 2024 33

PLI Died

* PLIl is deprecated and was replaced with the
Verilog Procedural Interface or VPI

* You’ll still hear PLI and VPl used interchangeably,
but VPl is kinda the newer term.

* VPl is sometimes called “PLI 2.0”

September 9, 2024 6.S965 Fall 2024 34

VPl vs. DPI

* The VPI allows a set of C functions that can be
used to hook into various points in the
simulation timesteps (basically at those PLI
points)

* SystemVerilog has its own thing which is actually
called a Direct Programming Interface (DPI)

* DPlis higher level and apparently nicer, but |
have no personal experience with it.

https://www.asic-world.com/systemverilog/dpi1.html

September 9, 2024 6.S965 Fall 2024 35

C O m p a ri n g a n d The Verilog PLI Is Dead (maybe)

Long Live The SystemVerilog DPI!

. Stuart Sutherland
O I I ra S I I l Sutherland HDL, Inc.
® 00 stuart@sutherland-hdl.com

ABSTRACT

In old England, when one monarch died a successor immediately took the throne. Hence the
chant, “The king is dead—long live the king!”. The Verilog Programming Language Interface
(PLI) appears to be undergoing a similar succession, with the advent of the new SystemVerilog
Direct Programming Interface (DPI). Is the old Verilog PLI dead, and the SystemVerilog DPI the

new king? This paper addresses the question of whether engineers should continue to use the
Verilog PLI, or switch to the new SystemVerilog DPI. The paper will show that the DPI can

simplify interfacing to the C language, and has capabilities that are not possible with the PLL
However, the Verilog PLI also has unique capabilities that cannot be done using the DPI.

* [tis complicated.

’ve also seen VPI| backronymed to Verification
Peripheral Interface (Verilator)

* The big thing | want to point out here is most Verilog
simulation engines (and VHDL too) have hooks into

them that can allow C or other languages to interface
with them.

September 9, 2024 6.S965 Fall 2024 36

The Point of PLI/VPI/DPI

* All of these simulation entry points were created
to provide ways to automate simulation.

* But also they found use in allowing you to
Interface non-HDL models of very complicated
things:

* Memory
* CPU’s
* Other bit-accurate models

* Key component of the developing Verification
field

September 9, 2024 6.S965 Fall 2024 37

Builiding Up

* About ten years ago, some folks started to wrap
up the VPI C material with Python and that ended
up evolving into what Cocotb is today

September 9, 2024 6.S965 Fall 2024 38

CoColb

Python for Simulation

September 9, 2024

6.5965 Fall 2024

39

Two Big Parts to Cocotb

* It takes advantage of the Verilog Procedural
Interface

* A built-in interface to the simulator’s runtime
environment that allows manipulation within the
environment by outside forces

* Takes advantage of Python’s asynchronous
programming capabilities to spawn many
parallel running processes.

* Very nice...can spawn off lots of tasks to take care of
different jobs and not worry about having to task
switch between tracking them.

September 9, 2024 6.S965 Fall 2024 40

Verilog Procedural Interface (VPI)

* Previously in 6.111/6.205 if we wanted to
compile our design with something like
icarusVerilog we’d do:

iverilog —g2012 —-o example.out example_tb.sv example.sv

* This would then produce a file we would run with
vvp (Verilog Virtual Processor) like so:

vvp example.out

* The VPl is part of the VVP

September 9, 2024 6.S965 Fall 2024 41

Does Vivado Support VPI?

* No
* Vivado does support ’"DPI” though

 So that means Cocotb does not work with Vivado
(only iVerilog and Verilator)

https://docs.amd.com/r/en-US/ug900-vivado-logic-simulation/Direct-Programming-Interface-DPI-in-Vivado-Simulator

September 9, 2024 6.S965 Fall 2024 42

However...An attempt to link
Cocotb to

* There’s an open project on github of someone
trying to connect Cocotb to Vivado’s DPI.*:
* https://github.com/themperek/cocotb-vivado/tree/main

* This would certainly be nice because it would let
us simulate and work with locked IP within

Vivado.

* If somebody wants to make this their final
project that’d be sweet.

*doesn’t look touched in the half-year...

September 9, 2024 6.5965 Fall 2024 43

https://github.com/themperek/cocotb-vivado/tree/main

What can you do through the VPI
that Cocotb builds upon?

* Basically anything you want.

* |t gives you full access to all signhals within the
simulated environment

* It also has built a lot of utility logic that will
“watch for events”

September 9, 2024 6.S965 Fall 2024

44

Documentation is Pretty Good...

September 9, 2024

{Gcotb

Quickstart Guide

Installation

More Examples

Writing Testbenches
Building HDL and Running Tests
Coroutines and Tasks

Triggers

Extending existing build flows

Rotating Log Files

Installing the Development Version

Troubleshooting

Build options and Environment
Variables

Python Code Library Reference

& / Welcome to cocotb’s documentation! O Edit on GitHub

Welcome to cocotb’'s documentation!

What is cocotb?

cocotb is a COroutine based COsimulation TestBench environment for verifying VHDL and
SystemVerilog RTL using Python.

cocotb is completely free, open source (under the BSD License) and hosted on GitHub.

cocotb requires a simulator to simulate the HDL design and has been used with a variety of
simulators on Linux, Windows and macOS. Please check the Simulator Support page for specifics.

A (possibly older) version of cocotb can be used live in a web browser on EDA Playground.

How is cocotb different?

cocotb encourages the same philosophy of design re-use and randomized testing as UVM, however
is implemented in Python.

With cocotb, VHDL or SystemVerilog are normally only used for the design itself, not the testbench.

cocotb has built-in support for integrating with continuous integration systems, such as Jenkins,
GitLab, etc. through standardized, machine-readable test reporting formats.

cocotb was specifically designed to lower the overhead of creating a test.

cocotb automatically discovers tests so that no additional step is required to add a test to a
regression.

6.5965 Fall 2024

45

There’s decent reference cards,
etc...

Reference Card
coro: a coroutine; task: a running coroutine

Assign dut.mysignal.value = OxFFoO

Assign immediately dut.mysignal.setimmediatevalue(@xFF@0)

dut.mysignal.value = Logic("X")

. dut.mysignal.value = LogicArray("@1XZ")
Assign metavalue
dut.mysignal.value = BinaryValue("x") (deprecated)

val = dut.mysignal.value

Read (mysig = dut.mysignal creates an alias/reference)

mybit = dut.myarray[0].value

Bit slice mybits = dut.mysignal.value[@]

val = dut.mysignal.value.integer

Convert val = dut.mysignal.value.binstr

Vector length num_bits = len(dut.mysignal)

Check assert dut.mysignal.value == exp, "Not as expected!"
Logging dut._log.info("Value is", dut.mysignal.value)

Wait time await cocotb.triggers.Timer(12, "ns")

Generate clock clk = await cocotb.start(Clock(dut.clk, 12, "ns").start())

await cocotb.triggers.RisingEdge(dut.mysignal)

https://docs.cocotb.org/en/stable/refcard.html

September 9, 2024 6.5965 Fall 2024

Demo/Live-Code

* Let’s investigate the simple counter from Week
1’s Lab.

September 9, 2024 6.5965 Fall 2024

47

